Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/arch/arm/mm/mm-armv.c b/arch/arm/mm/mm-armv.c
new file mode 100644
index 0000000..f5a87db8
--- /dev/null
+++ b/arch/arm/mm/mm-armv.c
@@ -0,0 +1,760 @@
+/*
+ *  linux/arch/arm/mm/mm-armv.c
+ *
+ *  Copyright (C) 1998-2002 Russell King
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ *  Page table sludge for ARM v3 and v4 processor architectures.
+ */
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/mm.h>
+#include <linux/init.h>
+#include <linux/bootmem.h>
+#include <linux/highmem.h>
+#include <linux/nodemask.h>
+
+#include <asm/pgalloc.h>
+#include <asm/page.h>
+#include <asm/io.h>
+#include <asm/setup.h>
+#include <asm/tlbflush.h>
+
+#include <asm/mach/map.h>
+
+#define CPOLICY_UNCACHED	0
+#define CPOLICY_BUFFERED	1
+#define CPOLICY_WRITETHROUGH	2
+#define CPOLICY_WRITEBACK	3
+#define CPOLICY_WRITEALLOC	4
+
+static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
+static unsigned int ecc_mask __initdata = 0;
+pgprot_t pgprot_kernel;
+
+EXPORT_SYMBOL(pgprot_kernel);
+
+struct cachepolicy {
+	const char	policy[16];
+	unsigned int	cr_mask;
+	unsigned int	pmd;
+	unsigned int	pte;
+};
+
+static struct cachepolicy cache_policies[] __initdata = {
+	{
+		.policy		= "uncached",
+		.cr_mask	= CR_W|CR_C,
+		.pmd		= PMD_SECT_UNCACHED,
+		.pte		= 0,
+	}, {
+		.policy		= "buffered",
+		.cr_mask	= CR_C,
+		.pmd		= PMD_SECT_BUFFERED,
+		.pte		= PTE_BUFFERABLE,
+	}, {
+		.policy		= "writethrough",
+		.cr_mask	= 0,
+		.pmd		= PMD_SECT_WT,
+		.pte		= PTE_CACHEABLE,
+	}, {
+		.policy		= "writeback",
+		.cr_mask	= 0,
+		.pmd		= PMD_SECT_WB,
+		.pte		= PTE_BUFFERABLE|PTE_CACHEABLE,
+	}, {
+		.policy		= "writealloc",
+		.cr_mask	= 0,
+		.pmd		= PMD_SECT_WBWA,
+		.pte		= PTE_BUFFERABLE|PTE_CACHEABLE,
+	}
+};
+
+/*
+ * These are useful for identifing cache coherency
+ * problems by allowing the cache or the cache and
+ * writebuffer to be turned off.  (Note: the write
+ * buffer should not be on and the cache off).
+ */
+static void __init early_cachepolicy(char **p)
+{
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
+		int len = strlen(cache_policies[i].policy);
+
+		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
+			cachepolicy = i;
+			cr_alignment &= ~cache_policies[i].cr_mask;
+			cr_no_alignment &= ~cache_policies[i].cr_mask;
+			*p += len;
+			break;
+		}
+	}
+	if (i == ARRAY_SIZE(cache_policies))
+		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
+	flush_cache_all();
+	set_cr(cr_alignment);
+}
+
+static void __init early_nocache(char **__unused)
+{
+	char *p = "buffered";
+	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
+	early_cachepolicy(&p);
+}
+
+static void __init early_nowrite(char **__unused)
+{
+	char *p = "uncached";
+	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
+	early_cachepolicy(&p);
+}
+
+static void __init early_ecc(char **p)
+{
+	if (memcmp(*p, "on", 2) == 0) {
+		ecc_mask = PMD_PROTECTION;
+		*p += 2;
+	} else if (memcmp(*p, "off", 3) == 0) {
+		ecc_mask = 0;
+		*p += 3;
+	}
+}
+
+__early_param("nocache", early_nocache);
+__early_param("nowb", early_nowrite);
+__early_param("cachepolicy=", early_cachepolicy);
+__early_param("ecc=", early_ecc);
+
+static int __init noalign_setup(char *__unused)
+{
+	cr_alignment &= ~CR_A;
+	cr_no_alignment &= ~CR_A;
+	set_cr(cr_alignment);
+	return 1;
+}
+
+__setup("noalign", noalign_setup);
+
+#define FIRST_KERNEL_PGD_NR	(FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
+
+/*
+ * need to get a 16k page for level 1
+ */
+pgd_t *get_pgd_slow(struct mm_struct *mm)
+{
+	pgd_t *new_pgd, *init_pgd;
+	pmd_t *new_pmd, *init_pmd;
+	pte_t *new_pte, *init_pte;
+
+	new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
+	if (!new_pgd)
+		goto no_pgd;
+
+	memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
+
+	init_pgd = pgd_offset_k(0);
+
+	if (!vectors_high()) {
+		/*
+		 * This lock is here just to satisfy pmd_alloc and pte_lock
+		 */
+		spin_lock(&mm->page_table_lock);
+
+		/*
+		 * On ARM, first page must always be allocated since it
+		 * contains the machine vectors.
+		 */
+		new_pmd = pmd_alloc(mm, new_pgd, 0);
+		if (!new_pmd)
+			goto no_pmd;
+
+		new_pte = pte_alloc_map(mm, new_pmd, 0);
+		if (!new_pte)
+			goto no_pte;
+
+		init_pmd = pmd_offset(init_pgd, 0);
+		init_pte = pte_offset_map_nested(init_pmd, 0);
+		set_pte(new_pte, *init_pte);
+		pte_unmap_nested(init_pte);
+		pte_unmap(new_pte);
+
+		spin_unlock(&mm->page_table_lock);
+	}
+
+	/*
+	 * Copy over the kernel and IO PGD entries
+	 */
+	memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
+		       (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
+
+	clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
+
+	return new_pgd;
+
+no_pte:
+	spin_unlock(&mm->page_table_lock);
+	pmd_free(new_pmd);
+	free_pages((unsigned long)new_pgd, 2);
+	return NULL;
+
+no_pmd:
+	spin_unlock(&mm->page_table_lock);
+	free_pages((unsigned long)new_pgd, 2);
+	return NULL;
+
+no_pgd:
+	return NULL;
+}
+
+void free_pgd_slow(pgd_t *pgd)
+{
+	pmd_t *pmd;
+	struct page *pte;
+
+	if (!pgd)
+		return;
+
+	/* pgd is always present and good */
+	pmd = (pmd_t *)pgd;
+	if (pmd_none(*pmd))
+		goto free;
+	if (pmd_bad(*pmd)) {
+		pmd_ERROR(*pmd);
+		pmd_clear(pmd);
+		goto free;
+	}
+
+	pte = pmd_page(*pmd);
+	pmd_clear(pmd);
+	dec_page_state(nr_page_table_pages);
+	pte_free(pte);
+	pmd_free(pmd);
+free:
+	free_pages((unsigned long) pgd, 2);
+}
+
+/*
+ * Create a SECTION PGD between VIRT and PHYS in domain
+ * DOMAIN with protection PROT.  This operates on half-
+ * pgdir entry increments.
+ */
+static inline void
+alloc_init_section(unsigned long virt, unsigned long phys, int prot)
+{
+	pmd_t *pmdp;
+
+	pmdp = pmd_offset(pgd_offset_k(virt), virt);
+	if (virt & (1 << 20))
+		pmdp++;
+
+	*pmdp = __pmd(phys | prot);
+	flush_pmd_entry(pmdp);
+}
+
+/*
+ * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
+ */
+static inline void
+alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
+{
+	int i;
+
+	for (i = 0; i < 16; i += 1) {
+		alloc_init_section(virt, phys & SUPERSECTION_MASK,
+				   prot | PMD_SECT_SUPER);
+
+		virt += (PGDIR_SIZE / 2);
+		phys += (PGDIR_SIZE / 2);
+	}
+}
+
+/*
+ * Add a PAGE mapping between VIRT and PHYS in domain
+ * DOMAIN with protection PROT.  Note that due to the
+ * way we map the PTEs, we must allocate two PTE_SIZE'd
+ * blocks - one for the Linux pte table, and one for
+ * the hardware pte table.
+ */
+static inline void
+alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
+{
+	pmd_t *pmdp;
+	pte_t *ptep;
+
+	pmdp = pmd_offset(pgd_offset_k(virt), virt);
+
+	if (pmd_none(*pmdp)) {
+		unsigned long pmdval;
+		ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
+					       sizeof(pte_t));
+
+		pmdval = __pa(ptep) | prot_l1;
+		pmdp[0] = __pmd(pmdval);
+		pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t));
+		flush_pmd_entry(pmdp);
+	}
+	ptep = pte_offset_kernel(pmdp, virt);
+
+	set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
+}
+
+/*
+ * Clear any PGD mapping.  On a two-level page table system,
+ * the clearance is done by the middle-level functions (pmd)
+ * rather than the top-level (pgd) functions.
+ */
+static inline void clear_mapping(unsigned long virt)
+{
+	pmd_clear(pmd_offset(pgd_offset_k(virt), virt));
+}
+
+struct mem_types {
+	unsigned int	prot_pte;
+	unsigned int	prot_l1;
+	unsigned int	prot_sect;
+	unsigned int	domain;
+};
+
+static struct mem_types mem_types[] __initdata = {
+	[MT_DEVICE] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
+				L_PTE_WRITE,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
+				PMD_SECT_AP_WRITE,
+		.domain    = DOMAIN_IO,
+	},
+	[MT_CACHECLEAN] = {
+		.prot_sect = PMD_TYPE_SECT,
+		.domain    = DOMAIN_KERNEL,
+	},
+	[MT_MINICLEAN] = {
+		.prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE,
+		.domain    = DOMAIN_KERNEL,
+	},
+	[MT_LOW_VECTORS] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
+				L_PTE_EXEC,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.domain    = DOMAIN_USER,
+	},
+	[MT_HIGH_VECTORS] = {
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
+				L_PTE_USER | L_PTE_EXEC,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.domain    = DOMAIN_USER,
+	},
+	[MT_MEMORY] = {
+		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
+		.domain    = DOMAIN_KERNEL,
+	},
+	[MT_ROM] = {
+		.prot_sect = PMD_TYPE_SECT,
+		.domain    = DOMAIN_KERNEL,
+	},
+	[MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
+		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
+				L_PTE_WRITE,
+		.prot_l1   = PMD_TYPE_TABLE,
+		.prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
+				PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
+				PMD_SECT_TEX(1),
+		.domain    = DOMAIN_IO,
+	}
+};
+
+/*
+ * Adjust the PMD section entries according to the CPU in use.
+ */
+static void __init build_mem_type_table(void)
+{
+	struct cachepolicy *cp;
+	unsigned int cr = get_cr();
+	int cpu_arch = cpu_architecture();
+	int i;
+
+#if defined(CONFIG_CPU_DCACHE_DISABLE)
+	if (cachepolicy > CPOLICY_BUFFERED)
+		cachepolicy = CPOLICY_BUFFERED;
+#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
+	if (cachepolicy > CPOLICY_WRITETHROUGH)
+		cachepolicy = CPOLICY_WRITETHROUGH;
+#endif
+	if (cpu_arch < CPU_ARCH_ARMv5) {
+		if (cachepolicy >= CPOLICY_WRITEALLOC)
+			cachepolicy = CPOLICY_WRITEBACK;
+		ecc_mask = 0;
+	}
+
+	if (cpu_arch <= CPU_ARCH_ARMv5) {
+		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
+			if (mem_types[i].prot_l1)
+				mem_types[i].prot_l1 |= PMD_BIT4;
+			if (mem_types[i].prot_sect)
+				mem_types[i].prot_sect |= PMD_BIT4;
+		}
+	}
+
+	/*
+	 * ARMv6 and above have extended page tables.
+	 */
+	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
+		/*
+		 * bit 4 becomes XN which we must clear for the
+		 * kernel memory mapping.
+		 */
+		mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;
+		mem_types[MT_ROM].prot_sect &= ~PMD_BIT4;
+		/*
+		 * Mark cache clean areas read only from SVC mode
+		 * and no access from userspace.
+		 */
+		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
+		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
+	}
+
+	cp = &cache_policies[cachepolicy];
+
+	if (cpu_arch >= CPU_ARCH_ARMv5) {
+		mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
+		mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
+	} else {
+		mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte;
+		mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte;
+		mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
+	}
+
+	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
+	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
+	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
+	mem_types[MT_ROM].prot_sect |= cp->pmd;
+
+	for (i = 0; i < 16; i++) {
+		unsigned long v = pgprot_val(protection_map[i]);
+		v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte;
+		protection_map[i] = __pgprot(v);
+	}
+
+	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
+				 L_PTE_DIRTY | L_PTE_WRITE |
+				 L_PTE_EXEC | cp->pte);
+
+	switch (cp->pmd) {
+	case PMD_SECT_WT:
+		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
+		break;
+	case PMD_SECT_WB:
+	case PMD_SECT_WBWA:
+		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
+		break;
+	}
+	printk("Memory policy: ECC %sabled, Data cache %s\n",
+		ecc_mask ? "en" : "dis", cp->policy);
+}
+
+#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
+
+/*
+ * Create the page directory entries and any necessary
+ * page tables for the mapping specified by `md'.  We
+ * are able to cope here with varying sizes and address
+ * offsets, and we take full advantage of sections and
+ * supersections.
+ */
+static void __init create_mapping(struct map_desc *md)
+{
+	unsigned long virt, length;
+	int prot_sect, prot_l1, domain;
+	pgprot_t prot_pte;
+	long off;
+
+	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
+		printk(KERN_WARNING "BUG: not creating mapping for "
+		       "0x%08lx at 0x%08lx in user region\n",
+		       md->physical, md->virtual);
+		return;
+	}
+
+	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
+	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
+		printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx "
+		       "overlaps vmalloc space\n",
+		       md->physical, md->virtual);
+	}
+
+	domain	  = mem_types[md->type].domain;
+	prot_pte  = __pgprot(mem_types[md->type].prot_pte);
+	prot_l1   = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
+	prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);
+
+	virt   = md->virtual;
+	off    = md->physical - virt;
+	length = md->length;
+
+	if (mem_types[md->type].prot_l1 == 0 &&
+	    (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
+		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
+		       "be mapped using pages, ignoring.\n",
+		       md->physical, md->virtual);
+		return;
+	}
+
+	while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
+		alloc_init_page(virt, virt + off, prot_l1, prot_pte);
+
+		virt   += PAGE_SIZE;
+		length -= PAGE_SIZE;
+	}
+
+	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
+	 *	Since domain assignments can in fact be arbitrary, the
+	 *	'domain == 0' check below is required to insure that ARMv6
+	 *	supersections are only allocated for domain 0 regardless
+	 *	of the actual domain assignments in use.
+	 */
+	if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) {
+		/* Align to supersection boundary */
+		while ((virt & ~SUPERSECTION_MASK || (virt + off) &
+			~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) {
+			alloc_init_section(virt, virt + off, prot_sect);
+
+			virt   += (PGDIR_SIZE / 2);
+			length -= (PGDIR_SIZE / 2);
+		}
+
+		while (length >= SUPERSECTION_SIZE) {
+			alloc_init_supersection(virt, virt + off, prot_sect);
+
+			virt   += SUPERSECTION_SIZE;
+			length -= SUPERSECTION_SIZE;
+		}
+	}
+
+	/*
+	 * A section mapping covers half a "pgdir" entry.
+	 */
+	while (length >= (PGDIR_SIZE / 2)) {
+		alloc_init_section(virt, virt + off, prot_sect);
+
+		virt   += (PGDIR_SIZE / 2);
+		length -= (PGDIR_SIZE / 2);
+	}
+
+	while (length >= PAGE_SIZE) {
+		alloc_init_page(virt, virt + off, prot_l1, prot_pte);
+
+		virt   += PAGE_SIZE;
+		length -= PAGE_SIZE;
+	}
+}
+
+/*
+ * In order to soft-boot, we need to insert a 1:1 mapping in place of
+ * the user-mode pages.  This will then ensure that we have predictable
+ * results when turning the mmu off
+ */
+void setup_mm_for_reboot(char mode)
+{
+	unsigned long pmdval;
+	pgd_t *pgd;
+	pmd_t *pmd;
+	int i;
+	int cpu_arch = cpu_architecture();
+
+	if (current->mm && current->mm->pgd)
+		pgd = current->mm->pgd;
+	else
+		pgd = init_mm.pgd;
+
+	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) {
+		pmdval = (i << PGDIR_SHIFT) |
+			 PMD_SECT_AP_WRITE | PMD_SECT_AP_READ |
+			 PMD_TYPE_SECT;
+		if (cpu_arch <= CPU_ARCH_ARMv5)
+			pmdval |= PMD_BIT4;
+		pmd = pmd_offset(pgd + i, i << PGDIR_SHIFT);
+		pmd[0] = __pmd(pmdval);
+		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
+		flush_pmd_entry(pmd);
+	}
+}
+
+extern void _stext, _etext;
+
+/*
+ * Setup initial mappings.  We use the page we allocated for zero page to hold
+ * the mappings, which will get overwritten by the vectors in traps_init().
+ * The mappings must be in virtual address order.
+ */
+void __init memtable_init(struct meminfo *mi)
+{
+	struct map_desc *init_maps, *p, *q;
+	unsigned long address = 0;
+	int i;
+
+	build_mem_type_table();
+
+	init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);
+
+#ifdef CONFIG_XIP_KERNEL
+	p->physical   = CONFIG_XIP_PHYS_ADDR & PMD_MASK;
+	p->virtual    = (unsigned long)&_stext & PMD_MASK;
+	p->length     = ((unsigned long)&_etext - p->virtual + ~PMD_MASK) & PMD_MASK;
+	p->type       = MT_ROM;
+	p ++;
+#endif
+
+	for (i = 0; i < mi->nr_banks; i++) {
+		if (mi->bank[i].size == 0)
+			continue;
+
+		p->physical   = mi->bank[i].start;
+		p->virtual    = __phys_to_virt(p->physical);
+		p->length     = mi->bank[i].size;
+		p->type       = MT_MEMORY;
+		p ++;
+	}
+
+#ifdef FLUSH_BASE
+	p->physical   = FLUSH_BASE_PHYS;
+	p->virtual    = FLUSH_BASE;
+	p->length     = PGDIR_SIZE;
+	p->type       = MT_CACHECLEAN;
+	p ++;
+#endif
+
+#ifdef FLUSH_BASE_MINICACHE
+	p->physical   = FLUSH_BASE_PHYS + PGDIR_SIZE;
+	p->virtual    = FLUSH_BASE_MINICACHE;
+	p->length     = PGDIR_SIZE;
+	p->type       = MT_MINICLEAN;
+	p ++;
+#endif
+
+	/*
+	 * Go through the initial mappings, but clear out any
+	 * pgdir entries that are not in the description.
+	 */
+	q = init_maps;
+	do {
+		if (address < q->virtual || q == p) {
+			clear_mapping(address);
+			address += PGDIR_SIZE;
+		} else {
+			create_mapping(q);
+
+			address = q->virtual + q->length;
+			address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;
+
+			q ++;
+		}
+	} while (address != 0);
+
+	/*
+	 * Create a mapping for the machine vectors at the high-vectors
+	 * location (0xffff0000).  If we aren't using high-vectors, also
+	 * create a mapping at the low-vectors virtual address.
+	 */
+	init_maps->physical   = virt_to_phys(init_maps);
+	init_maps->virtual    = 0xffff0000;
+	init_maps->length     = PAGE_SIZE;
+	init_maps->type       = MT_HIGH_VECTORS;
+	create_mapping(init_maps);
+
+	if (!vectors_high()) {
+		init_maps->virtual = 0;
+		init_maps->type = MT_LOW_VECTORS;
+		create_mapping(init_maps);
+	}
+
+	flush_cache_all();
+	flush_tlb_all();
+}
+
+/*
+ * Create the architecture specific mappings
+ */
+void __init iotable_init(struct map_desc *io_desc, int nr)
+{
+	int i;
+
+	for (i = 0; i < nr; i++)
+		create_mapping(io_desc + i);
+}
+
+static inline void
+free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
+{
+	struct page *start_pg, *end_pg;
+	unsigned long pg, pgend;
+
+	/*
+	 * Convert start_pfn/end_pfn to a struct page pointer.
+	 */
+	start_pg = pfn_to_page(start_pfn);
+	end_pg = pfn_to_page(end_pfn);
+
+	/*
+	 * Convert to physical addresses, and
+	 * round start upwards and end downwards.
+	 */
+	pg = PAGE_ALIGN(__pa(start_pg));
+	pgend = __pa(end_pg) & PAGE_MASK;
+
+	/*
+	 * If there are free pages between these,
+	 * free the section of the memmap array.
+	 */
+	if (pg < pgend)
+		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
+}
+
+static inline void free_unused_memmap_node(int node, struct meminfo *mi)
+{
+	unsigned long bank_start, prev_bank_end = 0;
+	unsigned int i;
+
+	/*
+	 * [FIXME] This relies on each bank being in address order.  This
+	 * may not be the case, especially if the user has provided the
+	 * information on the command line.
+	 */
+	for (i = 0; i < mi->nr_banks; i++) {
+		if (mi->bank[i].size == 0 || mi->bank[i].node != node)
+			continue;
+
+		bank_start = mi->bank[i].start >> PAGE_SHIFT;
+		if (bank_start < prev_bank_end) {
+			printk(KERN_ERR "MEM: unordered memory banks.  "
+				"Not freeing memmap.\n");
+			break;
+		}
+
+		/*
+		 * If we had a previous bank, and there is a space
+		 * between the current bank and the previous, free it.
+		 */
+		if (prev_bank_end && prev_bank_end != bank_start)
+			free_memmap(node, prev_bank_end, bank_start);
+
+		prev_bank_end = PAGE_ALIGN(mi->bank[i].start +
+					   mi->bank[i].size) >> PAGE_SHIFT;
+	}
+}
+
+/*
+ * The mem_map array can get very big.  Free
+ * the unused area of the memory map.
+ */
+void __init create_memmap_holes(struct meminfo *mi)
+{
+	int node;
+
+	for_each_online_node(node)
+		free_unused_memmap_node(node, mi);
+}