Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/arch/m68k/ifpsp060/src/pfpsp.S b/arch/m68k/ifpsp060/src/pfpsp.S
new file mode 100644
index 0000000..0c997c4
--- /dev/null
+++ b/arch/m68k/ifpsp060/src/pfpsp.S
@@ -0,0 +1,14745 @@
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
+M68000 Hi-Performance Microprocessor Division
+M68060 Software Package
+Production Release P1.00 -- October 10, 1994
+
+M68060 Software Package Copyright © 1993, 1994 Motorola Inc.  All rights reserved.
+
+THE SOFTWARE is provided on an "AS IS" basis and without warranty.
+To the maximum extent permitted by applicable law,
+MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
+INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
+and any warranty against infringement with regard to the SOFTWARE
+(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
+
+To the maximum extent permitted by applicable law,
+IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
+(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
+BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
+ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
+Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
+
+You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
+so long as this entire notice is retained without alteration in any modified and/or
+redistributed versions, and that such modified versions are clearly identified as such.
+No licenses are granted by implication, estoppel or otherwise under any patents
+or trademarks of Motorola, Inc.
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+# freal.s:
+#	This file is appended to the top of the 060FPSP package
+# and contains the entry points into the package. The user, in
+# effect, branches to one of the branch table entries located
+# after _060FPSP_TABLE.
+#	Also, subroutine stubs exist in this file (_fpsp_done for
+# example) that are referenced by the FPSP package itself in order
+# to call a given routine. The stub routine actually performs the
+# callout. The FPSP code does a "bsr" to the stub routine. This
+# extra layer of hierarchy adds a slight performance penalty but
+# it makes the FPSP code easier to read and more mainatinable.
+#
+
+set	_off_bsun,	0x00
+set	_off_snan,	0x04
+set	_off_operr,	0x08
+set	_off_ovfl,	0x0c
+set	_off_unfl,	0x10
+set	_off_dz,	0x14
+set	_off_inex,	0x18
+set	_off_fline,	0x1c
+set	_off_fpu_dis,	0x20
+set	_off_trap,	0x24
+set	_off_trace,	0x28
+set	_off_access,	0x2c
+set	_off_done,	0x30
+
+set	_off_imr,	0x40
+set	_off_dmr,	0x44
+set	_off_dmw,	0x48
+set	_off_irw,	0x4c
+set	_off_irl,	0x50
+set	_off_drb,	0x54
+set	_off_drw,	0x58
+set	_off_drl,	0x5c
+set	_off_dwb,	0x60
+set	_off_dww,	0x64
+set	_off_dwl,	0x68
+
+_060FPSP_TABLE:
+
+###############################################################
+
+# Here's the table of ENTRY POINTS for those linking the package.
+	bra.l		_fpsp_snan
+	short		0x0000
+	bra.l		_fpsp_operr
+	short		0x0000
+	bra.l		_fpsp_ovfl
+	short		0x0000
+	bra.l		_fpsp_unfl
+	short		0x0000
+	bra.l		_fpsp_dz
+	short		0x0000
+	bra.l		_fpsp_inex
+	short		0x0000
+	bra.l		_fpsp_fline
+	short		0x0000
+	bra.l		_fpsp_unsupp
+	short		0x0000
+	bra.l		_fpsp_effadd
+	short		0x0000
+
+	space		56
+
+###############################################################
+	global		_fpsp_done
+_fpsp_done:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_done,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_ovfl
+_real_ovfl:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_unfl
+_real_unfl:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_inex
+_real_inex:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_inex,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_bsun
+_real_bsun:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_operr
+_real_operr:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_operr,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_snan
+_real_snan:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_snan,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_dz
+_real_dz:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_dz,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_fline
+_real_fline:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_fline,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_fpu_disabled
+_real_fpu_disabled:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_trap
+_real_trap:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_trap,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_trace
+_real_trace:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_trace,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_real_access
+_real_access:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_access,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+#######################################
+
+	global		_imem_read
+_imem_read:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_imr,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_dmem_read
+_dmem_read:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_dmem_write
+_dmem_write:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_imem_read_word
+_imem_read_word:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_irw,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_imem_read_long
+_imem_read_long:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_irl,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_dmem_read_byte
+_dmem_read_byte:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_drb,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_dmem_read_word
+_dmem_read_word:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_drw,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_dmem_read_long
+_dmem_read_long:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_drl,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_dmem_write_byte
+_dmem_write_byte:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_dmem_write_word
+_dmem_write_word:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_dww,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+	global		_dmem_write_long
+_dmem_write_long:
+	mov.l		%d0,-(%sp)
+	mov.l		(_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0
+	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0)
+	mov.l		0x4(%sp),%d0
+	rtd		&0x4
+
+#
+# This file contains a set of define statements for constants
+# in order to promote readability within the corecode itself.
+#
+
+set LOCAL_SIZE,		192			# stack frame size(bytes)
+set LV,			-LOCAL_SIZE		# stack offset
+
+set EXC_SR,		0x4			# stack status register
+set EXC_PC,		0x6			# stack pc
+set EXC_VOFF,		0xa			# stacked vector offset
+set EXC_EA,		0xc			# stacked <ea>
+
+set EXC_FP,		0x0			# frame pointer
+
+set EXC_AREGS,		-68			# offset of all address regs
+set EXC_DREGS,		-100			# offset of all data regs
+set EXC_FPREGS,		-36			# offset of all fp regs
+
+set EXC_A7,		EXC_AREGS+(7*4)		# offset of saved a7
+set OLD_A7,		EXC_AREGS+(6*4)		# extra copy of saved a7
+set EXC_A6,		EXC_AREGS+(6*4)		# offset of saved a6
+set EXC_A5,		EXC_AREGS+(5*4)
+set EXC_A4,		EXC_AREGS+(4*4)
+set EXC_A3,		EXC_AREGS+(3*4)
+set EXC_A2,		EXC_AREGS+(2*4)
+set EXC_A1,		EXC_AREGS+(1*4)
+set EXC_A0,		EXC_AREGS+(0*4)
+set EXC_D7,		EXC_DREGS+(7*4)
+set EXC_D6,		EXC_DREGS+(6*4)
+set EXC_D5,		EXC_DREGS+(5*4)
+set EXC_D4,		EXC_DREGS+(4*4)
+set EXC_D3,		EXC_DREGS+(3*4)
+set EXC_D2,		EXC_DREGS+(2*4)
+set EXC_D1,		EXC_DREGS+(1*4)
+set EXC_D0,		EXC_DREGS+(0*4)
+
+set EXC_FP0,		EXC_FPREGS+(0*12)	# offset of saved fp0
+set EXC_FP1,		EXC_FPREGS+(1*12)	# offset of saved fp1
+set EXC_FP2,		EXC_FPREGS+(2*12)	# offset of saved fp2 (not used)
+
+set FP_SCR1,		LV+80			# fp scratch 1
+set FP_SCR1_EX,		FP_SCR1+0
+set FP_SCR1_SGN,	FP_SCR1+2
+set FP_SCR1_HI,		FP_SCR1+4
+set FP_SCR1_LO,		FP_SCR1+8
+
+set FP_SCR0,		LV+68			# fp scratch 0
+set FP_SCR0_EX,		FP_SCR0+0
+set FP_SCR0_SGN,	FP_SCR0+2
+set FP_SCR0_HI,		FP_SCR0+4
+set FP_SCR0_LO,		FP_SCR0+8
+
+set FP_DST,		LV+56			# fp destination operand
+set FP_DST_EX,		FP_DST+0
+set FP_DST_SGN,		FP_DST+2
+set FP_DST_HI,		FP_DST+4
+set FP_DST_LO,		FP_DST+8
+
+set FP_SRC,		LV+44			# fp source operand
+set FP_SRC_EX,		FP_SRC+0
+set FP_SRC_SGN,		FP_SRC+2
+set FP_SRC_HI,		FP_SRC+4
+set FP_SRC_LO,		FP_SRC+8
+
+set USER_FPIAR,		LV+40			# FP instr address register
+
+set USER_FPSR,		LV+36			# FP status register
+set FPSR_CC,		USER_FPSR+0		# FPSR condition codes
+set FPSR_QBYTE,		USER_FPSR+1		# FPSR qoutient byte
+set FPSR_EXCEPT,	USER_FPSR+2		# FPSR exception status byte
+set FPSR_AEXCEPT,	USER_FPSR+3		# FPSR accrued exception byte
+
+set USER_FPCR,		LV+32			# FP control register
+set FPCR_ENABLE,	USER_FPCR+2		# FPCR exception enable
+set FPCR_MODE,		USER_FPCR+3		# FPCR rounding mode control
+
+set L_SCR3,		LV+28			# integer scratch 3
+set L_SCR2,		LV+24			# integer scratch 2
+set L_SCR1,		LV+20			# integer scratch 1
+
+set STORE_FLG,		LV+19			# flag: operand store (ie. not fcmp/ftst)
+
+set EXC_TEMP2,		LV+24			# temporary space
+set EXC_TEMP,		LV+16			# temporary space
+
+set DTAG,		LV+15			# destination operand type
+set STAG,		LV+14			# source operand type
+
+set SPCOND_FLG,		LV+10			# flag: special case (see below)
+
+set EXC_CC,		LV+8			# saved condition codes
+set EXC_EXTWPTR,	LV+4			# saved current PC (active)
+set EXC_EXTWORD,	LV+2			# saved extension word
+set EXC_CMDREG,		LV+2			# saved extension word
+set EXC_OPWORD,		LV+0			# saved operation word
+
+################################
+
+# Helpful macros
+
+set FTEMP,		0			# offsets within an
+set FTEMP_EX,		0			# extended precision
+set FTEMP_SGN,		2			# value saved in memory.
+set FTEMP_HI,		4
+set FTEMP_LO,		8
+set FTEMP_GRS,		12
+
+set LOCAL,		0			# offsets within an
+set LOCAL_EX,		0			# extended precision
+set LOCAL_SGN,		2			# value saved in memory.
+set LOCAL_HI,		4
+set LOCAL_LO,		8
+set LOCAL_GRS,		12
+
+set DST,		0			# offsets within an
+set DST_EX,		0			# extended precision
+set DST_HI,		4			# value saved in memory.
+set DST_LO,		8
+
+set SRC,		0			# offsets within an
+set SRC_EX,		0			# extended precision
+set SRC_HI,		4			# value saved in memory.
+set SRC_LO,		8
+
+set SGL_LO,		0x3f81			# min sgl prec exponent
+set SGL_HI,		0x407e			# max sgl prec exponent
+set DBL_LO,		0x3c01			# min dbl prec exponent
+set DBL_HI,		0x43fe			# max dbl prec exponent
+set EXT_LO,		0x0			# min ext prec exponent
+set EXT_HI,		0x7ffe			# max ext prec exponent
+
+set EXT_BIAS,		0x3fff			# extended precision bias
+set SGL_BIAS,		0x007f			# single precision bias
+set DBL_BIAS,		0x03ff			# double precision bias
+
+set NORM,		0x00			# operand type for STAG/DTAG
+set ZERO,		0x01			# operand type for STAG/DTAG
+set INF,		0x02			# operand type for STAG/DTAG
+set QNAN,		0x03			# operand type for STAG/DTAG
+set DENORM,		0x04			# operand type for STAG/DTAG
+set SNAN,		0x05			# operand type for STAG/DTAG
+set UNNORM,		0x06			# operand type for STAG/DTAG
+
+##################
+# FPSR/FPCR bits #
+##################
+set neg_bit,		0x3			# negative result
+set z_bit,		0x2			# zero result
+set inf_bit,		0x1			# infinite result
+set nan_bit,		0x0			# NAN result
+
+set q_sn_bit,		0x7			# sign bit of quotient byte
+
+set bsun_bit,		7			# branch on unordered
+set snan_bit,		6			# signalling NAN
+set operr_bit,		5			# operand error
+set ovfl_bit,		4			# overflow
+set unfl_bit,		3			# underflow
+set dz_bit,		2			# divide by zero
+set inex2_bit,		1			# inexact result 2
+set inex1_bit,		0			# inexact result 1
+
+set aiop_bit,		7			# accrued inexact operation bit
+set aovfl_bit,		6			# accrued overflow bit
+set aunfl_bit,		5			# accrued underflow bit
+set adz_bit,		4			# accrued dz bit
+set ainex_bit,		3			# accrued inexact bit
+
+#############################
+# FPSR individual bit masks #
+#############################
+set neg_mask,		0x08000000		# negative bit mask (lw)
+set inf_mask,		0x02000000		# infinity bit mask (lw)
+set z_mask,		0x04000000		# zero bit mask (lw)
+set nan_mask,		0x01000000		# nan bit mask (lw)
+
+set neg_bmask,		0x08			# negative bit mask (byte)
+set inf_bmask,		0x02			# infinity bit mask (byte)
+set z_bmask,		0x04			# zero bit mask (byte)
+set nan_bmask,		0x01			# nan bit mask (byte)
+
+set bsun_mask,		0x00008000		# bsun exception mask
+set snan_mask,		0x00004000		# snan exception mask
+set operr_mask,		0x00002000		# operr exception mask
+set ovfl_mask,		0x00001000		# overflow exception mask
+set unfl_mask,		0x00000800		# underflow exception mask
+set dz_mask,		0x00000400		# dz exception mask
+set inex2_mask,		0x00000200		# inex2 exception mask
+set inex1_mask,		0x00000100		# inex1 exception mask
+
+set aiop_mask,		0x00000080		# accrued illegal operation
+set aovfl_mask,		0x00000040		# accrued overflow
+set aunfl_mask,		0x00000020		# accrued underflow
+set adz_mask,		0x00000010		# accrued divide by zero
+set ainex_mask,		0x00000008		# accrued inexact
+
+######################################
+# FPSR combinations used in the FPSP #
+######################################
+set dzinf_mask,		inf_mask+dz_mask+adz_mask
+set opnan_mask,		nan_mask+operr_mask+aiop_mask
+set nzi_mask,		0x01ffffff		#clears N, Z, and I
+set unfinx_mask,	unfl_mask+inex2_mask+aunfl_mask+ainex_mask
+set unf2inx_mask,	unfl_mask+inex2_mask+ainex_mask
+set ovfinx_mask,	ovfl_mask+inex2_mask+aovfl_mask+ainex_mask
+set inx1a_mask,		inex1_mask+ainex_mask
+set inx2a_mask,		inex2_mask+ainex_mask
+set snaniop_mask,	nan_mask+snan_mask+aiop_mask
+set snaniop2_mask,	snan_mask+aiop_mask
+set naniop_mask,	nan_mask+aiop_mask
+set neginf_mask,	neg_mask+inf_mask
+set infaiop_mask,	inf_mask+aiop_mask
+set negz_mask,		neg_mask+z_mask
+set opaop_mask,		operr_mask+aiop_mask
+set unfl_inx_mask,	unfl_mask+aunfl_mask+ainex_mask
+set ovfl_inx_mask,	ovfl_mask+aovfl_mask+ainex_mask
+
+#########
+# misc. #
+#########
+set rnd_stky_bit,	29			# stky bit pos in longword
+
+set sign_bit,		0x7			# sign bit
+set signan_bit,		0x6			# signalling nan bit
+
+set sgl_thresh,		0x3f81			# minimum sgl exponent
+set dbl_thresh,		0x3c01			# minimum dbl exponent
+
+set x_mode,		0x0			# extended precision
+set s_mode,		0x4			# single precision
+set d_mode,		0x8			# double precision
+
+set rn_mode,		0x0			# round-to-nearest
+set rz_mode,		0x1			# round-to-zero
+set rm_mode,		0x2			# round-tp-minus-infinity
+set rp_mode,		0x3			# round-to-plus-infinity
+
+set mantissalen,	64			# length of mantissa in bits
+
+set BYTE,		1			# len(byte) == 1 byte
+set WORD,		2			# len(word) == 2 bytes
+set LONG,		4			# len(longword) == 2 bytes
+
+set BSUN_VEC,		0xc0			# bsun    vector offset
+set INEX_VEC,		0xc4			# inexact vector offset
+set DZ_VEC,		0xc8			# dz      vector offset
+set UNFL_VEC,		0xcc			# unfl    vector offset
+set OPERR_VEC,		0xd0			# operr   vector offset
+set OVFL_VEC,		0xd4			# ovfl    vector offset
+set SNAN_VEC,		0xd8			# snan    vector offset
+
+###########################
+# SPecial CONDition FLaGs #
+###########################
+set ftrapcc_flg,	0x01			# flag bit: ftrapcc exception
+set fbsun_flg,		0x02			# flag bit: bsun exception
+set mia7_flg,		0x04			# flag bit: (a7)+ <ea>
+set mda7_flg,		0x08			# flag bit: -(a7) <ea>
+set fmovm_flg,		0x40			# flag bit: fmovm instruction
+set immed_flg,		0x80			# flag bit: &<data> <ea>
+
+set ftrapcc_bit,	0x0
+set fbsun_bit,		0x1
+set mia7_bit,		0x2
+set mda7_bit,		0x3
+set immed_bit,		0x7
+
+##################################
+# TRANSCENDENTAL "LAST-OP" FLAGS #
+##################################
+set FMUL_OP,		0x0			# fmul instr performed last
+set FDIV_OP,		0x1			# fdiv performed last
+set FADD_OP,		0x2			# fadd performed last
+set FMOV_OP,		0x3			# fmov performed last
+
+#############
+# CONSTANTS #
+#############
+T1:	long		0x40C62D38,0xD3D64634	# 16381 LOG2 LEAD
+T2:	long		0x3D6F90AE,0xB1E75CC7	# 16381 LOG2 TRAIL
+
+PI:	long		0x40000000,0xC90FDAA2,0x2168C235,0x00000000
+PIBY2:	long		0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
+
+TWOBYPI:
+	long		0x3FE45F30,0x6DC9C883
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_fpsp_ovfl(): 060FPSP entry point for FP Overflow exception.	#
+#									#
+#	This handler should be the first code executed upon taking the	#
+#	FP Overflow exception in an operating system.			#
+#									#
+# XREF ****************************************************************	#
+#	_imem_read_long() - read instruction longword			#
+#	fix_skewed_ops() - adjust src operand in fsave frame		#
+#	set_tag_x() - determine optype of src/dst operands		#
+#	store_fpreg() - store opclass 0 or 2 result to FP regfile	#
+#	unnorm_fix() - change UNNORM operands to NORM or ZERO		#
+#	load_fpn2() - load dst operand from FP regfile			#
+#	fout() - emulate an opclass 3 instruction			#
+#	tbl_unsupp - add of table of emulation routines for opclass 0,2	#
+#	_fpsp_done() - "callout" for 060FPSP exit (all work done!)	#
+#	_real_ovfl() - "callout" for Overflow exception enabled code	#
+#	_real_inex() - "callout" for Inexact exception enabled code	#
+#	_real_trace() - "callout" for Trace exception code		#
+#									#
+# INPUT ***************************************************************	#
+#	- The system stack contains the FP Ovfl exception stack frame	#
+#	- The fsave frame contains the source operand			#
+#									#
+# OUTPUT **************************************************************	#
+#	Overflow Exception enabled:					#
+#	- The system stack is unchanged					#
+#	- The fsave frame contains the adjusted src op for opclass 0,2	#
+#	Overflow Exception disabled:					#
+#	- The system stack is unchanged					#
+#	- The "exception present" flag in the fsave frame is cleared	#
+#									#
+# ALGORITHM ***********************************************************	#
+#	On the 060, if an FP overflow is present as the result of any	#
+# instruction, the 060 will take an overflow exception whether the	#
+# exception is enabled or disabled in the FPCR. For the disabled case,	#
+# This handler emulates the instruction to determine what the correct	#
+# default result should be for the operation. This default result is	#
+# then stored in either the FP regfile, data regfile, or memory.	#
+# Finally, the handler exits through the "callout" _fpsp_done()		#
+# denoting that no exceptional conditions exist within the machine.	#
+#	If the exception is enabled, then this handler must create the	#
+# exceptional operand and plave it in the fsave state frame, and store	#
+# the default result (only if the instruction is opclass 3). For	#
+# exceptions enabled, this handler must exit through the "callout"	#
+# _real_ovfl() so that the operating system enabled overflow handler	#
+# can handle this case.							#
+#	Two other conditions exist. First, if overflow was disabled	#
+# but the inexact exception was enabled, this handler must exit		#
+# through the "callout" _real_inex() regardless of whether the result	#
+# was inexact.								#
+#	Also, in the case of an opclass three instruction where		#
+# overflow was disabled and the trace exception was enabled, this	#
+# handler must exit through the "callout" _real_trace().		#
+#									#
+#########################################################################
+
+	global		_fpsp_ovfl
+_fpsp_ovfl:
+
+#$#	sub.l		&24,%sp			# make room for src/dst
+
+	link.w		%a6,&-LOCAL_SIZE	# init stack frame
+
+	fsave		FP_SRC(%a6)		# grab the "busy" frame
+
+	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1
+	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch the instruction words
+	mov.l		%d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+	btst		&0x5,EXC_CMDREG(%a6)	# is instr an fmove out?
+	bne.w		fovfl_out
+
+
+	lea		FP_SRC(%a6),%a0		# pass: ptr to src op
+	bsr.l		fix_skewed_ops		# fix src op
+
+# since, I believe, only NORMs and DENORMs can come through here,
+# maybe we can avoid the subroutine call.
+	lea		FP_SRC(%a6),%a0		# pass: ptr to src op
+	bsr.l		set_tag_x		# tag the operand type
+	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM
+
+# bit five of the fp extension word separates the monadic and dyadic operations
+# that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos
+# will never take this exception.
+	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic?
+	beq.b		fovfl_extract		# monadic
+
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+	bsr.l		load_fpn2		# load dst into FP_DST
+
+	lea		FP_DST(%a6),%a0		# pass: ptr to dst op
+	bsr.l		set_tag_x		# tag the operand type
+	cmpi.b		%d0,&UNNORM		# is operand an UNNORM?
+	bne.b		fovfl_op2_done		# no
+	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO
+fovfl_op2_done:
+	mov.b		%d0,DTAG(%a6)		# save dst optype tag
+
+fovfl_extract:
+
+#$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
+#$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
+#$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
+#$#	mov.l		FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
+#$#	mov.l		FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
+#$#	mov.l		FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
+
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode
+
+	mov.b		1+EXC_CMDREG(%a6),%d1
+	andi.w		&0x007f,%d1		# extract extension
+
+	andi.l		&0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
+
+	fmov.l		&0x0,%fpcr		# zero current control regs
+	fmov.l		&0x0,%fpsr
+
+	lea		FP_SRC(%a6),%a0
+	lea		FP_DST(%a6),%a1
+
+# maybe we can make these entry points ONLY the OVFL entry points of each routine.
+	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
+	jsr		(tbl_unsupp.l,%pc,%d1.l*1)
+
+# the operation has been emulated. the result is in fp0.
+# the EXOP, if an exception occurred, is in fp1.
+# we must save the default result regardless of whether
+# traps are enabled or disabled.
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0
+	bsr.l		store_fpreg
+
+# the exceptional possibilities we have left ourselves with are ONLY overflow
+# and inexact. and, the inexact is such that overflow occurred and was disabled
+# but inexact was enabled.
+	btst		&ovfl_bit,FPCR_ENABLE(%a6)
+	bne.b		fovfl_ovfl_on
+
+	btst		&inex2_bit,FPCR_ENABLE(%a6)
+	bne.b		fovfl_inex_on
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6
+#$#	add.l		&24,%sp
+	bra.l		_fpsp_done
+
+# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
+# in fp1. now, simply jump to _real_ovfl()!
+fovfl_ovfl_on:
+	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack
+
+	mov.w		&0xe005,2+FP_SRC(%a6)	# save exc status
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s!
+
+	unlk		%a6
+
+	bra.l		_real_ovfl
+
+# overflow occurred but is disabled. meanwhile, inexact is enabled. therefore,
+# we must jump to real_inex().
+fovfl_inex_on:
+
+	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack
+
+	mov.b		&0xc4,1+EXC_VOFF(%a6)	# vector offset = 0xc4
+	mov.w		&0xe001,2+FP_SRC(%a6)	# save exc status
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s!
+
+	unlk		%a6
+
+	bra.l		_real_inex
+
+########################################################################
+fovfl_out:
+
+
+#$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
+#$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
+#$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
+
+# the src operand is definitely a NORM(!), so tag it as such
+	mov.b		&NORM,STAG(%a6)		# set src optype tag
+
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode
+
+	and.l		&0xffff00ff,USER_FPSR(%a6) # zero all but accured field
+
+	fmov.l		&0x0,%fpcr		# zero current control regs
+	fmov.l		&0x0,%fpsr
+
+	lea		FP_SRC(%a6),%a0		# pass ptr to src operand
+
+	bsr.l		fout
+
+	btst		&ovfl_bit,FPCR_ENABLE(%a6)
+	bne.w		fovfl_ovfl_on
+
+	btst		&inex2_bit,FPCR_ENABLE(%a6)
+	bne.w		fovfl_inex_on
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6
+#$#	add.l		&24,%sp
+
+	btst		&0x7,(%sp)		# is trace on?
+	beq.l		_fpsp_done		# no
+
+	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR
+	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024
+	bra.l		_real_trace
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_fpsp_unfl(): 060FPSP entry point for FP Underflow exception.	#
+#									#
+#	This handler should be the first code executed upon taking the	#
+#	FP Underflow exception in an operating system.			#
+#									#
+# XREF ****************************************************************	#
+#	_imem_read_long() - read instruction longword			#
+#	fix_skewed_ops() - adjust src operand in fsave frame		#
+#	set_tag_x() - determine optype of src/dst operands		#
+#	store_fpreg() - store opclass 0 or 2 result to FP regfile	#
+#	unnorm_fix() - change UNNORM operands to NORM or ZERO		#
+#	load_fpn2() - load dst operand from FP regfile			#
+#	fout() - emulate an opclass 3 instruction			#
+#	tbl_unsupp - add of table of emulation routines for opclass 0,2	#
+#	_fpsp_done() - "callout" for 060FPSP exit (all work done!)	#
+#	_real_ovfl() - "callout" for Overflow exception enabled code	#
+#	_real_inex() - "callout" for Inexact exception enabled code	#
+#	_real_trace() - "callout" for Trace exception code		#
+#									#
+# INPUT ***************************************************************	#
+#	- The system stack contains the FP Unfl exception stack frame	#
+#	- The fsave frame contains the source operand			#
+#									#
+# OUTPUT **************************************************************	#
+#	Underflow Exception enabled:					#
+#	- The system stack is unchanged					#
+#	- The fsave frame contains the adjusted src op for opclass 0,2	#
+#	Underflow Exception disabled:					#
+#	- The system stack is unchanged					#
+#	- The "exception present" flag in the fsave frame is cleared	#
+#									#
+# ALGORITHM ***********************************************************	#
+#	On the 060, if an FP underflow is present as the result of any	#
+# instruction, the 060 will take an underflow exception whether the	#
+# exception is enabled or disabled in the FPCR. For the disabled case,	#
+# This handler emulates the instruction to determine what the correct	#
+# default result should be for the operation. This default result is	#
+# then stored in either the FP regfile, data regfile, or memory.	#
+# Finally, the handler exits through the "callout" _fpsp_done()		#
+# denoting that no exceptional conditions exist within the machine.	#
+#	If the exception is enabled, then this handler must create the	#
+# exceptional operand and plave it in the fsave state frame, and store	#
+# the default result (only if the instruction is opclass 3). For	#
+# exceptions enabled, this handler must exit through the "callout"	#
+# _real_unfl() so that the operating system enabled overflow handler	#
+# can handle this case.							#
+#	Two other conditions exist. First, if underflow was disabled	#
+# but the inexact exception was enabled and the result was inexact,	#
+# this handler must exit through the "callout" _real_inex().		#
+# was inexact.								#
+#	Also, in the case of an opclass three instruction where		#
+# underflow was disabled and the trace exception was enabled, this	#
+# handler must exit through the "callout" _real_trace().		#
+#									#
+#########################################################################
+
+	global		_fpsp_unfl
+_fpsp_unfl:
+
+#$#	sub.l		&24,%sp			# make room for src/dst
+
+	link.w		%a6,&-LOCAL_SIZE	# init stack frame
+
+	fsave		FP_SRC(%a6)		# grab the "busy" frame
+
+	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1
+	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch the instruction words
+	mov.l		%d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+	btst		&0x5,EXC_CMDREG(%a6)	# is instr an fmove out?
+	bne.w		funfl_out
+
+
+	lea		FP_SRC(%a6),%a0		# pass: ptr to src op
+	bsr.l		fix_skewed_ops		# fix src op
+
+	lea		FP_SRC(%a6),%a0		# pass: ptr to src op
+	bsr.l		set_tag_x		# tag the operand type
+	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM
+
+# bit five of the fp ext word separates the monadic and dyadic operations
+# that can pass through fpsp_unfl(). remember that fcmp, and ftst
+# will never take this exception.
+	btst		&0x5,1+EXC_CMDREG(%a6)	# is op monadic or dyadic?
+	beq.b		funfl_extract		# monadic
+
+# now, what's left that's not dyadic is fsincos. we can distinguish it
+# from all dyadics by the '0110xxx pattern
+	btst		&0x4,1+EXC_CMDREG(%a6)	# is op an fsincos?
+	bne.b		funfl_extract		# yes
+
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+	bsr.l		load_fpn2		# load dst into FP_DST
+
+	lea		FP_DST(%a6),%a0		# pass: ptr to dst op
+	bsr.l		set_tag_x		# tag the operand type
+	cmpi.b		%d0,&UNNORM		# is operand an UNNORM?
+	bne.b		funfl_op2_done		# no
+	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO
+funfl_op2_done:
+	mov.b		%d0,DTAG(%a6)		# save dst optype tag
+
+funfl_extract:
+
+#$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
+#$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
+#$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
+#$#	mov.l		FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
+#$#	mov.l		FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
+#$#	mov.l		FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
+
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode
+
+	mov.b		1+EXC_CMDREG(%a6),%d1
+	andi.w		&0x007f,%d1		# extract extension
+
+	andi.l		&0x00ff01ff,USER_FPSR(%a6)
+
+	fmov.l		&0x0,%fpcr		# zero current control regs
+	fmov.l		&0x0,%fpsr
+
+	lea		FP_SRC(%a6),%a0
+	lea		FP_DST(%a6),%a1
+
+# maybe we can make these entry points ONLY the OVFL entry points of each routine.
+	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
+	jsr		(tbl_unsupp.l,%pc,%d1.l*1)
+
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0
+	bsr.l		store_fpreg
+
+# The `060 FPU multiplier hardware is such that if the result of a
+# multiply operation is the smallest possible normalized number
+# (0x00000000_80000000_00000000), then the machine will take an
+# underflow exception. Since this is incorrect, we need to check
+# if our emulation, after re-doing the operation, decided that
+# no underflow was called for. We do these checks only in
+# funfl_{unfl,inex}_on() because w/ both exceptions disabled, this
+# special case will simply exit gracefully with the correct result.
+
+# the exceptional possibilities we have left ourselves with are ONLY overflow
+# and inexact. and, the inexact is such that overflow occurred and was disabled
+# but inexact was enabled.
+	btst		&unfl_bit,FPCR_ENABLE(%a6)
+	bne.b		funfl_unfl_on
+
+funfl_chkinex:
+	btst		&inex2_bit,FPCR_ENABLE(%a6)
+	bne.b		funfl_inex_on
+
+funfl_exit:
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6
+#$#	add.l		&24,%sp
+	bra.l		_fpsp_done
+
+# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
+# in fp1 (don't forget to save fp0). what to do now?
+# well, we simply have to get to go to _real_unfl()!
+funfl_unfl_on:
+
+# The `060 FPU multiplier hardware is such that if the result of a
+# multiply operation is the smallest possible normalized number
+# (0x00000000_80000000_00000000), then the machine will take an
+# underflow exception. Since this is incorrect, we check here to see
+# if our emulation, after re-doing the operation, decided that
+# no underflow was called for.
+	btst		&unfl_bit,FPSR_EXCEPT(%a6)
+	beq.w		funfl_chkinex
+
+funfl_unfl_on2:
+	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack
+
+	mov.w		&0xe003,2+FP_SRC(%a6)	# save exc status
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s!
+
+	unlk		%a6
+
+	bra.l		_real_unfl
+
+# undeflow occurred but is disabled. meanwhile, inexact is enabled. therefore,
+# we must jump to real_inex().
+funfl_inex_on:
+
+# The `060 FPU multiplier hardware is such that if the result of a
+# multiply operation is the smallest possible normalized number
+# (0x00000000_80000000_00000000), then the machine will take an
+# underflow exception.
+# But, whether bogus or not, if inexact is enabled AND it occurred,
+# then we have to branch to real_inex.
+
+	btst		&inex2_bit,FPSR_EXCEPT(%a6)
+	beq.w		funfl_exit
+
+funfl_inex_on2:
+
+	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to stack
+
+	mov.b		&0xc4,1+EXC_VOFF(%a6)	# vector offset = 0xc4
+	mov.w		&0xe001,2+FP_SRC(%a6)	# save exc status
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s!
+
+	unlk		%a6
+
+	bra.l		_real_inex
+
+#######################################################################
+funfl_out:
+
+
+#$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
+#$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
+#$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
+
+# the src operand is definitely a NORM(!), so tag it as such
+	mov.b		&NORM,STAG(%a6)		# set src optype tag
+
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode
+
+	and.l		&0xffff00ff,USER_FPSR(%a6) # zero all but accured field
+
+	fmov.l		&0x0,%fpcr		# zero current control regs
+	fmov.l		&0x0,%fpsr
+
+	lea		FP_SRC(%a6),%a0		# pass ptr to src operand
+
+	bsr.l		fout
+
+	btst		&unfl_bit,FPCR_ENABLE(%a6)
+	bne.w		funfl_unfl_on2
+
+	btst		&inex2_bit,FPCR_ENABLE(%a6)
+	bne.w		funfl_inex_on2
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6
+#$#	add.l		&24,%sp
+
+	btst		&0x7,(%sp)		# is trace on?
+	beq.l		_fpsp_done		# no
+
+	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR
+	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024
+	bra.l		_real_trace
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented	#
+#		        Data Type" exception.				#
+#									#
+#	This handler should be the first code executed upon taking the	#
+#	FP Unimplemented Data Type exception in an operating system.	#
+#									#
+# XREF ****************************************************************	#
+#	_imem_read_{word,long}() - read instruction word/longword	#
+#	fix_skewed_ops() - adjust src operand in fsave frame		#
+#	set_tag_x() - determine optype of src/dst operands		#
+#	store_fpreg() - store opclass 0 or 2 result to FP regfile	#
+#	unnorm_fix() - change UNNORM operands to NORM or ZERO		#
+#	load_fpn2() - load dst operand from FP regfile			#
+#	load_fpn1() - load src operand from FP regfile			#
+#	fout() - emulate an opclass 3 instruction			#
+#	tbl_unsupp - add of table of emulation routines for opclass 0,2	#
+#	_real_inex() - "callout" to operating system inexact handler	#
+#	_fpsp_done() - "callout" for exit; work all done		#
+#	_real_trace() - "callout" for Trace enabled exception		#
+#	funimp_skew() - adjust fsave src ops to "incorrect" value	#
+#	_real_snan() - "callout" for SNAN exception			#
+#	_real_operr() - "callout" for OPERR exception			#
+#	_real_ovfl() - "callout" for OVFL exception			#
+#	_real_unfl() - "callout" for UNFL exception			#
+#	get_packed() - fetch packed operand from memory			#
+#									#
+# INPUT ***************************************************************	#
+#	- The system stack contains the "Unimp Data Type" stk frame	#
+#	- The fsave frame contains the ssrc op (for UNNORM/DENORM)	#
+#									#
+# OUTPUT **************************************************************	#
+#	If Inexact exception (opclass 3):				#
+#	- The system stack is changed to an Inexact exception stk frame	#
+#	If SNAN exception (opclass 3):					#
+#	- The system stack is changed to an SNAN exception stk frame	#
+#	If OPERR exception (opclass 3):					#
+#	- The system stack is changed to an OPERR exception stk frame	#
+#	If OVFL exception (opclass 3):					#
+#	- The system stack is changed to an OVFL exception stk frame	#
+#	If UNFL exception (opclass 3):					#
+#	- The system stack is changed to an UNFL exception stack frame	#
+#	If Trace exception enabled:					#
+#	- The system stack is changed to a Trace exception stack frame	#
+#	Else: (normal case)						#
+#	- Correct result has been stored as appropriate			#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Two main instruction types can enter here: (1) DENORM or UNNORM	#
+# unimplemented data types. These can be either opclass 0,2 or 3	#
+# instructions, and (2) PACKED unimplemented data format instructions	#
+# also of opclasses 0,2, or 3.						#
+#	For UNNORM/DENORM opclass 0 and 2, the handler fetches the src	#
+# operand from the fsave state frame and the dst operand (if dyadic)	#
+# from the FP register file. The instruction is then emulated by	#
+# choosing an emulation routine from a table of routines indexed by	#
+# instruction type. Once the instruction has been emulated and result	#
+# saved, then we check to see if any enabled exceptions resulted from	#
+# instruction emulation. If none, then we exit through the "callout"	#
+# _fpsp_done(). If there is an enabled FP exception, then we insert	#
+# this exception into the FPU in the fsave state frame and then exit	#
+# through _fpsp_done().							#
+#	PACKED opclass 0 and 2 is similar in how the instruction is	#
+# emulated and exceptions handled. The differences occur in how the	#
+# handler loads the packed op (by calling get_packed() routine) and	#
+# by the fact that a Trace exception could be pending for PACKED ops.	#
+# If a Trace exception is pending, then the current exception stack	#
+# frame is changed to a Trace exception stack frame and an exit is	#
+# made through _real_trace().						#
+#	For UNNORM/DENORM opclass 3, the actual move out to memory is	#
+# performed by calling the routine fout(). If no exception should occur	#
+# as the result of emulation, then an exit either occurs through	#
+# _fpsp_done() or through _real_trace() if a Trace exception is pending	#
+# (a Trace stack frame must be created here, too). If an FP exception	#
+# should occur, then we must create an exception stack frame of that	#
+# type and jump to either _real_snan(), _real_operr(), _real_inex(),	#
+# _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3	#
+# emulation is performed in a similar manner.				#
+#									#
+#########################################################################
+
+#
+# (1) DENORM and UNNORM (unimplemented) data types:
+#
+#				post-instruction
+#				*****************
+#				*      EA	*
+#	 pre-instruction	*		*
+#	*****************	*****************
+#	* 0x0 *  0x0dc  *	* 0x3 *  0x0dc  *
+#	*****************	*****************
+#	*     Next	*	*     Next	*
+#	*      PC	*	*      PC	*
+#	*****************	*****************
+#	*      SR	*	*      SR	*
+#	*****************	*****************
+#
+# (2) PACKED format (unsupported) opclasses two and three:
+#	*****************
+#	*      EA	*
+#	*		*
+#	*****************
+#	* 0x2 *  0x0dc	*
+#	*****************
+#	*     Next	*
+#	*      PC	*
+#	*****************
+#	*      SR	*
+#	*****************
+#
+	global		_fpsp_unsupp
+_fpsp_unsupp:
+
+	link.w		%a6,&-LOCAL_SIZE	# init stack frame
+
+	fsave		FP_SRC(%a6)		# save fp state
+
+	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1
+	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack
+
+	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode?
+	bne.b		fu_s
+fu_u:
+	mov.l		%usp,%a0		# fetch user stack pointer
+	mov.l		%a0,EXC_A7(%a6)		# save on stack
+	bra.b		fu_cont
+# if the exception is an opclass zero or two unimplemented data type
+# exception, then the a7' calculated here is wrong since it doesn't
+# stack an ea. however, we don't need an a7' for this case anyways.
+fu_s:
+	lea		0x4+EXC_EA(%a6),%a0	# load old a7'
+	mov.l		%a0,EXC_A7(%a6)		# save on stack
+
+fu_cont:
+
+# the FPIAR holds the "current PC" of the faulting instruction
+# the FPIAR should be set correctly for ALL exceptions passing through
+# this point.
+	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch the instruction words
+	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD
+
+############################
+
+	clr.b		SPCOND_FLG(%a6)		# clear special condition flag
+
+# Separate opclass three (fpn-to-mem) ops since they have a different
+# stack frame and protocol.
+	btst		&0x5,EXC_CMDREG(%a6)	# is it an fmove out?
+	bne.w		fu_out			# yes
+
+# Separate packed opclass two instructions.
+	bfextu		EXC_CMDREG(%a6){&0:&6},%d0
+	cmpi.b		%d0,&0x13
+	beq.w		fu_in_pack
+
+
+# I'm not sure at this point what FPSR bits are valid for this instruction.
+# so, since the emulation routines re-create them anyways, zero exception field
+	andi.l		&0x00ff00ff,USER_FPSR(%a6) # zero exception field
+
+	fmov.l		&0x0,%fpcr		# zero current control regs
+	fmov.l		&0x0,%fpsr
+
+# Opclass two w/ memory-to-fpn operation will have an incorrect extended
+# precision format if the src format was single or double and the
+# source data type was an INF, NAN, DENORM, or UNNORM
+	lea		FP_SRC(%a6),%a0		# pass ptr to input
+	bsr.l		fix_skewed_ops
+
+# we don't know whether the src operand or the dst operand (or both) is the
+# UNNORM or DENORM. call the function that tags the operand type. if the
+# input is an UNNORM, then convert it to a NORM, DENORM, or ZERO.
+	lea		FP_SRC(%a6),%a0		# pass: ptr to src op
+	bsr.l		set_tag_x		# tag the operand type
+	cmpi.b		%d0,&UNNORM		# is operand an UNNORM?
+	bne.b		fu_op2			# no
+	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO
+
+fu_op2:
+	mov.b		%d0,STAG(%a6)		# save src optype tag
+
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+
+# bit five of the fp extension word separates the monadic and dyadic operations
+# at this point
+	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic?
+	beq.b		fu_extract		# monadic
+	cmpi.b		1+EXC_CMDREG(%a6),&0x3a	# is operation an ftst?
+	beq.b		fu_extract		# yes, so it's monadic, too
+
+	bsr.l		load_fpn2		# load dst into FP_DST
+
+	lea		FP_DST(%a6),%a0		# pass: ptr to dst op
+	bsr.l		set_tag_x		# tag the operand type
+	cmpi.b		%d0,&UNNORM		# is operand an UNNORM?
+	bne.b		fu_op2_done		# no
+	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO
+fu_op2_done:
+	mov.b		%d0,DTAG(%a6)		# save dst optype tag
+
+fu_extract:
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec
+
+	bfextu		1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
+
+	lea		FP_SRC(%a6),%a0
+	lea		FP_DST(%a6),%a1
+
+	mov.l		(tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
+	jsr		(tbl_unsupp.l,%pc,%d1.l*1)
+
+#
+# Exceptions in order of precedence:
+#	BSUN	: none
+#	SNAN	: all dyadic ops
+#	OPERR	: fsqrt(-NORM)
+#	OVFL	: all except ftst,fcmp
+#	UNFL	: all except ftst,fcmp
+#	DZ	: fdiv
+#	INEX2	: all except ftst,fcmp
+#	INEX1	: none (packed doesn't go through here)
+#
+
+# we determine the highest priority exception(if any) set by the
+# emulation routine that has also been enabled by the user.
+	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions set
+	bne.b		fu_in_ena		# some are enabled
+
+fu_in_cont:
+# fcmp and ftst do not store any result.
+	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch extension
+	andi.b		&0x38,%d0		# extract bits 3-5
+	cmpi.b		%d0,&0x38		# is instr fcmp or ftst?
+	beq.b		fu_in_exit		# yes
+
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+	bsr.l		store_fpreg		# store the result
+
+fu_in_exit:
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6
+
+	bra.l		_fpsp_done
+
+fu_in_ena:
+	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled
+	bfffo		%d0{&24:&8},%d0		# find highest priority exception
+	bne.b		fu_in_exc		# there is at least one set
+
+#
+# No exceptions occurred that were also enabled. Now:
+#
+#	if (OVFL && ovfl_disabled && inexact_enabled) {
+#	    branch to _real_inex() (even if the result was exact!);
+#	} else {
+#	    save the result in the proper fp reg (unless the op is fcmp or ftst);
+#	    return;
+#	}
+#
+	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
+	beq.b		fu_in_cont		# no
+
+fu_in_ovflchk:
+	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
+	beq.b		fu_in_cont		# no
+	bra.w		fu_in_exc_ovfl		# go insert overflow frame
+
+#
+# An exception occurred and that exception was enabled:
+#
+#	shift enabled exception field into lo byte of d0;
+#	if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
+#	    ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
+#		/*
+#		 * this is the case where we must call _real_inex() now or else
+#		 * there will be no other way to pass it the exceptional operand
+#		 */
+#		call _real_inex();
+#	} else {
+#		restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
+#	}
+#
+fu_in_exc:
+	subi.l		&24,%d0			# fix offset to be 0-8
+	cmpi.b		%d0,&0x6		# is exception INEX? (6)
+	bne.b		fu_in_exc_exit		# no
+
+# the enabled exception was inexact
+	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
+	bne.w		fu_in_exc_unfl		# yes
+	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
+	bne.w		fu_in_exc_ovfl		# yes
+
+# here, we insert the correct fsave status value into the fsave frame for the
+# corresponding exception. the operand in the fsave frame should be the original
+# src operand.
+fu_in_exc_exit:
+	mov.l		%d0,-(%sp)		# save d0
+	bsr.l		funimp_skew		# skew sgl or dbl inputs
+	mov.l		(%sp)+,%d0		# restore d0
+
+	mov.w		(tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)		# restore src op
+
+	unlk		%a6
+
+	bra.l		_fpsp_done
+
+tbl_except:
+	short		0xe000,0xe006,0xe004,0xe005
+	short		0xe003,0xe002,0xe001,0xe001
+
+fu_in_exc_unfl:
+	mov.w		&0x4,%d0
+	bra.b		fu_in_exc_exit
+fu_in_exc_ovfl:
+	mov.w		&0x03,%d0
+	bra.b		fu_in_exc_exit
+
+# If the input operand to this operation was opclass two and a single
+# or double precision denorm, inf, or nan, the operand needs to be
+# "corrected" in order to have the proper equivalent extended precision
+# number.
+	global		fix_skewed_ops
+fix_skewed_ops:
+	bfextu		EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt
+	cmpi.b		%d0,&0x11		# is class = 2 & fmt = sgl?
+	beq.b		fso_sgl			# yes
+	cmpi.b		%d0,&0x15		# is class = 2 & fmt = dbl?
+	beq.b		fso_dbl			# yes
+	rts					# no
+
+fso_sgl:
+	mov.w		LOCAL_EX(%a0),%d0	# fetch src exponent
+	andi.w		&0x7fff,%d0		# strip sign
+	cmpi.w		%d0,&0x3f80		# is |exp| == $3f80?
+	beq.b		fso_sgl_dnrm_zero	# yes
+	cmpi.w		%d0,&0x407f		# no; is |exp| == $407f?
+	beq.b		fso_infnan		# yes
+	rts					# no
+
+fso_sgl_dnrm_zero:
+	andi.l		&0x7fffffff,LOCAL_HI(%a0) # clear j-bit
+	beq.b		fso_zero		# it's a skewed zero
+fso_sgl_dnrm:
+# here, we count on norm not to alter a0...
+	bsr.l		norm			# normalize mantissa
+	neg.w		%d0			# -shft amt
+	addi.w		&0x3f81,%d0		# adjust new exponent
+	andi.w		&0x8000,LOCAL_EX(%a0)	# clear old exponent
+	or.w		%d0,LOCAL_EX(%a0)	# insert new exponent
+	rts
+
+fso_zero:
+	andi.w		&0x8000,LOCAL_EX(%a0)	# clear bogus exponent
+	rts
+
+fso_infnan:
+	andi.b		&0x7f,LOCAL_HI(%a0)	# clear j-bit
+	ori.w		&0x7fff,LOCAL_EX(%a0)	# make exponent = $7fff
+	rts
+
+fso_dbl:
+	mov.w		LOCAL_EX(%a0),%d0	# fetch src exponent
+	andi.w		&0x7fff,%d0		# strip sign
+	cmpi.w		%d0,&0x3c00		# is |exp| == $3c00?
+	beq.b		fso_dbl_dnrm_zero	# yes
+	cmpi.w		%d0,&0x43ff		# no; is |exp| == $43ff?
+	beq.b		fso_infnan		# yes
+	rts					# no
+
+fso_dbl_dnrm_zero:
+	andi.l		&0x7fffffff,LOCAL_HI(%a0) # clear j-bit
+	bne.b		fso_dbl_dnrm		# it's a skewed denorm
+	tst.l		LOCAL_LO(%a0)		# is it a zero?
+	beq.b		fso_zero		# yes
+fso_dbl_dnrm:
+# here, we count on norm not to alter a0...
+	bsr.l		norm			# normalize mantissa
+	neg.w		%d0			# -shft amt
+	addi.w		&0x3c01,%d0		# adjust new exponent
+	andi.w		&0x8000,LOCAL_EX(%a0)	# clear old exponent
+	or.w		%d0,LOCAL_EX(%a0)	# insert new exponent
+	rts
+
+#################################################################
+
+# fmove out took an unimplemented data type exception.
+# the src operand is in FP_SRC. Call _fout() to write out the result and
+# to determine which exceptions, if any, to take.
+fu_out:
+
+# Separate packed move outs from the UNNORM and DENORM move outs.
+	bfextu		EXC_CMDREG(%a6){&3:&3},%d0
+	cmpi.b		%d0,&0x3
+	beq.w		fu_out_pack
+	cmpi.b		%d0,&0x7
+	beq.w		fu_out_pack
+
+
+# I'm not sure at this point what FPSR bits are valid for this instruction.
+# so, since the emulation routines re-create them anyways, zero exception field.
+# fmove out doesn't affect ccodes.
+	and.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field
+
+	fmov.l		&0x0,%fpcr		# zero current control regs
+	fmov.l		&0x0,%fpsr
+
+# the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine
+# call here. just figure out what it is...
+	mov.w		FP_SRC_EX(%a6),%d0	# get exponent
+	andi.w		&0x7fff,%d0		# strip sign
+	beq.b		fu_out_denorm		# it's a DENORM
+
+	lea		FP_SRC(%a6),%a0
+	bsr.l		unnorm_fix		# yes; fix it
+
+	mov.b		%d0,STAG(%a6)
+
+	bra.b		fu_out_cont
+fu_out_denorm:
+	mov.b		&DENORM,STAG(%a6)
+fu_out_cont:
+
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec
+
+	lea		FP_SRC(%a6),%a0		# pass ptr to src operand
+
+	mov.l		(%a6),EXC_A6(%a6)	# in case a6 changes
+	bsr.l		fout			# call fmove out routine
+
+# Exceptions in order of precedence:
+#	BSUN	: none
+#	SNAN	: none
+#	OPERR	: fmove.{b,w,l} out of large UNNORM
+#	OVFL	: fmove.{s,d}
+#	UNFL	: fmove.{s,d,x}
+#	DZ	: none
+#	INEX2	: all
+#	INEX1	: none (packed doesn't travel through here)
+
+# determine the highest priority exception(if any) set by the
+# emulation routine that has also been enabled by the user.
+	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled
+	bne.w		fu_out_ena		# some are enabled
+
+fu_out_done:
+
+	mov.l		EXC_A6(%a6),(%a6)	# in case a6 changed
+
+# on extended precision opclass three instructions using pre-decrement or
+# post-increment addressing mode, the address register is not updated. is the
+# address register was the stack pointer used from user mode, then let's update
+# it here. if it was used from supervisor mode, then we have to handle this
+# as a special case.
+	btst		&0x5,EXC_SR(%a6)
+	bne.b		fu_out_done_s
+
+	mov.l		EXC_A7(%a6),%a0		# restore a7
+	mov.l		%a0,%usp
+
+fu_out_done_cont:
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6
+
+	btst		&0x7,(%sp)		# is trace on?
+	bne.b		fu_out_trace		# yes
+
+	bra.l		_fpsp_done
+
+# is the ea mode pre-decrement of the stack pointer from supervisor mode?
+# ("fmov.x fpm,-(a7)") if so,
+fu_out_done_s:
+	cmpi.b		SPCOND_FLG(%a6),&mda7_flg
+	bne.b		fu_out_done_cont
+
+# the extended precision result is still in fp0. but, we need to save it
+# somewhere on the stack until we can copy it to its final resting place.
+# here, we're counting on the top of the stack to be the old place-holders
+# for fp0/fp1 which have already been restored. that way, we can write
+# over those destinations with the shifted stack frame.
+	fmovm.x		&0x80,FP_SRC(%a6)	# put answer on stack
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.l		(%a6),%a6		# restore frame pointer
+
+	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+
+# now, copy the result to the proper place on the stack
+	mov.l		LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
+	mov.l		LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
+	mov.l		LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
+
+	add.l		&LOCAL_SIZE-0x8,%sp
+
+	btst		&0x7,(%sp)
+	bne.b		fu_out_trace
+
+	bra.l		_fpsp_done
+
+fu_out_ena:
+	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled
+	bfffo		%d0{&24:&8},%d0		# find highest priority exception
+	bne.b		fu_out_exc		# there is at least one set
+
+# no exceptions were set.
+# if a disabled overflow occurred and inexact was enabled but the result
+# was exact, then a branch to _real_inex() is made.
+	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
+	beq.w		fu_out_done		# no
+
+fu_out_ovflchk:
+	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
+	beq.w		fu_out_done		# no
+	bra.w		fu_inex			# yes
+
+#
+# The fp move out that took the "Unimplemented Data Type" exception was
+# being traced. Since the stack frames are similar, get the "current" PC
+# from FPIAR and put it in the trace stack frame then jump to _real_trace().
+#
+#		  UNSUPP FRAME		   TRACE FRAME
+#		*****************	*****************
+#		*      EA	*	*    Current	*
+#		*		*	*      PC	*
+#		*****************	*****************
+#		* 0x3 *  0x0dc	*	* 0x2 *  0x024	*
+#		*****************	*****************
+#		*     Next	*	*     Next	*
+#		*      PC	*	*      PC	*
+#		*****************	*****************
+#		*      SR	*	*      SR	*
+#		*****************	*****************
+#
+fu_out_trace:
+	mov.w		&0x2024,0x6(%sp)
+	fmov.l		%fpiar,0x8(%sp)
+	bra.l		_real_trace
+
+# an exception occurred and that exception was enabled.
+fu_out_exc:
+	subi.l		&24,%d0			# fix offset to be 0-8
+
+# we don't mess with the existing fsave frame. just re-insert it and
+# jump to the "_real_{}()" handler...
+	mov.w		(tbl_fu_out.b,%pc,%d0.w*2),%d0
+	jmp		(tbl_fu_out.b,%pc,%d0.w*1)
+
+	swbeg		&0x8
+tbl_fu_out:
+	short		tbl_fu_out	- tbl_fu_out	# BSUN can't happen
+	short		tbl_fu_out	- tbl_fu_out	# SNAN can't happen
+	short		fu_operr	- tbl_fu_out	# OPERR
+	short		fu_ovfl		- tbl_fu_out	# OVFL
+	short		fu_unfl		- tbl_fu_out	# UNFL
+	short		tbl_fu_out	- tbl_fu_out	# DZ can't happen
+	short		fu_inex		- tbl_fu_out	# INEX2
+	short		tbl_fu_out	- tbl_fu_out	# INEX1 won't make it here
+
+# for snan,operr,ovfl,unfl, src op is still in FP_SRC so just
+# frestore it.
+fu_snan:
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.w		&0x30d8,EXC_VOFF(%a6)	# vector offset = 0xd8
+	mov.w		&0xe006,2+FP_SRC(%a6)
+
+	frestore	FP_SRC(%a6)
+
+	unlk		%a6
+
+
+	bra.l		_real_snan
+
+fu_operr:
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.w		&0x30d0,EXC_VOFF(%a6)	# vector offset = 0xd0
+	mov.w		&0xe004,2+FP_SRC(%a6)
+
+	frestore	FP_SRC(%a6)
+
+	unlk		%a6
+
+
+	bra.l		_real_operr
+
+fu_ovfl:
+	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.w		&0x30d4,EXC_VOFF(%a6)	# vector offset = 0xd4
+	mov.w		&0xe005,2+FP_SRC(%a6)
+
+	frestore	FP_SRC(%a6)		# restore EXOP
+
+	unlk		%a6
+
+	bra.l		_real_ovfl
+
+# underflow can happen for extended precision. extended precision opclass
+# three instruction exceptions don't update the stack pointer. so, if the
+# exception occurred from user mode, then simply update a7 and exit normally.
+# if the exception occurred from supervisor mode, check if
+fu_unfl:
+	mov.l		EXC_A6(%a6),(%a6)	# restore a6
+
+	btst		&0x5,EXC_SR(%a6)
+	bne.w		fu_unfl_s
+
+	mov.l		EXC_A7(%a6),%a0		# restore a7 whether we need
+	mov.l		%a0,%usp		# to or not...
+
+fu_unfl_cont:
+	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.w		&0x30cc,EXC_VOFF(%a6)	# vector offset = 0xcc
+	mov.w		&0xe003,2+FP_SRC(%a6)
+
+	frestore	FP_SRC(%a6)		# restore EXOP
+
+	unlk		%a6
+
+	bra.l		_real_unfl
+
+fu_unfl_s:
+	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)?
+	bne.b		fu_unfl_cont
+
+# the extended precision result is still in fp0. but, we need to save it
+# somewhere on the stack until we can copy it to its final resting place
+# (where the exc frame is currently). make sure it's not at the top of the
+# frame or it will get overwritten when the exc stack frame is shifted "down".
+	fmovm.x		&0x80,FP_SRC(%a6)	# put answer on stack
+	fmovm.x		&0x40,FP_DST(%a6)	# put EXOP on stack
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.w		&0x30cc,EXC_VOFF(%a6)	# vector offset = 0xcc
+	mov.w		&0xe003,2+FP_DST(%a6)
+
+	frestore	FP_DST(%a6)		# restore EXOP
+
+	mov.l		(%a6),%a6		# restore frame pointer
+
+	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
+
+# now, copy the result to the proper place on the stack
+	mov.l		LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
+	mov.l		LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
+	mov.l		LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
+
+	add.l		&LOCAL_SIZE-0x8,%sp
+
+	bra.l		_real_unfl
+
+# fmove in and out enter here.
+fu_inex:
+	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.w		&0x30c4,EXC_VOFF(%a6)	# vector offset = 0xc4
+	mov.w		&0xe001,2+FP_SRC(%a6)
+
+	frestore	FP_SRC(%a6)		# restore EXOP
+
+	unlk		%a6
+
+
+	bra.l		_real_inex
+
+#########################################################################
+#########################################################################
+fu_in_pack:
+
+
+# I'm not sure at this point what FPSR bits are valid for this instruction.
+# so, since the emulation routines re-create them anyways, zero exception field
+	andi.l		&0x0ff00ff,USER_FPSR(%a6) # zero exception field
+
+	fmov.l		&0x0,%fpcr		# zero current control regs
+	fmov.l		&0x0,%fpsr
+
+	bsr.l		get_packed		# fetch packed src operand
+
+	lea		FP_SRC(%a6),%a0		# pass ptr to src
+	bsr.l		set_tag_x		# set src optype tag
+
+	mov.b		%d0,STAG(%a6)		# save src optype tag
+
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+
+# bit five of the fp extension word separates the monadic and dyadic operations
+# at this point
+	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic?
+	beq.b		fu_extract_p		# monadic
+	cmpi.b		1+EXC_CMDREG(%a6),&0x3a	# is operation an ftst?
+	beq.b		fu_extract_p		# yes, so it's monadic, too
+
+	bsr.l		load_fpn2		# load dst into FP_DST
+
+	lea		FP_DST(%a6),%a0		# pass: ptr to dst op
+	bsr.l		set_tag_x		# tag the operand type
+	cmpi.b		%d0,&UNNORM		# is operand an UNNORM?
+	bne.b		fu_op2_done_p		# no
+	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO
+fu_op2_done_p:
+	mov.b		%d0,DTAG(%a6)		# save dst optype tag
+
+fu_extract_p:
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec
+
+	bfextu		1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
+
+	lea		FP_SRC(%a6),%a0
+	lea		FP_DST(%a6),%a1
+
+	mov.l		(tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
+	jsr		(tbl_unsupp.l,%pc,%d1.l*1)
+
+#
+# Exceptions in order of precedence:
+#	BSUN	: none
+#	SNAN	: all dyadic ops
+#	OPERR	: fsqrt(-NORM)
+#	OVFL	: all except ftst,fcmp
+#	UNFL	: all except ftst,fcmp
+#	DZ	: fdiv
+#	INEX2	: all except ftst,fcmp
+#	INEX1	: all
+#
+
+# we determine the highest priority exception(if any) set by the
+# emulation routine that has also been enabled by the user.
+	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled
+	bne.w		fu_in_ena_p		# some are enabled
+
+fu_in_cont_p:
+# fcmp and ftst do not store any result.
+	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch extension
+	andi.b		&0x38,%d0		# extract bits 3-5
+	cmpi.b		%d0,&0x38		# is instr fcmp or ftst?
+	beq.b		fu_in_exit_p		# yes
+
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+	bsr.l		store_fpreg		# store the result
+
+fu_in_exit_p:
+
+	btst		&0x5,EXC_SR(%a6)	# user or supervisor?
+	bne.w		fu_in_exit_s_p		# supervisor
+
+	mov.l		EXC_A7(%a6),%a0		# update user a7
+	mov.l		%a0,%usp
+
+fu_in_exit_cont_p:
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6			# unravel stack frame
+
+	btst		&0x7,(%sp)		# is trace on?
+	bne.w		fu_trace_p		# yes
+
+	bra.l		_fpsp_done		# exit to os
+
+# the exception occurred in supervisor mode. check to see if the
+# addressing mode was (a7)+. if so, we'll need to shift the
+# stack frame "up".
+fu_in_exit_s_p:
+	btst		&mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+
+	beq.b		fu_in_exit_cont_p	# no
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6			# unravel stack frame
+
+# shift the stack frame "up". we don't really care about the <ea> field.
+	mov.l		0x4(%sp),0x10(%sp)
+	mov.l		0x0(%sp),0xc(%sp)
+	add.l		&0xc,%sp
+
+	btst		&0x7,(%sp)		# is trace on?
+	bne.w		fu_trace_p		# yes
+
+	bra.l		_fpsp_done		# exit to os
+
+fu_in_ena_p:
+	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled & set
+	bfffo		%d0{&24:&8},%d0		# find highest priority exception
+	bne.b		fu_in_exc_p		# at least one was set
+
+#
+# No exceptions occurred that were also enabled. Now:
+#
+#	if (OVFL && ovfl_disabled && inexact_enabled) {
+#	    branch to _real_inex() (even if the result was exact!);
+#	} else {
+#	    save the result in the proper fp reg (unless the op is fcmp or ftst);
+#	    return;
+#	}
+#
+	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
+	beq.w		fu_in_cont_p		# no
+
+fu_in_ovflchk_p:
+	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
+	beq.w		fu_in_cont_p		# no
+	bra.w		fu_in_exc_ovfl_p	# do _real_inex() now
+
+#
+# An exception occurred and that exception was enabled:
+#
+#	shift enabled exception field into lo byte of d0;
+#	if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
+#	    ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
+#		/*
+#		 * this is the case where we must call _real_inex() now or else
+#		 * there will be no other way to pass it the exceptional operand
+#		 */
+#		call _real_inex();
+#	} else {
+#		restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
+#	}
+#
+fu_in_exc_p:
+	subi.l		&24,%d0			# fix offset to be 0-8
+	cmpi.b		%d0,&0x6		# is exception INEX? (6 or 7)
+	blt.b		fu_in_exc_exit_p	# no
+
+# the enabled exception was inexact
+	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
+	bne.w		fu_in_exc_unfl_p	# yes
+	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
+	bne.w		fu_in_exc_ovfl_p	# yes
+
+# here, we insert the correct fsave status value into the fsave frame for the
+# corresponding exception. the operand in the fsave frame should be the original
+# src operand.
+# as a reminder for future predicted pain and agony, we are passing in fsave the
+# "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs.
+# this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!!
+fu_in_exc_exit_p:
+	btst		&0x5,EXC_SR(%a6)	# user or supervisor?
+	bne.w		fu_in_exc_exit_s_p	# supervisor
+
+	mov.l		EXC_A7(%a6),%a0		# update user a7
+	mov.l		%a0,%usp
+
+fu_in_exc_exit_cont_p:
+	mov.w		(tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)		# restore src op
+
+	unlk		%a6
+
+	btst		&0x7,(%sp)		# is trace enabled?
+	bne.w		fu_trace_p		# yes
+
+	bra.l		_fpsp_done
+
+tbl_except_p:
+	short		0xe000,0xe006,0xe004,0xe005
+	short		0xe003,0xe002,0xe001,0xe001
+
+fu_in_exc_ovfl_p:
+	mov.w		&0x3,%d0
+	bra.w		fu_in_exc_exit_p
+
+fu_in_exc_unfl_p:
+	mov.w		&0x4,%d0
+	bra.w		fu_in_exc_exit_p
+
+fu_in_exc_exit_s_p:
+	btst		&mia7_bit,SPCOND_FLG(%a6)
+	beq.b		fu_in_exc_exit_cont_p
+
+	mov.w		(tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)		# restore src op
+
+	unlk		%a6			# unravel stack frame
+
+# shift stack frame "up". who cares about <ea> field.
+	mov.l		0x4(%sp),0x10(%sp)
+	mov.l		0x0(%sp),0xc(%sp)
+	add.l		&0xc,%sp
+
+	btst		&0x7,(%sp)		# is trace on?
+	bne.b		fu_trace_p		# yes
+
+	bra.l		_fpsp_done		# exit to os
+
+#
+# The opclass two PACKED instruction that took an "Unimplemented Data Type"
+# exception was being traced. Make the "current" PC the FPIAR and put it in the
+# trace stack frame then jump to _real_trace().
+#
+#		  UNSUPP FRAME		   TRACE FRAME
+#		*****************	*****************
+#		*      EA	*	*    Current	*
+#		*		*	*      PC	*
+#		*****************	*****************
+#		* 0x2 *	0x0dc	*	* 0x2 *  0x024	*
+#		*****************	*****************
+#		*     Next	*	*     Next	*
+#		*      PC	*	*      PC	*
+#		*****************	*****************
+#		*      SR	*	*      SR	*
+#		*****************	*****************
+fu_trace_p:
+	mov.w		&0x2024,0x6(%sp)
+	fmov.l		%fpiar,0x8(%sp)
+
+	bra.l		_real_trace
+
+#########################################################
+#########################################################
+fu_out_pack:
+
+
+# I'm not sure at this point what FPSR bits are valid for this instruction.
+# so, since the emulation routines re-create them anyways, zero exception field.
+# fmove out doesn't affect ccodes.
+	and.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field
+
+	fmov.l		&0x0,%fpcr		# zero current control regs
+	fmov.l		&0x0,%fpsr
+
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0
+	bsr.l		load_fpn1
+
+# unlike other opclass 3, unimplemented data type exceptions, packed must be
+# able to detect all operand types.
+	lea		FP_SRC(%a6),%a0
+	bsr.l		set_tag_x		# tag the operand type
+	cmpi.b		%d0,&UNNORM		# is operand an UNNORM?
+	bne.b		fu_op2_p		# no
+	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO
+
+fu_op2_p:
+	mov.b		%d0,STAG(%a6)		# save src optype tag
+
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec
+
+	lea		FP_SRC(%a6),%a0		# pass ptr to src operand
+
+	mov.l		(%a6),EXC_A6(%a6)	# in case a6 changes
+	bsr.l		fout			# call fmove out routine
+
+# Exceptions in order of precedence:
+#	BSUN	: no
+#	SNAN	: yes
+#	OPERR	: if ((k_factor > +17) || (dec. exp exceeds 3 digits))
+#	OVFL	: no
+#	UNFL	: no
+#	DZ	: no
+#	INEX2	: yes
+#	INEX1	: no
+
+# determine the highest priority exception(if any) set by the
+# emulation routine that has also been enabled by the user.
+	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled
+	bne.w		fu_out_ena_p		# some are enabled
+
+fu_out_exit_p:
+	mov.l		EXC_A6(%a6),(%a6)	# restore a6
+
+	btst		&0x5,EXC_SR(%a6)	# user or supervisor?
+	bne.b		fu_out_exit_s_p		# supervisor
+
+	mov.l		EXC_A7(%a6),%a0		# update user a7
+	mov.l		%a0,%usp
+
+fu_out_exit_cont_p:
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6			# unravel stack frame
+
+	btst		&0x7,(%sp)		# is trace on?
+	bne.w		fu_trace_p		# yes
+
+	bra.l		_fpsp_done		# exit to os
+
+# the exception occurred in supervisor mode. check to see if the
+# addressing mode was -(a7). if so, we'll need to shift the
+# stack frame "down".
+fu_out_exit_s_p:
+	btst		&mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7)
+	beq.b		fu_out_exit_cont_p	# no
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.l		(%a6),%a6		# restore frame pointer
+
+	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+
+# now, copy the result to the proper place on the stack
+	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
+	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
+	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
+
+	add.l		&LOCAL_SIZE-0x8,%sp
+
+	btst		&0x7,(%sp)
+	bne.w		fu_trace_p
+
+	bra.l		_fpsp_done
+
+fu_out_ena_p:
+	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled
+	bfffo		%d0{&24:&8},%d0		# find highest priority exception
+	beq.w		fu_out_exit_p
+
+	mov.l		EXC_A6(%a6),(%a6)	# restore a6
+
+# an exception occurred and that exception was enabled.
+# the only exception possible on packed move out are INEX, OPERR, and SNAN.
+fu_out_exc_p:
+	cmpi.b		%d0,&0x1a
+	bgt.w		fu_inex_p2
+	beq.w		fu_operr_p
+
+fu_snan_p:
+	btst		&0x5,EXC_SR(%a6)
+	bne.b		fu_snan_s_p
+
+	mov.l		EXC_A7(%a6),%a0
+	mov.l		%a0,%usp
+	bra.w		fu_snan
+
+fu_snan_s_p:
+	cmpi.b		SPCOND_FLG(%a6),&mda7_flg
+	bne.w		fu_snan
+
+# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
+# the strategy is to move the exception frame "down" 12 bytes. then, we
+# can store the default result where the exception frame was.
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.w		&0x30d8,EXC_VOFF(%a6)	# vector offset = 0xd0
+	mov.w		&0xe006,2+FP_SRC(%a6)	# set fsave status
+
+	frestore	FP_SRC(%a6)		# restore src operand
+
+	mov.l		(%a6),%a6		# restore frame pointer
+
+	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
+
+# now, we copy the default result to its proper location
+	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
+	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
+	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
+
+	add.l		&LOCAL_SIZE-0x8,%sp
+
+
+	bra.l		_real_snan
+
+fu_operr_p:
+	btst		&0x5,EXC_SR(%a6)
+	bne.w		fu_operr_p_s
+
+	mov.l		EXC_A7(%a6),%a0
+	mov.l		%a0,%usp
+	bra.w		fu_operr
+
+fu_operr_p_s:
+	cmpi.b		SPCOND_FLG(%a6),&mda7_flg
+	bne.w		fu_operr
+
+# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
+# the strategy is to move the exception frame "down" 12 bytes. then, we
+# can store the default result where the exception frame was.
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.w		&0x30d0,EXC_VOFF(%a6)	# vector offset = 0xd0
+	mov.w		&0xe004,2+FP_SRC(%a6)	# set fsave status
+
+	frestore	FP_SRC(%a6)		# restore src operand
+
+	mov.l		(%a6),%a6		# restore frame pointer
+
+	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
+
+# now, we copy the default result to its proper location
+	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
+	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
+	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
+
+	add.l		&LOCAL_SIZE-0x8,%sp
+
+
+	bra.l		_real_operr
+
+fu_inex_p2:
+	btst		&0x5,EXC_SR(%a6)
+	bne.w		fu_inex_s_p2
+
+	mov.l		EXC_A7(%a6),%a0
+	mov.l		%a0,%usp
+	bra.w		fu_inex
+
+fu_inex_s_p2:
+	cmpi.b		SPCOND_FLG(%a6),&mda7_flg
+	bne.w		fu_inex
+
+# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
+# the strategy is to move the exception frame "down" 12 bytes. then, we
+# can store the default result where the exception frame was.
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.w		&0x30c4,EXC_VOFF(%a6)	# vector offset = 0xc4
+	mov.w		&0xe001,2+FP_SRC(%a6)	# set fsave status
+
+	frestore	FP_SRC(%a6)		# restore src operand
+
+	mov.l		(%a6),%a6		# restore frame pointer
+
+	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
+
+# now, we copy the default result to its proper location
+	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
+	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
+	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
+
+	add.l		&LOCAL_SIZE-0x8,%sp
+
+
+	bra.l		_real_inex
+
+#########################################################################
+
+#
+# if we're stuffing a source operand back into an fsave frame then we
+# have to make sure that for single or double source operands that the
+# format stuffed is as weird as the hardware usually makes it.
+#
+	global		funimp_skew
+funimp_skew:
+	bfextu		EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier
+	cmpi.b		%d0,&0x1		# was src sgl?
+	beq.b		funimp_skew_sgl		# yes
+	cmpi.b		%d0,&0x5		# was src dbl?
+	beq.b		funimp_skew_dbl		# yes
+	rts
+
+funimp_skew_sgl:
+	mov.w		FP_SRC_EX(%a6),%d0	# fetch DENORM exponent
+	andi.w		&0x7fff,%d0		# strip sign
+	beq.b		funimp_skew_sgl_not
+	cmpi.w		%d0,&0x3f80
+	bgt.b		funimp_skew_sgl_not
+	neg.w		%d0			# make exponent negative
+	addi.w		&0x3f81,%d0		# find amt to shift
+	mov.l		FP_SRC_HI(%a6),%d1	# fetch DENORM hi(man)
+	lsr.l		%d0,%d1			# shift it
+	bset		&31,%d1			# set j-bit
+	mov.l		%d1,FP_SRC_HI(%a6)	# insert new hi(man)
+	andi.w		&0x8000,FP_SRC_EX(%a6)	# clear old exponent
+	ori.w		&0x3f80,FP_SRC_EX(%a6)	# insert new "skewed" exponent
+funimp_skew_sgl_not:
+	rts
+
+funimp_skew_dbl:
+	mov.w		FP_SRC_EX(%a6),%d0	# fetch DENORM exponent
+	andi.w		&0x7fff,%d0		# strip sign
+	beq.b		funimp_skew_dbl_not
+	cmpi.w		%d0,&0x3c00
+	bgt.b		funimp_skew_dbl_not
+
+	tst.b		FP_SRC_EX(%a6)		# make "internal format"
+	smi.b		0x2+FP_SRC(%a6)
+	mov.w		%d0,FP_SRC_EX(%a6)	# insert exponent with cleared sign
+	clr.l		%d0			# clear g,r,s
+	lea		FP_SRC(%a6),%a0		# pass ptr to src op
+	mov.w		&0x3c01,%d1		# pass denorm threshold
+	bsr.l		dnrm_lp			# denorm it
+	mov.w		&0x3c00,%d0		# new exponent
+	tst.b		0x2+FP_SRC(%a6)		# is sign set?
+	beq.b		fss_dbl_denorm_done	# no
+	bset		&15,%d0			# set sign
+fss_dbl_denorm_done:
+	bset		&0x7,FP_SRC_HI(%a6)	# set j-bit
+	mov.w		%d0,FP_SRC_EX(%a6)	# insert new exponent
+funimp_skew_dbl_not:
+	rts
+
+#########################################################################
+	global		_mem_write2
+_mem_write2:
+	btst		&0x5,EXC_SR(%a6)
+	beq.l		_dmem_write
+	mov.l		0x0(%a0),FP_DST_EX(%a6)
+	mov.l		0x4(%a0),FP_DST_HI(%a6)
+	mov.l		0x8(%a0),FP_DST_LO(%a6)
+	clr.l		%d1
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_fpsp_effadd(): 060FPSP entry point for FP "Unimplemented	#
+#			effective address" exception.			#
+#									#
+#	This handler should be the first code executed upon taking the	#
+#	FP Unimplemented Effective Address exception in an operating	#
+#	system.								#
+#									#
+# XREF ****************************************************************	#
+#	_imem_read_long() - read instruction longword			#
+#	fix_skewed_ops() - adjust src operand in fsave frame		#
+#	set_tag_x() - determine optype of src/dst operands		#
+#	store_fpreg() - store opclass 0 or 2 result to FP regfile	#
+#	unnorm_fix() - change UNNORM operands to NORM or ZERO		#
+#	load_fpn2() - load dst operand from FP regfile			#
+#	tbl_unsupp - add of table of emulation routines for opclass 0,2	#
+#	decbin() - convert packed data to FP binary data		#
+#	_real_fpu_disabled() - "callout" for "FPU disabled" exception	#
+#	_real_access() - "callout" for access error exception		#
+#	_mem_read() - read extended immediate operand from memory	#
+#	_fpsp_done() - "callout" for exit; work all done		#
+#	_real_trace() - "callout" for Trace enabled exception		#
+#	fmovm_dynamic() - emulate dynamic fmovm instruction		#
+#	fmovm_ctrl() - emulate fmovm control instruction		#
+#									#
+# INPUT ***************************************************************	#
+#	- The system stack contains the "Unimplemented <ea>" stk frame	#
+#									#
+# OUTPUT **************************************************************	#
+#	If access error:						#
+#	- The system stack is changed to an access error stack frame	#
+#	If FPU disabled:						#
+#	- The system stack is changed to an FPU disabled stack frame	#
+#	If Trace exception enabled:					#
+#	- The system stack is changed to a Trace exception stack frame	#
+#	Else: (normal case)						#
+#	- None (correct result has been stored as appropriate)		#
+#									#
+# ALGORITHM ***********************************************************	#
+#	This exception handles 3 types of operations:			#
+# (1) FP Instructions using extended precision or packed immediate	#
+#     addressing mode.							#
+# (2) The "fmovm.x" instruction w/ dynamic register specification.	#
+# (3) The "fmovm.l" instruction w/ 2 or 3 control registers.		#
+#									#
+#	For immediate data operations, the data is read in w/ a		#
+# _mem_read() "callout", converted to FP binary (if packed), and used	#
+# as the source operand to the instruction specified by the instruction	#
+# word. If no FP exception should be reported ads a result of the	#
+# emulation, then the result is stored to the destination register and	#
+# the handler exits through _fpsp_done(). If an enabled exc has been	#
+# signalled as a result of emulation, then an fsave state frame		#
+# corresponding to the FP exception type must be entered into the 060	#
+# FPU before exiting. In either the enabled or disabled cases, we	#
+# must also check if a Trace exception is pending, in which case, we	#
+# must create a Trace exception stack frame from the current exception	#
+# stack frame. If no Trace is pending, we simply exit through		#
+# _fpsp_done().								#
+#	For "fmovm.x", call the routine fmovm_dynamic() which will	#
+# decode and emulate the instruction. No FP exceptions can be pending	#
+# as a result of this operation emulation. A Trace exception can be	#
+# pending, though, which means the current stack frame must be changed	#
+# to a Trace stack frame and an exit made through _real_trace().	#
+# For the case of "fmovm.x Dn,-(a7)", where the offending instruction	#
+# was executed from supervisor mode, this handler must store the FP	#
+# register file values to the system stack by itself since		#
+# fmovm_dynamic() can't handle this. A normal exit is made through	#
+# fpsp_done().								#
+#	For "fmovm.l", fmovm_ctrl() is used to emulate the instruction.	#
+# Again, a Trace exception may be pending and an exit made through	#
+# _real_trace(). Else, a normal exit is made through _fpsp_done().	#
+#									#
+#	Before any of the above is attempted, it must be checked to	#
+# see if the FPU is disabled. Since the "Unimp <ea>" exception is taken	#
+# before the "FPU disabled" exception, but the "FPU disabled" exception	#
+# has higher priority, we check the disabled bit in the PCR. If set,	#
+# then we must create an 8 word "FPU disabled" exception stack frame	#
+# from the current 4 word exception stack frame. This includes		#
+# reproducing the effective address of the instruction to put on the	#
+# new stack frame.							#
+#									#
+#	In the process of all emulation work, if a _mem_read()		#
+# "callout" returns a failing result indicating an access error, then	#
+# we must create an access error stack frame from the current stack	#
+# frame. This information includes a faulting address and a fault-	#
+# status-longword. These are created within this handler.		#
+#									#
+#########################################################################
+
+	global		_fpsp_effadd
+_fpsp_effadd:
+
+# This exception type takes priority over the "Line F Emulator"
+# exception. Therefore, the FPU could be disabled when entering here.
+# So, we must check to see if it's disabled and handle that case separately.
+	mov.l		%d0,-(%sp)		# save d0
+	movc		%pcr,%d0		# load proc cr
+	btst		&0x1,%d0		# is FPU disabled?
+	bne.w		iea_disabled		# yes
+	mov.l		(%sp)+,%d0		# restore d0
+
+	link		%a6,&-LOCAL_SIZE	# init stack frame
+
+	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1
+	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack
+
+# PC of instruction that took the exception is the PC in the frame
+	mov.l		EXC_PC(%a6),EXC_EXTWPTR(%a6)
+
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch the instruction words
+	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD
+
+#########################################################################
+
+	tst.w		%d0			# is operation fmovem?
+	bmi.w		iea_fmovm		# yes
+
+#
+# here, we will have:
+#	fabs	fdabs	fsabs		facos		fmod
+#	fadd	fdadd	fsadd		fasin		frem
+#	fcmp				fatan		fscale
+#	fdiv	fddiv	fsdiv		fatanh		fsin
+#	fint				fcos		fsincos
+#	fintrz				fcosh		fsinh
+#	fmove	fdmove	fsmove		fetox		ftan
+#	fmul	fdmul	fsmul		fetoxm1		ftanh
+#	fneg	fdneg	fsneg		fgetexp		ftentox
+#	fsgldiv				fgetman		ftwotox
+#	fsglmul				flog10
+#	fsqrt				flog2
+#	fsub	fdsub	fssub		flogn
+#	ftst				flognp1
+# which can all use f<op>.{x,p}
+# so, now it's immediate data extended precision AND PACKED FORMAT!
+#
+iea_op:
+	andi.l		&0x00ff00ff,USER_FPSR(%a6)
+
+	btst		&0xa,%d0		# is src fmt x or p?
+	bne.b		iea_op_pack		# packed
+
+
+	mov.l		EXC_EXTWPTR(%a6),%a0	# pass: ptr to #<data>
+	lea		FP_SRC(%a6),%a1		# pass: ptr to super addr
+	mov.l		&0xc,%d0		# pass: 12 bytes
+	bsr.l		_imem_read		# read extended immediate
+
+	tst.l		%d1			# did ifetch fail?
+	bne.w		iea_iacc		# yes
+
+	bra.b		iea_op_setsrc
+
+iea_op_pack:
+
+	mov.l		EXC_EXTWPTR(%a6),%a0	# pass: ptr to #<data>
+	lea		FP_SRC(%a6),%a1		# pass: ptr to super dst
+	mov.l		&0xc,%d0		# pass: 12 bytes
+	bsr.l		_imem_read		# read packed operand
+
+	tst.l		%d1			# did ifetch fail?
+	bne.w		iea_iacc		# yes
+
+# The packed operand is an INF or a NAN if the exponent field is all ones.
+	bfextu		FP_SRC(%a6){&1:&15},%d0	# get exp
+	cmpi.w		%d0,&0x7fff		# INF or NAN?
+	beq.b		iea_op_setsrc		# operand is an INF or NAN
+
+# The packed operand is a zero if the mantissa is all zero, else it's
+# a normal packed op.
+	mov.b		3+FP_SRC(%a6),%d0	# get byte 4
+	andi.b		&0x0f,%d0		# clear all but last nybble
+	bne.b		iea_op_gp_not_spec	# not a zero
+	tst.l		FP_SRC_HI(%a6)		# is lw 2 zero?
+	bne.b		iea_op_gp_not_spec	# not a zero
+	tst.l		FP_SRC_LO(%a6)		# is lw 3 zero?
+	beq.b		iea_op_setsrc		# operand is a ZERO
+iea_op_gp_not_spec:
+	lea		FP_SRC(%a6),%a0		# pass: ptr to packed op
+	bsr.l		decbin			# convert to extended
+	fmovm.x		&0x80,FP_SRC(%a6)	# make this the srcop
+
+iea_op_setsrc:
+	addi.l		&0xc,EXC_EXTWPTR(%a6)	# update extension word pointer
+
+# FP_SRC now holds the src operand.
+	lea		FP_SRC(%a6),%a0		# pass: ptr to src op
+	bsr.l		set_tag_x		# tag the operand type
+	mov.b		%d0,STAG(%a6)		# could be ANYTHING!!!
+	cmpi.b		%d0,&UNNORM		# is operand an UNNORM?
+	bne.b		iea_op_getdst		# no
+	bsr.l		unnorm_fix		# yes; convert to NORM/DENORM/ZERO
+	mov.b		%d0,STAG(%a6)		# set new optype tag
+iea_op_getdst:
+	clr.b		STORE_FLG(%a6)		# clear "store result" boolean
+
+	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic?
+	beq.b		iea_op_extract		# monadic
+	btst		&0x4,1+EXC_CMDREG(%a6)	# is operation fsincos,ftst,fcmp?
+	bne.b		iea_op_spec		# yes
+
+iea_op_loaddst:
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
+	bsr.l		load_fpn2		# load dst operand
+
+	lea		FP_DST(%a6),%a0		# pass: ptr to dst op
+	bsr.l		set_tag_x		# tag the operand type
+	mov.b		%d0,DTAG(%a6)		# could be ANYTHING!!!
+	cmpi.b		%d0,&UNNORM		# is operand an UNNORM?
+	bne.b		iea_op_extract		# no
+	bsr.l		unnorm_fix		# yes; convert to NORM/DENORM/ZERO
+	mov.b		%d0,DTAG(%a6)		# set new optype tag
+	bra.b		iea_op_extract
+
+# the operation is fsincos, ftst, or fcmp. only fcmp is dyadic
+iea_op_spec:
+	btst		&0x3,1+EXC_CMDREG(%a6)	# is operation fsincos?
+	beq.b		iea_op_extract		# yes
+# now, we're left with ftst and fcmp. so, first let's tag them so that they don't
+# store a result. then, only fcmp will branch back and pick up a dst operand.
+	st		STORE_FLG(%a6)		# don't store a final result
+	btst		&0x1,1+EXC_CMDREG(%a6)	# is operation fcmp?
+	beq.b		iea_op_loaddst		# yes
+
+iea_op_extract:
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# pass: rnd mode,prec
+
+	mov.b		1+EXC_CMDREG(%a6),%d1
+	andi.w		&0x007f,%d1		# extract extension
+
+	fmov.l		&0x0,%fpcr
+	fmov.l		&0x0,%fpsr
+
+	lea		FP_SRC(%a6),%a0
+	lea		FP_DST(%a6),%a1
+
+	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
+	jsr		(tbl_unsupp.l,%pc,%d1.l*1)
+
+#
+# Exceptions in order of precedence:
+#	BSUN	: none
+#	SNAN	: all operations
+#	OPERR	: all reg-reg or mem-reg operations that can normally operr
+#	OVFL	: same as OPERR
+#	UNFL	: same as OPERR
+#	DZ	: same as OPERR
+#	INEX2	: same as OPERR
+#	INEX1	: all packed immediate operations
+#
+
+# we determine the highest priority exception(if any) set by the
+# emulation routine that has also been enabled by the user.
+	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled
+	bne.b		iea_op_ena		# some are enabled
+
+# now, we save the result, unless, of course, the operation was ftst or fcmp.
+# these don't save results.
+iea_op_save:
+	tst.b		STORE_FLG(%a6)		# does this op store a result?
+	bne.b		iea_op_exit1		# exit with no frestore
+
+iea_op_store:
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
+	bsr.l		store_fpreg		# store the result
+
+iea_op_exit1:
+	mov.l		EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
+	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6			# unravel the frame
+
+	btst		&0x7,(%sp)		# is trace on?
+	bne.w		iea_op_trace		# yes
+
+	bra.l		_fpsp_done		# exit to os
+
+iea_op_ena:
+	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enable and set
+	bfffo		%d0{&24:&8},%d0		# find highest priority exception
+	bne.b		iea_op_exc		# at least one was set
+
+# no exception occurred. now, did a disabled, exact overflow occur with inexact
+# enabled? if so, then we have to stuff an overflow frame into the FPU.
+	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
+	beq.b		iea_op_save
+
+iea_op_ovfl:
+	btst		&inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
+	beq.b		iea_op_store		# no
+	bra.b		iea_op_exc_ovfl		# yes
+
+# an enabled exception occurred. we have to insert the exception type back into
+# the machine.
+iea_op_exc:
+	subi.l		&24,%d0			# fix offset to be 0-8
+	cmpi.b		%d0,&0x6		# is exception INEX?
+	bne.b		iea_op_exc_force	# no
+
+# the enabled exception was inexact. so, if it occurs with an overflow
+# or underflow that was disabled, then we have to force an overflow or
+# underflow frame.
+	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
+	bne.b		iea_op_exc_ovfl		# yes
+	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur?
+	bne.b		iea_op_exc_unfl		# yes
+
+iea_op_exc_force:
+	mov.w		(tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6)
+	bra.b		iea_op_exit2		# exit with frestore
+
+tbl_iea_except:
+	short		0xe002, 0xe006, 0xe004, 0xe005
+	short		0xe003, 0xe002, 0xe001, 0xe001
+
+iea_op_exc_ovfl:
+	mov.w		&0xe005,2+FP_SRC(%a6)
+	bra.b		iea_op_exit2
+
+iea_op_exc_unfl:
+	mov.w		&0xe003,2+FP_SRC(%a6)
+
+iea_op_exit2:
+	mov.l		EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
+	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)		# restore exceptional state
+
+	unlk		%a6			# unravel the frame
+
+	btst		&0x7,(%sp)		# is trace on?
+	bne.b		iea_op_trace		# yes
+
+	bra.l		_fpsp_done		# exit to os
+
+#
+# The opclass two instruction that took an "Unimplemented Effective Address"
+# exception was being traced. Make the "current" PC the FPIAR and put it in
+# the trace stack frame then jump to _real_trace().
+#
+#		 UNIMP EA FRAME		   TRACE FRAME
+#		*****************	*****************
+#		* 0x0 *  0x0f0	*	*    Current	*
+#		*****************	*      PC	*
+#		*    Current	*	*****************
+#		*      PC	*	* 0x2 *  0x024	*
+#		*****************	*****************
+#		*      SR	*	*     Next	*
+#		*****************	*      PC	*
+#					*****************
+#					*      SR	*
+#					*****************
+iea_op_trace:
+	mov.l		(%sp),-(%sp)		# shift stack frame "down"
+	mov.w		0x8(%sp),0x4(%sp)
+	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024
+	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR
+
+	bra.l		_real_trace
+
+#########################################################################
+iea_fmovm:
+	btst		&14,%d0			# ctrl or data reg
+	beq.w		iea_fmovm_ctrl
+
+iea_fmovm_data:
+
+	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode
+	bne.b		iea_fmovm_data_s
+
+iea_fmovm_data_u:
+	mov.l		%usp,%a0
+	mov.l		%a0,EXC_A7(%a6)		# store current a7
+	bsr.l		fmovm_dynamic		# do dynamic fmovm
+	mov.l		EXC_A7(%a6),%a0		# load possibly new a7
+	mov.l		%a0,%usp		# update usp
+	bra.w		iea_fmovm_exit
+
+iea_fmovm_data_s:
+	clr.b		SPCOND_FLG(%a6)
+	lea		0x2+EXC_VOFF(%a6),%a0
+	mov.l		%a0,EXC_A7(%a6)
+	bsr.l		fmovm_dynamic		# do dynamic fmovm
+
+	cmpi.b		SPCOND_FLG(%a6),&mda7_flg
+	beq.w		iea_fmovm_data_predec
+	cmpi.b		SPCOND_FLG(%a6),&mia7_flg
+	bne.w		iea_fmovm_exit
+
+# right now, d0 = the size.
+# the data has been fetched from the supervisor stack, but we have not
+# incremented the stack pointer by the appropriate number of bytes.
+# do it here.
+iea_fmovm_data_postinc:
+	btst		&0x7,EXC_SR(%a6)
+	bne.b		iea_fmovm_data_pi_trace
+
+	mov.w		EXC_SR(%a6),(EXC_SR,%a6,%d0)
+	mov.l		EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0)
+	mov.w		&0x00f0,(EXC_VOFF,%a6,%d0)
+
+	lea		(EXC_SR,%a6,%d0),%a0
+	mov.l		%a0,EXC_SR(%a6)
+
+	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6
+	mov.l		(%sp)+,%sp
+	bra.l		_fpsp_done
+
+iea_fmovm_data_pi_trace:
+	mov.w		EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
+	mov.l		EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0)
+	mov.w		&0x2024,(EXC_VOFF-0x4,%a6,%d0)
+	mov.l		EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0)
+
+	lea		(EXC_SR-0x4,%a6,%d0),%a0
+	mov.l		%a0,EXC_SR(%a6)
+
+	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6
+	mov.l		(%sp)+,%sp
+	bra.l		_real_trace
+
+# right now, d1 = size and d0 = the strg.
+iea_fmovm_data_predec:
+	mov.b		%d1,EXC_VOFF(%a6)	# store strg
+	mov.b		%d0,0x1+EXC_VOFF(%a6)	# store size
+
+	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	mov.l		(%a6),-(%sp)		# make a copy of a6
+	mov.l		%d0,-(%sp)		# save d0
+	mov.l		%d1,-(%sp)		# save d1
+	mov.l		EXC_EXTWPTR(%a6),-(%sp)	# make a copy of Next PC
+
+	clr.l		%d0
+	mov.b		0x1+EXC_VOFF(%a6),%d0	# fetch size
+	neg.l		%d0			# get negative of size
+
+	btst		&0x7,EXC_SR(%a6)	# is trace enabled?
+	beq.b		iea_fmovm_data_p2
+
+	mov.w		EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
+	mov.l		EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0)
+	mov.l		(%sp)+,(EXC_PC-0x4,%a6,%d0)
+	mov.w		&0x2024,(EXC_VOFF-0x4,%a6,%d0)
+
+	pea		(%a6,%d0)		# create final sp
+	bra.b		iea_fmovm_data_p3
+
+iea_fmovm_data_p2:
+	mov.w		EXC_SR(%a6),(EXC_SR,%a6,%d0)
+	mov.l		(%sp)+,(EXC_PC,%a6,%d0)
+	mov.w		&0x00f0,(EXC_VOFF,%a6,%d0)
+
+	pea		(0x4,%a6,%d0)		# create final sp
+
+iea_fmovm_data_p3:
+	clr.l		%d1
+	mov.b		EXC_VOFF(%a6),%d1	# fetch strg
+
+	tst.b		%d1
+	bpl.b		fm_1
+	fmovm.x		&0x80,(0x4+0x8,%a6,%d0)
+	addi.l		&0xc,%d0
+fm_1:
+	lsl.b		&0x1,%d1
+	bpl.b		fm_2
+	fmovm.x		&0x40,(0x4+0x8,%a6,%d0)
+	addi.l		&0xc,%d0
+fm_2:
+	lsl.b		&0x1,%d1
+	bpl.b		fm_3
+	fmovm.x		&0x20,(0x4+0x8,%a6,%d0)
+	addi.l		&0xc,%d0
+fm_3:
+	lsl.b		&0x1,%d1
+	bpl.b		fm_4
+	fmovm.x		&0x10,(0x4+0x8,%a6,%d0)
+	addi.l		&0xc,%d0
+fm_4:
+	lsl.b		&0x1,%d1
+	bpl.b		fm_5
+	fmovm.x		&0x08,(0x4+0x8,%a6,%d0)
+	addi.l		&0xc,%d0
+fm_5:
+	lsl.b		&0x1,%d1
+	bpl.b		fm_6
+	fmovm.x		&0x04,(0x4+0x8,%a6,%d0)
+	addi.l		&0xc,%d0
+fm_6:
+	lsl.b		&0x1,%d1
+	bpl.b		fm_7
+	fmovm.x		&0x02,(0x4+0x8,%a6,%d0)
+	addi.l		&0xc,%d0
+fm_7:
+	lsl.b		&0x1,%d1
+	bpl.b		fm_end
+	fmovm.x		&0x01,(0x4+0x8,%a6,%d0)
+fm_end:
+	mov.l		0x4(%sp),%d1
+	mov.l		0x8(%sp),%d0
+	mov.l		0xc(%sp),%a6
+	mov.l		(%sp)+,%sp
+
+	btst		&0x7,(%sp)		# is trace enabled?
+	beq.l		_fpsp_done
+	bra.l		_real_trace
+
+#########################################################################
+iea_fmovm_ctrl:
+
+	bsr.l		fmovm_ctrl		# load ctrl regs
+
+iea_fmovm_exit:
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	btst		&0x7,EXC_SR(%a6)	# is trace on?
+	bne.b		iea_fmovm_trace		# yes
+
+	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC
+
+	unlk		%a6			# unravel the frame
+
+	bra.l		_fpsp_done		# exit to os
+
+#
+# The control reg instruction that took an "Unimplemented Effective Address"
+# exception was being traced. The "Current PC" for the trace frame is the
+# PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR.
+# After fixing the stack frame, jump to _real_trace().
+#
+#		 UNIMP EA FRAME		   TRACE FRAME
+#		*****************	*****************
+#		* 0x0 *  0x0f0	*	*    Current	*
+#		*****************	*      PC	*
+#		*    Current	*	*****************
+#		*      PC	*	* 0x2 *  0x024	*
+#		*****************	*****************
+#		*      SR	*	*     Next	*
+#		*****************	*      PC	*
+#					*****************
+#					*      SR	*
+#					*****************
+# this ain't a pretty solution, but it works:
+# -restore a6 (not with unlk)
+# -shift stack frame down over where old a6 used to be
+# -add LOCAL_SIZE to stack pointer
+iea_fmovm_trace:
+	mov.l		(%a6),%a6		# restore frame pointer
+	mov.w		EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp)
+	mov.l		EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp)
+	mov.l		EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp)
+	mov.w		&0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024
+	add.l		&LOCAL_SIZE,%sp		# clear stack frame
+
+	bra.l		_real_trace
+
+#########################################################################
+# The FPU is disabled and so we should really have taken the "Line
+# F Emulator" exception. So, here we create an 8-word stack frame
+# from our 4-word stack frame. This means we must calculate the length
+# the faulting instruction to get the "next PC". This is trivial for
+# immediate operands but requires some extra work for fmovm dynamic
+# which can use most addressing modes.
+iea_disabled:
+	mov.l		(%sp)+,%d0		# restore d0
+
+	link		%a6,&-LOCAL_SIZE	# init stack frame
+
+	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1
+
+# PC of instruction that took the exception is the PC in the frame
+	mov.l		EXC_PC(%a6),EXC_EXTWPTR(%a6)
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch the instruction words
+	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD
+
+	tst.w		%d0			# is instr fmovm?
+	bmi.b		iea_dis_fmovm		# yes
+# instruction is using an extended precision immediate operand. therefore,
+# the total instruction length is 16 bytes.
+iea_dis_immed:
+	mov.l		&0x10,%d0		# 16 bytes of instruction
+	bra.b		iea_dis_cont
+iea_dis_fmovm:
+	btst		&0xe,%d0		# is instr fmovm ctrl
+	bne.b		iea_dis_fmovm_data	# no
+# the instruction is a fmovm.l with 2 or 3 registers.
+	bfextu		%d0{&19:&3},%d1
+	mov.l		&0xc,%d0
+	cmpi.b		%d1,&0x7		# move all regs?
+	bne.b		iea_dis_cont
+	addq.l		&0x4,%d0
+	bra.b		iea_dis_cont
+# the instruction is an fmovm.x dynamic which can use many addressing
+# modes and thus can have several different total instruction lengths.
+# call fmovm_calc_ea which will go through the ea calc process and,
+# as a by-product, will tell us how long the instruction is.
+iea_dis_fmovm_data:
+	clr.l		%d0
+	bsr.l		fmovm_calc_ea
+	mov.l		EXC_EXTWPTR(%a6),%d0
+	sub.l		EXC_PC(%a6),%d0
+iea_dis_cont:
+	mov.w		%d0,EXC_VOFF(%a6)	# store stack shift value
+
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6
+
+# here, we actually create the 8-word frame from the 4-word frame,
+# with the "next PC" as additional info.
+# the <ea> field is let as undefined.
+	subq.l		&0x8,%sp		# make room for new stack
+	mov.l		%d0,-(%sp)		# save d0
+	mov.w		0xc(%sp),0x4(%sp)	# move SR
+	mov.l		0xe(%sp),0x6(%sp)	# move Current PC
+	clr.l		%d0
+	mov.w		0x12(%sp),%d0
+	mov.l		0x6(%sp),0x10(%sp)	# move Current PC
+	add.l		%d0,0x6(%sp)		# make Next PC
+	mov.w		&0x402c,0xa(%sp)	# insert offset,frame format
+	mov.l		(%sp)+,%d0		# restore d0
+
+	bra.l		_real_fpu_disabled
+
+##########
+
+iea_iacc:
+	movc		%pcr,%d0
+	btst		&0x1,%d0
+	bne.b		iea_iacc_cont
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 on stack
+iea_iacc_cont:
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6
+
+	subq.w		&0x8,%sp		# make stack frame bigger
+	mov.l		0x8(%sp),(%sp)		# store SR,hi(PC)
+	mov.w		0xc(%sp),0x4(%sp)	# store lo(PC)
+	mov.w		&0x4008,0x6(%sp)	# store voff
+	mov.l		0x2(%sp),0x8(%sp)	# store ea
+	mov.l		&0x09428001,0xc(%sp)	# store fslw
+
+iea_acc_done:
+	btst		&0x5,(%sp)		# user or supervisor mode?
+	beq.b		iea_acc_done2		# user
+	bset		&0x2,0xd(%sp)		# set supervisor TM bit
+
+iea_acc_done2:
+	bra.l		_real_access
+
+iea_dacc:
+	lea		-LOCAL_SIZE(%a6),%sp
+
+	movc		%pcr,%d1
+	btst		&0x1,%d1
+	bne.b		iea_dacc_cont
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 on stack
+	fmovm.l		LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs
+iea_dacc_cont:
+	mov.l		(%a6),%a6
+
+	mov.l		0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp)
+	mov.w		0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp)
+	mov.w		&0x4008,-0x8+0xa+LOCAL_SIZE(%sp)
+	mov.l		%a0,-0x8+0xc+LOCAL_SIZE(%sp)
+	mov.w		%d0,-0x8+0x10+LOCAL_SIZE(%sp)
+	mov.w		&0x0001,-0x8+0x12+LOCAL_SIZE(%sp)
+
+	movm.l		LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1
+	add.w		&LOCAL_SIZE-0x4,%sp
+
+	bra.b		iea_acc_done
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_fpsp_operr(): 060FPSP entry point for FP Operr exception.	#
+#									#
+#	This handler should be the first code executed upon taking the	#
+#	FP Operand Error exception in an operating system.		#
+#									#
+# XREF ****************************************************************	#
+#	_imem_read_long() - read instruction longword			#
+#	fix_skewed_ops() - adjust src operand in fsave frame		#
+#	_real_operr() - "callout" to operating system operr handler	#
+#	_dmem_write_{byte,word,long}() - store data to mem (opclass 3)	#
+#	store_dreg_{b,w,l}() - store data to data regfile (opclass 3)	#
+#	facc_out_{b,w,l}() - store to memory took access error (opcl 3)	#
+#									#
+# INPUT ***************************************************************	#
+#	- The system stack contains the FP Operr exception frame	#
+#	- The fsave frame contains the source operand			#
+#									#
+# OUTPUT **************************************************************	#
+#	No access error:						#
+#	- The system stack is unchanged					#
+#	- The fsave frame contains the adjusted src op for opclass 0,2	#
+#									#
+# ALGORITHM ***********************************************************	#
+#	In a system where the FP Operr exception is enabled, the goal	#
+# is to get to the handler specified at _real_operr(). But, on the 060,	#
+# for opclass zero and two instruction taking this exception, the	#
+# input operand in the fsave frame may be incorrect for some cases	#
+# and needs to be corrected. This handler calls fix_skewed_ops() to	#
+# do just this and then exits through _real_operr().			#
+#	For opclass 3 instructions, the 060 doesn't store the default	#
+# operr result out to memory or data register file as it should.	#
+# This code must emulate the move out before finally exiting through	#
+# _real_inex(). The move out, if to memory, is performed using		#
+# _mem_write() "callout" routines that may return a failing result.	#
+# In this special case, the handler must exit through facc_out()	#
+# which creates an access error stack frame from the current operr	#
+# stack frame.								#
+#									#
+#########################################################################
+
+	global		_fpsp_operr
+_fpsp_operr:
+
+	link.w		%a6,&-LOCAL_SIZE	# init stack frame
+
+	fsave		FP_SRC(%a6)		# grab the "busy" frame
+
+	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1
+	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch the instruction words
+	mov.l		%d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+	btst		&13,%d0			# is instr an fmove out?
+	bne.b		foperr_out		# fmove out
+
+
+# here, we simply see if the operand in the fsave frame needs to be "unskewed".
+# this would be the case for opclass two operations with a source infinity or
+# denorm operand in the sgl or dbl format. NANs also become skewed, but can't
+# cause an operr so we don't need to check for them here.
+	lea		FP_SRC(%a6),%a0		# pass: ptr to src op
+	bsr.l		fix_skewed_ops		# fix src op
+
+foperr_exit:
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)
+
+	unlk		%a6
+	bra.l		_real_operr
+
+########################################################################
+
+#
+# the hardware does not save the default result to memory on enabled
+# operand error exceptions. we do this here before passing control to
+# the user operand error handler.
+#
+# byte, word, and long destination format operations can pass
+# through here. we simply need to test the sign of the src
+# operand and save the appropriate minimum or maximum integer value
+# to the effective address as pointed to by the stacked effective address.
+#
+# although packed opclass three operations can take operand error
+# exceptions, they won't pass through here since they are caught
+# first by the unsupported data format exception handler. that handler
+# sends them directly to _real_operr() if necessary.
+#
+foperr_out:
+
+	mov.w		FP_SRC_EX(%a6),%d1	# fetch exponent
+	andi.w		&0x7fff,%d1
+	cmpi.w		%d1,&0x7fff
+	bne.b		foperr_out_not_qnan
+# the operand is either an infinity or a QNAN.
+	tst.l		FP_SRC_LO(%a6)
+	bne.b		foperr_out_qnan
+	mov.l		FP_SRC_HI(%a6),%d1
+	andi.l		&0x7fffffff,%d1
+	beq.b		foperr_out_not_qnan
+foperr_out_qnan:
+	mov.l		FP_SRC_HI(%a6),L_SCR1(%a6)
+	bra.b		foperr_out_jmp
+
+foperr_out_not_qnan:
+	mov.l		&0x7fffffff,%d1
+	tst.b		FP_SRC_EX(%a6)
+	bpl.b		foperr_out_not_qnan2
+	addq.l		&0x1,%d1
+foperr_out_not_qnan2:
+	mov.l		%d1,L_SCR1(%a6)
+
+foperr_out_jmp:
+	bfextu		%d0{&19:&3},%d0		# extract dst format field
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract <ea> mode,reg
+	mov.w		(tbl_operr.b,%pc,%d0.w*2),%a0
+	jmp		(tbl_operr.b,%pc,%a0)
+
+tbl_operr:
+	short		foperr_out_l - tbl_operr # long word integer
+	short		tbl_operr    - tbl_operr # sgl prec shouldn't happen
+	short		tbl_operr    - tbl_operr # ext prec shouldn't happen
+	short		foperr_exit  - tbl_operr # packed won't enter here
+	short		foperr_out_w - tbl_operr # word integer
+	short		tbl_operr    - tbl_operr # dbl prec shouldn't happen
+	short		foperr_out_b - tbl_operr # byte integer
+	short		tbl_operr    - tbl_operr # packed won't enter here
+
+foperr_out_b:
+	mov.b		L_SCR1(%a6),%d0		# load positive default result
+	cmpi.b		%d1,&0x7		# is <ea> mode a data reg?
+	ble.b		foperr_out_b_save_dn	# yes
+	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result
+	bsr.l		_dmem_write_byte	# write the default result
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_b		# yes
+
+	bra.w		foperr_exit
+foperr_out_b_save_dn:
+	andi.w		&0x0007,%d1
+	bsr.l		store_dreg_b		# store result to regfile
+	bra.w		foperr_exit
+
+foperr_out_w:
+	mov.w		L_SCR1(%a6),%d0		# load positive default result
+	cmpi.b		%d1,&0x7		# is <ea> mode a data reg?
+	ble.b		foperr_out_w_save_dn	# yes
+	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result
+	bsr.l		_dmem_write_word	# write the default result
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_w		# yes
+
+	bra.w		foperr_exit
+foperr_out_w_save_dn:
+	andi.w		&0x0007,%d1
+	bsr.l		store_dreg_w		# store result to regfile
+	bra.w		foperr_exit
+
+foperr_out_l:
+	mov.l		L_SCR1(%a6),%d0		# load positive default result
+	cmpi.b		%d1,&0x7		# is <ea> mode a data reg?
+	ble.b		foperr_out_l_save_dn	# yes
+	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result
+	bsr.l		_dmem_write_long	# write the default result
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_l		# yes
+
+	bra.w		foperr_exit
+foperr_out_l_save_dn:
+	andi.w		&0x0007,%d1
+	bsr.l		store_dreg_l		# store result to regfile
+	bra.w		foperr_exit
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_fpsp_snan(): 060FPSP entry point for FP SNAN exception.	#
+#									#
+#	This handler should be the first code executed upon taking the	#
+#	FP Signalling NAN exception in an operating system.		#
+#									#
+# XREF ****************************************************************	#
+#	_imem_read_long() - read instruction longword			#
+#	fix_skewed_ops() - adjust src operand in fsave frame		#
+#	_real_snan() - "callout" to operating system SNAN handler	#
+#	_dmem_write_{byte,word,long}() - store data to mem (opclass 3)	#
+#	store_dreg_{b,w,l}() - store data to data regfile (opclass 3)	#
+#	facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3)	#
+#	_calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea>	#
+#									#
+# INPUT ***************************************************************	#
+#	- The system stack contains the FP SNAN exception frame		#
+#	- The fsave frame contains the source operand			#
+#									#
+# OUTPUT **************************************************************	#
+#	No access error:						#
+#	- The system stack is unchanged					#
+#	- The fsave frame contains the adjusted src op for opclass 0,2	#
+#									#
+# ALGORITHM ***********************************************************	#
+#	In a system where the FP SNAN exception is enabled, the goal	#
+# is to get to the handler specified at _real_snan(). But, on the 060,	#
+# for opclass zero and two instructions taking this exception, the	#
+# input operand in the fsave frame may be incorrect for some cases	#
+# and needs to be corrected. This handler calls fix_skewed_ops() to	#
+# do just this and then exits through _real_snan().			#
+#	For opclass 3 instructions, the 060 doesn't store the default	#
+# SNAN result out to memory or data register file as it should.		#
+# This code must emulate the move out before finally exiting through	#
+# _real_snan(). The move out, if to memory, is performed using		#
+# _mem_write() "callout" routines that may return a failing result.	#
+# In this special case, the handler must exit through facc_out()	#
+# which creates an access error stack frame from the current SNAN	#
+# stack frame.								#
+#	For the case of an extended precision opclass 3 instruction,	#
+# if the effective addressing mode was -() or ()+, then the address	#
+# register must get updated by calling _calc_ea_fout(). If the <ea>	#
+# was -(a7) from supervisor mode, then the exception frame currently	#
+# on the system stack must be carefully moved "down" to make room	#
+# for the operand being moved.						#
+#									#
+#########################################################################
+
+	global		_fpsp_snan
+_fpsp_snan:
+
+	link.w		%a6,&-LOCAL_SIZE	# init stack frame
+
+	fsave		FP_SRC(%a6)		# grab the "busy" frame
+
+	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1
+	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch the instruction words
+	mov.l		%d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+	btst		&13,%d0			# is instr an fmove out?
+	bne.w		fsnan_out		# fmove out
+
+
+# here, we simply see if the operand in the fsave frame needs to be "unskewed".
+# this would be the case for opclass two operations with a source infinity or
+# denorm operand in the sgl or dbl format. NANs also become skewed and must be
+# fixed here.
+	lea		FP_SRC(%a6),%a0		# pass: ptr to src op
+	bsr.l		fix_skewed_ops		# fix src op
+
+fsnan_exit:
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)
+
+	unlk		%a6
+	bra.l		_real_snan
+
+########################################################################
+
+#
+# the hardware does not save the default result to memory on enabled
+# snan exceptions. we do this here before passing control to
+# the user snan handler.
+#
+# byte, word, long, and packed destination format operations can pass
+# through here. since packed format operations already were handled by
+# fpsp_unsupp(), then we need to do nothing else for them here.
+# for byte, word, and long, we simply need to test the sign of the src
+# operand and save the appropriate minimum or maximum integer value
+# to the effective address as pointed to by the stacked effective address.
+#
+fsnan_out:
+
+	bfextu		%d0{&19:&3},%d0		# extract dst format field
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract <ea> mode,reg
+	mov.w		(tbl_snan.b,%pc,%d0.w*2),%a0
+	jmp		(tbl_snan.b,%pc,%a0)
+
+tbl_snan:
+	short		fsnan_out_l - tbl_snan # long word integer
+	short		fsnan_out_s - tbl_snan # sgl prec shouldn't happen
+	short		fsnan_out_x - tbl_snan # ext prec shouldn't happen
+	short		tbl_snan    - tbl_snan # packed needs no help
+	short		fsnan_out_w - tbl_snan # word integer
+	short		fsnan_out_d - tbl_snan # dbl prec shouldn't happen
+	short		fsnan_out_b - tbl_snan # byte integer
+	short		tbl_snan    - tbl_snan # packed needs no help
+
+fsnan_out_b:
+	mov.b		FP_SRC_HI(%a6),%d0	# load upper byte of SNAN
+	bset		&6,%d0			# set SNAN bit
+	cmpi.b		%d1,&0x7		# is <ea> mode a data reg?
+	ble.b		fsnan_out_b_dn		# yes
+	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result
+	bsr.l		_dmem_write_byte	# write the default result
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_b		# yes
+
+	bra.w		fsnan_exit
+fsnan_out_b_dn:
+	andi.w		&0x0007,%d1
+	bsr.l		store_dreg_b		# store result to regfile
+	bra.w		fsnan_exit
+
+fsnan_out_w:
+	mov.w		FP_SRC_HI(%a6),%d0	# load upper word of SNAN
+	bset		&14,%d0			# set SNAN bit
+	cmpi.b		%d1,&0x7		# is <ea> mode a data reg?
+	ble.b		fsnan_out_w_dn		# yes
+	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result
+	bsr.l		_dmem_write_word	# write the default result
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_w		# yes
+
+	bra.w		fsnan_exit
+fsnan_out_w_dn:
+	andi.w		&0x0007,%d1
+	bsr.l		store_dreg_w		# store result to regfile
+	bra.w		fsnan_exit
+
+fsnan_out_l:
+	mov.l		FP_SRC_HI(%a6),%d0	# load upper longword of SNAN
+	bset		&30,%d0			# set SNAN bit
+	cmpi.b		%d1,&0x7		# is <ea> mode a data reg?
+	ble.b		fsnan_out_l_dn		# yes
+	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result
+	bsr.l		_dmem_write_long	# write the default result
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_l		# yes
+
+	bra.w		fsnan_exit
+fsnan_out_l_dn:
+	andi.w		&0x0007,%d1
+	bsr.l		store_dreg_l		# store result to regfile
+	bra.w		fsnan_exit
+
+fsnan_out_s:
+	cmpi.b		%d1,&0x7		# is <ea> mode a data reg?
+	ble.b		fsnan_out_d_dn		# yes
+	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign
+	andi.l		&0x80000000,%d0		# keep sign
+	ori.l		&0x7fc00000,%d0		# insert new exponent,SNAN bit
+	mov.l		FP_SRC_HI(%a6),%d1	# load mantissa
+	lsr.l		&0x8,%d1		# shift mantissa for sgl
+	or.l		%d1,%d0			# create sgl SNAN
+	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result
+	bsr.l		_dmem_write_long	# write the default result
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_l		# yes
+
+	bra.w		fsnan_exit
+fsnan_out_d_dn:
+	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign
+	andi.l		&0x80000000,%d0		# keep sign
+	ori.l		&0x7fc00000,%d0		# insert new exponent,SNAN bit
+	mov.l		%d1,-(%sp)
+	mov.l		FP_SRC_HI(%a6),%d1	# load mantissa
+	lsr.l		&0x8,%d1		# shift mantissa for sgl
+	or.l		%d1,%d0			# create sgl SNAN
+	mov.l		(%sp)+,%d1
+	andi.w		&0x0007,%d1
+	bsr.l		store_dreg_l		# store result to regfile
+	bra.w		fsnan_exit
+
+fsnan_out_d:
+	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign
+	andi.l		&0x80000000,%d0		# keep sign
+	ori.l		&0x7ff80000,%d0		# insert new exponent,SNAN bit
+	mov.l		FP_SRC_HI(%a6),%d1	# load hi mantissa
+	mov.l		%d0,FP_SCR0_EX(%a6)	# store to temp space
+	mov.l		&11,%d0			# load shift amt
+	lsr.l		%d0,%d1
+	or.l		%d1,FP_SCR0_EX(%a6)	# create dbl hi
+	mov.l		FP_SRC_HI(%a6),%d1	# load hi mantissa
+	andi.l		&0x000007ff,%d1
+	ror.l		%d0,%d1
+	mov.l		%d1,FP_SCR0_HI(%a6)	# store to temp space
+	mov.l		FP_SRC_LO(%a6),%d1	# load lo mantissa
+	lsr.l		%d0,%d1
+	or.l		%d1,FP_SCR0_HI(%a6)	# create dbl lo
+	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand
+	mov.l		EXC_EA(%a6),%a1		# pass: dst addr
+	movq.l		&0x8,%d0		# pass: size of 8 bytes
+	bsr.l		_dmem_write		# write the default result
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_d		# yes
+
+	bra.w		fsnan_exit
+
+# for extended precision, if the addressing mode is pre-decrement or
+# post-increment, then the address register did not get updated.
+# in addition, for pre-decrement, the stacked <ea> is incorrect.
+fsnan_out_x:
+	clr.b		SPCOND_FLG(%a6)		# clear special case flag
+
+	mov.w		FP_SRC_EX(%a6),FP_SCR0_EX(%a6)
+	clr.w		2+FP_SCR0(%a6)
+	mov.l		FP_SRC_HI(%a6),%d0
+	bset		&30,%d0
+	mov.l		%d0,FP_SCR0_HI(%a6)
+	mov.l		FP_SRC_LO(%a6),FP_SCR0_LO(%a6)
+
+	btst		&0x5,EXC_SR(%a6)	# supervisor mode exception?
+	bne.b		fsnan_out_x_s		# yes
+
+	mov.l		%usp,%a0		# fetch user stack pointer
+	mov.l		%a0,EXC_A7(%a6)		# save on stack for calc_ea()
+	mov.l		(%a6),EXC_A6(%a6)
+
+	bsr.l		_calc_ea_fout		# find the correct ea,update An
+	mov.l		%a0,%a1
+	mov.l		%a0,EXC_EA(%a6)		# stack correct <ea>
+
+	mov.l		EXC_A7(%a6),%a0
+	mov.l		%a0,%usp		# restore user stack pointer
+	mov.l		EXC_A6(%a6),(%a6)
+
+fsnan_out_x_save:
+	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand
+	movq.l		&0xc,%d0		# pass: size of extended
+	bsr.l		_dmem_write		# write the default result
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_x		# yes
+
+	bra.w		fsnan_exit
+
+fsnan_out_x_s:
+	mov.l		(%a6),EXC_A6(%a6)
+
+	bsr.l		_calc_ea_fout		# find the correct ea,update An
+	mov.l		%a0,%a1
+	mov.l		%a0,EXC_EA(%a6)		# stack correct <ea>
+
+	mov.l		EXC_A6(%a6),(%a6)
+
+	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
+	bne.b		fsnan_out_x_save	# no
+
+# the operation was "fmove.x SNAN,-(a7)" from supervisor mode.
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)
+
+	mov.l		EXC_A6(%a6),%a6		# restore frame pointer
+
+	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+	mov.l		LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp)
+	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
+
+	mov.l		LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp)
+	mov.l		LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp)
+	mov.l		LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp)
+
+	add.l		&LOCAL_SIZE-0x8,%sp
+
+	bra.l		_real_snan
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_fpsp_inex(): 060FPSP entry point for FP Inexact exception.	#
+#									#
+#	This handler should be the first code executed upon taking the	#
+#	FP Inexact exception in an operating system.			#
+#									#
+# XREF ****************************************************************	#
+#	_imem_read_long() - read instruction longword			#
+#	fix_skewed_ops() - adjust src operand in fsave frame		#
+#	set_tag_x() - determine optype of src/dst operands		#
+#	store_fpreg() - store opclass 0 or 2 result to FP regfile	#
+#	unnorm_fix() - change UNNORM operands to NORM or ZERO		#
+#	load_fpn2() - load dst operand from FP regfile			#
+#	smovcr() - emulate an "fmovcr" instruction			#
+#	fout() - emulate an opclass 3 instruction			#
+#	tbl_unsupp - add of table of emulation routines for opclass 0,2	#
+#	_real_inex() - "callout" to operating system inexact handler	#
+#									#
+# INPUT ***************************************************************	#
+#	- The system stack contains the FP Inexact exception frame	#
+#	- The fsave frame contains the source operand			#
+#									#
+# OUTPUT **************************************************************	#
+#	- The system stack is unchanged					#
+#	- The fsave frame contains the adjusted src op for opclass 0,2	#
+#									#
+# ALGORITHM ***********************************************************	#
+#	In a system where the FP Inexact exception is enabled, the goal	#
+# is to get to the handler specified at _real_inex(). But, on the 060,	#
+# for opclass zero and two instruction taking this exception, the	#
+# hardware doesn't store the correct result to the destination FP	#
+# register as did the '040 and '881/2. This handler must emulate the	#
+# instruction in order to get this value and then store it to the	#
+# correct register before calling _real_inex().				#
+#	For opclass 3 instructions, the 060 doesn't store the default	#
+# inexact result out to memory or data register file as it should.	#
+# This code must emulate the move out by calling fout() before finally	#
+# exiting through _real_inex().						#
+#									#
+#########################################################################
+
+	global		_fpsp_inex
+_fpsp_inex:
+
+	link.w		%a6,&-LOCAL_SIZE	# init stack frame
+
+	fsave		FP_SRC(%a6)		# grab the "busy" frame
+
+	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1
+	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch the instruction words
+	mov.l		%d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+	btst		&13,%d0			# is instr an fmove out?
+	bne.w		finex_out		# fmove out
+
+
+# the hardware, for "fabs" and "fneg" w/ a long source format, puts the
+# longword integer directly into the upper longword of the mantissa along
+# w/ an exponent value of 0x401e. we convert this to extended precision here.
+	bfextu		%d0{&19:&3},%d0		# fetch instr size
+	bne.b		finex_cont		# instr size is not long
+	cmpi.w		FP_SRC_EX(%a6),&0x401e	# is exponent 0x401e?
+	bne.b		finex_cont		# no
+	fmov.l		&0x0,%fpcr
+	fmov.l		FP_SRC_HI(%a6),%fp0	# load integer src
+	fmov.x		%fp0,FP_SRC(%a6)	# store integer as extended precision
+	mov.w		&0xe001,0x2+FP_SRC(%a6)
+
+finex_cont:
+	lea		FP_SRC(%a6),%a0		# pass: ptr to src op
+	bsr.l		fix_skewed_ops		# fix src op
+
+# Here, we zero the ccode and exception byte field since we're going to
+# emulate the whole instruction. Notice, though, that we don't kill the
+# INEX1 bit. This is because a packed op has long since been converted
+# to extended before arriving here. Therefore, we need to retain the
+# INEX1 bit from when the operand was first converted.
+	andi.l		&0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
+
+	fmov.l		&0x0,%fpcr		# zero current control regs
+	fmov.l		&0x0,%fpsr
+
+	bfextu		EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg
+	cmpi.b		%d1,&0x17		# is op an fmovecr?
+	beq.w		finex_fmovcr		# yes
+
+	lea		FP_SRC(%a6),%a0		# pass: ptr to src op
+	bsr.l		set_tag_x		# tag the operand type
+	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM
+
+# bits four and five of the fp extension word separate the monadic and dyadic
+# operations that can pass through fpsp_inex(). remember that fcmp and ftst
+# will never take this exception, but fsincos will.
+	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic?
+	beq.b		finex_extract		# monadic
+
+	btst		&0x4,1+EXC_CMDREG(%a6)	# is operation an fsincos?
+	bne.b		finex_extract		# yes
+
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+	bsr.l		load_fpn2		# load dst into FP_DST
+
+	lea		FP_DST(%a6),%a0		# pass: ptr to dst op
+	bsr.l		set_tag_x		# tag the operand type
+	cmpi.b		%d0,&UNNORM		# is operand an UNNORM?
+	bne.b		finex_op2_done		# no
+	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO
+finex_op2_done:
+	mov.b		%d0,DTAG(%a6)		# save dst optype tag
+
+finex_extract:
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode
+
+	mov.b		1+EXC_CMDREG(%a6),%d1
+	andi.w		&0x007f,%d1		# extract extension
+
+	lea		FP_SRC(%a6),%a0
+	lea		FP_DST(%a6),%a1
+
+	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
+	jsr		(tbl_unsupp.l,%pc,%d1.l*1)
+
+# the operation has been emulated. the result is in fp0.
+finex_save:
+	bfextu		EXC_CMDREG(%a6){&6:&3},%d0
+	bsr.l		store_fpreg
+
+finex_exit:
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)
+
+	unlk		%a6
+	bra.l		_real_inex
+
+finex_fmovcr:
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec,mode
+	mov.b		1+EXC_CMDREG(%a6),%d1
+	andi.l		&0x0000007f,%d1		# pass rom offset
+	bsr.l		smovcr
+	bra.b		finex_save
+
+########################################################################
+
+#
+# the hardware does not save the default result to memory on enabled
+# inexact exceptions. we do this here before passing control to
+# the user inexact handler.
+#
+# byte, word, and long destination format operations can pass
+# through here. so can double and single precision.
+# although packed opclass three operations can take inexact
+# exceptions, they won't pass through here since they are caught
+# first by the unsupported data format exception handler. that handler
+# sends them directly to _real_inex() if necessary.
+#
+finex_out:
+
+	mov.b		&NORM,STAG(%a6)		# src is a NORM
+
+	clr.l		%d0
+	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec,mode
+
+	andi.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field
+
+	lea		FP_SRC(%a6),%a0		# pass ptr to src operand
+
+	bsr.l		fout			# store the default result
+
+	bra.b		finex_exit
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_fpsp_dz(): 060FPSP entry point for FP DZ exception.		#
+#									#
+#	This handler should be the first code executed upon taking	#
+#	the FP DZ exception in an operating system.			#
+#									#
+# XREF ****************************************************************	#
+#	_imem_read_long() - read instruction longword from memory	#
+#	fix_skewed_ops() - adjust fsave operand				#
+#	_real_dz() - "callout" exit point from FP DZ handler		#
+#									#
+# INPUT ***************************************************************	#
+#	- The system stack contains the FP DZ exception stack.		#
+#	- The fsave frame contains the source operand.			#
+#									#
+# OUTPUT **************************************************************	#
+#	- The system stack contains the FP DZ exception stack.		#
+#	- The fsave frame contains the adjusted source operand.		#
+#									#
+# ALGORITHM ***********************************************************	#
+#	In a system where the DZ exception is enabled, the goal is to	#
+# get to the handler specified at _real_dz(). But, on the 060, when the	#
+# exception is taken, the input operand in the fsave state frame may	#
+# be incorrect for some cases and need to be adjusted. So, this package	#
+# adjusts the operand using fix_skewed_ops() and then branches to	#
+# _real_dz().								#
+#									#
+#########################################################################
+
+	global		_fpsp_dz
+_fpsp_dz:
+
+	link.w		%a6,&-LOCAL_SIZE	# init stack frame
+
+	fsave		FP_SRC(%a6)		# grab the "busy" frame
+
+	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1
+	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch the instruction words
+	mov.l		%d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+
+# here, we simply see if the operand in the fsave frame needs to be "unskewed".
+# this would be the case for opclass two operations with a source zero
+# in the sgl or dbl format.
+	lea		FP_SRC(%a6),%a0		# pass: ptr to src op
+	bsr.l		fix_skewed_ops		# fix src op
+
+fdz_exit:
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	frestore	FP_SRC(%a6)
+
+	unlk		%a6
+	bra.l		_real_dz
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_fpsp_fline(): 060FPSP entry point for "Line F emulator"	#
+#		       exception when the "reduced" version of the	#
+#		       FPSP is implemented that does not emulate	#
+#		       FP unimplemented instructions.			#
+#									#
+#	This handler should be the first code executed upon taking a	#
+#	"Line F Emulator" exception in an operating system integrating	#
+#	the reduced version of 060FPSP.					#
+#									#
+# XREF ****************************************************************	#
+#	_real_fpu_disabled() - Handle "FPU disabled" exceptions		#
+#	_real_fline() - Handle all other cases (treated equally)	#
+#									#
+# INPUT ***************************************************************	#
+#	- The system stack contains a "Line F Emulator" exception	#
+#	  stack frame.							#
+#									#
+# OUTPUT **************************************************************	#
+#	- The system stack is unchanged.				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	When a "Line F Emulator" exception occurs in a system where	#
+# "FPU Unimplemented" instructions will not be emulated, the exception	#
+# can occur because then FPU is disabled or the instruction is to be	#
+# classifed as "Line F". This module determines which case exists and	#
+# calls the appropriate "callout".					#
+#									#
+#########################################################################
+
+	global		_fpsp_fline
+_fpsp_fline:
+
+# check to see if the FPU is disabled. if so, jump to the OS entry
+# point for that condition.
+	cmpi.w		0x6(%sp),&0x402c
+	beq.l		_real_fpu_disabled
+
+	bra.l		_real_fline
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_dcalc_ea(): calc correct <ea> from <ea> stacked on exception	#
+#									#
+# XREF ****************************************************************	#
+#	inc_areg() - increment an address register			#
+#	dec_areg() - decrement an address register			#
+#									#
+# INPUT ***************************************************************	#
+#	d0 = number of bytes to adjust <ea> by				#
+#									#
+# OUTPUT **************************************************************	#
+#	None								#
+#									#
+# ALGORITHM ***********************************************************	#
+# "Dummy" CALCulate Effective Address:					#
+#	The stacked <ea> for FP unimplemented instructions and opclass	#
+#	two packed instructions is correct with the exception of...	#
+#									#
+#	1) -(An)   : The register is not updated regardless of size.	#
+#		     Also, for extended precision and packed, the	#
+#		     stacked <ea> value is 8 bytes too big		#
+#	2) (An)+   : The register is not updated.			#
+#	3) #<data> : The upper longword of the immediate operand is	#
+#		     stacked b,w,l and s sizes are completely stacked.	#
+#		     d,x, and p are not.				#
+#									#
+#########################################################################
+
+	global		_dcalc_ea
+_dcalc_ea:
+	mov.l		%d0, %a0		# move # bytes to %a0
+
+	mov.b		1+EXC_OPWORD(%a6), %d0	# fetch opcode word
+	mov.l		%d0, %d1		# make a copy
+
+	andi.w		&0x38, %d0		# extract mode field
+	andi.l		&0x7, %d1		# extract reg  field
+
+	cmpi.b		%d0,&0x18		# is mode (An)+ ?
+	beq.b		dcea_pi			# yes
+
+	cmpi.b		%d0,&0x20		# is mode -(An) ?
+	beq.b		dcea_pd			# yes
+
+	or.w		%d1,%d0			# concat mode,reg
+	cmpi.b		%d0,&0x3c		# is mode #<data>?
+
+	beq.b		dcea_imm		# yes
+
+	mov.l		EXC_EA(%a6),%a0		# return <ea>
+	rts
+
+# need to set immediate data flag here since we'll need to do
+# an imem_read to fetch this later.
+dcea_imm:
+	mov.b		&immed_flg,SPCOND_FLG(%a6)
+	lea		([USER_FPIAR,%a6],0x4),%a0 # no; return <ea>
+	rts
+
+# here, the <ea> is stacked correctly. however, we must update the
+# address register...
+dcea_pi:
+	mov.l		%a0,%d0			# pass amt to inc by
+	bsr.l		inc_areg		# inc addr register
+
+	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct
+	rts
+
+# the <ea> is stacked correctly for all but extended and packed which
+# the <ea>s are 8 bytes too large.
+# it would make no sense to have a pre-decrement to a7 in supervisor
+# mode so we don't even worry about this tricky case here : )
+dcea_pd:
+	mov.l		%a0,%d0			# pass amt to dec by
+	bsr.l		dec_areg		# dec addr register
+
+	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct
+
+	cmpi.b		%d0,&0xc		# is opsize ext or packed?
+	beq.b		dcea_pd2		# yes
+	rts
+dcea_pd2:
+	sub.l		&0x8,%a0		# correct <ea>
+	mov.l		%a0,EXC_EA(%a6)		# put correct <ea> on stack
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_calc_ea_fout(): calculate correct stacked <ea> for extended	#
+#			 and packed data opclass 3 operations.		#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	None								#
+#									#
+# OUTPUT **************************************************************	#
+#	a0 = return correct effective address				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	For opclass 3 extended and packed data operations, the <ea>	#
+# stacked for the exception is incorrect for -(an) and (an)+ addressing	#
+# modes. Also, while we're at it, the index register itself must get	#
+# updated.								#
+#	So, for -(an), we must subtract 8 off of the stacked <ea> value	#
+# and return that value as the correct <ea> and store that value in An.	#
+# For (an)+, the stacked <ea> is correct but we must adjust An by +12.	#
+#									#
+#########################################################################
+
+# This calc_ea is currently used to retrieve the correct <ea>
+# for fmove outs of type extended and packed.
+	global		_calc_ea_fout
+_calc_ea_fout:
+	mov.b		1+EXC_OPWORD(%a6),%d0	# fetch opcode word
+	mov.l		%d0,%d1			# make a copy
+
+	andi.w		&0x38,%d0		# extract mode field
+	andi.l		&0x7,%d1		# extract reg  field
+
+	cmpi.b		%d0,&0x18		# is mode (An)+ ?
+	beq.b		ceaf_pi			# yes
+
+	cmpi.b		%d0,&0x20		# is mode -(An) ?
+	beq.w		ceaf_pd			# yes
+
+	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct
+	rts
+
+# (An)+ : extended and packed fmove out
+#	: stacked <ea> is correct
+#	: "An" not updated
+ceaf_pi:
+	mov.w		(tbl_ceaf_pi.b,%pc,%d1.w*2),%d1
+	mov.l		EXC_EA(%a6),%a0
+	jmp		(tbl_ceaf_pi.b,%pc,%d1.w*1)
+
+	swbeg		&0x8
+tbl_ceaf_pi:
+	short		ceaf_pi0 - tbl_ceaf_pi
+	short		ceaf_pi1 - tbl_ceaf_pi
+	short		ceaf_pi2 - tbl_ceaf_pi
+	short		ceaf_pi3 - tbl_ceaf_pi
+	short		ceaf_pi4 - tbl_ceaf_pi
+	short		ceaf_pi5 - tbl_ceaf_pi
+	short		ceaf_pi6 - tbl_ceaf_pi
+	short		ceaf_pi7 - tbl_ceaf_pi
+
+ceaf_pi0:
+	addi.l		&0xc,EXC_DREGS+0x8(%a6)
+	rts
+ceaf_pi1:
+	addi.l		&0xc,EXC_DREGS+0xc(%a6)
+	rts
+ceaf_pi2:
+	add.l		&0xc,%a2
+	rts
+ceaf_pi3:
+	add.l		&0xc,%a3
+	rts
+ceaf_pi4:
+	add.l		&0xc,%a4
+	rts
+ceaf_pi5:
+	add.l		&0xc,%a5
+	rts
+ceaf_pi6:
+	addi.l		&0xc,EXC_A6(%a6)
+	rts
+ceaf_pi7:
+	mov.b		&mia7_flg,SPCOND_FLG(%a6)
+	addi.l		&0xc,EXC_A7(%a6)
+	rts
+
+# -(An) : extended and packed fmove out
+#	: stacked <ea> = actual <ea> + 8
+#	: "An" not updated
+ceaf_pd:
+	mov.w		(tbl_ceaf_pd.b,%pc,%d1.w*2),%d1
+	mov.l		EXC_EA(%a6),%a0
+	sub.l		&0x8,%a0
+	sub.l		&0x8,EXC_EA(%a6)
+	jmp		(tbl_ceaf_pd.b,%pc,%d1.w*1)
+
+	swbeg		&0x8
+tbl_ceaf_pd:
+	short		ceaf_pd0 - tbl_ceaf_pd
+	short		ceaf_pd1 - tbl_ceaf_pd
+	short		ceaf_pd2 - tbl_ceaf_pd
+	short		ceaf_pd3 - tbl_ceaf_pd
+	short		ceaf_pd4 - tbl_ceaf_pd
+	short		ceaf_pd5 - tbl_ceaf_pd
+	short		ceaf_pd6 - tbl_ceaf_pd
+	short		ceaf_pd7 - tbl_ceaf_pd
+
+ceaf_pd0:
+	mov.l		%a0,EXC_DREGS+0x8(%a6)
+	rts
+ceaf_pd1:
+	mov.l		%a0,EXC_DREGS+0xc(%a6)
+	rts
+ceaf_pd2:
+	mov.l		%a0,%a2
+	rts
+ceaf_pd3:
+	mov.l		%a0,%a3
+	rts
+ceaf_pd4:
+	mov.l		%a0,%a4
+	rts
+ceaf_pd5:
+	mov.l		%a0,%a5
+	rts
+ceaf_pd6:
+	mov.l		%a0,EXC_A6(%a6)
+	rts
+ceaf_pd7:
+	mov.l		%a0,EXC_A7(%a6)
+	mov.b		&mda7_flg,SPCOND_FLG(%a6)
+	rts
+
+#
+# This table holds the offsets of the emulation routines for each individual
+# math operation relative to the address of this table. Included are
+# routines like fadd/fmul/fabs. The transcendentals ARE NOT. This is because
+# this table is for the version if the 060FPSP without transcendentals.
+# The location within the table is determined by the extension bits of the
+# operation longword.
+#
+
+	swbeg		&109
+tbl_unsupp:
+	long		fin		- tbl_unsupp	# 00: fmove
+	long		fint		- tbl_unsupp	# 01: fint
+	long		tbl_unsupp	- tbl_unsupp	# 02: fsinh
+	long		fintrz		- tbl_unsupp	# 03: fintrz
+	long		fsqrt		- tbl_unsupp	# 04: fsqrt
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp	# 06: flognp1
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp	# 08: fetoxm1
+	long		tbl_unsupp	- tbl_unsupp	# 09: ftanh
+	long		tbl_unsupp	- tbl_unsupp	# 0a: fatan
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp	# 0c: fasin
+	long		tbl_unsupp	- tbl_unsupp	# 0d: fatanh
+	long		tbl_unsupp	- tbl_unsupp	# 0e: fsin
+	long		tbl_unsupp	- tbl_unsupp	# 0f: ftan
+	long		tbl_unsupp	- tbl_unsupp	# 10: fetox
+	long		tbl_unsupp	- tbl_unsupp	# 11: ftwotox
+	long		tbl_unsupp	- tbl_unsupp	# 12: ftentox
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp	# 14: flogn
+	long		tbl_unsupp	- tbl_unsupp	# 15: flog10
+	long		tbl_unsupp	- tbl_unsupp	# 16: flog2
+	long		tbl_unsupp	- tbl_unsupp
+	long		fabs		- tbl_unsupp	# 18: fabs
+	long		tbl_unsupp	- tbl_unsupp	# 19: fcosh
+	long		fneg		- tbl_unsupp	# 1a: fneg
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp	# 1c: facos
+	long		tbl_unsupp	- tbl_unsupp	# 1d: fcos
+	long		tbl_unsupp	- tbl_unsupp	# 1e: fgetexp
+	long		tbl_unsupp	- tbl_unsupp	# 1f: fgetman
+	long		fdiv		- tbl_unsupp	# 20: fdiv
+	long		tbl_unsupp	- tbl_unsupp	# 21: fmod
+	long		fadd		- tbl_unsupp	# 22: fadd
+	long		fmul		- tbl_unsupp	# 23: fmul
+	long		fsgldiv		- tbl_unsupp	# 24: fsgldiv
+	long		tbl_unsupp	- tbl_unsupp	# 25: frem
+	long		tbl_unsupp	- tbl_unsupp	# 26: fscale
+	long		fsglmul		- tbl_unsupp	# 27: fsglmul
+	long		fsub		- tbl_unsupp	# 28: fsub
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp	# 30: fsincos
+	long		tbl_unsupp	- tbl_unsupp	# 31: fsincos
+	long		tbl_unsupp	- tbl_unsupp	# 32: fsincos
+	long		tbl_unsupp	- tbl_unsupp	# 33: fsincos
+	long		tbl_unsupp	- tbl_unsupp	# 34: fsincos
+	long		tbl_unsupp	- tbl_unsupp	# 35: fsincos
+	long		tbl_unsupp	- tbl_unsupp	# 36: fsincos
+	long		tbl_unsupp	- tbl_unsupp	# 37: fsincos
+	long		fcmp		- tbl_unsupp	# 38: fcmp
+	long		tbl_unsupp	- tbl_unsupp
+	long		ftst		- tbl_unsupp	# 3a: ftst
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		fsin		- tbl_unsupp	# 40: fsmove
+	long		fssqrt		- tbl_unsupp	# 41: fssqrt
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		fdin		- tbl_unsupp	# 44: fdmove
+	long		fdsqrt		- tbl_unsupp	# 45: fdsqrt
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		fsabs		- tbl_unsupp	# 58: fsabs
+	long		tbl_unsupp	- tbl_unsupp
+	long		fsneg		- tbl_unsupp	# 5a: fsneg
+	long		tbl_unsupp	- tbl_unsupp
+	long		fdabs		- tbl_unsupp	# 5c: fdabs
+	long		tbl_unsupp	- tbl_unsupp
+	long		fdneg		- tbl_unsupp	# 5e: fdneg
+	long		tbl_unsupp	- tbl_unsupp
+	long		fsdiv		- tbl_unsupp	# 60: fsdiv
+	long		tbl_unsupp	- tbl_unsupp
+	long		fsadd		- tbl_unsupp	# 62: fsadd
+	long		fsmul		- tbl_unsupp	# 63: fsmul
+	long		fddiv		- tbl_unsupp	# 64: fddiv
+	long		tbl_unsupp	- tbl_unsupp
+	long		fdadd		- tbl_unsupp	# 66: fdadd
+	long		fdmul		- tbl_unsupp	# 67: fdmul
+	long		fssub		- tbl_unsupp	# 68: fssub
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		tbl_unsupp	- tbl_unsupp
+	long		fdsub		- tbl_unsupp	# 6c: fdsub
+
+#################################################
+# Add this here so non-fp modules can compile.
+# (smovcr is called from fpsp_inex.)
+	global		smovcr
+smovcr:
+	bra.b		smovcr
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fmovm_dynamic(): emulate "fmovm" dynamic instruction		#
+#									#
+# XREF ****************************************************************	#
+#	fetch_dreg() - fetch data register				#
+#	{i,d,}mem_read() - fetch data from memory			#
+#	_mem_write() - write data to memory				#
+#	iea_iacc() - instruction memory access error occurred		#
+#	iea_dacc() - data memory access error occurred			#
+#	restore() - restore An index regs if access error occurred	#
+#									#
+# INPUT ***************************************************************	#
+#	None								#
+#									#
+# OUTPUT **************************************************************	#
+#	If instr is "fmovm Dn,-(A7)" from supervisor mode,		#
+#		d0 = size of dump					#
+#		d1 = Dn							#
+#	Else if instruction access error,				#
+#		d0 = FSLW						#
+#	Else if data access error,					#
+#		d0 = FSLW						#
+#		a0 = address of fault					#
+#	Else								#
+#		none.							#
+#									#
+# ALGORITHM ***********************************************************	#
+#	The effective address must be calculated since this is entered	#
+# from an "Unimplemented Effective Address" exception handler. So, we	#
+# have our own fcalc_ea() routine here. If an access error is flagged	#
+# by a _{i,d,}mem_read() call, we must exit through the special		#
+# handler.								#
+#	The data register is determined and its value loaded to get the	#
+# string of FP registers affected. This value is used as an index into	#
+# a lookup table such that we can determine the number of bytes		#
+# involved.								#
+#	If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used	#
+# to read in all FP values. Again, _mem_read() may fail and require a	#
+# special exit.								#
+#	If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used	#
+# to write all FP values. _mem_write() may also fail.			#
+#	If the instruction is "fmovm.x DN,-(a7)" from supervisor mode,	#
+# then we return the size of the dump and the string to the caller	#
+# so that the move can occur outside of this routine. This special	#
+# case is required so that moves to the system stack are handled	#
+# correctly.								#
+#									#
+# DYNAMIC:								#
+#	fmovm.x	dn, <ea>						#
+#	fmovm.x	<ea>, dn						#
+#									#
+#	      <WORD 1>		      <WORD2>				#
+#	1111 0010 00 |<ea>|	11@& 1000 0$$$ 0000			#
+#									#
+#	& = (0): predecrement addressing mode				#
+#	    (1): postincrement or control addressing mode		#
+#	@ = (0): move listed regs from memory to the FPU		#
+#	    (1): move listed regs from the FPU to memory		#
+#	$$$    : index of data register holding reg select mask		#
+#									#
+# NOTES:								#
+#	If the data register holds a zero, then the			#
+#	instruction is a nop.						#
+#									#
+#########################################################################
+
+	global		fmovm_dynamic
+fmovm_dynamic:
+
+# extract the data register in which the bit string resides...
+	mov.b		1+EXC_EXTWORD(%a6),%d1	# fetch extword
+	andi.w		&0x70,%d1		# extract reg bits
+	lsr.b		&0x4,%d1		# shift into lo bits
+
+# fetch the bit string into d0...
+	bsr.l		fetch_dreg		# fetch reg string
+
+	andi.l		&0x000000ff,%d0		# keep only lo byte
+
+	mov.l		%d0,-(%sp)		# save strg
+	mov.b		(tbl_fmovm_size.w,%pc,%d0),%d0
+	mov.l		%d0,-(%sp)		# save size
+	bsr.l		fmovm_calc_ea		# calculate <ea>
+	mov.l		(%sp)+,%d0		# restore size
+	mov.l		(%sp)+,%d1		# restore strg
+
+# if the bit string is a zero, then the operation is a no-op
+# but, make sure that we've calculated ea and advanced the opword pointer
+	beq.w		fmovm_data_done
+
+# separate move ins from move outs...
+	btst		&0x5,EXC_EXTWORD(%a6)	# is it a move in or out?
+	beq.w		fmovm_data_in		# it's a move out
+
+#############
+# MOVE OUT: #
+#############
+fmovm_data_out:
+	btst		&0x4,EXC_EXTWORD(%a6)	# control or predecrement?
+	bne.w		fmovm_out_ctrl		# control
+
+############################
+fmovm_out_predec:
+# for predecrement mode, the bit string is the opposite of both control
+# operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0)
+# here, we convert it to be just like the others...
+	mov.b		(tbl_fmovm_convert.w,%pc,%d1.w*1),%d1
+
+	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode?
+	beq.b		fmovm_out_ctrl		# user
+
+fmovm_out_predec_s:
+	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
+	bne.b		fmovm_out_ctrl
+
+# the operation was unfortunately an: fmovm.x dn,-(sp)
+# called from supervisor mode.
+# we're also passing "size" and "strg" back to the calling routine
+	rts
+
+############################
+fmovm_out_ctrl:
+	mov.l		%a0,%a1			# move <ea> to a1
+
+	sub.l		%d0,%sp			# subtract size of dump
+	lea		(%sp),%a0
+
+	tst.b		%d1			# should FP0 be moved?
+	bpl.b		fmovm_out_ctrl_fp1	# no
+
+	mov.l		0x0+EXC_FP0(%a6),(%a0)+	# yes
+	mov.l		0x4+EXC_FP0(%a6),(%a0)+
+	mov.l		0x8+EXC_FP0(%a6),(%a0)+
+
+fmovm_out_ctrl_fp1:
+	lsl.b		&0x1,%d1		# should FP1 be moved?
+	bpl.b		fmovm_out_ctrl_fp2	# no
+
+	mov.l		0x0+EXC_FP1(%a6),(%a0)+	# yes
+	mov.l		0x4+EXC_FP1(%a6),(%a0)+
+	mov.l		0x8+EXC_FP1(%a6),(%a0)+
+
+fmovm_out_ctrl_fp2:
+	lsl.b		&0x1,%d1		# should FP2 be moved?
+	bpl.b		fmovm_out_ctrl_fp3	# no
+
+	fmovm.x		&0x20,(%a0)		# yes
+	add.l		&0xc,%a0
+
+fmovm_out_ctrl_fp3:
+	lsl.b		&0x1,%d1		# should FP3 be moved?
+	bpl.b		fmovm_out_ctrl_fp4	# no
+
+	fmovm.x		&0x10,(%a0)		# yes
+	add.l		&0xc,%a0
+
+fmovm_out_ctrl_fp4:
+	lsl.b		&0x1,%d1		# should FP4 be moved?
+	bpl.b		fmovm_out_ctrl_fp5	# no
+
+	fmovm.x		&0x08,(%a0)		# yes
+	add.l		&0xc,%a0
+
+fmovm_out_ctrl_fp5:
+	lsl.b		&0x1,%d1		# should FP5 be moved?
+	bpl.b		fmovm_out_ctrl_fp6	# no
+
+	fmovm.x		&0x04,(%a0)		# yes
+	add.l		&0xc,%a0
+
+fmovm_out_ctrl_fp6:
+	lsl.b		&0x1,%d1		# should FP6 be moved?
+	bpl.b		fmovm_out_ctrl_fp7	# no
+
+	fmovm.x		&0x02,(%a0)		# yes
+	add.l		&0xc,%a0
+
+fmovm_out_ctrl_fp7:
+	lsl.b		&0x1,%d1		# should FP7 be moved?
+	bpl.b		fmovm_out_ctrl_done	# no
+
+	fmovm.x		&0x01,(%a0)		# yes
+	add.l		&0xc,%a0
+
+fmovm_out_ctrl_done:
+	mov.l		%a1,L_SCR1(%a6)
+
+	lea		(%sp),%a0		# pass: supervisor src
+	mov.l		%d0,-(%sp)		# save size
+	bsr.l		_dmem_write		# copy data to user mem
+
+	mov.l		(%sp)+,%d0
+	add.l		%d0,%sp			# clear fpreg data from stack
+
+	tst.l		%d1			# did dstore err?
+	bne.w		fmovm_out_err		# yes
+
+	rts
+
+############
+# MOVE IN: #
+############
+fmovm_data_in:
+	mov.l		%a0,L_SCR1(%a6)
+
+	sub.l		%d0,%sp			# make room for fpregs
+	lea		(%sp),%a1
+
+	mov.l		%d1,-(%sp)		# save bit string for later
+	mov.l		%d0,-(%sp)		# save # of bytes
+
+	bsr.l		_dmem_read		# copy data from user mem
+
+	mov.l		(%sp)+,%d0		# retrieve # of bytes
+
+	tst.l		%d1			# did dfetch fail?
+	bne.w		fmovm_in_err		# yes
+
+	mov.l		(%sp)+,%d1		# load bit string
+
+	lea		(%sp),%a0		# addr of stack
+
+	tst.b		%d1			# should FP0 be moved?
+	bpl.b		fmovm_data_in_fp1	# no
+
+	mov.l		(%a0)+,0x0+EXC_FP0(%a6)	# yes
+	mov.l		(%a0)+,0x4+EXC_FP0(%a6)
+	mov.l		(%a0)+,0x8+EXC_FP0(%a6)
+
+fmovm_data_in_fp1:
+	lsl.b		&0x1,%d1		# should FP1 be moved?
+	bpl.b		fmovm_data_in_fp2	# no
+
+	mov.l		(%a0)+,0x0+EXC_FP1(%a6)	# yes
+	mov.l		(%a0)+,0x4+EXC_FP1(%a6)
+	mov.l		(%a0)+,0x8+EXC_FP1(%a6)
+
+fmovm_data_in_fp2:
+	lsl.b		&0x1,%d1		# should FP2 be moved?
+	bpl.b		fmovm_data_in_fp3	# no
+
+	fmovm.x		(%a0)+,&0x20		# yes
+
+fmovm_data_in_fp3:
+	lsl.b		&0x1,%d1		# should FP3 be moved?
+	bpl.b		fmovm_data_in_fp4	# no
+
+	fmovm.x		(%a0)+,&0x10		# yes
+
+fmovm_data_in_fp4:
+	lsl.b		&0x1,%d1		# should FP4 be moved?
+	bpl.b		fmovm_data_in_fp5	# no
+
+	fmovm.x		(%a0)+,&0x08		# yes
+
+fmovm_data_in_fp5:
+	lsl.b		&0x1,%d1		# should FP5 be moved?
+	bpl.b		fmovm_data_in_fp6	# no
+
+	fmovm.x		(%a0)+,&0x04		# yes
+
+fmovm_data_in_fp6:
+	lsl.b		&0x1,%d1		# should FP6 be moved?
+	bpl.b		fmovm_data_in_fp7	# no
+
+	fmovm.x		(%a0)+,&0x02		# yes
+
+fmovm_data_in_fp7:
+	lsl.b		&0x1,%d1		# should FP7 be moved?
+	bpl.b		fmovm_data_in_done	# no
+
+	fmovm.x		(%a0)+,&0x01		# yes
+
+fmovm_data_in_done:
+	add.l		%d0,%sp			# remove fpregs from stack
+	rts
+
+#####################################
+
+fmovm_data_done:
+	rts
+
+##############################################################################
+
+#
+# table indexed by the operation's bit string that gives the number
+# of bytes that will be moved.
+#
+# number of bytes = (# of 1's in bit string) * 12(bytes/fpreg)
+#
+tbl_fmovm_size:
+	byte	0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24
+	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
+	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
+	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
+	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
+	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
+	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
+	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
+	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
+	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
+	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
+	byte	0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60
+
+#
+# table to convert a pre-decrement bit string into a post-increment
+# or control bit string.
+# ex:	0x00	==>	0x00
+#	0x01	==>	0x80
+#	0x02	==>	0x40
+#		.
+#		.
+#	0xfd	==>	0xbf
+#	0xfe	==>	0x7f
+#	0xff	==>	0xff
+#
+tbl_fmovm_convert:
+	byte	0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0
+	byte	0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0
+	byte	0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8
+	byte	0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8
+	byte	0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4
+	byte	0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4
+	byte	0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec
+	byte	0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc
+	byte	0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2
+	byte	0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2
+	byte	0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea
+	byte	0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa
+	byte	0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6
+	byte	0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6
+	byte	0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee
+	byte	0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe
+	byte	0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1
+	byte	0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1
+	byte	0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9
+	byte	0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9
+	byte	0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5
+	byte	0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5
+	byte	0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed
+	byte	0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd
+	byte	0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3
+	byte	0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3
+	byte	0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb
+	byte	0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb
+	byte	0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7
+	byte	0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7
+	byte	0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef
+	byte	0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff
+
+	global		fmovm_calc_ea
+###############################################
+# _fmovm_calc_ea: calculate effective address #
+###############################################
+fmovm_calc_ea:
+	mov.l		%d0,%a0			# move # bytes to a0
+
+# currently, MODE and REG are taken from the EXC_OPWORD. this could be
+# easily changed if they were inputs passed in registers.
+	mov.w		EXC_OPWORD(%a6),%d0	# fetch opcode word
+	mov.w		%d0,%d1			# make a copy
+
+	andi.w		&0x3f,%d0		# extract mode field
+	andi.l		&0x7,%d1		# extract reg  field
+
+# jump to the corresponding function for each {MODE,REG} pair.
+	mov.w		(tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance
+	jmp		(tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode
+
+	swbeg		&64
+tbl_fea_mode:
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+
+	short		faddr_ind_a0	-	tbl_fea_mode
+	short		faddr_ind_a1	-	tbl_fea_mode
+	short		faddr_ind_a2	-	tbl_fea_mode
+	short		faddr_ind_a3	-	tbl_fea_mode
+	short		faddr_ind_a4	-	tbl_fea_mode
+	short		faddr_ind_a5	-	tbl_fea_mode
+	short		faddr_ind_a6	-	tbl_fea_mode
+	short		faddr_ind_a7	-	tbl_fea_mode
+
+	short		faddr_ind_p_a0	-	tbl_fea_mode
+	short		faddr_ind_p_a1	-	tbl_fea_mode
+	short		faddr_ind_p_a2	-	tbl_fea_mode
+	short		faddr_ind_p_a3	-	tbl_fea_mode
+	short		faddr_ind_p_a4	-	tbl_fea_mode
+	short		faddr_ind_p_a5	-	tbl_fea_mode
+	short		faddr_ind_p_a6	-	tbl_fea_mode
+	short		faddr_ind_p_a7	-	tbl_fea_mode
+
+	short		faddr_ind_m_a0	-	tbl_fea_mode
+	short		faddr_ind_m_a1	-	tbl_fea_mode
+	short		faddr_ind_m_a2	-	tbl_fea_mode
+	short		faddr_ind_m_a3	-	tbl_fea_mode
+	short		faddr_ind_m_a4	-	tbl_fea_mode
+	short		faddr_ind_m_a5	-	tbl_fea_mode
+	short		faddr_ind_m_a6	-	tbl_fea_mode
+	short		faddr_ind_m_a7	-	tbl_fea_mode
+
+	short		faddr_ind_disp_a0	-	tbl_fea_mode
+	short		faddr_ind_disp_a1	-	tbl_fea_mode
+	short		faddr_ind_disp_a2	-	tbl_fea_mode
+	short		faddr_ind_disp_a3	-	tbl_fea_mode
+	short		faddr_ind_disp_a4	-	tbl_fea_mode
+	short		faddr_ind_disp_a5	-	tbl_fea_mode
+	short		faddr_ind_disp_a6	-	tbl_fea_mode
+	short		faddr_ind_disp_a7	-	tbl_fea_mode
+
+	short		faddr_ind_ext	-	tbl_fea_mode
+	short		faddr_ind_ext	-	tbl_fea_mode
+	short		faddr_ind_ext	-	tbl_fea_mode
+	short		faddr_ind_ext	-	tbl_fea_mode
+	short		faddr_ind_ext	-	tbl_fea_mode
+	short		faddr_ind_ext	-	tbl_fea_mode
+	short		faddr_ind_ext	-	tbl_fea_mode
+	short		faddr_ind_ext	-	tbl_fea_mode
+
+	short		fabs_short	-	tbl_fea_mode
+	short		fabs_long	-	tbl_fea_mode
+	short		fpc_ind		-	tbl_fea_mode
+	short		fpc_ind_ext	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+	short		tbl_fea_mode	-	tbl_fea_mode
+
+###################################
+# Address register indirect: (An) #
+###################################
+faddr_ind_a0:
+	mov.l		EXC_DREGS+0x8(%a6),%a0	# Get current a0
+	rts
+
+faddr_ind_a1:
+	mov.l		EXC_DREGS+0xc(%a6),%a0	# Get current a1
+	rts
+
+faddr_ind_a2:
+	mov.l		%a2,%a0			# Get current a2
+	rts
+
+faddr_ind_a3:
+	mov.l		%a3,%a0			# Get current a3
+	rts
+
+faddr_ind_a4:
+	mov.l		%a4,%a0			# Get current a4
+	rts
+
+faddr_ind_a5:
+	mov.l		%a5,%a0			# Get current a5
+	rts
+
+faddr_ind_a6:
+	mov.l		(%a6),%a0		# Get current a6
+	rts
+
+faddr_ind_a7:
+	mov.l		EXC_A7(%a6),%a0		# Get current a7
+	rts
+
+#####################################################
+# Address register indirect w/ postincrement: (An)+ #
+#####################################################
+faddr_ind_p_a0:
+	mov.l		EXC_DREGS+0x8(%a6),%d0	# Get current a0
+	mov.l		%d0,%d1
+	add.l		%a0,%d1			# Increment
+	mov.l		%d1,EXC_DREGS+0x8(%a6)	# Save incr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_p_a1:
+	mov.l		EXC_DREGS+0xc(%a6),%d0	# Get current a1
+	mov.l		%d0,%d1
+	add.l		%a0,%d1			# Increment
+	mov.l		%d1,EXC_DREGS+0xc(%a6)	# Save incr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_p_a2:
+	mov.l		%a2,%d0			# Get current a2
+	mov.l		%d0,%d1
+	add.l		%a0,%d1			# Increment
+	mov.l		%d1,%a2			# Save incr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_p_a3:
+	mov.l		%a3,%d0			# Get current a3
+	mov.l		%d0,%d1
+	add.l		%a0,%d1			# Increment
+	mov.l		%d1,%a3			# Save incr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_p_a4:
+	mov.l		%a4,%d0			# Get current a4
+	mov.l		%d0,%d1
+	add.l		%a0,%d1			# Increment
+	mov.l		%d1,%a4			# Save incr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_p_a5:
+	mov.l		%a5,%d0			# Get current a5
+	mov.l		%d0,%d1
+	add.l		%a0,%d1			# Increment
+	mov.l		%d1,%a5			# Save incr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_p_a6:
+	mov.l		(%a6),%d0		# Get current a6
+	mov.l		%d0,%d1
+	add.l		%a0,%d1			# Increment
+	mov.l		%d1,(%a6)		# Save incr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_p_a7:
+	mov.b		&mia7_flg,SPCOND_FLG(%a6) # set "special case" flag
+
+	mov.l		EXC_A7(%a6),%d0		# Get current a7
+	mov.l		%d0,%d1
+	add.l		%a0,%d1			# Increment
+	mov.l		%d1,EXC_A7(%a6)		# Save incr value
+	mov.l		%d0,%a0
+	rts
+
+####################################################
+# Address register indirect w/ predecrement: -(An) #
+####################################################
+faddr_ind_m_a0:
+	mov.l		EXC_DREGS+0x8(%a6),%d0	# Get current a0
+	sub.l		%a0,%d0			# Decrement
+	mov.l		%d0,EXC_DREGS+0x8(%a6)	# Save decr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_m_a1:
+	mov.l		EXC_DREGS+0xc(%a6),%d0	# Get current a1
+	sub.l		%a0,%d0			# Decrement
+	mov.l		%d0,EXC_DREGS+0xc(%a6)	# Save decr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_m_a2:
+	mov.l		%a2,%d0			# Get current a2
+	sub.l		%a0,%d0			# Decrement
+	mov.l		%d0,%a2			# Save decr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_m_a3:
+	mov.l		%a3,%d0			# Get current a3
+	sub.l		%a0,%d0			# Decrement
+	mov.l		%d0,%a3			# Save decr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_m_a4:
+	mov.l		%a4,%d0			# Get current a4
+	sub.l		%a0,%d0			# Decrement
+	mov.l		%d0,%a4			# Save decr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_m_a5:
+	mov.l		%a5,%d0			# Get current a5
+	sub.l		%a0,%d0			# Decrement
+	mov.l		%d0,%a5			# Save decr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_m_a6:
+	mov.l		(%a6),%d0		# Get current a6
+	sub.l		%a0,%d0			# Decrement
+	mov.l		%d0,(%a6)		# Save decr value
+	mov.l		%d0,%a0
+	rts
+
+faddr_ind_m_a7:
+	mov.b		&mda7_flg,SPCOND_FLG(%a6) # set "special case" flag
+
+	mov.l		EXC_A7(%a6),%d0		# Get current a7
+	sub.l		%a0,%d0			# Decrement
+	mov.l		%d0,EXC_A7(%a6)		# Save decr value
+	mov.l		%d0,%a0
+	rts
+
+########################################################
+# Address register indirect w/ displacement: (d16, An) #
+########################################################
+faddr_ind_disp_a0:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.w		%d0,%a0			# sign extend displacement
+
+	add.l		EXC_DREGS+0x8(%a6),%a0	# a0 + d16
+	rts
+
+faddr_ind_disp_a1:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.w		%d0,%a0			# sign extend displacement
+
+	add.l		EXC_DREGS+0xc(%a6),%a0	# a1 + d16
+	rts
+
+faddr_ind_disp_a2:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.w		%d0,%a0			# sign extend displacement
+
+	add.l		%a2,%a0			# a2 + d16
+	rts
+
+faddr_ind_disp_a3:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.w		%d0,%a0			# sign extend displacement
+
+	add.l		%a3,%a0			# a3 + d16
+	rts
+
+faddr_ind_disp_a4:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.w		%d0,%a0			# sign extend displacement
+
+	add.l		%a4,%a0			# a4 + d16
+	rts
+
+faddr_ind_disp_a5:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.w		%d0,%a0			# sign extend displacement
+
+	add.l		%a5,%a0			# a5 + d16
+	rts
+
+faddr_ind_disp_a6:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.w		%d0,%a0			# sign extend displacement
+
+	add.l		(%a6),%a0		# a6 + d16
+	rts
+
+faddr_ind_disp_a7:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.w		%d0,%a0			# sign extend displacement
+
+	add.l		EXC_A7(%a6),%a0		# a7 + d16
+	rts
+
+########################################################################
+# Address register indirect w/ index(8-bit displacement): (d8, An, Xn) #
+#    "       "         "    w/   "  (base displacement): (bd, An, Xn)  #
+# Memory indirect postindexed: ([bd, An], Xn, od)		       #
+# Memory indirect preindexed: ([bd, An, Xn], od)		       #
+########################################################################
+faddr_ind_ext:
+	addq.l		&0x8,%d1
+	bsr.l		fetch_dreg		# fetch base areg
+	mov.l		%d0,-(%sp)
+
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word		# fetch extword in d0
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		(%sp)+,%a0
+
+	btst		&0x8,%d0
+	bne.w		fcalc_mem_ind
+
+	mov.l		%d0,L_SCR1(%a6)		# hold opword
+
+	mov.l		%d0,%d1
+	rol.w		&0x4,%d1
+	andi.w		&0xf,%d1		# extract index regno
+
+# count on fetch_dreg() not to alter a0...
+	bsr.l		fetch_dreg		# fetch index
+
+	mov.l		%d2,-(%sp)		# save d2
+	mov.l		L_SCR1(%a6),%d2		# fetch opword
+
+	btst		&0xb,%d2		# is it word or long?
+	bne.b		faii8_long
+	ext.l		%d0			# sign extend word index
+faii8_long:
+	mov.l		%d2,%d1
+	rol.w		&0x7,%d1
+	andi.l		&0x3,%d1		# extract scale value
+
+	lsl.l		%d1,%d0			# shift index by scale
+
+	extb.l		%d2			# sign extend displacement
+	add.l		%d2,%d0			# index + disp
+	add.l		%d0,%a0			# An + (index + disp)
+
+	mov.l		(%sp)+,%d2		# restore old d2
+	rts
+
+###########################
+# Absolute short: (XXX).W #
+###########################
+fabs_short:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word		# fetch short address
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.w		%d0,%a0			# return <ea> in a0
+	rts
+
+##########################
+# Absolute long: (XXX).L #
+##########################
+fabs_long:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch long address
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		%d0,%a0			# return <ea> in a0
+	rts
+
+#######################################################
+# Program counter indirect w/ displacement: (d16, PC) #
+#######################################################
+fpc_ind:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word		# fetch word displacement
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.w		%d0,%a0			# sign extend displacement
+
+	add.l		EXC_EXTWPTR(%a6),%a0	# pc + d16
+
+# _imem_read_word() increased the extwptr by 2. need to adjust here.
+	subq.l		&0x2,%a0		# adjust <ea>
+	rts
+
+##########################################################
+# PC indirect w/ index(8-bit displacement): (d8, PC, An) #
+# "     "     w/   "  (base displacement): (bd, PC, An)  #
+# PC memory indirect postindexed: ([bd, PC], Xn, od)     #
+# PC memory indirect preindexed: ([bd, PC, Xn], od)      #
+##########################################################
+fpc_ind_ext:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word		# fetch ext word
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		EXC_EXTWPTR(%a6),%a0	# put base in a0
+	subq.l		&0x2,%a0		# adjust base
+
+	btst		&0x8,%d0		# is disp only 8 bits?
+	bne.w		fcalc_mem_ind		# calc memory indirect
+
+	mov.l		%d0,L_SCR1(%a6)		# store opword
+
+	mov.l		%d0,%d1			# make extword copy
+	rol.w		&0x4,%d1		# rotate reg num into place
+	andi.w		&0xf,%d1		# extract register number
+
+# count on fetch_dreg() not to alter a0...
+	bsr.l		fetch_dreg		# fetch index
+
+	mov.l		%d2,-(%sp)		# save d2
+	mov.l		L_SCR1(%a6),%d2		# fetch opword
+
+	btst		&0xb,%d2		# is index word or long?
+	bne.b		fpii8_long		# long
+	ext.l		%d0			# sign extend word index
+fpii8_long:
+	mov.l		%d2,%d1
+	rol.w		&0x7,%d1		# rotate scale value into place
+	andi.l		&0x3,%d1		# extract scale value
+
+	lsl.l		%d1,%d0			# shift index by scale
+
+	extb.l		%d2			# sign extend displacement
+	add.l		%d2,%d0			# disp + index
+	add.l		%d0,%a0			# An + (index + disp)
+
+	mov.l		(%sp)+,%d2		# restore temp register
+	rts
+
+# d2 = index
+# d3 = base
+# d4 = od
+# d5 = extword
+fcalc_mem_ind:
+	btst		&0x6,%d0		# is the index suppressed?
+	beq.b		fcalc_index
+
+	movm.l		&0x3c00,-(%sp)		# save d2-d5
+
+	mov.l		%d0,%d5			# put extword in d5
+	mov.l		%a0,%d3			# put base in d3
+
+	clr.l		%d2			# yes, so index = 0
+	bra.b		fbase_supp_ck
+
+# index:
+fcalc_index:
+	mov.l		%d0,L_SCR1(%a6)		# save d0 (opword)
+	bfextu		%d0{&16:&4},%d1		# fetch dreg index
+	bsr.l		fetch_dreg
+
+	movm.l		&0x3c00,-(%sp)		# save d2-d5
+	mov.l		%d0,%d2			# put index in d2
+	mov.l		L_SCR1(%a6),%d5
+	mov.l		%a0,%d3
+
+	btst		&0xb,%d5		# is index word or long?
+	bne.b		fno_ext
+	ext.l		%d2
+
+fno_ext:
+	bfextu		%d5{&21:&2},%d0
+	lsl.l		%d0,%d2
+
+# base address (passed as parameter in d3):
+# we clear the value here if it should actually be suppressed.
+fbase_supp_ck:
+	btst		&0x7,%d5		# is the bd suppressed?
+	beq.b		fno_base_sup
+	clr.l		%d3
+
+# base displacement:
+fno_base_sup:
+	bfextu		%d5{&26:&2},%d0		# get bd size
+#	beq.l		fmovm_error		# if (size == 0) it's reserved
+
+	cmpi.b		%d0,&0x2
+	blt.b		fno_bd
+	beq.b		fget_word_bd
+
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		fcea_iacc		# yes
+
+	bra.b		fchk_ind
+
+fget_word_bd:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		fcea_iacc		# yes
+
+	ext.l		%d0			# sign extend bd
+
+fchk_ind:
+	add.l		%d0,%d3			# base += bd
+
+# outer displacement:
+fno_bd:
+	bfextu		%d5{&30:&2},%d0		# is od suppressed?
+	beq.w		faii_bd
+
+	cmpi.b		%d0,&0x2
+	blt.b		fnull_od
+	beq.b		fword_od
+
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		fcea_iacc		# yes
+
+	bra.b		fadd_them
+
+fword_od:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_word
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		fcea_iacc		# yes
+
+	ext.l		%d0			# sign extend od
+	bra.b		fadd_them
+
+fnull_od:
+	clr.l		%d0
+
+fadd_them:
+	mov.l		%d0,%d4
+
+	btst		&0x2,%d5		# pre or post indexing?
+	beq.b		fpre_indexed
+
+	mov.l		%d3,%a0
+	bsr.l		_dmem_read_long
+
+	tst.l		%d1			# did dfetch fail?
+	bne.w		fcea_err		# yes
+
+	add.l		%d2,%d0			# <ea> += index
+	add.l		%d4,%d0			# <ea> += od
+	bra.b		fdone_ea
+
+fpre_indexed:
+	add.l		%d2,%d3			# preindexing
+	mov.l		%d3,%a0
+	bsr.l		_dmem_read_long
+
+	tst.l		%d1			# did dfetch fail?
+	bne.w		fcea_err		# yes
+
+	add.l		%d4,%d0			# ea += od
+	bra.b		fdone_ea
+
+faii_bd:
+	add.l		%d2,%d3			# ea = (base + bd) + index
+	mov.l		%d3,%d0
+fdone_ea:
+	mov.l		%d0,%a0
+
+	movm.l		(%sp)+,&0x003c		# restore d2-d5
+	rts
+
+#########################################################
+fcea_err:
+	mov.l		%d3,%a0
+
+	movm.l		(%sp)+,&0x003c		# restore d2-d5
+	mov.w		&0x0101,%d0
+	bra.l		iea_dacc
+
+fcea_iacc:
+	movm.l		(%sp)+,&0x003c		# restore d2-d5
+	bra.l		iea_iacc
+
+fmovm_out_err:
+	bsr.l		restore
+	mov.w		&0x00e1,%d0
+	bra.b		fmovm_err
+
+fmovm_in_err:
+	bsr.l		restore
+	mov.w		&0x0161,%d0
+
+fmovm_err:
+	mov.l		L_SCR1(%a6),%a0
+	bra.l		iea_dacc
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fmovm_ctrl(): emulate fmovm.l of control registers instr	#
+#									#
+# XREF ****************************************************************	#
+#	_imem_read_long() - read longword from memory			#
+#	iea_iacc() - _imem_read_long() failed; error recovery		#
+#									#
+# INPUT ***************************************************************	#
+#	None								#
+#									#
+# OUTPUT **************************************************************	#
+#	If _imem_read_long() doesn't fail:				#
+#		USER_FPCR(a6)  = new FPCR value				#
+#		USER_FPSR(a6)  = new FPSR value				#
+#		USER_FPIAR(a6) = new FPIAR value			#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Decode the instruction type by looking at the extension word	#
+# in order to see how many control registers to fetch from memory.	#
+# Fetch them using _imem_read_long(). If this fetch fails, exit through	#
+# the special access error exit handler iea_iacc().			#
+#									#
+# Instruction word decoding:						#
+#									#
+#	fmovem.l #<data>, {FPIAR&|FPCR&|FPSR}				#
+#									#
+#		WORD1			WORD2				#
+#	1111 0010 00 111100	100$ $$00 0000 0000			#
+#									#
+#	$$$ (100): FPCR							#
+#	    (010): FPSR							#
+#	    (001): FPIAR						#
+#	    (000): FPIAR						#
+#									#
+#########################################################################
+
+	global		fmovm_ctrl
+fmovm_ctrl:
+	mov.b		EXC_EXTWORD(%a6),%d0	# fetch reg select bits
+	cmpi.b		%d0,&0x9c		# fpcr & fpsr & fpiar ?
+	beq.w		fctrl_in_7		# yes
+	cmpi.b		%d0,&0x98		# fpcr & fpsr ?
+	beq.w		fctrl_in_6		# yes
+	cmpi.b		%d0,&0x94		# fpcr & fpiar ?
+	beq.b		fctrl_in_5		# yes
+
+# fmovem.l #<data>, fpsr/fpiar
+fctrl_in_3:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch FPSR from mem
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to stack
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch FPIAR from mem
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to stack
+	rts
+
+# fmovem.l #<data>, fpcr/fpiar
+fctrl_in_5:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch FPCR from mem
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to stack
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch FPIAR from mem
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to stack
+	rts
+
+# fmovem.l #<data>, fpcr/fpsr
+fctrl_in_6:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch FPCR from mem
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to mem
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch FPSR from mem
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to mem
+	rts
+
+# fmovem.l #<data>, fpcr/fpsr/fpiar
+fctrl_in_7:
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch FPCR from mem
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to mem
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch FPSR from mem
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to mem
+	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr
+	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr
+	bsr.l		_imem_read_long		# fetch FPIAR from mem
+
+	tst.l		%d1			# did ifetch fail?
+	bne.l		iea_iacc		# yes
+
+	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to mem
+	rts
+
+##########################################################################
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	addsub_scaler2(): scale inputs to fadd/fsub such that no	#
+#			  OVFL/UNFL exceptions will result		#
+#									#
+# XREF ****************************************************************	#
+#	norm() - normalize mantissa after adjusting exponent		#
+#									#
+# INPUT ***************************************************************	#
+#	FP_SRC(a6) = fp op1(src)					#
+#	FP_DST(a6) = fp op2(dst)					#
+#									#
+# OUTPUT **************************************************************	#
+#	FP_SRC(a6) = fp op1 scaled(src)					#
+#	FP_DST(a6) = fp op2 scaled(dst)					#
+#	d0         = scale amount					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	If the DST exponent is > the SRC exponent, set the DST exponent	#
+# equal to 0x3fff and scale the SRC exponent by the value that the	#
+# DST exponent was scaled by. If the SRC exponent is greater or equal,	#
+# do the opposite. Return this scale factor in d0.			#
+#	If the two exponents differ by > the number of mantissa bits	#
+# plus two, then set the smallest exponent to a very small value as a	#
+# quick shortcut.							#
+#									#
+#########################################################################
+
+	global		addsub_scaler2
+addsub_scaler2:
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6)
+	mov.w		SRC_EX(%a0),%d0
+	mov.w		DST_EX(%a1),%d1
+	mov.w		%d0,FP_SCR0_EX(%a6)
+	mov.w		%d1,FP_SCR1_EX(%a6)
+
+	andi.w		&0x7fff,%d0
+	andi.w		&0x7fff,%d1
+	mov.w		%d0,L_SCR1(%a6)		# store src exponent
+	mov.w		%d1,2+L_SCR1(%a6)	# store dst exponent
+
+	cmp.w		%d0, %d1		# is src exp >= dst exp?
+	bge.l		src_exp_ge2
+
+# dst exp is >  src exp; scale dst to exp = 0x3fff
+dst_exp_gt2:
+	bsr.l		scale_to_zero_dst
+	mov.l		%d0,-(%sp)		# save scale factor
+
+	cmpi.b		STAG(%a6),&DENORM	# is dst denormalized?
+	bne.b		cmpexp12
+
+	lea		FP_SCR0(%a6),%a0
+	bsr.l		norm			# normalize the denorm; result is new exp
+	neg.w		%d0			# new exp = -(shft val)
+	mov.w		%d0,L_SCR1(%a6)		# inset new exp
+
+cmpexp12:
+	mov.w		2+L_SCR1(%a6),%d0
+	subi.w		&mantissalen+2,%d0	# subtract mantissalen+2 from larger exp
+
+	cmp.w		%d0,L_SCR1(%a6)		# is difference >= len(mantissa)+2?
+	bge.b		quick_scale12
+
+	mov.w		L_SCR1(%a6),%d0
+	add.w		0x2(%sp),%d0		# scale src exponent by scale factor
+	mov.w		FP_SCR0_EX(%a6),%d1
+	and.w		&0x8000,%d1
+	or.w		%d1,%d0			# concat {sgn,new exp}
+	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new dst exponent
+
+	mov.l		(%sp)+,%d0		# return SCALE factor
+	rts
+
+quick_scale12:
+	andi.w		&0x8000,FP_SCR0_EX(%a6)	# zero src exponent
+	bset		&0x0,1+FP_SCR0_EX(%a6)	# set exp = 1
+
+	mov.l		(%sp)+,%d0		# return SCALE factor
+	rts
+
+# src exp is >= dst exp; scale src to exp = 0x3fff
+src_exp_ge2:
+	bsr.l		scale_to_zero_src
+	mov.l		%d0,-(%sp)		# save scale factor
+
+	cmpi.b		DTAG(%a6),&DENORM	# is dst denormalized?
+	bne.b		cmpexp22
+	lea		FP_SCR1(%a6),%a0
+	bsr.l		norm			# normalize the denorm; result is new exp
+	neg.w		%d0			# new exp = -(shft val)
+	mov.w		%d0,2+L_SCR1(%a6)	# inset new exp
+
+cmpexp22:
+	mov.w		L_SCR1(%a6),%d0
+	subi.w		&mantissalen+2,%d0	# subtract mantissalen+2 from larger exp
+
+	cmp.w		%d0,2+L_SCR1(%a6)	# is difference >= len(mantissa)+2?
+	bge.b		quick_scale22
+
+	mov.w		2+L_SCR1(%a6),%d0
+	add.w		0x2(%sp),%d0		# scale dst exponent by scale factor
+	mov.w		FP_SCR1_EX(%a6),%d1
+	andi.w		&0x8000,%d1
+	or.w		%d1,%d0			# concat {sgn,new exp}
+	mov.w		%d0,FP_SCR1_EX(%a6)	# insert new dst exponent
+
+	mov.l		(%sp)+,%d0		# return SCALE factor
+	rts
+
+quick_scale22:
+	andi.w		&0x8000,FP_SCR1_EX(%a6)	# zero dst exponent
+	bset		&0x0,1+FP_SCR1_EX(%a6)	# set exp = 1
+
+	mov.l		(%sp)+,%d0		# return SCALE factor
+	rts
+
+##########################################################################
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	scale_to_zero_src(): scale the exponent of extended precision	#
+#			     value at FP_SCR0(a6).			#
+#									#
+# XREF ****************************************************************	#
+#	norm() - normalize the mantissa if the operand was a DENORM	#
+#									#
+# INPUT ***************************************************************	#
+#	FP_SCR0(a6) = extended precision operand to be scaled		#
+#									#
+# OUTPUT **************************************************************	#
+#	FP_SCR0(a6) = scaled extended precision operand			#
+#	d0	    = scale value					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Set the exponent of the input operand to 0x3fff. Save the value	#
+# of the difference between the original and new exponent. Then,	#
+# normalize the operand if it was a DENORM. Add this normalization	#
+# value to the previous value. Return the result.			#
+#									#
+#########################################################################
+
+	global		scale_to_zero_src
+scale_to_zero_src:
+	mov.w		FP_SCR0_EX(%a6),%d1	# extract operand's {sgn,exp}
+	mov.w		%d1,%d0			# make a copy
+
+	andi.l		&0x7fff,%d1		# extract operand's exponent
+
+	andi.w		&0x8000,%d0		# extract operand's sgn
+	or.w		&0x3fff,%d0		# insert new operand's exponent(=0)
+
+	mov.w		%d0,FP_SCR0_EX(%a6)	# insert biased exponent
+
+	cmpi.b		STAG(%a6),&DENORM	# is operand normalized?
+	beq.b		stzs_denorm		# normalize the DENORM
+
+stzs_norm:
+	mov.l		&0x3fff,%d0
+	sub.l		%d1,%d0			# scale = BIAS + (-exp)
+
+	rts
+
+stzs_denorm:
+	lea		FP_SCR0(%a6),%a0	# pass ptr to src op
+	bsr.l		norm			# normalize denorm
+	neg.l		%d0			# new exponent = -(shft val)
+	mov.l		%d0,%d1			# prepare for op_norm call
+	bra.b		stzs_norm		# finish scaling
+
+###
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	scale_sqrt(): scale the input operand exponent so a subsequent	#
+#		      fsqrt operation won't take an exception.		#
+#									#
+# XREF ****************************************************************	#
+#	norm() - normalize the mantissa if the operand was a DENORM	#
+#									#
+# INPUT ***************************************************************	#
+#	FP_SCR0(a6) = extended precision operand to be scaled		#
+#									#
+# OUTPUT **************************************************************	#
+#	FP_SCR0(a6) = scaled extended precision operand			#
+#	d0	    = scale value					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	If the input operand is a DENORM, normalize it.			#
+#	If the exponent of the input operand is even, set the exponent	#
+# to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the	#
+# exponent of the input operand is off, set the exponent to ox3fff and	#
+# return a scale factor of "(exp-0x3fff)/2".				#
+#									#
+#########################################################################
+
+	global		scale_sqrt
+scale_sqrt:
+	cmpi.b		STAG(%a6),&DENORM	# is operand normalized?
+	beq.b		ss_denorm		# normalize the DENORM
+
+	mov.w		FP_SCR0_EX(%a6),%d1	# extract operand's {sgn,exp}
+	andi.l		&0x7fff,%d1		# extract operand's exponent
+
+	andi.w		&0x8000,FP_SCR0_EX(%a6)	# extract operand's sgn
+
+	btst		&0x0,%d1		# is exp even or odd?
+	beq.b		ss_norm_even
+
+	ori.w		&0x3fff,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0)
+
+	mov.l		&0x3fff,%d0
+	sub.l		%d1,%d0			# scale = BIAS + (-exp)
+	asr.l		&0x1,%d0		# divide scale factor by 2
+	rts
+
+ss_norm_even:
+	ori.w		&0x3ffe,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0)
+
+	mov.l		&0x3ffe,%d0
+	sub.l		%d1,%d0			# scale = BIAS + (-exp)
+	asr.l		&0x1,%d0		# divide scale factor by 2
+	rts
+
+ss_denorm:
+	lea		FP_SCR0(%a6),%a0	# pass ptr to src op
+	bsr.l		norm			# normalize denorm
+
+	btst		&0x0,%d0		# is exp even or odd?
+	beq.b		ss_denorm_even
+
+	ori.w		&0x3fff,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0)
+
+	add.l		&0x3fff,%d0
+	asr.l		&0x1,%d0		# divide scale factor by 2
+	rts
+
+ss_denorm_even:
+	ori.w		&0x3ffe,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0)
+
+	add.l		&0x3ffe,%d0
+	asr.l		&0x1,%d0		# divide scale factor by 2
+	rts
+
+###
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	scale_to_zero_dst(): scale the exponent of extended precision	#
+#			     value at FP_SCR1(a6).			#
+#									#
+# XREF ****************************************************************	#
+#	norm() - normalize the mantissa if the operand was a DENORM	#
+#									#
+# INPUT ***************************************************************	#
+#	FP_SCR1(a6) = extended precision operand to be scaled		#
+#									#
+# OUTPUT **************************************************************	#
+#	FP_SCR1(a6) = scaled extended precision operand			#
+#	d0	    = scale value					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Set the exponent of the input operand to 0x3fff. Save the value	#
+# of the difference between the original and new exponent. Then,	#
+# normalize the operand if it was a DENORM. Add this normalization	#
+# value to the previous value. Return the result.			#
+#									#
+#########################################################################
+
+	global		scale_to_zero_dst
+scale_to_zero_dst:
+	mov.w		FP_SCR1_EX(%a6),%d1	# extract operand's {sgn,exp}
+	mov.w		%d1,%d0			# make a copy
+
+	andi.l		&0x7fff,%d1		# extract operand's exponent
+
+	andi.w		&0x8000,%d0		# extract operand's sgn
+	or.w		&0x3fff,%d0		# insert new operand's exponent(=0)
+
+	mov.w		%d0,FP_SCR1_EX(%a6)	# insert biased exponent
+
+	cmpi.b		DTAG(%a6),&DENORM	# is operand normalized?
+	beq.b		stzd_denorm		# normalize the DENORM
+
+stzd_norm:
+	mov.l		&0x3fff,%d0
+	sub.l		%d1,%d0			# scale = BIAS + (-exp)
+	rts
+
+stzd_denorm:
+	lea		FP_SCR1(%a6),%a0	# pass ptr to dst op
+	bsr.l		norm			# normalize denorm
+	neg.l		%d0			# new exponent = -(shft val)
+	mov.l		%d0,%d1			# prepare for op_norm call
+	bra.b		stzd_norm		# finish scaling
+
+##########################################################################
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	res_qnan(): return default result w/ QNAN operand for dyadic	#
+#	res_snan(): return default result w/ SNAN operand for dyadic	#
+#	res_qnan_1op(): return dflt result w/ QNAN operand for monadic	#
+#	res_snan_1op(): return dflt result w/ SNAN operand for monadic	#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	FP_SRC(a6) = pointer to extended precision src operand		#
+#	FP_DST(a6) = pointer to extended precision dst operand		#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = default result						#
+#									#
+# ALGORITHM ***********************************************************	#
+#	If either operand (but not both operands) of an operation is a	#
+# nonsignalling NAN, then that NAN is returned as the result. If both	#
+# operands are nonsignalling NANs, then the destination operand		#
+# nonsignalling NAN is returned as the result.				#
+#	If either operand to an operation is a signalling NAN (SNAN),	#
+# then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap	#
+# enable bit is set in the FPCR, then the trap is taken and the		#
+# destination is not modified. If the SNAN trap enable bit is not set,	#
+# then the SNAN is converted to a nonsignalling NAN (by setting the	#
+# SNAN bit in the operand to one), and the operation continues as	#
+# described in the preceding paragraph, for nonsignalling NANs.		#
+#	Make sure the appropriate FPSR bits are set before exiting.	#
+#									#
+#########################################################################
+
+	global		res_qnan
+	global		res_snan
+res_qnan:
+res_snan:
+	cmp.b		DTAG(%a6), &SNAN	# is the dst an SNAN?
+	beq.b		dst_snan2
+	cmp.b		DTAG(%a6), &QNAN	# is the dst a  QNAN?
+	beq.b		dst_qnan2
+src_nan:
+	cmp.b		STAG(%a6), &QNAN
+	beq.b		src_qnan2
+	global		res_snan_1op
+res_snan_1op:
+src_snan2:
+	bset		&0x6, FP_SRC_HI(%a6)	# set SNAN bit
+	or.l		&nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
+	lea		FP_SRC(%a6), %a0
+	bra.b		nan_comp
+	global		res_qnan_1op
+res_qnan_1op:
+src_qnan2:
+	or.l		&nan_mask, USER_FPSR(%a6)
+	lea		FP_SRC(%a6), %a0
+	bra.b		nan_comp
+dst_snan2:
+	or.l		&nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
+	bset		&0x6, FP_DST_HI(%a6)	# set SNAN bit
+	lea		FP_DST(%a6), %a0
+	bra.b		nan_comp
+dst_qnan2:
+	lea		FP_DST(%a6), %a0
+	cmp.b		STAG(%a6), &SNAN
+	bne		nan_done
+	or.l		&aiop_mask+snan_mask, USER_FPSR(%a6)
+nan_done:
+	or.l		&nan_mask, USER_FPSR(%a6)
+nan_comp:
+	btst		&0x7, FTEMP_EX(%a0)	# is NAN neg?
+	beq.b		nan_not_neg
+	or.l		&neg_mask, USER_FPSR(%a6)
+nan_not_neg:
+	fmovm.x		(%a0), &0x80
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	res_operr(): return default result during operand error		#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	None								#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = default operand error result				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	An nonsignalling NAN is returned as the default result when	#
+# an operand error occurs for the following cases:			#
+#									#
+#	Multiply: (Infinity x Zero)					#
+#	Divide  : (Zero / Zero) || (Infinity / Infinity)		#
+#									#
+#########################################################################
+
+	global		res_operr
+res_operr:
+	or.l		&nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6)
+	fmovm.x		nan_return(%pc), &0x80
+	rts
+
+nan_return:
+	long		0x7fff0000, 0xffffffff, 0xffffffff
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_denorm(): denormalize an intermediate result			#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT *************************************************************** #
+#	a0 = points to the operand to be denormalized			#
+#		(in the internal extended format)			#
+#									#
+#	d0 = rounding precision						#
+#									#
+# OUTPUT **************************************************************	#
+#	a0 = pointer to the denormalized result				#
+#		(in the internal extended format)			#
+#									#
+#	d0 = guard,round,sticky						#
+#									#
+# ALGORITHM ***********************************************************	#
+#	According to the exponent underflow threshold for the given	#
+# precision, shift the mantissa bits to the right in order raise the	#
+# exponent of the operand to the threshold value. While shifting the	#
+# mantissa bits right, maintain the value of the guard, round, and	#
+# sticky bits.								#
+# other notes:								#
+#	(1) _denorm() is called by the underflow routines		#
+#	(2) _denorm() does NOT affect the status register		#
+#									#
+#########################################################################
+
+#
+# table of exponent threshold values for each precision
+#
+tbl_thresh:
+	short		0x0
+	short		sgl_thresh
+	short		dbl_thresh
+
+	global		_denorm
+_denorm:
+#
+# Load the exponent threshold for the precision selected and check
+# to see if (threshold - exponent) is > 65 in which case we can
+# simply calculate the sticky bit and zero the mantissa. otherwise
+# we have to call the denormalization routine.
+#
+	lsr.b		&0x2, %d0		# shift prec to lo bits
+	mov.w		(tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold
+	mov.w		%d1, %d0		# copy d1 into d0
+	sub.w		FTEMP_EX(%a0), %d0	# diff = threshold - exp
+	cmpi.w		%d0, &66		# is diff > 65? (mant + g,r bits)
+	bpl.b		denorm_set_stky		# yes; just calc sticky
+
+	clr.l		%d0			# clear g,r,s
+	btst		&inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set?
+	beq.b		denorm_call		# no; don't change anything
+	bset		&29, %d0		# yes; set sticky bit
+
+denorm_call:
+	bsr.l		dnrm_lp			# denormalize the number
+	rts
+
+#
+# all bit would have been shifted off during the denorm so simply
+# calculate if the sticky should be set and clear the entire mantissa.
+#
+denorm_set_stky:
+	mov.l		&0x20000000, %d0	# set sticky bit in return value
+	mov.w		%d1, FTEMP_EX(%a0)	# load exp with threshold
+	clr.l		FTEMP_HI(%a0)		# set d1 = 0 (ms mantissa)
+	clr.l		FTEMP_LO(%a0)		# set d2 = 0 (ms mantissa)
+	rts
+
+#									#
+# dnrm_lp(): normalize exponent/mantissa to specified threshhold	#
+#									#
+# INPUT:								#
+#	%a0	   : points to the operand to be denormalized		#
+#	%d0{31:29} : initial guard,round,sticky				#
+#	%d1{15:0}  : denormalization threshold				#
+# OUTPUT:								#
+#	%a0	   : points to the denormalized operand			#
+#	%d0{31:29} : final guard,round,sticky				#
+#									#
+
+# *** Local Equates *** #
+set	GRS,		L_SCR2			# g,r,s temp storage
+set	FTEMP_LO2,	L_SCR1			# FTEMP_LO copy
+
+	global		dnrm_lp
+dnrm_lp:
+
+#
+# make a copy of FTEMP_LO and place the g,r,s bits directly after it
+# in memory so as to make the bitfield extraction for denormalization easier.
+#
+	mov.l		FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy
+	mov.l		%d0, GRS(%a6)		# place g,r,s after it
+
+#
+# check to see how much less than the underflow threshold the operand
+# exponent is.
+#
+	mov.l		%d1, %d0		# copy the denorm threshold
+	sub.w		FTEMP_EX(%a0), %d1	# d1 = threshold - uns exponent
+	ble.b		dnrm_no_lp		# d1 <= 0
+	cmpi.w		%d1, &0x20		# is ( 0 <= d1 < 32) ?
+	blt.b		case_1			# yes
+	cmpi.w		%d1, &0x40		# is (32 <= d1 < 64) ?
+	blt.b		case_2			# yes
+	bra.w		case_3			# (d1 >= 64)
+
+#
+# No normalization necessary
+#
+dnrm_no_lp:
+	mov.l		GRS(%a6), %d0		# restore original g,r,s
+	rts
+
+#
+# case (0<d1<32)
+#
+# %d0 = denorm threshold
+# %d1 = "n" = amt to shift
+#
+#	---------------------------------------------------------
+#	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000|
+#	---------------------------------------------------------
+#	<-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
+#	\	   \		      \			 \
+#	 \	    \		       \		  \
+#	  \	     \			\		   \
+#	   \	      \			 \		    \
+#	    \	       \		  \		     \
+#	     \		\		   \		      \
+#	      \		 \		    \		       \
+#	       \	  \		     \			\
+#	<-(n)-><-(32 - n)-><------(32)-------><------(32)------->
+#	---------------------------------------------------------
+#	|0.....0| NEW_HI  |  NEW_FTEMP_LO     |grs		|
+#	---------------------------------------------------------
+#
+case_1:
+	mov.l		%d2, -(%sp)		# create temp storage
+
+	mov.w		%d0, FTEMP_EX(%a0)	# exponent = denorm threshold
+	mov.l		&32, %d0
+	sub.w		%d1, %d0		# %d0 = 32 - %d1
+
+	cmpi.w		%d1, &29		# is shft amt >= 29
+	blt.b		case1_extract		# no; no fix needed
+	mov.b		GRS(%a6), %d2
+	or.b		%d2, 3+FTEMP_LO2(%a6)
+
+case1_extract:
+	bfextu		FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI
+	bfextu		FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO
+	bfextu		FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S
+
+	mov.l		%d2, FTEMP_HI(%a0)	# store new FTEMP_HI
+	mov.l		%d1, FTEMP_LO(%a0)	# store new FTEMP_LO
+
+	bftst		%d0{&2:&30}		# were bits shifted off?
+	beq.b		case1_sticky_clear	# no; go finish
+	bset		&rnd_stky_bit, %d0	# yes; set sticky bit
+
+case1_sticky_clear:
+	and.l		&0xe0000000, %d0	# clear all but G,R,S
+	mov.l		(%sp)+, %d2		# restore temp register
+	rts
+
+#
+# case (32<=d1<64)
+#
+# %d0 = denorm threshold
+# %d1 = "n" = amt to shift
+#
+#	---------------------------------------------------------
+#	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000|
+#	---------------------------------------------------------
+#	<-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
+#	\	   \		      \
+#	 \	    \		       \
+#	  \	     \			-------------------
+#	   \	      --------------------		   \
+#	    -------------------		  \		    \
+#			       \	   \		     \
+#				\	    \		      \
+#				 \	     \		       \
+#	<-------(32)------><-(n)-><-(32 - n)-><------(32)------->
+#	---------------------------------------------------------
+#	|0...............0|0....0| NEW_LO     |grs		|
+#	---------------------------------------------------------
+#
+case_2:
+	mov.l		%d2, -(%sp)		# create temp storage
+
+	mov.w		%d0, FTEMP_EX(%a0)	# exponent = denorm threshold
+	subi.w		&0x20, %d1		# %d1 now between 0 and 32
+	mov.l		&0x20, %d0
+	sub.w		%d1, %d0		# %d0 = 32 - %d1
+
+# subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize
+# the number of bits to check for the sticky detect.
+# it only plays a role in shift amounts of 61-63.
+	mov.b		GRS(%a6), %d2
+	or.b		%d2, 3+FTEMP_LO2(%a6)
+
+	bfextu		FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO
+	bfextu		FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S
+
+	bftst		%d1{&2:&30}		# were any bits shifted off?
+	bne.b		case2_set_sticky	# yes; set sticky bit
+	bftst		FTEMP_LO2(%a6){%d0:&31}	# were any bits shifted off?
+	bne.b		case2_set_sticky	# yes; set sticky bit
+
+	mov.l		%d1, %d0		# move new G,R,S to %d0
+	bra.b		case2_end
+
+case2_set_sticky:
+	mov.l		%d1, %d0		# move new G,R,S to %d0
+	bset		&rnd_stky_bit, %d0	# set sticky bit
+
+case2_end:
+	clr.l		FTEMP_HI(%a0)		# store FTEMP_HI = 0
+	mov.l		%d2, FTEMP_LO(%a0)	# store FTEMP_LO
+	and.l		&0xe0000000, %d0	# clear all but G,R,S
+
+	mov.l		(%sp)+,%d2		# restore temp register
+	rts
+
+#
+# case (d1>=64)
+#
+# %d0 = denorm threshold
+# %d1 = amt to shift
+#
+case_3:
+	mov.w		%d0, FTEMP_EX(%a0)	# insert denorm threshold
+
+	cmpi.w		%d1, &65		# is shift amt > 65?
+	blt.b		case3_64		# no; it's == 64
+	beq.b		case3_65		# no; it's == 65
+
+#
+# case (d1>65)
+#
+# Shift value is > 65 and out of range. All bits are shifted off.
+# Return a zero mantissa with the sticky bit set
+#
+	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa)
+	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa)
+	mov.l		&0x20000000, %d0	# set sticky bit
+	rts
+
+#
+# case (d1 == 64)
+#
+#	---------------------------------------------------------
+#	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000|
+#	---------------------------------------------------------
+#	<-------(32)------>
+#	\		   \
+#	 \		    \
+#	  \		     \
+#	   \		      ------------------------------
+#	    -------------------------------		    \
+#					   \		     \
+#					    \		      \
+#					     \		       \
+#					      <-------(32)------>
+#	---------------------------------------------------------
+#	|0...............0|0................0|grs		|
+#	---------------------------------------------------------
+#
+case3_64:
+	mov.l		FTEMP_HI(%a0), %d0	# fetch hi(mantissa)
+	mov.l		%d0, %d1		# make a copy
+	and.l		&0xc0000000, %d0	# extract G,R
+	and.l		&0x3fffffff, %d1	# extract other bits
+
+	bra.b		case3_complete
+
+#
+# case (d1 == 65)
+#
+#	---------------------------------------------------------
+#	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000|
+#	---------------------------------------------------------
+#	<-------(32)------>
+#	\		   \
+#	 \		    \
+#	  \		     \
+#	   \		      ------------------------------
+#	    --------------------------------		    \
+#					    \		     \
+#					     \		      \
+#					      \		       \
+#					       <-------(31)----->
+#	---------------------------------------------------------
+#	|0...............0|0................0|0rs		|
+#	---------------------------------------------------------
+#
+case3_65:
+	mov.l		FTEMP_HI(%a0), %d0	# fetch hi(mantissa)
+	and.l		&0x80000000, %d0	# extract R bit
+	lsr.l		&0x1, %d0		# shift high bit into R bit
+	and.l		&0x7fffffff, %d1	# extract other bits
+
+case3_complete:
+# last operation done was an "and" of the bits shifted off so the condition
+# codes are already set so branch accordingly.
+	bne.b		case3_set_sticky	# yes; go set new sticky
+	tst.l		FTEMP_LO(%a0)		# were any bits shifted off?
+	bne.b		case3_set_sticky	# yes; go set new sticky
+	tst.b		GRS(%a6)		# were any bits shifted off?
+	bne.b		case3_set_sticky	# yes; go set new sticky
+
+#
+# no bits were shifted off so don't set the sticky bit.
+# the guard and
+# the entire mantissa is zero.
+#
+	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa)
+	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa)
+	rts
+
+#
+# some bits were shifted off so set the sticky bit.
+# the entire mantissa is zero.
+#
+case3_set_sticky:
+	bset		&rnd_stky_bit,%d0	# set new sticky bit
+	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa)
+	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa)
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	_round(): round result according to precision/mode		#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	a0	  = ptr to input operand in internal extended format	#
+#	d1(hi)    = contains rounding precision:			#
+#			ext = $0000xxxx					#
+#			sgl = $0004xxxx					#
+#			dbl = $0008xxxx					#
+#	d1(lo)	  = contains rounding mode:				#
+#			RN  = $xxxx0000					#
+#			RZ  = $xxxx0001					#
+#			RM  = $xxxx0002					#
+#			RP  = $xxxx0003					#
+#	d0{31:29} = contains the g,r,s bits (extended)			#
+#									#
+# OUTPUT **************************************************************	#
+#	a0 = pointer to rounded result					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	On return the value pointed to by a0 is correctly rounded,	#
+#	a0 is preserved and the g-r-s bits in d0 are cleared.		#
+#	The result is not typed - the tag field is invalid.  The	#
+#	result is still in the internal extended format.		#
+#									#
+#	The INEX bit of USER_FPSR will be set if the rounded result was	#
+#	inexact (i.e. if any of the g-r-s bits were set).		#
+#									#
+#########################################################################
+
+	global		_round
+_round:
+#
+# ext_grs() looks at the rounding precision and sets the appropriate
+# G,R,S bits.
+# If (G,R,S == 0) then result is exact and round is done, else set
+# the inex flag in status reg and continue.
+#
+	bsr.l		ext_grs			# extract G,R,S
+
+	tst.l		%d0			# are G,R,S zero?
+	beq.w		truncate		# yes; round is complete
+
+	or.w		&inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex
+
+#
+# Use rounding mode as an index into a jump table for these modes.
+# All of the following assumes grs != 0.
+#
+	mov.w		(tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset
+	jmp		(tbl_mode.b,%pc,%a1)	# jmp to rnd mode handler
+
+tbl_mode:
+	short		rnd_near - tbl_mode
+	short		truncate - tbl_mode	# RZ always truncates
+	short		rnd_mnus - tbl_mode
+	short		rnd_plus - tbl_mode
+
+#################################################################
+#	ROUND PLUS INFINITY					#
+#								#
+#	If sign of fp number = 0 (positive), then add 1 to l.	#
+#################################################################
+rnd_plus:
+	tst.b		FTEMP_SGN(%a0)		# check for sign
+	bmi.w		truncate		# if positive then truncate
+
+	mov.l		&0xffffffff, %d0	# force g,r,s to be all f's
+	swap		%d1			# set up d1 for round prec.
+
+	cmpi.b		%d1, &s_mode		# is prec = sgl?
+	beq.w		add_sgl			# yes
+	bgt.w		add_dbl			# no; it's dbl
+	bra.w		add_ext			# no; it's ext
+
+#################################################################
+#	ROUND MINUS INFINITY					#
+#								#
+#	If sign of fp number = 1 (negative), then add 1 to l.	#
+#################################################################
+rnd_mnus:
+	tst.b		FTEMP_SGN(%a0)		# check for sign
+	bpl.w		truncate		# if negative then truncate
+
+	mov.l		&0xffffffff, %d0	# force g,r,s to be all f's
+	swap		%d1			# set up d1 for round prec.
+
+	cmpi.b		%d1, &s_mode		# is prec = sgl?
+	beq.w		add_sgl			# yes
+	bgt.w		add_dbl			# no; it's dbl
+	bra.w		add_ext			# no; it's ext
+
+#################################################################
+#	ROUND NEAREST						#
+#								#
+#	If (g=1), then add 1 to l and if (r=s=0), then clear l	#
+#	Note that this will round to even in case of a tie.	#
+#################################################################
+rnd_near:
+	asl.l		&0x1, %d0		# shift g-bit to c-bit
+	bcc.w		truncate		# if (g=1) then
+
+	swap		%d1			# set up d1 for round prec.
+
+	cmpi.b		%d1, &s_mode		# is prec = sgl?
+	beq.w		add_sgl			# yes
+	bgt.w		add_dbl			# no; it's dbl
+	bra.w		add_ext			# no; it's ext
+
+# *** LOCAL EQUATES ***
+set	ad_1_sgl,	0x00000100	# constant to add 1 to l-bit in sgl prec
+set	ad_1_dbl,	0x00000800	# constant to add 1 to l-bit in dbl prec
+
+#########################
+#	ADD SINGLE	#
+#########################
+add_sgl:
+	add.l		&ad_1_sgl, FTEMP_HI(%a0)
+	bcc.b		scc_clr			# no mantissa overflow
+	roxr.w		FTEMP_HI(%a0)		# shift v-bit back in
+	roxr.w		FTEMP_HI+2(%a0)		# shift v-bit back in
+	add.w		&0x1, FTEMP_EX(%a0)	# and incr exponent
+scc_clr:
+	tst.l		%d0			# test for rs = 0
+	bne.b		sgl_done
+	and.w		&0xfe00, FTEMP_HI+2(%a0) # clear the l-bit
+sgl_done:
+	and.l		&0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit
+	clr.l		FTEMP_LO(%a0)		# clear d2
+	rts
+
+#########################
+#	ADD EXTENDED	#
+#########################
+add_ext:
+	addq.l		&1,FTEMP_LO(%a0)	# add 1 to l-bit
+	bcc.b		xcc_clr			# test for carry out
+	addq.l		&1,FTEMP_HI(%a0)	# propagate carry
+	bcc.b		xcc_clr
+	roxr.w		FTEMP_HI(%a0)		# mant is 0 so restore v-bit
+	roxr.w		FTEMP_HI+2(%a0)		# mant is 0 so restore v-bit
+	roxr.w		FTEMP_LO(%a0)
+	roxr.w		FTEMP_LO+2(%a0)
+	add.w		&0x1,FTEMP_EX(%a0)	# and inc exp
+xcc_clr:
+	tst.l		%d0			# test rs = 0
+	bne.b		add_ext_done
+	and.b		&0xfe,FTEMP_LO+3(%a0)	# clear the l bit
+add_ext_done:
+	rts
+
+#########################
+#	ADD DOUBLE	#
+#########################
+add_dbl:
+	add.l		&ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb
+	bcc.b		dcc_clr			# no carry
+	addq.l		&0x1, FTEMP_HI(%a0)	# propagate carry
+	bcc.b		dcc_clr			# no carry
+
+	roxr.w		FTEMP_HI(%a0)		# mant is 0 so restore v-bit
+	roxr.w		FTEMP_HI+2(%a0)		# mant is 0 so restore v-bit
+	roxr.w		FTEMP_LO(%a0)
+	roxr.w		FTEMP_LO+2(%a0)
+	addq.w		&0x1, FTEMP_EX(%a0)	# incr exponent
+dcc_clr:
+	tst.l		%d0			# test for rs = 0
+	bne.b		dbl_done
+	and.w		&0xf000, FTEMP_LO+2(%a0) # clear the l-bit
+
+dbl_done:
+	and.l		&0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit
+	rts
+
+###########################
+# Truncate all other bits #
+###########################
+truncate:
+	swap		%d1			# select rnd prec
+
+	cmpi.b		%d1, &s_mode		# is prec sgl?
+	beq.w		sgl_done		# yes
+	bgt.b		dbl_done		# no; it's dbl
+	rts					# no; it's ext
+
+
+#
+# ext_grs(): extract guard, round and sticky bits according to
+#	     rounding precision.
+#
+# INPUT
+#	d0	   = extended precision g,r,s (in d0{31:29})
+#	d1	   = {PREC,ROUND}
+# OUTPUT
+#	d0{31:29}  = guard, round, sticky
+#
+# The ext_grs extract the guard/round/sticky bits according to the
+# selected rounding precision. It is called by the round subroutine
+# only.  All registers except d0 are kept intact. d0 becomes an
+# updated guard,round,sticky in d0{31:29}
+#
+# Notes: the ext_grs uses the round PREC, and therefore has to swap d1
+#	 prior to usage, and needs to restore d1 to original. this
+#	 routine is tightly tied to the round routine and not meant to
+#	 uphold standard subroutine calling practices.
+#
+
+ext_grs:
+	swap		%d1			# have d1.w point to round precision
+	tst.b		%d1			# is rnd prec = extended?
+	bne.b		ext_grs_not_ext		# no; go handle sgl or dbl
+
+#
+# %d0 actually already hold g,r,s since _round() had it before calling
+# this function. so, as long as we don't disturb it, we are "returning" it.
+#
+ext_grs_ext:
+	swap		%d1			# yes; return to correct positions
+	rts
+
+ext_grs_not_ext:
+	movm.l		&0x3000, -(%sp)		# make some temp registers {d2/d3}
+
+	cmpi.b		%d1, &s_mode		# is rnd prec = sgl?
+	bne.b		ext_grs_dbl		# no; go handle dbl
+
+#
+# sgl:
+#	96		64	  40	32		0
+#	-----------------------------------------------------
+#	| EXP	|XXXXXXX|	  |xx	|		|grs|
+#	-----------------------------------------------------
+#			<--(24)--->nn\			   /
+#				   ee ---------------------
+#				   ww		|
+#						v
+#				   gr	   new sticky
+#
+ext_grs_sgl:
+	bfextu		FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right
+	mov.l		&30, %d2		# of the sgl prec. limits
+	lsl.l		%d2, %d3		# shift g-r bits to MSB of d3
+	mov.l		FTEMP_HI(%a0), %d2	# get word 2 for s-bit test
+	and.l		&0x0000003f, %d2	# s bit is the or of all other
+	bne.b		ext_grs_st_stky		# bits to the right of g-r
+	tst.l		FTEMP_LO(%a0)		# test lower mantissa
+	bne.b		ext_grs_st_stky		# if any are set, set sticky
+	tst.l		%d0			# test original g,r,s
+	bne.b		ext_grs_st_stky		# if any are set, set sticky
+	bra.b		ext_grs_end_sd		# if words 3 and 4 are clr, exit
+
+#
+# dbl:
+#	96		64		32	 11	0
+#	-----------------------------------------------------
+#	| EXP	|XXXXXXX|		|	 |xx	|grs|
+#	-----------------------------------------------------
+#						  nn\	    /
+#						  ee -------
+#						  ww	|
+#							v
+#						  gr	new sticky
+#
+ext_grs_dbl:
+	bfextu		FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right
+	mov.l		&30, %d2		# of the dbl prec. limits
+	lsl.l		%d2, %d3		# shift g-r bits to the MSB of d3
+	mov.l		FTEMP_LO(%a0), %d2	# get lower mantissa  for s-bit test
+	and.l		&0x000001ff, %d2	# s bit is the or-ing of all
+	bne.b		ext_grs_st_stky		# other bits to the right of g-r
+	tst.l		%d0			# test word original g,r,s
+	bne.b		ext_grs_st_stky		# if any are set, set sticky
+	bra.b		ext_grs_end_sd		# if clear, exit
+
+ext_grs_st_stky:
+	bset		&rnd_stky_bit, %d3	# set sticky bit
+ext_grs_end_sd:
+	mov.l		%d3, %d0		# return grs to d0
+
+	movm.l		(%sp)+, &0xc		# restore scratch registers {d2/d3}
+
+	swap		%d1			# restore d1 to original
+	rts
+
+#########################################################################
+# norm(): normalize the mantissa of an extended precision input. the	#
+#	  input operand should not be normalized already.		#
+#									#
+# XDEF ****************************************************************	#
+#	norm()								#
+#									#
+# XREF **************************************************************** #
+#	none								#
+#									#
+# INPUT *************************************************************** #
+#	a0 = pointer fp extended precision operand to normalize		#
+#									#
+# OUTPUT ************************************************************** #
+#	d0 = number of bit positions the mantissa was shifted		#
+#	a0 = the input operand's mantissa is normalized; the exponent	#
+#	     is unchanged.						#
+#									#
+#########################################################################
+	global		norm
+norm:
+	mov.l		%d2, -(%sp)		# create some temp regs
+	mov.l		%d3, -(%sp)
+
+	mov.l		FTEMP_HI(%a0), %d0	# load hi(mantissa)
+	mov.l		FTEMP_LO(%a0), %d1	# load lo(mantissa)
+
+	bfffo		%d0{&0:&32}, %d2	# how many places to shift?
+	beq.b		norm_lo			# hi(man) is all zeroes!
+
+norm_hi:
+	lsl.l		%d2, %d0		# left shift hi(man)
+	bfextu		%d1{&0:%d2}, %d3	# extract lo bits
+
+	or.l		%d3, %d0		# create hi(man)
+	lsl.l		%d2, %d1		# create lo(man)
+
+	mov.l		%d0, FTEMP_HI(%a0)	# store new hi(man)
+	mov.l		%d1, FTEMP_LO(%a0)	# store new lo(man)
+
+	mov.l		%d2, %d0		# return shift amount
+
+	mov.l		(%sp)+, %d3		# restore temp regs
+	mov.l		(%sp)+, %d2
+
+	rts
+
+norm_lo:
+	bfffo		%d1{&0:&32}, %d2	# how many places to shift?
+	lsl.l		%d2, %d1		# shift lo(man)
+	add.l		&32, %d2		# add 32 to shft amount
+
+	mov.l		%d1, FTEMP_HI(%a0)	# store hi(man)
+	clr.l		FTEMP_LO(%a0)		# lo(man) is now zero
+
+	mov.l		%d2, %d0		# return shift amount
+
+	mov.l		(%sp)+, %d3		# restore temp regs
+	mov.l		(%sp)+, %d2
+
+	rts
+
+#########################################################################
+# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO	#
+#		- returns corresponding optype tag			#
+#									#
+# XDEF ****************************************************************	#
+#	unnorm_fix()							#
+#									#
+# XREF **************************************************************** #
+#	norm() - normalize the mantissa					#
+#									#
+# INPUT *************************************************************** #
+#	a0 = pointer to unnormalized extended precision number		#
+#									#
+# OUTPUT ************************************************************** #
+#	d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO	#
+#	a0 = input operand has been converted to a norm, denorm, or	#
+#	     zero; both the exponent and mantissa are changed.		#
+#									#
+#########################################################################
+
+	global		unnorm_fix
+unnorm_fix:
+	bfffo		FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed?
+	bne.b		unnorm_shift		# hi(man) is not all zeroes
+
+#
+# hi(man) is all zeroes so see if any bits in lo(man) are set
+#
+unnorm_chk_lo:
+	bfffo		FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero?
+	beq.w		unnorm_zero		# yes
+
+	add.w		&32, %d0		# no; fix shift distance
+
+#
+# d0 = # shifts needed for complete normalization
+#
+unnorm_shift:
+	clr.l		%d1			# clear top word
+	mov.w		FTEMP_EX(%a0), %d1	# extract exponent
+	and.w		&0x7fff, %d1		# strip off sgn
+
+	cmp.w		%d0, %d1		# will denorm push exp < 0?
+	bgt.b		unnorm_nrm_zero		# yes; denorm only until exp = 0
+
+#
+# exponent would not go < 0. therefore, number stays normalized
+#
+	sub.w		%d0, %d1		# shift exponent value
+	mov.w		FTEMP_EX(%a0), %d0	# load old exponent
+	and.w		&0x8000, %d0		# save old sign
+	or.w		%d0, %d1		# {sgn,new exp}
+	mov.w		%d1, FTEMP_EX(%a0)	# insert new exponent
+
+	bsr.l		norm			# normalize UNNORM
+
+	mov.b		&NORM, %d0		# return new optype tag
+	rts
+
+#
+# exponent would go < 0, so only denormalize until exp = 0
+#
+unnorm_nrm_zero:
+	cmp.b		%d1, &32		# is exp <= 32?
+	bgt.b		unnorm_nrm_zero_lrg	# no; go handle large exponent
+
+	bfextu		FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man)
+	mov.l		%d0, FTEMP_HI(%a0)	# save new hi(man)
+
+	mov.l		FTEMP_LO(%a0), %d0	# fetch old lo(man)
+	lsl.l		%d1, %d0		# extract new lo(man)
+	mov.l		%d0, FTEMP_LO(%a0)	# save new lo(man)
+
+	and.w		&0x8000, FTEMP_EX(%a0)	# set exp = 0
+
+	mov.b		&DENORM, %d0		# return new optype tag
+	rts
+
+#
+# only mantissa bits set are in lo(man)
+#
+unnorm_nrm_zero_lrg:
+	sub.w		&32, %d1		# adjust shft amt by 32
+
+	mov.l		FTEMP_LO(%a0), %d0	# fetch old lo(man)
+	lsl.l		%d1, %d0		# left shift lo(man)
+
+	mov.l		%d0, FTEMP_HI(%a0)	# store new hi(man)
+	clr.l		FTEMP_LO(%a0)		# lo(man) = 0
+
+	and.w		&0x8000, FTEMP_EX(%a0)	# set exp = 0
+
+	mov.b		&DENORM, %d0		# return new optype tag
+	rts
+
+#
+# whole mantissa is zero so this UNNORM is actually a zero
+#
+unnorm_zero:
+	and.w		&0x8000, FTEMP_EX(%a0)	# force exponent to zero
+
+	mov.b		&ZERO, %d0		# fix optype tag
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	set_tag_x(): return the optype of the input ext fp number	#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision operand			#
+#									#
+# OUTPUT **************************************************************	#
+#	d0 = value of type tag						#
+#		one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO	#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Simply test the exponent, j-bit, and mantissa values to		#
+# determine the type of operand.					#
+#	If it's an unnormalized zero, alter the operand and force it	#
+# to be a normal zero.							#
+#									#
+#########################################################################
+
+	global		set_tag_x
+set_tag_x:
+	mov.w		FTEMP_EX(%a0), %d0	# extract exponent
+	andi.w		&0x7fff, %d0		# strip off sign
+	cmpi.w		%d0, &0x7fff		# is (EXP == MAX)?
+	beq.b		inf_or_nan_x
+not_inf_or_nan_x:
+	btst		&0x7,FTEMP_HI(%a0)
+	beq.b		not_norm_x
+is_norm_x:
+	mov.b		&NORM, %d0
+	rts
+not_norm_x:
+	tst.w		%d0			# is exponent = 0?
+	bne.b		is_unnorm_x
+not_unnorm_x:
+	tst.l		FTEMP_HI(%a0)
+	bne.b		is_denorm_x
+	tst.l		FTEMP_LO(%a0)
+	bne.b		is_denorm_x
+is_zero_x:
+	mov.b		&ZERO, %d0
+	rts
+is_denorm_x:
+	mov.b		&DENORM, %d0
+	rts
+# must distinguish now "Unnormalized zeroes" which we
+# must convert to zero.
+is_unnorm_x:
+	tst.l		FTEMP_HI(%a0)
+	bne.b		is_unnorm_reg_x
+	tst.l		FTEMP_LO(%a0)
+	bne.b		is_unnorm_reg_x
+# it's an "unnormalized zero". let's convert it to an actual zero...
+	andi.w		&0x8000,FTEMP_EX(%a0)	# clear exponent
+	mov.b		&ZERO, %d0
+	rts
+is_unnorm_reg_x:
+	mov.b		&UNNORM, %d0
+	rts
+inf_or_nan_x:
+	tst.l		FTEMP_LO(%a0)
+	bne.b		is_nan_x
+	mov.l		FTEMP_HI(%a0), %d0
+	and.l		&0x7fffffff, %d0	# msb is a don't care!
+	bne.b		is_nan_x
+is_inf_x:
+	mov.b		&INF, %d0
+	rts
+is_nan_x:
+	btst		&0x6, FTEMP_HI(%a0)
+	beq.b		is_snan_x
+	mov.b		&QNAN, %d0
+	rts
+is_snan_x:
+	mov.b		&SNAN, %d0
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	set_tag_d(): return the optype of the input dbl fp number	#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = points to double precision operand				#
+#									#
+# OUTPUT **************************************************************	#
+#	d0 = value of type tag						#
+#		one of: NORM, INF, QNAN, SNAN, DENORM, ZERO		#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Simply test the exponent, j-bit, and mantissa values to		#
+# determine the type of operand.					#
+#									#
+#########################################################################
+
+	global		set_tag_d
+set_tag_d:
+	mov.l		FTEMP(%a0), %d0
+	mov.l		%d0, %d1
+
+	andi.l		&0x7ff00000, %d0
+	beq.b		zero_or_denorm_d
+
+	cmpi.l		%d0, &0x7ff00000
+	beq.b		inf_or_nan_d
+
+is_norm_d:
+	mov.b		&NORM, %d0
+	rts
+zero_or_denorm_d:
+	and.l		&0x000fffff, %d1
+	bne		is_denorm_d
+	tst.l		4+FTEMP(%a0)
+	bne		is_denorm_d
+is_zero_d:
+	mov.b		&ZERO, %d0
+	rts
+is_denorm_d:
+	mov.b		&DENORM, %d0
+	rts
+inf_or_nan_d:
+	and.l		&0x000fffff, %d1
+	bne		is_nan_d
+	tst.l		4+FTEMP(%a0)
+	bne		is_nan_d
+is_inf_d:
+	mov.b		&INF, %d0
+	rts
+is_nan_d:
+	btst		&19, %d1
+	bne		is_qnan_d
+is_snan_d:
+	mov.b		&SNAN, %d0
+	rts
+is_qnan_d:
+	mov.b		&QNAN, %d0
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	set_tag_s(): return the optype of the input sgl fp number	#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to single precision operand			#
+#									#
+# OUTPUT **************************************************************	#
+#	d0 = value of type tag						#
+#		one of: NORM, INF, QNAN, SNAN, DENORM, ZERO		#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Simply test the exponent, j-bit, and mantissa values to		#
+# determine the type of operand.					#
+#									#
+#########################################################################
+
+	global		set_tag_s
+set_tag_s:
+	mov.l		FTEMP(%a0), %d0
+	mov.l		%d0, %d1
+
+	andi.l		&0x7f800000, %d0
+	beq.b		zero_or_denorm_s
+
+	cmpi.l		%d0, &0x7f800000
+	beq.b		inf_or_nan_s
+
+is_norm_s:
+	mov.b		&NORM, %d0
+	rts
+zero_or_denorm_s:
+	and.l		&0x007fffff, %d1
+	bne		is_denorm_s
+is_zero_s:
+	mov.b		&ZERO, %d0
+	rts
+is_denorm_s:
+	mov.b		&DENORM, %d0
+	rts
+inf_or_nan_s:
+	and.l		&0x007fffff, %d1
+	bne		is_nan_s
+is_inf_s:
+	mov.b		&INF, %d0
+	rts
+is_nan_s:
+	btst		&22, %d1
+	bne		is_qnan_s
+is_snan_s:
+	mov.b		&SNAN, %d0
+	rts
+is_qnan_s:
+	mov.b		&QNAN, %d0
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	unf_res(): routine to produce default underflow result of a	#
+#		   scaled extended precision number; this is used by	#
+#		   fadd/fdiv/fmul/etc. emulation routines.		#
+#	unf_res4(): same as above but for fsglmul/fsgldiv which use	#
+#		    single round prec and extended prec mode.		#
+#									#
+# XREF ****************************************************************	#
+#	_denorm() - denormalize according to scale factor		#
+#	_round() - round denormalized number according to rnd prec	#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precison operand			#
+#	d0 = scale factor						#
+#	d1 = rounding precision/mode					#
+#									#
+# OUTPUT **************************************************************	#
+#	a0 = pointer to default underflow result in extended precision	#
+#	d0.b = result FPSR_cc which caller may or may not want to save	#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Convert the input operand to "internal format" which means the	#
+# exponent is extended to 16 bits and the sign is stored in the unused	#
+# portion of the extended precison operand. Denormalize the number	#
+# according to the scale factor passed in d0. Then, round the		#
+# denormalized result.							#
+#	Set the FPSR_exc bits as appropriate but return the cc bits in	#
+# d0 in case the caller doesn't want to save them (as is the case for	#
+# fmove out).								#
+#	unf_res4() for fsglmul/fsgldiv forces the denorm to extended	#
+# precision and the rounding mode to single.				#
+#									#
+#########################################################################
+	global		unf_res
+unf_res:
+	mov.l		%d1, -(%sp)		# save rnd prec,mode on stack
+
+	btst		&0x7, FTEMP_EX(%a0)	# make "internal" format
+	sne		FTEMP_SGN(%a0)
+
+	mov.w		FTEMP_EX(%a0), %d1	# extract exponent
+	and.w		&0x7fff, %d1
+	sub.w		%d0, %d1
+	mov.w		%d1, FTEMP_EX(%a0)	# insert 16 bit exponent
+
+	mov.l		%a0, -(%sp)		# save operand ptr during calls
+
+	mov.l		0x4(%sp),%d0		# pass rnd prec.
+	andi.w		&0x00c0,%d0
+	lsr.w		&0x4,%d0
+	bsr.l		_denorm			# denorm result
+
+	mov.l		(%sp),%a0
+	mov.w		0x6(%sp),%d1		# load prec:mode into %d1
+	andi.w		&0xc0,%d1		# extract rnd prec
+	lsr.w		&0x4,%d1
+	swap		%d1
+	mov.w		0x6(%sp),%d1
+	andi.w		&0x30,%d1
+	lsr.w		&0x4,%d1
+	bsr.l		_round			# round the denorm
+
+	mov.l		(%sp)+, %a0
+
+# result is now rounded properly. convert back to normal format
+	bclr		&0x7, FTEMP_EX(%a0)	# clear sgn first; may have residue
+	tst.b		FTEMP_SGN(%a0)		# is "internal result" sign set?
+	beq.b		unf_res_chkifzero	# no; result is positive
+	bset		&0x7, FTEMP_EX(%a0)	# set result sgn
+	clr.b		FTEMP_SGN(%a0)		# clear temp sign
+
+# the number may have become zero after rounding. set ccodes accordingly.
+unf_res_chkifzero:
+	clr.l		%d0
+	tst.l		FTEMP_HI(%a0)		# is value now a zero?
+	bne.b		unf_res_cont		# no
+	tst.l		FTEMP_LO(%a0)
+	bne.b		unf_res_cont		# no
+#	bset		&z_bit, FPSR_CC(%a6)	# yes; set zero ccode bit
+	bset		&z_bit, %d0		# yes; set zero ccode bit
+
+unf_res_cont:
+
+#
+# can inex1 also be set along with unfl and inex2???
+#
+# we know that underflow has occurred. aunfl should be set if INEX2 is also set.
+#
+	btst		&inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set?
+	beq.b		unf_res_end		# no
+	bset		&aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl
+
+unf_res_end:
+	add.l		&0x4, %sp		# clear stack
+	rts
+
+# unf_res() for fsglmul() and fsgldiv().
+	global		unf_res4
+unf_res4:
+	mov.l		%d1,-(%sp)		# save rnd prec,mode on stack
+
+	btst		&0x7,FTEMP_EX(%a0)	# make "internal" format
+	sne		FTEMP_SGN(%a0)
+
+	mov.w		FTEMP_EX(%a0),%d1	# extract exponent
+	and.w		&0x7fff,%d1
+	sub.w		%d0,%d1
+	mov.w		%d1,FTEMP_EX(%a0)	# insert 16 bit exponent
+
+	mov.l		%a0,-(%sp)		# save operand ptr during calls
+
+	clr.l		%d0			# force rnd prec = ext
+	bsr.l		_denorm			# denorm result
+
+	mov.l		(%sp),%a0
+	mov.w		&s_mode,%d1		# force rnd prec = sgl
+	swap		%d1
+	mov.w		0x6(%sp),%d1		# load rnd mode
+	andi.w		&0x30,%d1		# extract rnd prec
+	lsr.w		&0x4,%d1
+	bsr.l		_round			# round the denorm
+
+	mov.l		(%sp)+,%a0
+
+# result is now rounded properly. convert back to normal format
+	bclr		&0x7,FTEMP_EX(%a0)	# clear sgn first; may have residue
+	tst.b		FTEMP_SGN(%a0)		# is "internal result" sign set?
+	beq.b		unf_res4_chkifzero	# no; result is positive
+	bset		&0x7,FTEMP_EX(%a0)	# set result sgn
+	clr.b		FTEMP_SGN(%a0)		# clear temp sign
+
+# the number may have become zero after rounding. set ccodes accordingly.
+unf_res4_chkifzero:
+	clr.l		%d0
+	tst.l		FTEMP_HI(%a0)		# is value now a zero?
+	bne.b		unf_res4_cont		# no
+	tst.l		FTEMP_LO(%a0)
+	bne.b		unf_res4_cont		# no
+#	bset		&z_bit,FPSR_CC(%a6)	# yes; set zero ccode bit
+	bset		&z_bit,%d0		# yes; set zero ccode bit
+
+unf_res4_cont:
+
+#
+# can inex1 also be set along with unfl and inex2???
+#
+# we know that underflow has occurred. aunfl should be set if INEX2 is also set.
+#
+	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
+	beq.b		unf_res4_end		# no
+	bset		&aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl
+
+unf_res4_end:
+	add.l		&0x4,%sp		# clear stack
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	ovf_res(): routine to produce the default overflow result of	#
+#		   an overflowing number.				#
+#	ovf_res2(): same as above but the rnd mode/prec are passed	#
+#		    differently.					#
+#									#
+# XREF ****************************************************************	#
+#	none								#
+#									#
+# INPUT ***************************************************************	#
+#	d1.b	= '-1' => (-); '0' => (+)				#
+#   ovf_res():								#
+#	d0	= rnd mode/prec						#
+#   ovf_res2():								#
+#	hi(d0)	= rnd prec						#
+#	lo(d0)	= rnd mode						#
+#									#
+# OUTPUT **************************************************************	#
+#	a0	= points to extended precision result			#
+#	d0.b	= condition code bits					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	The default overflow result can be determined by the sign of	#
+# the result and the rounding mode/prec in effect. These bits are	#
+# concatenated together to create an index into the default result	#
+# table. A pointer to the correct result is returned in a0. The		#
+# resulting condition codes are returned in d0 in case the caller	#
+# doesn't want FPSR_cc altered (as is the case for fmove out).		#
+#									#
+#########################################################################
+
+	global		ovf_res
+ovf_res:
+	andi.w		&0x10,%d1		# keep result sign
+	lsr.b		&0x4,%d0		# shift prec/mode
+	or.b		%d0,%d1			# concat the two
+	mov.w		%d1,%d0			# make a copy
+	lsl.b		&0x1,%d1		# multiply d1 by 2
+	bra.b		ovf_res_load
+
+	global		ovf_res2
+ovf_res2:
+	and.w		&0x10, %d1		# keep result sign
+	or.b		%d0, %d1		# insert rnd mode
+	swap		%d0
+	or.b		%d0, %d1		# insert rnd prec
+	mov.w		%d1, %d0		# make a copy
+	lsl.b		&0x1, %d1		# shift left by 1
+
+#
+# use the rounding mode, precision, and result sign as in index into the
+# two tables below to fetch the default result and the result ccodes.
+#
+ovf_res_load:
+	mov.b		(tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes
+	lea		(tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr
+
+	rts
+
+tbl_ovfl_cc:
+	byte		0x2, 0x0, 0x0, 0x2
+	byte		0x2, 0x0, 0x0, 0x2
+	byte		0x2, 0x0, 0x0, 0x2
+	byte		0x0, 0x0, 0x0, 0x0
+	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8
+	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8
+	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8
+
+tbl_ovfl_result:
+	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
+	long		0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ
+	long		0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM
+	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
+
+	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
+	long		0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ
+	long		0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM
+	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
+
+	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
+	long		0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ
+	long		0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM
+	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
+
+	long		0x00000000,0x00000000,0x00000000,0x00000000
+	long		0x00000000,0x00000000,0x00000000,0x00000000
+	long		0x00000000,0x00000000,0x00000000,0x00000000
+	long		0x00000000,0x00000000,0x00000000,0x00000000
+
+	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
+	long		0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ
+	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
+	long		0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP
+
+	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
+	long		0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ
+	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
+	long		0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP
+
+	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
+	long		0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ
+	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
+	long		0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fout(): move from fp register to memory or data register	#
+#									#
+# XREF ****************************************************************	#
+#	_round() - needed to create EXOP for sgl/dbl precision		#
+#	norm() - needed to create EXOP for extended precision		#
+#	ovf_res() - create default overflow result for sgl/dbl precision#
+#	unf_res() - create default underflow result for sgl/dbl prec.	#
+#	dst_dbl() - create rounded dbl precision result.		#
+#	dst_sgl() - create rounded sgl precision result.		#
+#	fetch_dreg() - fetch dynamic k-factor reg for packed.		#
+#	bindec() - convert FP binary number to packed number.		#
+#	_mem_write() - write data to memory.				#
+#	_mem_write2() - write data to memory unless supv mode -(a7) exc.#
+#	_dmem_write_{byte,word,long}() - write data to memory.		#
+#	store_dreg_{b,w,l}() - store data to data register file.	#
+#	facc_out_{b,w,l,d,x}() - data access error occurred.		#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	d0 = round prec,mode						#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 : intermediate underflow or overflow result if		#
+#	      OVFL/UNFL occurred for a sgl or dbl operand		#
+#									#
+# ALGORITHM ***********************************************************	#
+#	This routine is accessed by many handlers that need to do an	#
+# opclass three move of an operand out to memory.			#
+#	Decode an fmove out (opclass 3) instruction to determine if	#
+# it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data	#
+# register or memory. The algorithm uses a standard "fmove" to create	#
+# the rounded result. Also, since exceptions are disabled, this also	#
+# create the correct OPERR default result if appropriate.		#
+#	For sgl or dbl precision, overflow or underflow can occur. If	#
+# either occurs and is enabled, the EXOP.				#
+#	For extended precision, the stacked <ea> must be fixed along	#
+# w/ the address index register as appropriate w/ _calc_ea_fout(). If	#
+# the source is a denorm and if underflow is enabled, an EXOP must be	#
+# created.								#
+#	For packed, the k-factor must be fetched from the instruction	#
+# word or a data register. The <ea> must be fixed as w/ extended	#
+# precision. Then, bindec() is called to create the appropriate		#
+# packed result.							#
+#	If at any time an access error is flagged by one of the move-	#
+# to-memory routines, then a special exit must be made so that the	#
+# access error can be handled properly.					#
+#									#
+#########################################################################
+
+	global		fout
+fout:
+	bfextu		EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt
+	mov.w		(tbl_fout.b,%pc,%d1.w*2),%a1 # use as index
+	jmp		(tbl_fout.b,%pc,%a1)	# jump to routine
+
+	swbeg		&0x8
+tbl_fout:
+	short		fout_long	-	tbl_fout
+	short		fout_sgl	-	tbl_fout
+	short		fout_ext	-	tbl_fout
+	short		fout_pack	-	tbl_fout
+	short		fout_word	-	tbl_fout
+	short		fout_dbl	-	tbl_fout
+	short		fout_byte	-	tbl_fout
+	short		fout_pack	-	tbl_fout
+
+#################################################################
+# fmove.b out ###################################################
+#################################################################
+
+# Only "Unimplemented Data Type" exceptions enter here. The operand
+# is either a DENORM or a NORM.
+fout_byte:
+	tst.b		STAG(%a6)		# is operand normalized?
+	bne.b		fout_byte_denorm	# no
+
+	fmovm.x		SRC(%a0),&0x80		# load value
+
+fout_byte_norm:
+	fmov.l		%d0,%fpcr		# insert rnd prec,mode
+
+	fmov.b		%fp0,%d0		# exec move out w/ correct rnd mode
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# fetch FPSR
+	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits
+
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode
+	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst)
+	beq.b		fout_byte_dn		# must save to integer regfile
+
+	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct
+	bsr.l		_dmem_write_byte	# write byte
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_b		# yes
+
+	rts
+
+fout_byte_dn:
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn
+	andi.w		&0x7,%d1
+	bsr.l		store_dreg_b
+	rts
+
+fout_byte_denorm:
+	mov.l		SRC_EX(%a0),%d1
+	andi.l		&0x80000000,%d1		# keep DENORM sign
+	ori.l		&0x00800000,%d1		# make smallest sgl
+	fmov.s		%d1,%fp0
+	bra.b		fout_byte_norm
+
+#################################################################
+# fmove.w out ###################################################
+#################################################################
+
+# Only "Unimplemented Data Type" exceptions enter here. The operand
+# is either a DENORM or a NORM.
+fout_word:
+	tst.b		STAG(%a6)		# is operand normalized?
+	bne.b		fout_word_denorm	# no
+
+	fmovm.x		SRC(%a0),&0x80		# load value
+
+fout_word_norm:
+	fmov.l		%d0,%fpcr		# insert rnd prec:mode
+
+	fmov.w		%fp0,%d0		# exec move out w/ correct rnd mode
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# fetch FPSR
+	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits
+
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode
+	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst)
+	beq.b		fout_word_dn		# must save to integer regfile
+
+	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct
+	bsr.l		_dmem_write_word	# write word
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_w		# yes
+
+	rts
+
+fout_word_dn:
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn
+	andi.w		&0x7,%d1
+	bsr.l		store_dreg_w
+	rts
+
+fout_word_denorm:
+	mov.l		SRC_EX(%a0),%d1
+	andi.l		&0x80000000,%d1		# keep DENORM sign
+	ori.l		&0x00800000,%d1		# make smallest sgl
+	fmov.s		%d1,%fp0
+	bra.b		fout_word_norm
+
+#################################################################
+# fmove.l out ###################################################
+#################################################################
+
+# Only "Unimplemented Data Type" exceptions enter here. The operand
+# is either a DENORM or a NORM.
+fout_long:
+	tst.b		STAG(%a6)		# is operand normalized?
+	bne.b		fout_long_denorm	# no
+
+	fmovm.x		SRC(%a0),&0x80		# load value
+
+fout_long_norm:
+	fmov.l		%d0,%fpcr		# insert rnd prec:mode
+
+	fmov.l		%fp0,%d0		# exec move out w/ correct rnd mode
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# fetch FPSR
+	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits
+
+fout_long_write:
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode
+	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst)
+	beq.b		fout_long_dn		# must save to integer regfile
+
+	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct
+	bsr.l		_dmem_write_long	# write long
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_l		# yes
+
+	rts
+
+fout_long_dn:
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn
+	andi.w		&0x7,%d1
+	bsr.l		store_dreg_l
+	rts
+
+fout_long_denorm:
+	mov.l		SRC_EX(%a0),%d1
+	andi.l		&0x80000000,%d1		# keep DENORM sign
+	ori.l		&0x00800000,%d1		# make smallest sgl
+	fmov.s		%d1,%fp0
+	bra.b		fout_long_norm
+
+#################################################################
+# fmove.x out ###################################################
+#################################################################
+
+# Only "Unimplemented Data Type" exceptions enter here. The operand
+# is either a DENORM or a NORM.
+# The DENORM causes an Underflow exception.
+fout_ext:
+
+# we copy the extended precision result to FP_SCR0 so that the reserved
+# 16-bit field gets zeroed. we do this since we promise not to disturb
+# what's at SRC(a0).
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	clr.w		2+FP_SCR0_EX(%a6)	# clear reserved field
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+	fmovm.x		SRC(%a0),&0x80		# return result
+
+	bsr.l		_calc_ea_fout		# fix stacked <ea>
+
+	mov.l		%a0,%a1			# pass: dst addr
+	lea		FP_SCR0(%a6),%a0	# pass: src addr
+	mov.l		&0xc,%d0		# pass: opsize is 12 bytes
+
+# we must not yet write the extended precision data to the stack
+# in the pre-decrement case from supervisor mode or else we'll corrupt
+# the stack frame. so, leave it in FP_SRC for now and deal with it later...
+	cmpi.b		SPCOND_FLG(%a6),&mda7_flg
+	beq.b		fout_ext_a7
+
+	bsr.l		_dmem_write		# write ext prec number to memory
+
+	tst.l		%d1			# did dstore fail?
+	bne.w		fout_ext_err		# yes
+
+	tst.b		STAG(%a6)		# is operand normalized?
+	bne.b		fout_ext_denorm		# no
+	rts
+
+# the number is a DENORM. must set the underflow exception bit
+fout_ext_denorm:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit
+
+	mov.b		FPCR_ENABLE(%a6),%d0
+	andi.b		&0x0a,%d0		# is UNFL or INEX enabled?
+	bne.b		fout_ext_exc		# yes
+	rts
+
+# we don't want to do the write if the exception occurred in supervisor mode
+# so _mem_write2() handles this for us.
+fout_ext_a7:
+	bsr.l		_mem_write2		# write ext prec number to memory
+
+	tst.l		%d1			# did dstore fail?
+	bne.w		fout_ext_err		# yes
+
+	tst.b		STAG(%a6)		# is operand normalized?
+	bne.b		fout_ext_denorm		# no
+	rts
+
+fout_ext_exc:
+	lea		FP_SCR0(%a6),%a0
+	bsr.l		norm			# normalize the mantissa
+	neg.w		%d0			# new exp = -(shft amt)
+	andi.w		&0x7fff,%d0
+	andi.w		&0x8000,FP_SCR0_EX(%a6)	# keep only old sign
+	or.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	rts
+
+fout_ext_err:
+	mov.l		EXC_A6(%a6),(%a6)	# fix stacked a6
+	bra.l		facc_out_x
+
+#########################################################################
+# fmove.s out ###########################################################
+#########################################################################
+fout_sgl:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&s_mode*0x10,%d0	# insert sgl prec
+	mov.l		%d0,L_SCR3(%a6)		# save rnd prec,mode on stack
+
+#
+# operand is a normalized number. first, we check to see if the move out
+# would cause either an underflow or overflow. these cases are handled
+# separately. otherwise, set the FPCR to the proper rounding mode and
+# execute the move.
+#
+	mov.w		SRC_EX(%a0),%d0		# extract exponent
+	andi.w		&0x7fff,%d0		# strip sign
+
+	cmpi.w		%d0,&SGL_HI		# will operand overflow?
+	bgt.w		fout_sgl_ovfl		# yes; go handle OVFL
+	beq.w		fout_sgl_may_ovfl	# maybe; go handle possible OVFL
+	cmpi.w		%d0,&SGL_LO		# will operand underflow?
+	blt.w		fout_sgl_unfl		# yes; go handle underflow
+
+#
+# NORMs(in range) can be stored out by a simple "fmov.s"
+# Unnormalized inputs can come through this point.
+#
+fout_sgl_exg:
+	fmovm.x		SRC(%a0),&0x80		# fetch fop from stack
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fmov.s		%fp0,%d0		# store does convert and round
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# save FPSR
+
+	or.w		%d1,2+USER_FPSR(%a6)	# set possible inex2/ainex
+
+fout_sgl_exg_write:
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode
+	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst)
+	beq.b		fout_sgl_exg_write_dn	# must save to integer regfile
+
+	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct
+	bsr.l		_dmem_write_long	# write long
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_l		# yes
+
+	rts
+
+fout_sgl_exg_write_dn:
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn
+	andi.w		&0x7,%d1
+	bsr.l		store_dreg_l
+	rts
+
+#
+# here, we know that the operand would UNFL if moved out to single prec,
+# so, denorm and round and then use generic store single routine to
+# write the value to memory.
+#
+fout_sgl_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
+
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	mov.l		%a0,-(%sp)
+
+	clr.l		%d0			# pass: S.F. = 0
+
+	cmpi.b		STAG(%a6),&DENORM	# fetch src optype tag
+	bne.b		fout_sgl_unfl_cont	# let DENORMs fall through
+
+	lea		FP_SCR0(%a6),%a0
+	bsr.l		norm			# normalize the DENORM
+
+fout_sgl_unfl_cont:
+	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res			# calc default underflow result
+
+	lea		FP_SCR0(%a6),%a0	# pass: ptr to fop
+	bsr.l		dst_sgl			# convert to single prec
+
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode
+	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst)
+	beq.b		fout_sgl_unfl_dn	# must save to integer regfile
+
+	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct
+	bsr.l		_dmem_write_long	# write long
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_l		# yes
+
+	bra.b		fout_sgl_unfl_chkexc
+
+fout_sgl_unfl_dn:
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn
+	andi.w		&0x7,%d1
+	bsr.l		store_dreg_l
+
+fout_sgl_unfl_chkexc:
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0a,%d1		# is UNFL or INEX enabled?
+	bne.w		fout_sd_exc_unfl	# yes
+	addq.l		&0x4,%sp
+	rts
+
+#
+# it's definitely an overflow so call ovf_res to get the correct answer
+#
+fout_sgl_ovfl:
+	tst.b		3+SRC_HI(%a0)		# is result inexact?
+	bne.b		fout_sgl_ovfl_inex2
+	tst.l		SRC_LO(%a0)		# is result inexact?
+	bne.b		fout_sgl_ovfl_inex2
+	ori.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
+	bra.b		fout_sgl_ovfl_cont
+fout_sgl_ovfl_inex2:
+	ori.w		&ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
+
+fout_sgl_ovfl_cont:
+	mov.l		%a0,-(%sp)
+
+# call ovf_res() w/ sgl prec and the correct rnd mode to create the default
+# overflow result. DON'T save the returned ccodes from ovf_res() since
+# fmove out doesn't alter them.
+	tst.b		SRC_EX(%a0)		# is operand negative?
+	smi		%d1			# set if so
+	mov.l		L_SCR3(%a6),%d0		# pass: sgl prec,rnd mode
+	bsr.l		ovf_res			# calc OVFL result
+	fmovm.x		(%a0),&0x80		# load default overflow result
+	fmov.s		%fp0,%d0		# store to single
+
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode
+	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst)
+	beq.b		fout_sgl_ovfl_dn	# must save to integer regfile
+
+	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct
+	bsr.l		_dmem_write_long	# write long
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_l		# yes
+
+	bra.b		fout_sgl_ovfl_chkexc
+
+fout_sgl_ovfl_dn:
+	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn
+	andi.w		&0x7,%d1
+	bsr.l		store_dreg_l
+
+fout_sgl_ovfl_chkexc:
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0a,%d1		# is UNFL or INEX enabled?
+	bne.w		fout_sd_exc_ovfl	# yes
+	addq.l		&0x4,%sp
+	rts
+
+#
+# move out MAY overflow:
+# (1) force the exp to 0x3fff
+# (2) do a move w/ appropriate rnd mode
+# (3) if exp still equals zero, then insert original exponent
+#	for the correct result.
+#     if exp now equals one, then it overflowed so call ovf_res.
+#
+fout_sgl_may_ovfl:
+	mov.w		SRC_EX(%a0),%d1		# fetch current sign
+	andi.w		&0x8000,%d1		# keep it,clear exp
+	ori.w		&0x3fff,%d1		# insert exp = 0
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert scaled exp
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fmov.x		FP_SCR0(%a6),%fp0	# force fop to be rounded
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	fabs.x		%fp0			# need absolute value
+	fcmp.b		%fp0,&0x2		# did exponent increase?
+	fblt.w		fout_sgl_exg		# no; go finish NORM
+	bra.w		fout_sgl_ovfl		# yes; go handle overflow
+
+################
+
+fout_sd_exc_unfl:
+	mov.l		(%sp)+,%a0
+
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+	cmpi.b		STAG(%a6),&DENORM	# was src a DENORM?
+	bne.b		fout_sd_exc_cont	# no
+
+	lea		FP_SCR0(%a6),%a0
+	bsr.l		norm
+	neg.l		%d0
+	andi.w		&0x7fff,%d0
+	bfins		%d0,FP_SCR0_EX(%a6){&1:&15}
+	bra.b		fout_sd_exc_cont
+
+fout_sd_exc:
+fout_sd_exc_ovfl:
+	mov.l		(%sp)+,%a0		# restore a0
+
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+fout_sd_exc_cont:
+	bclr		&0x7,FP_SCR0_EX(%a6)	# clear sign bit
+	sne.b		2+FP_SCR0_EX(%a6)	# set internal sign bit
+	lea		FP_SCR0(%a6),%a0	# pass: ptr to DENORM
+
+	mov.b		3+L_SCR3(%a6),%d1
+	lsr.b		&0x4,%d1
+	andi.w		&0x0c,%d1
+	swap		%d1
+	mov.b		3+L_SCR3(%a6),%d1
+	lsr.b		&0x4,%d1
+	andi.w		&0x03,%d1
+	clr.l		%d0			# pass: zero g,r,s
+	bsr.l		_round			# round the DENORM
+
+	tst.b		2+FP_SCR0_EX(%a6)	# is EXOP negative?
+	beq.b		fout_sd_exc_done	# no
+	bset		&0x7,FP_SCR0_EX(%a6)	# yes
+
+fout_sd_exc_done:
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	rts
+
+#################################################################
+# fmove.d out ###################################################
+#################################################################
+fout_dbl:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&d_mode*0x10,%d0	# insert dbl prec
+	mov.l		%d0,L_SCR3(%a6)		# save rnd prec,mode on stack
+
+#
+# operand is a normalized number. first, we check to see if the move out
+# would cause either an underflow or overflow. these cases are handled
+# separately. otherwise, set the FPCR to the proper rounding mode and
+# execute the move.
+#
+	mov.w		SRC_EX(%a0),%d0		# extract exponent
+	andi.w		&0x7fff,%d0		# strip sign
+
+	cmpi.w		%d0,&DBL_HI		# will operand overflow?
+	bgt.w		fout_dbl_ovfl		# yes; go handle OVFL
+	beq.w		fout_dbl_may_ovfl	# maybe; go handle possible OVFL
+	cmpi.w		%d0,&DBL_LO		# will operand underflow?
+	blt.w		fout_dbl_unfl		# yes; go handle underflow
+
+#
+# NORMs(in range) can be stored out by a simple "fmov.d"
+# Unnormalized inputs can come through this point.
+#
+fout_dbl_exg:
+	fmovm.x		SRC(%a0),&0x80		# fetch fop from stack
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fmov.d		%fp0,L_SCR1(%a6)	# store does convert and round
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d0		# save FPSR
+
+	or.w		%d0,2+USER_FPSR(%a6)	# set possible inex2/ainex
+
+	mov.l		EXC_EA(%a6),%a1		# pass: dst addr
+	lea		L_SCR1(%a6),%a0		# pass: src addr
+	movq.l		&0x8,%d0		# pass: opsize is 8 bytes
+	bsr.l		_dmem_write		# store dbl fop to memory
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_d		# yes
+
+	rts					# no; so we're finished
+
+#
+# here, we know that the operand would UNFL if moved out to double prec,
+# so, denorm and round and then use generic store double routine to
+# write the value to memory.
+#
+fout_dbl_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
+
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	mov.l		%a0,-(%sp)
+
+	clr.l		%d0			# pass: S.F. = 0
+
+	cmpi.b		STAG(%a6),&DENORM	# fetch src optype tag
+	bne.b		fout_dbl_unfl_cont	# let DENORMs fall through
+
+	lea		FP_SCR0(%a6),%a0
+	bsr.l		norm			# normalize the DENORM
+
+fout_dbl_unfl_cont:
+	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res			# calc default underflow result
+
+	lea		FP_SCR0(%a6),%a0	# pass: ptr to fop
+	bsr.l		dst_dbl			# convert to single prec
+	mov.l		%d0,L_SCR1(%a6)
+	mov.l		%d1,L_SCR2(%a6)
+
+	mov.l		EXC_EA(%a6),%a1		# pass: dst addr
+	lea		L_SCR1(%a6),%a0		# pass: src addr
+	movq.l		&0x8,%d0		# pass: opsize is 8 bytes
+	bsr.l		_dmem_write		# store dbl fop to memory
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_d		# yes
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0a,%d1		# is UNFL or INEX enabled?
+	bne.w		fout_sd_exc_unfl	# yes
+	addq.l		&0x4,%sp
+	rts
+
+#
+# it's definitely an overflow so call ovf_res to get the correct answer
+#
+fout_dbl_ovfl:
+	mov.w		2+SRC_LO(%a0),%d0
+	andi.w		&0x7ff,%d0
+	bne.b		fout_dbl_ovfl_inex2
+
+	ori.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
+	bra.b		fout_dbl_ovfl_cont
+fout_dbl_ovfl_inex2:
+	ori.w		&ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
+
+fout_dbl_ovfl_cont:
+	mov.l		%a0,-(%sp)
+
+# call ovf_res() w/ dbl prec and the correct rnd mode to create the default
+# overflow result. DON'T save the returned ccodes from ovf_res() since
+# fmove out doesn't alter them.
+	tst.b		SRC_EX(%a0)		# is operand negative?
+	smi		%d1			# set if so
+	mov.l		L_SCR3(%a6),%d0		# pass: dbl prec,rnd mode
+	bsr.l		ovf_res			# calc OVFL result
+	fmovm.x		(%a0),&0x80		# load default overflow result
+	fmov.d		%fp0,L_SCR1(%a6)	# store to double
+
+	mov.l		EXC_EA(%a6),%a1		# pass: dst addr
+	lea		L_SCR1(%a6),%a0		# pass: src addr
+	movq.l		&0x8,%d0		# pass: opsize is 8 bytes
+	bsr.l		_dmem_write		# store dbl fop to memory
+
+	tst.l		%d1			# did dstore fail?
+	bne.l		facc_out_d		# yes
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0a,%d1		# is UNFL or INEX enabled?
+	bne.w		fout_sd_exc_ovfl	# yes
+	addq.l		&0x4,%sp
+	rts
+
+#
+# move out MAY overflow:
+# (1) force the exp to 0x3fff
+# (2) do a move w/ appropriate rnd mode
+# (3) if exp still equals zero, then insert original exponent
+#	for the correct result.
+#     if exp now equals one, then it overflowed so call ovf_res.
+#
+fout_dbl_may_ovfl:
+	mov.w		SRC_EX(%a0),%d1		# fetch current sign
+	andi.w		&0x8000,%d1		# keep it,clear exp
+	ori.w		&0x3fff,%d1		# insert exp = 0
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert scaled exp
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fmov.x		FP_SCR0(%a6),%fp0	# force fop to be rounded
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	fabs.x		%fp0			# need absolute value
+	fcmp.b		%fp0,&0x2		# did exponent increase?
+	fblt.w		fout_dbl_exg		# no; go finish NORM
+	bra.w		fout_dbl_ovfl		# yes; go handle overflow
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	dst_dbl(): create double precision value from extended prec.	#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to source operand in extended precision		#
+#									#
+# OUTPUT **************************************************************	#
+#	d0 = hi(double precision result)				#
+#	d1 = lo(double precision result)				#
+#									#
+# ALGORITHM ***********************************************************	#
+#									#
+#  Changes extended precision to double precision.			#
+#  Note: no attempt is made to round the extended value to double.	#
+#	dbl_sign = ext_sign						#
+#	dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias)		#
+#	get rid of ext integer bit					#
+#	dbl_mant = ext_mant{62:12}					#
+#									#
+#		---------------   ---------------    ---------------	#
+#  extended ->  |s|    exp    |   |1| ms mant   |    | ls mant     |	#
+#		---------------   ---------------    ---------------	#
+#		 95	    64    63 62	      32      31     11	  0	#
+#				     |			     |		#
+#				     |			     |		#
+#				     |			     |		#
+#			             v			     v		#
+#			      ---------------   ---------------		#
+#  double   ->		      |s|exp| mant  |   |  mant       |		#
+#			      ---------------   ---------------		#
+#			      63     51   32   31	       0	#
+#									#
+#########################################################################
+
+dst_dbl:
+	clr.l		%d0			# clear d0
+	mov.w		FTEMP_EX(%a0),%d0	# get exponent
+	subi.w		&EXT_BIAS,%d0		# subtract extended precision bias
+	addi.w		&DBL_BIAS,%d0		# add double precision bias
+	tst.b		FTEMP_HI(%a0)		# is number a denorm?
+	bmi.b		dst_get_dupper		# no
+	subq.w		&0x1,%d0		# yes; denorm bias = DBL_BIAS - 1
+dst_get_dupper:
+	swap		%d0			# d0 now in upper word
+	lsl.l		&0x4,%d0		# d0 in proper place for dbl prec exp
+	tst.b		FTEMP_EX(%a0)		# test sign
+	bpl.b		dst_get_dman		# if postive, go process mantissa
+	bset		&0x1f,%d0		# if negative, set sign
+dst_get_dman:
+	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa
+	bfextu		%d1{&1:&20},%d1		# get upper 20 bits of ms
+	or.l		%d1,%d0			# put these bits in ms word of double
+	mov.l		%d0,L_SCR1(%a6)		# put the new exp back on the stack
+	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa
+	mov.l		&21,%d0			# load shift count
+	lsl.l		%d0,%d1			# put lower 11 bits in upper bits
+	mov.l		%d1,L_SCR2(%a6)		# build lower lword in memory
+	mov.l		FTEMP_LO(%a0),%d1	# get ls mantissa
+	bfextu		%d1{&0:&21},%d0		# get ls 21 bits of double
+	mov.l		L_SCR2(%a6),%d1
+	or.l		%d0,%d1			# put them in double result
+	mov.l		L_SCR1(%a6),%d0
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	dst_sgl(): create single precision value from extended prec	#
+#									#
+# XREF ****************************************************************	#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to source operand in extended precision		#
+#									#
+# OUTPUT **************************************************************	#
+#	d0 = single precision result					#
+#									#
+# ALGORITHM ***********************************************************	#
+#									#
+# Changes extended precision to single precision.			#
+#	sgl_sign = ext_sign						#
+#	sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias)		#
+#	get rid of ext integer bit					#
+#	sgl_mant = ext_mant{62:12}					#
+#									#
+#		---------------   ---------------    ---------------	#
+#  extended ->  |s|    exp    |   |1| ms mant   |    | ls mant     |	#
+#		---------------   ---------------    ---------------	#
+#		 95	    64    63 62	   40 32      31     12	  0	#
+#				     |	   |				#
+#				     |	   |				#
+#				     |	   |				#
+#			             v     v				#
+#			      ---------------				#
+#  single   ->		      |s|exp| mant  |				#
+#			      ---------------				#
+#			      31     22     0				#
+#									#
+#########################################################################
+
+dst_sgl:
+	clr.l		%d0
+	mov.w		FTEMP_EX(%a0),%d0	# get exponent
+	subi.w		&EXT_BIAS,%d0		# subtract extended precision bias
+	addi.w		&SGL_BIAS,%d0		# add single precision bias
+	tst.b		FTEMP_HI(%a0)		# is number a denorm?
+	bmi.b		dst_get_supper		# no
+	subq.w		&0x1,%d0		# yes; denorm bias = SGL_BIAS - 1
+dst_get_supper:
+	swap		%d0			# put exp in upper word of d0
+	lsl.l		&0x7,%d0		# shift it into single exp bits
+	tst.b		FTEMP_EX(%a0)		# test sign
+	bpl.b		dst_get_sman		# if positive, continue
+	bset		&0x1f,%d0		# if negative, put in sign first
+dst_get_sman:
+	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa
+	andi.l		&0x7fffff00,%d1		# get upper 23 bits of ms
+	lsr.l		&0x8,%d1		# and put them flush right
+	or.l		%d1,%d0			# put these bits in ms word of single
+	rts
+
+##############################################################################
+fout_pack:
+	bsr.l		_calc_ea_fout		# fetch the <ea>
+	mov.l		%a0,-(%sp)
+
+	mov.b		STAG(%a6),%d0		# fetch input type
+	bne.w		fout_pack_not_norm	# input is not NORM
+
+fout_pack_norm:
+	btst		&0x4,EXC_CMDREG(%a6)	# static or dynamic?
+	beq.b		fout_pack_s		# static
+
+fout_pack_d:
+	mov.b		1+EXC_CMDREG(%a6),%d1	# fetch dynamic reg
+	lsr.b		&0x4,%d1
+	andi.w		&0x7,%d1
+
+	bsr.l		fetch_dreg		# fetch Dn w/ k-factor
+
+	bra.b		fout_pack_type
+fout_pack_s:
+	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch static field
+
+fout_pack_type:
+	bfexts		%d0{&25:&7},%d0		# extract k-factor
+	mov.l	%d0,-(%sp)
+
+	lea		FP_SRC(%a6),%a0		# pass: ptr to input
+
+# bindec is currently scrambling FP_SRC for denorm inputs.
+# we'll have to change this, but for now, tough luck!!!
+	bsr.l		bindec			# convert xprec to packed
+
+#	andi.l		&0xcfff000f,FP_SCR0(%a6) # clear unused fields
+	andi.l		&0xcffff00f,FP_SCR0(%a6) # clear unused fields
+
+	mov.l	(%sp)+,%d0
+
+	tst.b		3+FP_SCR0_EX(%a6)
+	bne.b		fout_pack_set
+	tst.l		FP_SCR0_HI(%a6)
+	bne.b		fout_pack_set
+	tst.l		FP_SCR0_LO(%a6)
+	bne.b		fout_pack_set
+
+# add the extra condition that only if the k-factor was zero, too, should
+# we zero the exponent
+	tst.l		%d0
+	bne.b		fout_pack_set
+# "mantissa" is all zero which means that the answer is zero. but, the '040
+# algorithm allows the exponent to be non-zero. the 881/2 do not. therefore,
+# if the mantissa is zero, I will zero the exponent, too.
+# the question now is whether the exponents sign bit is allowed to be non-zero
+# for a zero, also...
+	andi.w		&0xf000,FP_SCR0(%a6)
+
+fout_pack_set:
+
+	lea		FP_SCR0(%a6),%a0	# pass: src addr
+
+fout_pack_write:
+	mov.l		(%sp)+,%a1		# pass: dst addr
+	mov.l		&0xc,%d0		# pass: opsize is 12 bytes
+
+	cmpi.b		SPCOND_FLG(%a6),&mda7_flg
+	beq.b		fout_pack_a7
+
+	bsr.l		_dmem_write		# write ext prec number to memory
+
+	tst.l		%d1			# did dstore fail?
+	bne.w		fout_ext_err		# yes
+
+	rts
+
+# we don't want to do the write if the exception occurred in supervisor mode
+# so _mem_write2() handles this for us.
+fout_pack_a7:
+	bsr.l		_mem_write2		# write ext prec number to memory
+
+	tst.l		%d1			# did dstore fail?
+	bne.w		fout_ext_err		# yes
+
+	rts
+
+fout_pack_not_norm:
+	cmpi.b		%d0,&DENORM		# is it a DENORM?
+	beq.w		fout_pack_norm		# yes
+	lea		FP_SRC(%a6),%a0
+	clr.w		2+FP_SRC_EX(%a6)
+	cmpi.b		%d0,&SNAN		# is it an SNAN?
+	beq.b		fout_pack_snan		# yes
+	bra.b		fout_pack_write		# no
+
+fout_pack_snan:
+	ori.w		&snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP
+	bset		&0x6,FP_SRC_HI(%a6)	# set snan bit
+	bra.b		fout_pack_write
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fmul(): emulates the fmul instruction				#
+#	fsmul(): emulates the fsmul instruction				#
+#	fdmul(): emulates the fdmul instruction				#
+#									#
+# XREF ****************************************************************	#
+#	scale_to_zero_src() - scale src exponent to zero		#
+#	scale_to_zero_dst() - scale dst exponent to zero		#
+#	unf_res() - return default underflow result			#
+#	ovf_res() - return default overflow result			#
+#	res_qnan() - return QNAN result					#
+#	res_snan() - return SNAN result					#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	a1 = pointer to extended precision destination operand		#
+#	d0  rnd prec,mode						#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = result							#
+#	fp1 = EXOP (if exception occurred)				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Handle NANs, infinities, and zeroes as special cases. Divide	#
+# norms/denorms into ext/sgl/dbl precision.				#
+#	For norms/denorms, scale the exponents such that a multiply	#
+# instruction won't cause an exception. Use the regular fmul to		#
+# compute a result. Check if the regular operands would have taken	#
+# an exception. If so, return the default overflow/underflow result	#
+# and return the EXOP if exceptions are enabled. Else, scale the	#
+# result operand to the proper exponent.				#
+#									#
+#########################################################################
+
+	align		0x10
+tbl_fmul_ovfl:
+	long		0x3fff - 0x7ffe		# ext_max
+	long		0x3fff - 0x407e		# sgl_max
+	long		0x3fff - 0x43fe		# dbl_max
+tbl_fmul_unfl:
+	long		0x3fff + 0x0001		# ext_unfl
+	long		0x3fff - 0x3f80		# sgl_unfl
+	long		0x3fff - 0x3c00		# dbl_unfl
+
+	global		fsmul
+fsmul:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&s_mode*0x10,%d0	# insert sgl prec
+	bra.b		fmul
+
+	global		fdmul
+fdmul:
+	andi.b		&0x30,%d0
+	ori.b		&d_mode*0x10,%d0	# insert dbl prec
+
+	global		fmul
+fmul:
+	mov.l		%d0,L_SCR3(%a6)		# store rnd info
+
+	clr.w		%d1
+	mov.b		DTAG(%a6),%d1
+	lsl.b		&0x3,%d1
+	or.b		STAG(%a6),%d1		# combine src tags
+	bne.w		fmul_not_norm		# optimize on non-norm input
+
+fmul_norm:
+	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6)
+	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6)
+	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6)
+
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+	bsr.l		scale_to_zero_src	# scale src exponent
+	mov.l		%d0,-(%sp)		# save scale factor 1
+
+	bsr.l		scale_to_zero_dst	# scale dst exponent
+
+	add.l		%d0,(%sp)		# SCALE_FACTOR = scale1 + scale2
+
+	mov.w		2+L_SCR3(%a6),%d1	# fetch precision
+	lsr.b		&0x6,%d1		# shift to lo bits
+	mov.l		(%sp)+,%d0		# load S.F.
+	cmp.l		%d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl?
+	beq.w		fmul_may_ovfl		# result may rnd to overflow
+	blt.w		fmul_ovfl		# result will overflow
+
+	cmp.l		%d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl?
+	beq.w		fmul_may_unfl		# result may rnd to no unfl
+	bgt.w		fmul_unfl		# result will underflow
+
+#
+# NORMAL:
+# - the result of the multiply operation will neither overflow nor underflow.
+# - do the multiply to the proper precision and rounding mode.
+# - scale the result exponent using the scale factor. if both operands were
+# normalized then we really don't need to go through this scaling. but for now,
+# this will do.
+#
+fmul_normal:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fmul_normal_exit:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	or.w		%d2,%d1			# concat old sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+	rts
+
+#
+# OVERFLOW:
+# - the result of the multiply operation is an overflow.
+# - do the multiply to the proper precision and rounding mode in order to
+# set the inexact bits.
+# - calculate the default result and return it in fp0.
+# - if overflow or inexact is enabled, we need a multiply result rounded to
+# extended precision. if the original operation was extended, then we have this
+# result. if the original operation was single or double, we have to do another
+# multiply using extended precision and the correct rounding mode. the result
+# of this operation then has its exponent scaled by -0x6000 to create the
+# exceptional operand.
+#
+fmul_ovfl:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+# save setting this until now because this is where fmul_may_ovfl may jump in
+fmul_ovfl_tst:
+	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x13,%d1		# is OVFL or INEX enabled?
+	bne.b		fmul_ovfl_ena		# yes
+
+# calculate the default result
+fmul_ovfl_dis:
+	btst		&neg_bit,FPSR_CC(%a6)	# is result negative?
+	sne		%d1			# set sign param accordingly
+	mov.l		L_SCR3(%a6),%d0		# pass rnd prec,mode
+	bsr.l		ovf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable
+	fmovm.x		(%a0),&0x80		# return default result in fp0
+	rts
+
+#
+# OVFL is enabled; Create EXOP:
+# - if precision is extended, then we have the EXOP. simply bias the exponent
+# with an extra -0x6000. if the precision is single or double, we need to
+# calculate a result rounded to extended precision.
+#
+fmul_ovfl_ena:
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# test the rnd prec
+	bne.b		fmul_ovfl_ena_sd	# it's sgl or dbl
+
+fmul_ovfl_ena_cont:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack
+
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.w		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	sub.l		%d0,%d1			# add scale factor
+	subi.l		&0x6000,%d1		# subtract bias
+	andi.w		&0x7fff,%d1		# clear sign bit
+	andi.w		&0x8000,%d2		# keep old sign
+	or.w		%d2,%d1			# concat old sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	bra.b		fmul_ovfl_dis
+
+fmul_ovfl_ena_sd:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0x30,%d1		# keep rnd mode only
+	fmov.l		%d1,%fpcr		# set FPCR
+
+	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	bra.b		fmul_ovfl_ena_cont
+
+#
+# may OVERFLOW:
+# - the result of the multiply operation MAY overflow.
+# - do the multiply to the proper precision and rounding mode in order to
+# set the inexact bits.
+# - calculate the default result and return it in fp0.
+#
+fmul_may_ovfl:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	fabs.x		%fp0,%fp1		# make a copy of result
+	fcmp.b		%fp1,&0x2		# is |result| >= 2.b?
+	fbge.w		fmul_ovfl_tst		# yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+	bra.w		fmul_normal_exit
+
+#
+# UNDERFLOW:
+# - the result of the multiply operation is an underflow.
+# - do the multiply to the proper precision and rounding mode in order to
+# set the inexact bits.
+# - calculate the default result and return it in fp0.
+# - if overflow or inexact is enabled, we need a multiply result rounded to
+# extended precision. if the original operation was extended, then we have this
+# result. if the original operation was single or double, we have to do another
+# multiply using extended precision and the correct rounding mode. the result
+# of this operation then has its exponent scaled by -0x6000 to create the
+# exceptional operand.
+#
+fmul_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+# for fun, let's use only extended precision, round to zero. then, let
+# the unf_res() routine figure out all the rest.
+# will we get the correct answer.
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand
+
+	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0b,%d1		# is UNFL or INEX enabled?
+	bne.b		fmul_unfl_ena		# yes
+
+fmul_unfl_dis:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+
+	lea		FP_SCR0(%a6),%a0	# pass: result addr
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# unf_res2 may have set 'Z'
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+	rts
+
+#
+# UNFL is enabled.
+#
+fmul_unfl_ena:
+	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# is precision extended?
+	bne.b		fmul_unfl_ena_sd	# no, sgl or dbl
+
+# if the rnd mode is anything but RZ, then we have to re-do the above
+# multiplication becuase we used RZ for all.
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+fmul_unfl_ena_cont:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fmul.x		FP_SCR0(%a6),%fp1	# execute multiply
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	addi.l		&0x6000,%d1		# add bias
+	andi.w		&0x7fff,%d1
+	or.w		%d2,%d1			# concat old sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	bra.w		fmul_unfl_dis
+
+fmul_unfl_ena_sd:
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0x30,%d1		# use only rnd mode
+	fmov.l		%d1,%fpcr		# set FPCR
+
+	bra.b		fmul_unfl_ena_cont
+
+# MAY UNDERFLOW:
+# -use the correct rounding mode and precision. this code favors operations
+# that do not underflow.
+fmul_may_unfl:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	fabs.x		%fp0,%fp1		# make a copy of result
+	fcmp.b		%fp1,&0x2		# is |result| > 2.b?
+	fbgt.w		fmul_normal_exit	# no; no underflow occurred
+	fblt.w		fmul_unfl		# yes; underflow occurred
+
+#
+# we still don't know if underflow occurred. result is ~ equal to 2. but,
+# we don't know if the result was an underflow that rounded up to a 2 or
+# a normalized number that rounded down to a 2. so, redo the entire operation
+# using RZ as the rounding mode to see what the pre-rounded result is.
+# this case should be relatively rare.
+#
+	fmovm.x		FP_SCR1(%a6),&0x40	# load dst operand
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# keep rnd prec
+	ori.b		&rz_mode*0x10,%d1	# insert RZ
+
+	fmov.l		%d1,%fpcr		# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fmul.x		FP_SCR0(%a6),%fp1	# execute multiply
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fabs.x		%fp1			# make absolute value
+	fcmp.b		%fp1,&0x2		# is |result| < 2.b?
+	fbge.w		fmul_normal_exit	# no; no underflow occurred
+	bra.w		fmul_unfl		# yes, underflow occurred
+
+################################################################################
+
+#
+# Multiply: inputs are not both normalized; what are they?
+#
+fmul_not_norm:
+	mov.w		(tbl_fmul_op.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_fmul_op.b,%pc,%d1.w)
+
+	swbeg		&48
+tbl_fmul_op:
+	short		fmul_norm	- tbl_fmul_op # NORM x NORM
+	short		fmul_zero	- tbl_fmul_op # NORM x ZERO
+	short		fmul_inf_src	- tbl_fmul_op # NORM x INF
+	short		fmul_res_qnan	- tbl_fmul_op # NORM x QNAN
+	short		fmul_norm	- tbl_fmul_op # NORM x DENORM
+	short		fmul_res_snan	- tbl_fmul_op # NORM x SNAN
+	short		tbl_fmul_op	- tbl_fmul_op #
+	short		tbl_fmul_op	- tbl_fmul_op #
+
+	short		fmul_zero	- tbl_fmul_op # ZERO x NORM
+	short		fmul_zero	- tbl_fmul_op # ZERO x ZERO
+	short		fmul_res_operr	- tbl_fmul_op # ZERO x INF
+	short		fmul_res_qnan	- tbl_fmul_op # ZERO x QNAN
+	short		fmul_zero	- tbl_fmul_op # ZERO x DENORM
+	short		fmul_res_snan	- tbl_fmul_op # ZERO x SNAN
+	short		tbl_fmul_op	- tbl_fmul_op #
+	short		tbl_fmul_op	- tbl_fmul_op #
+
+	short		fmul_inf_dst	- tbl_fmul_op # INF x NORM
+	short		fmul_res_operr	- tbl_fmul_op # INF x ZERO
+	short		fmul_inf_dst	- tbl_fmul_op # INF x INF
+	short		fmul_res_qnan	- tbl_fmul_op # INF x QNAN
+	short		fmul_inf_dst	- tbl_fmul_op # INF x DENORM
+	short		fmul_res_snan	- tbl_fmul_op # INF x SNAN
+	short		tbl_fmul_op	- tbl_fmul_op #
+	short		tbl_fmul_op	- tbl_fmul_op #
+
+	short		fmul_res_qnan	- tbl_fmul_op # QNAN x NORM
+	short		fmul_res_qnan	- tbl_fmul_op # QNAN x ZERO
+	short		fmul_res_qnan	- tbl_fmul_op # QNAN x INF
+	short		fmul_res_qnan	- tbl_fmul_op # QNAN x QNAN
+	short		fmul_res_qnan	- tbl_fmul_op # QNAN x DENORM
+	short		fmul_res_snan	- tbl_fmul_op # QNAN x SNAN
+	short		tbl_fmul_op	- tbl_fmul_op #
+	short		tbl_fmul_op	- tbl_fmul_op #
+
+	short		fmul_norm	- tbl_fmul_op # NORM x NORM
+	short		fmul_zero	- tbl_fmul_op # NORM x ZERO
+	short		fmul_inf_src	- tbl_fmul_op # NORM x INF
+	short		fmul_res_qnan	- tbl_fmul_op # NORM x QNAN
+	short		fmul_norm	- tbl_fmul_op # NORM x DENORM
+	short		fmul_res_snan	- tbl_fmul_op # NORM x SNAN
+	short		tbl_fmul_op	- tbl_fmul_op #
+	short		tbl_fmul_op	- tbl_fmul_op #
+
+	short		fmul_res_snan	- tbl_fmul_op # SNAN x NORM
+	short		fmul_res_snan	- tbl_fmul_op # SNAN x ZERO
+	short		fmul_res_snan	- tbl_fmul_op # SNAN x INF
+	short		fmul_res_snan	- tbl_fmul_op # SNAN x QNAN
+	short		fmul_res_snan	- tbl_fmul_op # SNAN x DENORM
+	short		fmul_res_snan	- tbl_fmul_op # SNAN x SNAN
+	short		tbl_fmul_op	- tbl_fmul_op #
+	short		tbl_fmul_op	- tbl_fmul_op #
+
+fmul_res_operr:
+	bra.l		res_operr
+fmul_res_snan:
+	bra.l		res_snan
+fmul_res_qnan:
+	bra.l		res_qnan
+
+#
+# Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm)
+#
+	global		fmul_zero		# global for fsglmul
+fmul_zero:
+	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs
+	mov.b		DST_EX(%a1),%d1
+	eor.b		%d0,%d1
+	bpl.b		fmul_zero_p		# result ZERO is pos.
+fmul_zero_n:
+	fmov.s		&0x80000000,%fp0	# load -ZERO
+	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N
+	rts
+fmul_zero_p:
+	fmov.s		&0x00000000,%fp0	# load +ZERO
+	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z
+	rts
+
+#
+# Multiply: (inf x inf) || (inf x norm) || (inf x denorm)
+#
+# Note: The j-bit for an infinity is a don't-care. However, to be
+# strictly compatible w/ the 68881/882, we make sure to return an
+# INF w/ the j-bit set if the input INF j-bit was set. Destination
+# INFs take priority.
+#
+	global		fmul_inf_dst		# global for fsglmul
+fmul_inf_dst:
+	fmovm.x		DST(%a1),&0x80		# return INF result in fp0
+	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs
+	mov.b		DST_EX(%a1),%d1
+	eor.b		%d0,%d1
+	bpl.b		fmul_inf_dst_p		# result INF is pos.
+fmul_inf_dst_n:
+	fabs.x		%fp0			# clear result sign
+	fneg.x		%fp0			# set result sign
+	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
+	rts
+fmul_inf_dst_p:
+	fabs.x		%fp0			# clear result sign
+	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF
+	rts
+
+	global		fmul_inf_src		# global for fsglmul
+fmul_inf_src:
+	fmovm.x		SRC(%a0),&0x80		# return INF result in fp0
+	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs
+	mov.b		DST_EX(%a1),%d1
+	eor.b		%d0,%d1
+	bpl.b		fmul_inf_dst_p		# result INF is pos.
+	bra.b		fmul_inf_dst_n
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fin(): emulates the fmove instruction				#
+#	fsin(): emulates the fsmove instruction				#
+#	fdin(): emulates the fdmove instruction				#
+#									#
+# XREF ****************************************************************	#
+#	norm() - normalize mantissa for EXOP on denorm			#
+#	scale_to_zero_src() - scale src exponent to zero		#
+#	ovf_res() - return default overflow result			#
+#	unf_res() - return default underflow result			#
+#	res_qnan_1op() - return QNAN result				#
+#	res_snan_1op() - return SNAN result				#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	d0 = round prec/mode						#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = result							#
+#	fp1 = EXOP (if exception occurred)				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Handle NANs, infinities, and zeroes as special cases. Divide	#
+# norms into extended, single, and double precision.			#
+#	Norms can be emulated w/ a regular fmove instruction. For	#
+# sgl/dbl, must scale exponent and perform an "fmove". Check to see	#
+# if the result would have overflowed/underflowed. If so, use unf_res()	#
+# or ovf_res() to return the default result. Also return EXOP if	#
+# exception is enabled. If no exception, return the default result.	#
+#	Unnorms don't pass through here.				#
+#									#
+#########################################################################
+
+	global		fsin
+fsin:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&s_mode*0x10,%d0	# insert sgl precision
+	bra.b		fin
+
+	global		fdin
+fdin:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&d_mode*0x10,%d0	# insert dbl precision
+
+	global		fin
+fin:
+	mov.l		%d0,L_SCR3(%a6)		# store rnd info
+
+	mov.b		STAG(%a6),%d1		# fetch src optype tag
+	bne.w		fin_not_norm		# optimize on non-norm input
+
+#
+# FP MOVE IN: NORMs and DENORMs ONLY!
+#
+fin_norm:
+	andi.b		&0xc0,%d0		# is precision extended?
+	bne.w		fin_not_ext		# no, so go handle dbl or sgl
+
+#
+# precision selected is extended. so...we cannot get an underflow
+# or overflow because of rounding to the correct precision. so...
+# skip the scaling and unscaling...
+#
+	tst.b		SRC_EX(%a0)		# is the operand negative?
+	bpl.b		fin_norm_done		# no
+	bset		&neg_bit,FPSR_CC(%a6)	# yes, so set 'N' ccode bit
+fin_norm_done:
+	fmovm.x		SRC(%a0),&0x80		# return result in fp0
+	rts
+
+#
+# for an extended precision DENORM, the UNFL exception bit is set
+# the accrued bit is NOT set in this instance(no inexactness!)
+#
+fin_denorm:
+	andi.b		&0xc0,%d0		# is precision extended?
+	bne.w		fin_not_ext		# no, so go handle dbl or sgl
+
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+	tst.b		SRC_EX(%a0)		# is the operand negative?
+	bpl.b		fin_denorm_done		# no
+	bset		&neg_bit,FPSR_CC(%a6)	# yes, so set 'N' ccode bit
+fin_denorm_done:
+	fmovm.x		SRC(%a0),&0x80		# return result in fp0
+	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
+	bne.b		fin_denorm_unfl_ena	# yes
+	rts
+
+#
+# the input is an extended DENORM and underflow is enabled in the FPCR.
+# normalize the mantissa and add the bias of 0x6000 to the resulting negative
+# exponent and insert back into the operand.
+#
+fin_denorm_unfl_ena:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand
+	bsr.l		norm			# normalize result
+	neg.w		%d0			# new exponent = -(shft val)
+	addi.w		&0x6000,%d0		# add new bias to exponent
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp
+	andi.w		&0x8000,%d1		# keep old sign
+	andi.w		&0x7fff,%d0		# clear sign position
+	or.w		%d1,%d0			# concat new exo,old sign
+	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	rts
+
+#
+# operand is to be rounded to single or double precision
+#
+fin_not_ext:
+	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec
+	bne.b		fin_dbl
+
+#
+# operand is to be rounded to single precision
+#
+fin_sgl:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	bsr.l		scale_to_zero_src	# calculate scale factor
+
+	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow?
+	bge.w		fin_sd_unfl		# yes; go handle underflow
+	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow?
+	beq.w		fin_sd_may_ovfl		# maybe; go check
+	blt.w		fin_sd_ovfl		# yes; go handle overflow
+
+#
+# operand will NOT overflow or underflow when moved into the fp reg file
+#
+fin_sd_normal:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fmov.x		FP_SCR0(%a6),%fp0	# perform move
+
+	fmov.l		%fpsr,%d1		# save FPSR
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fin_sd_normal_exit:
+	mov.l		%d2,-(%sp)		# save d2
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp}
+	mov.w		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	sub.l		%d0,%d1			# add scale factor
+	andi.w		&0x8000,%d2		# keep old sign
+	or.w		%d1,%d2			# concat old sign,new exponent
+	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0
+	rts
+
+#
+# operand is to be rounded to double precision
+#
+fin_dbl:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	bsr.l		scale_to_zero_src	# calculate scale factor
+
+	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow?
+	bge.w		fin_sd_unfl		# yes; go handle underflow
+	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow?
+	beq.w		fin_sd_may_ovfl		# maybe; go check
+	blt.w		fin_sd_ovfl		# yes; go handle overflow
+	bra.w		fin_sd_normal		# no; ho handle normalized op
+
+#
+# operand WILL underflow when moved in to the fp register file
+#
+fin_sd_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+	tst.b		FP_SCR0_EX(%a6)		# is operand negative?
+	bpl.b		fin_sd_unfl_tst
+	bset		&neg_bit,FPSR_CC(%a6)	# set 'N' ccode bit
+
+# if underflow or inexact is enabled, then go calculate the EXOP first.
+fin_sd_unfl_tst:
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0b,%d1		# is UNFL or INEX enabled?
+	bne.b		fin_sd_unfl_ena		# yes
+
+fin_sd_unfl_dis:
+	lea		FP_SCR0(%a6),%a0	# pass: result addr
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# unf_res may have set 'Z'
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+	rts
+
+#
+# operand will underflow AND underflow or inexact is enabled.
+# therefore, we must return the result rounded to extended precision.
+#
+fin_sd_unfl_ena:
+	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
+	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
+	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent
+
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	sub.l		%d0,%d1			# subtract scale factor
+	andi.w		&0x8000,%d2		# extract old sign
+	addi.l		&0x6000,%d1		# add new bias
+	andi.w		&0x7fff,%d1
+	or.w		%d1,%d2			# concat old sign,new exp
+	mov.w		%d2,FP_SCR1_EX(%a6)	# insert new exponent
+	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1
+	mov.l		(%sp)+,%d2		# restore d2
+	bra.b		fin_sd_unfl_dis
+
+#
+# operand WILL overflow.
+#
+fin_sd_ovfl:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fmov.x		FP_SCR0(%a6),%fp0	# perform move
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# save FPSR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fin_sd_ovfl_tst:
+	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x13,%d1		# is OVFL or INEX enabled?
+	bne.b		fin_sd_ovfl_ena		# yes
+
+#
+# OVFL is not enabled; therefore, we must create the default result by
+# calling ovf_res().
+#
+fin_sd_ovfl_dis:
+	btst		&neg_bit,FPSR_CC(%a6)	# is result negative?
+	sne		%d1			# set sign param accordingly
+	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode
+	bsr.l		ovf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable
+	fmovm.x		(%a0),&0x80		# return default result in fp0
+	rts
+
+#
+# OVFL is enabled.
+# the INEX2 bit has already been updated by the round to the correct precision.
+# now, round to extended(and don't alter the FPSR).
+#
+fin_sd_ovfl_ena:
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	sub.l		&0x6000,%d1		# subtract bias
+	andi.w		&0x7fff,%d1
+	or.w		%d2,%d1
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	bra.b		fin_sd_ovfl_dis
+
+#
+# the move in MAY overflow. so...
+#
+fin_sd_may_ovfl:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fmov.x		FP_SCR0(%a6),%fp0	# perform the move
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	fabs.x		%fp0,%fp1		# make a copy of result
+	fcmp.b		%fp1,&0x2		# is |result| >= 2.b?
+	fbge.w		fin_sd_ovfl_tst		# yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+	bra.w		fin_sd_normal_exit
+
+##########################################################################
+
+#
+# operand is not a NORM: check its optype and branch accordingly
+#
+fin_not_norm:
+	cmpi.b		%d1,&DENORM		# weed out DENORM
+	beq.w		fin_denorm
+	cmpi.b		%d1,&SNAN		# weed out SNANs
+	beq.l		res_snan_1op
+	cmpi.b		%d1,&QNAN		# weed out QNANs
+	beq.l		res_qnan_1op
+
+#
+# do the fmove in; at this point, only possible ops are ZERO and INF.
+# use fmov to determine ccodes.
+# prec:mode should be zero at this point but it won't affect answer anyways.
+#
+	fmov.x		SRC(%a0),%fp0		# do fmove in
+	fmov.l		%fpsr,%d0		# no exceptions possible
+	rol.l		&0x8,%d0		# put ccodes in lo byte
+	mov.b		%d0,FPSR_CC(%a6)	# insert correct ccodes
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fdiv(): emulates the fdiv instruction				#
+#	fsdiv(): emulates the fsdiv instruction				#
+#	fddiv(): emulates the fddiv instruction				#
+#									#
+# XREF ****************************************************************	#
+#	scale_to_zero_src() - scale src exponent to zero		#
+#	scale_to_zero_dst() - scale dst exponent to zero		#
+#	unf_res() - return default underflow result			#
+#	ovf_res() - return default overflow result			#
+#	res_qnan() - return QNAN result					#
+#	res_snan() - return SNAN result					#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	a1 = pointer to extended precision destination operand		#
+#	d0  rnd prec,mode						#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = result							#
+#	fp1 = EXOP (if exception occurred)				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Handle NANs, infinities, and zeroes as special cases. Divide	#
+# norms/denorms into ext/sgl/dbl precision.				#
+#	For norms/denorms, scale the exponents such that a divide	#
+# instruction won't cause an exception. Use the regular fdiv to		#
+# compute a result. Check if the regular operands would have taken	#
+# an exception. If so, return the default overflow/underflow result	#
+# and return the EXOP if exceptions are enabled. Else, scale the	#
+# result operand to the proper exponent.				#
+#									#
+#########################################################################
+
+	align		0x10
+tbl_fdiv_unfl:
+	long		0x3fff - 0x0000		# ext_unfl
+	long		0x3fff - 0x3f81		# sgl_unfl
+	long		0x3fff - 0x3c01		# dbl_unfl
+
+tbl_fdiv_ovfl:
+	long		0x3fff - 0x7ffe		# ext overflow exponent
+	long		0x3fff - 0x407e		# sgl overflow exponent
+	long		0x3fff - 0x43fe		# dbl overflow exponent
+
+	global		fsdiv
+fsdiv:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&s_mode*0x10,%d0	# insert sgl prec
+	bra.b		fdiv
+
+	global		fddiv
+fddiv:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&d_mode*0x10,%d0	# insert dbl prec
+
+	global		fdiv
+fdiv:
+	mov.l		%d0,L_SCR3(%a6)		# store rnd info
+
+	clr.w		%d1
+	mov.b		DTAG(%a6),%d1
+	lsl.b		&0x3,%d1
+	or.b		STAG(%a6),%d1		# combine src tags
+
+	bne.w		fdiv_not_norm		# optimize on non-norm input
+
+#
+# DIVIDE: NORMs and DENORMs ONLY!
+#
+fdiv_norm:
+	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6)
+	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6)
+	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6)
+
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+	bsr.l		scale_to_zero_src	# scale src exponent
+	mov.l		%d0,-(%sp)		# save scale factor 1
+
+	bsr.l		scale_to_zero_dst	# scale dst exponent
+
+	neg.l		(%sp)			# SCALE FACTOR = scale1 - scale2
+	add.l		%d0,(%sp)
+
+	mov.w		2+L_SCR3(%a6),%d1	# fetch precision
+	lsr.b		&0x6,%d1		# shift to lo bits
+	mov.l		(%sp)+,%d0		# load S.F.
+	cmp.l		%d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow?
+	ble.w		fdiv_may_ovfl		# result will overflow
+
+	cmp.l		%d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow?
+	beq.w		fdiv_may_unfl		# maybe
+	bgt.w		fdiv_unfl		# yes; go handle underflow
+
+fdiv_normal:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# save FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fdiv.x		FP_SCR0(%a6),%fp0	# perform divide
+
+	fmov.l		%fpsr,%d1		# save FPSR
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fdiv_normal_exit:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store result on stack
+	mov.l		%d2,-(%sp)		# store d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	or.w		%d2,%d1			# concat old sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0
+	rts
+
+tbl_fdiv_ovfl2:
+	long		0x7fff
+	long		0x407f
+	long		0x43ff
+
+fdiv_no_ovfl:
+	mov.l		(%sp)+,%d0		# restore scale factor
+	bra.b		fdiv_normal_exit
+
+fdiv_may_ovfl:
+	mov.l		%d0,-(%sp)		# save scale factor
+
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# set FPSR
+
+	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide
+
+	fmov.l		%fpsr,%d0
+	fmov.l		&0x0,%fpcr
+
+	or.l		%d0,USER_FPSR(%a6)	# save INEX,N
+
+	fmovm.x		&0x01,-(%sp)		# save result to stack
+	mov.w		(%sp),%d0		# fetch new exponent
+	add.l		&0xc,%sp		# clear result from stack
+	andi.l		&0x7fff,%d0		# strip sign
+	sub.l		(%sp),%d0		# add scale factor
+	cmp.l		%d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4)
+	blt.b		fdiv_no_ovfl
+	mov.l		(%sp)+,%d0
+
+fdiv_ovfl_tst:
+	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x13,%d1		# is OVFL or INEX enabled?
+	bne.b		fdiv_ovfl_ena		# yes
+
+fdiv_ovfl_dis:
+	btst		&neg_bit,FPSR_CC(%a6)	# is result negative?
+	sne		%d1			# set sign param accordingly
+	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd
+	bsr.l		ovf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set INF if applicable
+	fmovm.x		(%a0),&0x80		# return default result in fp0
+	rts
+
+fdiv_ovfl_ena:
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# is precision extended?
+	bne.b		fdiv_ovfl_ena_sd	# no, do sgl or dbl
+
+fdiv_ovfl_ena_cont:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack
+
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.w		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	sub.l		%d0,%d1			# add scale factor
+	subi.l		&0x6000,%d1		# subtract bias
+	andi.w		&0x7fff,%d1		# clear sign bit
+	andi.w		&0x8000,%d2		# keep old sign
+	or.w		%d2,%d1			# concat old sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	bra.b		fdiv_ovfl_dis
+
+fdiv_ovfl_ena_sd:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0x30,%d1		# keep rnd mode
+	fmov.l		%d1,%fpcr		# set FPCR
+
+	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	bra.b		fdiv_ovfl_ena_cont
+
+fdiv_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0b,%d1		# is UNFL or INEX enabled?
+	bne.b		fdiv_unfl_ena		# yes
+
+fdiv_unfl_dis:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+
+	lea		FP_SCR0(%a6),%a0	# pass: result addr
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# 'Z' may have been set
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+	rts
+
+#
+# UNFL is enabled.
+#
+fdiv_unfl_ena:
+	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# is precision extended?
+	bne.b		fdiv_unfl_ena_sd	# no, sgl or dbl
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+fdiv_unfl_ena_cont:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fdiv.x		FP_SCR0(%a6),%fp1	# execute divide
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factoer
+	addi.l		&0x6000,%d1		# add bias
+	andi.w		&0x7fff,%d1
+	or.w		%d2,%d1			# concat old sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exp
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	bra.w		fdiv_unfl_dis
+
+fdiv_unfl_ena_sd:
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0x30,%d1		# use only rnd mode
+	fmov.l		%d1,%fpcr		# set FPCR
+
+	bra.b		fdiv_unfl_ena_cont
+
+#
+# the divide operation MAY underflow:
+#
+fdiv_may_unfl:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	fabs.x		%fp0,%fp1		# make a copy of result
+	fcmp.b		%fp1,&0x1		# is |result| > 1.b?
+	fbgt.w		fdiv_normal_exit	# no; no underflow occurred
+	fblt.w		fdiv_unfl		# yes; underflow occurred
+
+#
+# we still don't know if underflow occurred. result is ~ equal to 1. but,
+# we don't know if the result was an underflow that rounded up to a 1
+# or a normalized number that rounded down to a 1. so, redo the entire
+# operation using RZ as the rounding mode to see what the pre-rounded
+# result is. this case should be relatively rare.
+#
+	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# keep rnd prec
+	ori.b		&rz_mode*0x10,%d1	# insert RZ
+
+	fmov.l		%d1,%fpcr		# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fdiv.x		FP_SCR0(%a6),%fp1	# execute divide
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fabs.x		%fp1			# make absolute value
+	fcmp.b		%fp1,&0x1		# is |result| < 1.b?
+	fbge.w		fdiv_normal_exit	# no; no underflow occurred
+	bra.w		fdiv_unfl		# yes; underflow occurred
+
+############################################################################
+
+#
+# Divide: inputs are not both normalized; what are they?
+#
+fdiv_not_norm:
+	mov.w		(tbl_fdiv_op.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_fdiv_op.b,%pc,%d1.w*1)
+
+	swbeg		&48
+tbl_fdiv_op:
+	short		fdiv_norm	- tbl_fdiv_op # NORM / NORM
+	short		fdiv_inf_load	- tbl_fdiv_op # NORM / ZERO
+	short		fdiv_zero_load	- tbl_fdiv_op # NORM / INF
+	short		fdiv_res_qnan	- tbl_fdiv_op # NORM / QNAN
+	short		fdiv_norm	- tbl_fdiv_op # NORM / DENORM
+	short		fdiv_res_snan	- tbl_fdiv_op # NORM / SNAN
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+
+	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / NORM
+	short		fdiv_res_operr	- tbl_fdiv_op # ZERO / ZERO
+	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / INF
+	short		fdiv_res_qnan	- tbl_fdiv_op # ZERO / QNAN
+	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / DENORM
+	short		fdiv_res_snan	- tbl_fdiv_op # ZERO / SNAN
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+
+	short		fdiv_inf_dst	- tbl_fdiv_op # INF / NORM
+	short		fdiv_inf_dst	- tbl_fdiv_op # INF / ZERO
+	short		fdiv_res_operr	- tbl_fdiv_op # INF / INF
+	short		fdiv_res_qnan	- tbl_fdiv_op # INF / QNAN
+	short		fdiv_inf_dst	- tbl_fdiv_op # INF / DENORM
+	short		fdiv_res_snan	- tbl_fdiv_op # INF / SNAN
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+
+	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / NORM
+	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / ZERO
+	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / INF
+	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / QNAN
+	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / DENORM
+	short		fdiv_res_snan	- tbl_fdiv_op # QNAN / SNAN
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+
+	short		fdiv_norm	- tbl_fdiv_op # DENORM / NORM
+	short		fdiv_inf_load	- tbl_fdiv_op # DENORM / ZERO
+	short		fdiv_zero_load	- tbl_fdiv_op # DENORM / INF
+	short		fdiv_res_qnan	- tbl_fdiv_op # DENORM / QNAN
+	short		fdiv_norm	- tbl_fdiv_op # DENORM / DENORM
+	short		fdiv_res_snan	- tbl_fdiv_op # DENORM / SNAN
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+
+	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / NORM
+	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / ZERO
+	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / INF
+	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / QNAN
+	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / DENORM
+	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / SNAN
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+	short		tbl_fdiv_op	- tbl_fdiv_op #
+
+fdiv_res_qnan:
+	bra.l		res_qnan
+fdiv_res_snan:
+	bra.l		res_snan
+fdiv_res_operr:
+	bra.l		res_operr
+
+	global		fdiv_zero_load		# global for fsgldiv
+fdiv_zero_load:
+	mov.b		SRC_EX(%a0),%d0		# result sign is exclusive
+	mov.b		DST_EX(%a1),%d1		# or of input signs.
+	eor.b		%d0,%d1
+	bpl.b		fdiv_zero_load_p	# result is positive
+	fmov.s		&0x80000000,%fp0	# load a -ZERO
+	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set Z/N
+	rts
+fdiv_zero_load_p:
+	fmov.s		&0x00000000,%fp0	# load a +ZERO
+	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z
+	rts
+
+#
+# The destination was In Range and the source was a ZERO. The result,
+# therefore, is an INF w/ the proper sign.
+# So, determine the sign and return a new INF (w/ the j-bit cleared).
+#
+	global		fdiv_inf_load		# global for fsgldiv
+fdiv_inf_load:
+	ori.w		&dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ
+	mov.b		SRC_EX(%a0),%d0		# load both signs
+	mov.b		DST_EX(%a1),%d1
+	eor.b		%d0,%d1
+	bpl.b		fdiv_inf_load_p		# result is positive
+	fmov.s		&0xff800000,%fp0	# make result -INF
+	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
+	rts
+fdiv_inf_load_p:
+	fmov.s		&0x7f800000,%fp0	# make result +INF
+	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF
+	rts
+
+#
+# The destination was an INF w/ an In Range or ZERO source, the result is
+# an INF w/ the proper sign.
+# The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the
+# dst INF is set, then then j-bit of the result INF is also set).
+#
+	global		fdiv_inf_dst		# global for fsgldiv
+fdiv_inf_dst:
+	mov.b		DST_EX(%a1),%d0		# load both signs
+	mov.b		SRC_EX(%a0),%d1
+	eor.b		%d0,%d1
+	bpl.b		fdiv_inf_dst_p		# result is positive
+
+	fmovm.x		DST(%a1),&0x80		# return result in fp0
+	fabs.x		%fp0			# clear sign bit
+	fneg.x		%fp0			# set sign bit
+	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG
+	rts
+
+fdiv_inf_dst_p:
+	fmovm.x		DST(%a1),&0x80		# return result in fp0
+	fabs.x		%fp0			# return positive INF
+	mov.b		&inf_bmask,FPSR_CC(%a6) # set INF
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fneg(): emulates the fneg instruction				#
+#	fsneg(): emulates the fsneg instruction				#
+#	fdneg(): emulates the fdneg instruction				#
+#									#
+# XREF ****************************************************************	#
+#	norm() - normalize a denorm to provide EXOP			#
+#	scale_to_zero_src() - scale sgl/dbl source exponent		#
+#	ovf_res() - return default overflow result			#
+#	unf_res() - return default underflow result			#
+#	res_qnan_1op() - return QNAN result				#
+#	res_snan_1op() - return SNAN result				#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	d0 = rnd prec,mode						#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = result							#
+#	fp1 = EXOP (if exception occurred)				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Handle NANs, zeroes, and infinities as special cases. Separate	#
+# norms/denorms into ext/sgl/dbl precisions. Extended precision can be	#
+# emulated by simply setting sign bit. Sgl/dbl operands must be scaled	#
+# and an actual fneg performed to see if overflow/underflow would have	#
+# occurred. If so, return default underflow/overflow result. Else,	#
+# scale the result exponent and return result. FPSR gets set based on	#
+# the result value.							#
+#									#
+#########################################################################
+
+	global		fsneg
+fsneg:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&s_mode*0x10,%d0	# insert sgl precision
+	bra.b		fneg
+
+	global		fdneg
+fdneg:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&d_mode*0x10,%d0	# insert dbl prec
+
+	global		fneg
+fneg:
+	mov.l		%d0,L_SCR3(%a6)		# store rnd info
+	mov.b		STAG(%a6),%d1
+	bne.w		fneg_not_norm		# optimize on non-norm input
+
+#
+# NEGATE SIGN : norms and denorms ONLY!
+#
+fneg_norm:
+	andi.b		&0xc0,%d0		# is precision extended?
+	bne.w		fneg_not_ext		# no; go handle sgl or dbl
+
+#
+# precision selected is extended. so...we can not get an underflow
+# or overflow because of rounding to the correct precision. so...
+# skip the scaling and unscaling...
+#
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	mov.w		SRC_EX(%a0),%d0
+	eori.w		&0x8000,%d0		# negate sign
+	bpl.b		fneg_norm_load		# sign is positive
+	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit
+fneg_norm_load:
+	mov.w		%d0,FP_SCR0_EX(%a6)
+	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0
+	rts
+
+#
+# for an extended precision DENORM, the UNFL exception bit is set
+# the accrued bit is NOT set in this instance(no inexactness!)
+#
+fneg_denorm:
+	andi.b		&0xc0,%d0		# is precision extended?
+	bne.b		fneg_not_ext		# no; go handle sgl or dbl
+
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	mov.w		SRC_EX(%a0),%d0
+	eori.w		&0x8000,%d0		# negate sign
+	bpl.b		fneg_denorm_done	# no
+	mov.b		&neg_bmask,FPSR_CC(%a6)	# yes, set 'N' ccode bit
+fneg_denorm_done:
+	mov.w		%d0,FP_SCR0_EX(%a6)
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+
+	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
+	bne.b		fneg_ext_unfl_ena	# yes
+	rts
+
+#
+# the input is an extended DENORM and underflow is enabled in the FPCR.
+# normalize the mantissa and add the bias of 0x6000 to the resulting negative
+# exponent and insert back into the operand.
+#
+fneg_ext_unfl_ena:
+	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand
+	bsr.l		norm			# normalize result
+	neg.w		%d0			# new exponent = -(shft val)
+	addi.w		&0x6000,%d0		# add new bias to exponent
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp
+	andi.w		&0x8000,%d1		# keep old sign
+	andi.w		&0x7fff,%d0		# clear sign position
+	or.w		%d1,%d0			# concat old sign, new exponent
+	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	rts
+
+#
+# operand is either single or double
+#
+fneg_not_ext:
+	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec
+	bne.b		fneg_dbl
+
+#
+# operand is to be rounded to single precision
+#
+fneg_sgl:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	bsr.l		scale_to_zero_src	# calculate scale factor
+
+	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow?
+	bge.w		fneg_sd_unfl		# yes; go handle underflow
+	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow?
+	beq.w		fneg_sd_may_ovfl	# maybe; go check
+	blt.w		fneg_sd_ovfl		# yes; go handle overflow
+
+#
+# operand will NOT overflow or underflow when moved in to the fp reg file
+#
+fneg_sd_normal:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fneg.x		FP_SCR0(%a6),%fp0	# perform negation
+
+	fmov.l		%fpsr,%d1		# save FPSR
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fneg_sd_normal_exit:
+	mov.l		%d2,-(%sp)		# save d2
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp
+	mov.w		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	sub.l		%d0,%d1			# add scale factor
+	andi.w		&0x8000,%d2		# keep old sign
+	or.w		%d1,%d2			# concat old sign,new exp
+	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0
+	rts
+
+#
+# operand is to be rounded to double precision
+#
+fneg_dbl:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	bsr.l		scale_to_zero_src	# calculate scale factor
+
+	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow?
+	bge.b		fneg_sd_unfl		# yes; go handle underflow
+	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow?
+	beq.w		fneg_sd_may_ovfl	# maybe; go check
+	blt.w		fneg_sd_ovfl		# yes; go handle overflow
+	bra.w		fneg_sd_normal		# no; ho handle normalized op
+
+#
+# operand WILL underflow when moved in to the fp register file
+#
+fneg_sd_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+	eori.b		&0x80,FP_SCR0_EX(%a6)	# negate sign
+	bpl.b		fneg_sd_unfl_tst
+	bset		&neg_bit,FPSR_CC(%a6)	# set 'N' ccode bit
+
+# if underflow or inexact is enabled, go calculate EXOP first.
+fneg_sd_unfl_tst:
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0b,%d1		# is UNFL or INEX enabled?
+	bne.b		fneg_sd_unfl_ena	# yes
+
+fneg_sd_unfl_dis:
+	lea		FP_SCR0(%a6),%a0	# pass: result addr
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# unf_res may have set 'Z'
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+	rts
+
+#
+# operand will underflow AND underflow is enabled.
+# therefore, we must return the result rounded to extended precision.
+#
+fneg_sd_unfl_ena:
+	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
+	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
+	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent
+
+	mov.l		%d2,-(%sp)		# save d2
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# subtract scale factor
+	addi.l		&0x6000,%d1		# add new bias
+	andi.w		&0x7fff,%d1
+	or.w		%d2,%d1			# concat new sign,new exp
+	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp
+	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1
+	mov.l		(%sp)+,%d2		# restore d2
+	bra.b		fneg_sd_unfl_dis
+
+#
+# operand WILL overflow.
+#
+fneg_sd_ovfl:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fneg.x		FP_SCR0(%a6),%fp0	# perform negation
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# save FPSR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fneg_sd_ovfl_tst:
+	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x13,%d1		# is OVFL or INEX enabled?
+	bne.b		fneg_sd_ovfl_ena	# yes
+
+#
+# OVFL is not enabled; therefore, we must create the default result by
+# calling ovf_res().
+#
+fneg_sd_ovfl_dis:
+	btst		&neg_bit,FPSR_CC(%a6)	# is result negative?
+	sne		%d1			# set sign param accordingly
+	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode
+	bsr.l		ovf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable
+	fmovm.x		(%a0),&0x80		# return default result in fp0
+	rts
+
+#
+# OVFL is enabled.
+# the INEX2 bit has already been updated by the round to the correct precision.
+# now, round to extended(and don't alter the FPSR).
+#
+fneg_sd_ovfl_ena:
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	subi.l		&0x6000,%d1		# subtract bias
+	andi.w		&0x7fff,%d1
+	or.w		%d2,%d1			# concat sign,exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	mov.l		(%sp)+,%d2		# restore d2
+	bra.b		fneg_sd_ovfl_dis
+
+#
+# the move in MAY underflow. so...
+#
+fneg_sd_may_ovfl:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fneg.x		FP_SCR0(%a6),%fp0	# perform negation
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	fabs.x		%fp0,%fp1		# make a copy of result
+	fcmp.b		%fp1,&0x2		# is |result| >= 2.b?
+	fbge.w		fneg_sd_ovfl_tst	# yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+	bra.w		fneg_sd_normal_exit
+
+##########################################################################
+
+#
+# input is not normalized; what is it?
+#
+fneg_not_norm:
+	cmpi.b		%d1,&DENORM		# weed out DENORM
+	beq.w		fneg_denorm
+	cmpi.b		%d1,&SNAN		# weed out SNAN
+	beq.l		res_snan_1op
+	cmpi.b		%d1,&QNAN		# weed out QNAN
+	beq.l		res_qnan_1op
+
+#
+# do the fneg; at this point, only possible ops are ZERO and INF.
+# use fneg to determine ccodes.
+# prec:mode should be zero at this point but it won't affect answer anyways.
+#
+	fneg.x		SRC_EX(%a0),%fp0	# do fneg
+	fmov.l		%fpsr,%d0
+	rol.l		&0x8,%d0		# put ccodes in lo byte
+	mov.b		%d0,FPSR_CC(%a6)	# insert correct ccodes
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	ftst(): emulates the ftest instruction				#
+#									#
+# XREF ****************************************************************	#
+#	res{s,q}nan_1op() - set NAN result for monadic instruction	#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#									#
+# OUTPUT **************************************************************	#
+#	none								#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Check the source operand tag (STAG) and set the FPCR according	#
+# to the operand type and sign.						#
+#									#
+#########################################################################
+
+	global		ftst
+ftst:
+	mov.b		STAG(%a6),%d1
+	bne.b		ftst_not_norm		# optimize on non-norm input
+
+#
+# Norm:
+#
+ftst_norm:
+	tst.b		SRC_EX(%a0)		# is operand negative?
+	bmi.b		ftst_norm_m		# yes
+	rts
+ftst_norm_m:
+	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit
+	rts
+
+#
+# input is not normalized; what is it?
+#
+ftst_not_norm:
+	cmpi.b		%d1,&ZERO		# weed out ZERO
+	beq.b		ftst_zero
+	cmpi.b		%d1,&INF		# weed out INF
+	beq.b		ftst_inf
+	cmpi.b		%d1,&SNAN		# weed out SNAN
+	beq.l		res_snan_1op
+	cmpi.b		%d1,&QNAN		# weed out QNAN
+	beq.l		res_qnan_1op
+
+#
+# Denorm:
+#
+ftst_denorm:
+	tst.b		SRC_EX(%a0)		# is operand negative?
+	bmi.b		ftst_denorm_m		# yes
+	rts
+ftst_denorm_m:
+	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit
+	rts
+
+#
+# Infinity:
+#
+ftst_inf:
+	tst.b		SRC_EX(%a0)		# is operand negative?
+	bmi.b		ftst_inf_m		# yes
+ftst_inf_p:
+	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit
+	rts
+ftst_inf_m:
+	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits
+	rts
+
+#
+# Zero:
+#
+ftst_zero:
+	tst.b		SRC_EX(%a0)		# is operand negative?
+	bmi.b		ftst_zero_m		# yes
+ftst_zero_p:
+	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'N' ccode bit
+	rts
+ftst_zero_m:
+	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set 'Z','N' ccode bits
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fint(): emulates the fint instruction				#
+#									#
+# XREF ****************************************************************	#
+#	res_{s,q}nan_1op() - set NAN result for monadic operation	#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	d0 = round precision/mode					#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = result							#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Separate according to operand type. Unnorms don't pass through	#
+# here. For norms, load the rounding mode/prec, execute a "fint", then	#
+# store the resulting FPSR bits.					#
+#	For denorms, force the j-bit to a one and do the same as for	#
+# norms. Denorms are so low that the answer will either be a zero or a	#
+# one.									#
+#	For zeroes/infs/NANs, return the same while setting the FPSR	#
+# as appropriate.							#
+#									#
+#########################################################################
+
+	global		fint
+fint:
+	mov.b		STAG(%a6),%d1
+	bne.b		fint_not_norm		# optimize on non-norm input
+
+#
+# Norm:
+#
+fint_norm:
+	andi.b		&0x30,%d0		# set prec = ext
+
+	fmov.l		%d0,%fpcr		# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fint.x		SRC(%a0),%fp0		# execute fint
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d0		# save FPSR
+	or.l		%d0,USER_FPSR(%a6)	# set exception bits
+
+	rts
+
+#
+# input is not normalized; what is it?
+#
+fint_not_norm:
+	cmpi.b		%d1,&ZERO		# weed out ZERO
+	beq.b		fint_zero
+	cmpi.b		%d1,&INF		# weed out INF
+	beq.b		fint_inf
+	cmpi.b		%d1,&DENORM		# weed out DENORM
+	beq.b		fint_denorm
+	cmpi.b		%d1,&SNAN		# weed out SNAN
+	beq.l		res_snan_1op
+	bra.l		res_qnan_1op		# weed out QNAN
+
+#
+# Denorm:
+#
+# for DENORMs, the result will be either (+/-)ZERO or (+/-)1.
+# also, the INEX2 and AINEX exception bits will be set.
+# so, we could either set these manually or force the DENORM
+# to a very small NORM and ship it to the NORM routine.
+# I do the latter.
+#
+fint_denorm:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
+	mov.b		&0x80,FP_SCR0_HI(%a6)	# force DENORM ==> small NORM
+	lea		FP_SCR0(%a6),%a0
+	bra.b		fint_norm
+
+#
+# Zero:
+#
+fint_zero:
+	tst.b		SRC_EX(%a0)		# is ZERO negative?
+	bmi.b		fint_zero_m		# yes
+fint_zero_p:
+	fmov.s		&0x00000000,%fp0	# return +ZERO in fp0
+	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit
+	rts
+fint_zero_m:
+	fmov.s		&0x80000000,%fp0	# return -ZERO in fp0
+	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
+	rts
+
+#
+# Infinity:
+#
+fint_inf:
+	fmovm.x		SRC(%a0),&0x80		# return result in fp0
+	tst.b		SRC_EX(%a0)		# is INF negative?
+	bmi.b		fint_inf_m		# yes
+fint_inf_p:
+	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit
+	rts
+fint_inf_m:
+	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fintrz(): emulates the fintrz instruction			#
+#									#
+# XREF ****************************************************************	#
+#	res_{s,q}nan_1op() - set NAN result for monadic operation	#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	d0 = round precision/mode					#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = result							#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Separate according to operand type. Unnorms don't pass through	#
+# here. For norms, load the rounding mode/prec, execute a "fintrz",	#
+# then store the resulting FPSR bits.					#
+#	For denorms, force the j-bit to a one and do the same as for	#
+# norms. Denorms are so low that the answer will either be a zero or a	#
+# one.									#
+#	For zeroes/infs/NANs, return the same while setting the FPSR	#
+# as appropriate.							#
+#									#
+#########################################################################
+
+	global		fintrz
+fintrz:
+	mov.b		STAG(%a6),%d1
+	bne.b		fintrz_not_norm		# optimize on non-norm input
+
+#
+# Norm:
+#
+fintrz_norm:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fintrz.x	SRC(%a0),%fp0		# execute fintrz
+
+	fmov.l		%fpsr,%d0		# save FPSR
+	or.l		%d0,USER_FPSR(%a6)	# set exception bits
+
+	rts
+
+#
+# input is not normalized; what is it?
+#
+fintrz_not_norm:
+	cmpi.b		%d1,&ZERO		# weed out ZERO
+	beq.b		fintrz_zero
+	cmpi.b		%d1,&INF		# weed out INF
+	beq.b		fintrz_inf
+	cmpi.b		%d1,&DENORM		# weed out DENORM
+	beq.b		fintrz_denorm
+	cmpi.b		%d1,&SNAN		# weed out SNAN
+	beq.l		res_snan_1op
+	bra.l		res_qnan_1op		# weed out QNAN
+
+#
+# Denorm:
+#
+# for DENORMs, the result will be (+/-)ZERO.
+# also, the INEX2 and AINEX exception bits will be set.
+# so, we could either set these manually or force the DENORM
+# to a very small NORM and ship it to the NORM routine.
+# I do the latter.
+#
+fintrz_denorm:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
+	mov.b		&0x80,FP_SCR0_HI(%a6)	# force DENORM ==> small NORM
+	lea		FP_SCR0(%a6),%a0
+	bra.b		fintrz_norm
+
+#
+# Zero:
+#
+fintrz_zero:
+	tst.b		SRC_EX(%a0)		# is ZERO negative?
+	bmi.b		fintrz_zero_m		# yes
+fintrz_zero_p:
+	fmov.s		&0x00000000,%fp0	# return +ZERO in fp0
+	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit
+	rts
+fintrz_zero_m:
+	fmov.s		&0x80000000,%fp0	# return -ZERO in fp0
+	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
+	rts
+
+#
+# Infinity:
+#
+fintrz_inf:
+	fmovm.x		SRC(%a0),&0x80		# return result in fp0
+	tst.b		SRC_EX(%a0)		# is INF negative?
+	bmi.b		fintrz_inf_m		# yes
+fintrz_inf_p:
+	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit
+	rts
+fintrz_inf_m:
+	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fabs():  emulates the fabs instruction				#
+#	fsabs(): emulates the fsabs instruction				#
+#	fdabs(): emulates the fdabs instruction				#
+#									#
+# XREF **************************************************************** #
+#	norm() - normalize denorm mantissa to provide EXOP		#
+#	scale_to_zero_src() - make exponent. = 0; get scale factor	#
+#	unf_res() - calculate underflow result				#
+#	ovf_res() - calculate overflow result				#
+#	res_{s,q}nan_1op() - set NAN result for monadic operation	#
+#									#
+# INPUT *************************************************************** #
+#	a0 = pointer to extended precision source operand		#
+#	d0 = rnd precision/mode						#
+#									#
+# OUTPUT ************************************************************** #
+#	fp0 = result							#
+#	fp1 = EXOP (if exception occurred)				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Handle NANs, infinities, and zeroes as special cases. Divide	#
+# norms into extended, single, and double precision.			#
+#	Simply clear sign for extended precision norm. Ext prec denorm	#
+# gets an EXOP created for it since it's an underflow.			#
+#	Double and single precision can overflow and underflow. First,	#
+# scale the operand such that the exponent is zero. Perform an "fabs"	#
+# using the correct rnd mode/prec. Check to see if the original		#
+# exponent would take an exception. If so, use unf_res() or ovf_res()	#
+# to calculate the default result. Also, create the EXOP for the	#
+# exceptional case. If no exception should occur, insert the correct	#
+# result exponent and return.						#
+#	Unnorms don't pass through here.				#
+#									#
+#########################################################################
+
+	global		fsabs
+fsabs:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&s_mode*0x10,%d0	# insert sgl precision
+	bra.b		fabs
+
+	global		fdabs
+fdabs:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&d_mode*0x10,%d0	# insert dbl precision
+
+	global		fabs
+fabs:
+	mov.l		%d0,L_SCR3(%a6)		# store rnd info
+	mov.b		STAG(%a6),%d1
+	bne.w		fabs_not_norm		# optimize on non-norm input
+
+#
+# ABSOLUTE VALUE: norms and denorms ONLY!
+#
+fabs_norm:
+	andi.b		&0xc0,%d0		# is precision extended?
+	bne.b		fabs_not_ext		# no; go handle sgl or dbl
+
+#
+# precision selected is extended. so...we can not get an underflow
+# or overflow because of rounding to the correct precision. so...
+# skip the scaling and unscaling...
+#
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	mov.w		SRC_EX(%a0),%d1
+	bclr		&15,%d1			# force absolute value
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert exponent
+	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0
+	rts
+
+#
+# for an extended precision DENORM, the UNFL exception bit is set
+# the accrued bit is NOT set in this instance(no inexactness!)
+#
+fabs_denorm:
+	andi.b		&0xc0,%d0		# is precision extended?
+	bne.b		fabs_not_ext		# no
+
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	mov.w		SRC_EX(%a0),%d0
+	bclr		&15,%d0			# clear sign
+	mov.w		%d0,FP_SCR0_EX(%a6)	# insert exponent
+
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+
+	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
+	bne.b		fabs_ext_unfl_ena
+	rts
+
+#
+# the input is an extended DENORM and underflow is enabled in the FPCR.
+# normalize the mantissa and add the bias of 0x6000 to the resulting negative
+# exponent and insert back into the operand.
+#
+fabs_ext_unfl_ena:
+	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand
+	bsr.l		norm			# normalize result
+	neg.w		%d0			# new exponent = -(shft val)
+	addi.w		&0x6000,%d0		# add new bias to exponent
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp
+	andi.w		&0x8000,%d1		# keep old sign
+	andi.w		&0x7fff,%d0		# clear sign position
+	or.w		%d1,%d0			# concat old sign, new exponent
+	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	rts
+
+#
+# operand is either single or double
+#
+fabs_not_ext:
+	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec
+	bne.b		fabs_dbl
+
+#
+# operand is to be rounded to single precision
+#
+fabs_sgl:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	bsr.l		scale_to_zero_src	# calculate scale factor
+
+	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow?
+	bge.w		fabs_sd_unfl		# yes; go handle underflow
+	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow?
+	beq.w		fabs_sd_may_ovfl	# maybe; go check
+	blt.w		fabs_sd_ovfl		# yes; go handle overflow
+
+#
+# operand will NOT overflow or underflow when moved in to the fp reg file
+#
+fabs_sd_normal:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute
+
+	fmov.l		%fpsr,%d1		# save FPSR
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fabs_sd_normal_exit:
+	mov.l		%d2,-(%sp)		# save d2
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	sub.l		%d0,%d1			# add scale factor
+	andi.w		&0x8000,%d2		# keep old sign
+	or.w		%d1,%d2			# concat old sign,new exp
+	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0
+	rts
+
+#
+# operand is to be rounded to double precision
+#
+fabs_dbl:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	bsr.l		scale_to_zero_src	# calculate scale factor
+
+	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow?
+	bge.b		fabs_sd_unfl		# yes; go handle underflow
+	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow?
+	beq.w		fabs_sd_may_ovfl	# maybe; go check
+	blt.w		fabs_sd_ovfl		# yes; go handle overflow
+	bra.w		fabs_sd_normal		# no; ho handle normalized op
+
+#
+# operand WILL underflow when moved in to the fp register file
+#
+fabs_sd_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+	bclr		&0x7,FP_SCR0_EX(%a6)	# force absolute value
+
+# if underflow or inexact is enabled, go calculate EXOP first.
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0b,%d1		# is UNFL or INEX enabled?
+	bne.b		fabs_sd_unfl_ena	# yes
+
+fabs_sd_unfl_dis:
+	lea		FP_SCR0(%a6),%a0	# pass: result addr
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set possible 'Z' ccode
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+	rts
+
+#
+# operand will underflow AND underflow is enabled.
+# therefore, we must return the result rounded to extended precision.
+#
+fabs_sd_unfl_ena:
+	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
+	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
+	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent
+
+	mov.l		%d2,-(%sp)		# save d2
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# subtract scale factor
+	addi.l		&0x6000,%d1		# add new bias
+	andi.w		&0x7fff,%d1
+	or.w		%d2,%d1			# concat new sign,new exp
+	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp
+	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1
+	mov.l		(%sp)+,%d2		# restore d2
+	bra.b		fabs_sd_unfl_dis
+
+#
+# operand WILL overflow.
+#
+fabs_sd_ovfl:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# save FPSR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fabs_sd_ovfl_tst:
+	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x13,%d1		# is OVFL or INEX enabled?
+	bne.b		fabs_sd_ovfl_ena	# yes
+
+#
+# OVFL is not enabled; therefore, we must create the default result by
+# calling ovf_res().
+#
+fabs_sd_ovfl_dis:
+	btst		&neg_bit,FPSR_CC(%a6)	# is result negative?
+	sne		%d1			# set sign param accordingly
+	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode
+	bsr.l		ovf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable
+	fmovm.x		(%a0),&0x80		# return default result in fp0
+	rts
+
+#
+# OVFL is enabled.
+# the INEX2 bit has already been updated by the round to the correct precision.
+# now, round to extended(and don't alter the FPSR).
+#
+fabs_sd_ovfl_ena:
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	subi.l		&0x6000,%d1		# subtract bias
+	andi.w		&0x7fff,%d1
+	or.w		%d2,%d1			# concat sign,exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	mov.l		(%sp)+,%d2		# restore d2
+	bra.b		fabs_sd_ovfl_dis
+
+#
+# the move in MAY underflow. so...
+#
+fabs_sd_may_ovfl:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	fabs.x		%fp0,%fp1		# make a copy of result
+	fcmp.b		%fp1,&0x2		# is |result| >= 2.b?
+	fbge.w		fabs_sd_ovfl_tst	# yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+	bra.w		fabs_sd_normal_exit
+
+##########################################################################
+
+#
+# input is not normalized; what is it?
+#
+fabs_not_norm:
+	cmpi.b		%d1,&DENORM		# weed out DENORM
+	beq.w		fabs_denorm
+	cmpi.b		%d1,&SNAN		# weed out SNAN
+	beq.l		res_snan_1op
+	cmpi.b		%d1,&QNAN		# weed out QNAN
+	beq.l		res_qnan_1op
+
+	fabs.x		SRC(%a0),%fp0		# force absolute value
+
+	cmpi.b		%d1,&INF		# weed out INF
+	beq.b		fabs_inf
+fabs_zero:
+	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit
+	rts
+fabs_inf:
+	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fcmp(): fp compare op routine					#
+#									#
+# XREF ****************************************************************	#
+#	res_qnan() - return QNAN result					#
+#	res_snan() - return SNAN result					#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	a1 = pointer to extended precision destination operand		#
+#	d0 = round prec/mode						#
+#									#
+# OUTPUT ************************************************************** #
+#	None								#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Handle NANs and denorms as special cases. For everything else,	#
+# just use the actual fcmp instruction to produce the correct condition	#
+# codes.								#
+#									#
+#########################################################################
+
+	global		fcmp
+fcmp:
+	clr.w		%d1
+	mov.b		DTAG(%a6),%d1
+	lsl.b		&0x3,%d1
+	or.b		STAG(%a6),%d1
+	bne.b		fcmp_not_norm		# optimize on non-norm input
+
+#
+# COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs
+#
+fcmp_norm:
+	fmovm.x		DST(%a1),&0x80		# load dst op
+
+	fcmp.x		%fp0,SRC(%a0)		# do compare
+
+	fmov.l		%fpsr,%d0		# save FPSR
+	rol.l		&0x8,%d0		# extract ccode bits
+	mov.b		%d0,FPSR_CC(%a6)	# set ccode bits(no exc bits are set)
+
+	rts
+
+#
+# fcmp: inputs are not both normalized; what are they?
+#
+fcmp_not_norm:
+	mov.w		(tbl_fcmp_op.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_fcmp_op.b,%pc,%d1.w*1)
+
+	swbeg		&48
+tbl_fcmp_op:
+	short		fcmp_norm	- tbl_fcmp_op # NORM - NORM
+	short		fcmp_norm	- tbl_fcmp_op # NORM - ZERO
+	short		fcmp_norm	- tbl_fcmp_op # NORM - INF
+	short		fcmp_res_qnan	- tbl_fcmp_op # NORM - QNAN
+	short		fcmp_nrm_dnrm	- tbl_fcmp_op # NORM - DENORM
+	short		fcmp_res_snan	- tbl_fcmp_op # NORM - SNAN
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+
+	short		fcmp_norm	- tbl_fcmp_op # ZERO - NORM
+	short		fcmp_norm	- tbl_fcmp_op # ZERO - ZERO
+	short		fcmp_norm	- tbl_fcmp_op # ZERO - INF
+	short		fcmp_res_qnan	- tbl_fcmp_op # ZERO - QNAN
+	short		fcmp_dnrm_s	- tbl_fcmp_op # ZERO - DENORM
+	short		fcmp_res_snan	- tbl_fcmp_op # ZERO - SNAN
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+
+	short		fcmp_norm	- tbl_fcmp_op # INF - NORM
+	short		fcmp_norm	- tbl_fcmp_op # INF - ZERO
+	short		fcmp_norm	- tbl_fcmp_op # INF - INF
+	short		fcmp_res_qnan	- tbl_fcmp_op # INF - QNAN
+	short		fcmp_dnrm_s	- tbl_fcmp_op # INF - DENORM
+	short		fcmp_res_snan	- tbl_fcmp_op # INF - SNAN
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+
+	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - NORM
+	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - ZERO
+	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - INF
+	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - QNAN
+	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - DENORM
+	short		fcmp_res_snan	- tbl_fcmp_op # QNAN - SNAN
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+
+	short		fcmp_dnrm_nrm	- tbl_fcmp_op # DENORM - NORM
+	short		fcmp_dnrm_d	- tbl_fcmp_op # DENORM - ZERO
+	short		fcmp_dnrm_d	- tbl_fcmp_op # DENORM - INF
+	short		fcmp_res_qnan	- tbl_fcmp_op # DENORM - QNAN
+	short		fcmp_dnrm_sd	- tbl_fcmp_op # DENORM - DENORM
+	short		fcmp_res_snan	- tbl_fcmp_op # DENORM - SNAN
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+
+	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - NORM
+	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - ZERO
+	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - INF
+	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - QNAN
+	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - DENORM
+	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - SNAN
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+	short		tbl_fcmp_op	- tbl_fcmp_op #
+
+# unlike all other functions for QNAN and SNAN, fcmp does NOT set the
+# 'N' bit for a negative QNAN or SNAN input so we must squelch it here.
+fcmp_res_qnan:
+	bsr.l		res_qnan
+	andi.b		&0xf7,FPSR_CC(%a6)
+	rts
+fcmp_res_snan:
+	bsr.l		res_snan
+	andi.b		&0xf7,FPSR_CC(%a6)
+	rts
+
+#
+# DENORMs are a little more difficult.
+# If you have a 2 DENORMs, then you can just force the j-bit to a one
+# and use the fcmp_norm routine.
+# If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one
+# and use the fcmp_norm routine.
+# If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also.
+# But with a DENORM and a NORM of the same sign, the neg bit is set if the
+# (1) signs are (+) and the DENORM is the dst or
+# (2) signs are (-) and the DENORM is the src
+#
+
+fcmp_dnrm_s:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),%d0
+	bset		&31,%d0			# DENORM src; make into small norm
+	mov.l		%d0,FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	lea		FP_SCR0(%a6),%a0
+	bra.w		fcmp_norm
+
+fcmp_dnrm_d:
+	mov.l		DST_EX(%a1),FP_SCR0_EX(%a6)
+	mov.l		DST_HI(%a1),%d0
+	bset		&31,%d0			# DENORM src; make into small norm
+	mov.l		%d0,FP_SCR0_HI(%a6)
+	mov.l		DST_LO(%a1),FP_SCR0_LO(%a6)
+	lea		FP_SCR0(%a6),%a1
+	bra.w		fcmp_norm
+
+fcmp_dnrm_sd:
+	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6)
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		DST_HI(%a1),%d0
+	bset		&31,%d0			# DENORM dst; make into small norm
+	mov.l		%d0,FP_SCR1_HI(%a6)
+	mov.l		SRC_HI(%a0),%d0
+	bset		&31,%d0			# DENORM dst; make into small norm
+	mov.l		%d0,FP_SCR0_HI(%a6)
+	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	lea		FP_SCR1(%a6),%a1
+	lea		FP_SCR0(%a6),%a0
+	bra.w		fcmp_norm
+
+fcmp_nrm_dnrm:
+	mov.b		SRC_EX(%a0),%d0		# determine if like signs
+	mov.b		DST_EX(%a1),%d1
+	eor.b		%d0,%d1
+	bmi.w		fcmp_dnrm_s
+
+# signs are the same, so must determine the answer ourselves.
+	tst.b		%d0			# is src op negative?
+	bmi.b		fcmp_nrm_dnrm_m		# yes
+	rts
+fcmp_nrm_dnrm_m:
+	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit
+	rts
+
+fcmp_dnrm_nrm:
+	mov.b		SRC_EX(%a0),%d0		# determine if like signs
+	mov.b		DST_EX(%a1),%d1
+	eor.b		%d0,%d1
+	bmi.w		fcmp_dnrm_d
+
+# signs are the same, so must determine the answer ourselves.
+	tst.b		%d0			# is src op negative?
+	bpl.b		fcmp_dnrm_nrm_m		# no
+	rts
+fcmp_dnrm_nrm_m:
+	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fsglmul(): emulates the fsglmul instruction			#
+#									#
+# XREF ****************************************************************	#
+#	scale_to_zero_src() - scale src exponent to zero		#
+#	scale_to_zero_dst() - scale dst exponent to zero		#
+#	unf_res4() - return default underflow result for sglop		#
+#	ovf_res() - return default overflow result			#
+#	res_qnan() - return QNAN result					#
+#	res_snan() - return SNAN result					#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	a1 = pointer to extended precision destination operand		#
+#	d0  rnd prec,mode						#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = result							#
+#	fp1 = EXOP (if exception occurred)				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Handle NANs, infinities, and zeroes as special cases. Divide	#
+# norms/denorms into ext/sgl/dbl precision.				#
+#	For norms/denorms, scale the exponents such that a multiply	#
+# instruction won't cause an exception. Use the regular fsglmul to	#
+# compute a result. Check if the regular operands would have taken	#
+# an exception. If so, return the default overflow/underflow result	#
+# and return the EXOP if exceptions are enabled. Else, scale the	#
+# result operand to the proper exponent.				#
+#									#
+#########################################################################
+
+	global		fsglmul
+fsglmul:
+	mov.l		%d0,L_SCR3(%a6)		# store rnd info
+
+	clr.w		%d1
+	mov.b		DTAG(%a6),%d1
+	lsl.b		&0x3,%d1
+	or.b		STAG(%a6),%d1
+
+	bne.w		fsglmul_not_norm	# optimize on non-norm input
+
+fsglmul_norm:
+	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6)
+	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6)
+	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6)
+
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+	bsr.l		scale_to_zero_src	# scale exponent
+	mov.l		%d0,-(%sp)		# save scale factor 1
+
+	bsr.l		scale_to_zero_dst	# scale dst exponent
+
+	add.l		(%sp)+,%d0		# SCALE_FACTOR = scale1 + scale2
+
+	cmpi.l		%d0,&0x3fff-0x7ffe	# would result ovfl?
+	beq.w		fsglmul_may_ovfl	# result may rnd to overflow
+	blt.w		fsglmul_ovfl		# result will overflow
+
+	cmpi.l		%d0,&0x3fff+0x0001	# would result unfl?
+	beq.w		fsglmul_may_unfl	# result may rnd to no unfl
+	bgt.w		fsglmul_unfl		# result will underflow
+
+fsglmul_normal:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fsglmul_normal_exit:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	or.w		%d2,%d1			# concat old sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0
+	rts
+
+fsglmul_ovfl:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fsglmul_ovfl_tst:
+
+# save setting this until now because this is where fsglmul_may_ovfl may jump in
+	or.l		&ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x13,%d1		# is OVFL or INEX enabled?
+	bne.b		fsglmul_ovfl_ena	# yes
+
+fsglmul_ovfl_dis:
+	btst		&neg_bit,FPSR_CC(%a6)	# is result negative?
+	sne		%d1			# set sign param accordingly
+	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd
+	andi.b		&0x30,%d0		# force prec = ext
+	bsr.l		ovf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable
+	fmovm.x		(%a0),&0x80		# return default result in fp0
+	rts
+
+fsglmul_ovfl_ena:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack
+
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	sub.l		%d0,%d1			# add scale factor
+	subi.l		&0x6000,%d1		# subtract bias
+	andi.w		&0x7fff,%d1
+	andi.w		&0x8000,%d2		# keep old sign
+	or.w		%d2,%d1			# concat old sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	bra.b		fsglmul_ovfl_dis
+
+fsglmul_may_ovfl:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	fabs.x		%fp0,%fp1		# make a copy of result
+	fcmp.b		%fp1,&0x2		# is |result| >= 2.b?
+	fbge.w		fsglmul_ovfl_tst	# yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+	bra.w		fsglmul_normal_exit
+
+fsglmul_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0b,%d1		# is UNFL or INEX enabled?
+	bne.b		fsglmul_unfl_ena	# yes
+
+fsglmul_unfl_dis:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+
+	lea		FP_SCR0(%a6),%a0	# pass: result addr
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res4		# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+	rts
+
+#
+# UNFL is enabled.
+#
+fsglmul_unfl_ena:
+	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsglmul.x	FP_SCR0(%a6),%fp1	# execute sgl multiply
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	addi.l		&0x6000,%d1		# add bias
+	andi.w		&0x7fff,%d1
+	or.w		%d2,%d1			# concat old sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	bra.w		fsglmul_unfl_dis
+
+fsglmul_may_unfl:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	fabs.x		%fp0,%fp1		# make a copy of result
+	fcmp.b		%fp1,&0x2		# is |result| > 2.b?
+	fbgt.w		fsglmul_normal_exit	# no; no underflow occurred
+	fblt.w		fsglmul_unfl		# yes; underflow occurred
+
+#
+# we still don't know if underflow occurred. result is ~ equal to 2. but,
+# we don't know if the result was an underflow that rounded up to a 2 or
+# a normalized number that rounded down to a 2. so, redo the entire operation
+# using RZ as the rounding mode to see what the pre-rounded result is.
+# this case should be relatively rare.
+#
+	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# keep rnd prec
+	ori.b		&rz_mode*0x10,%d1	# insert RZ
+
+	fmov.l		%d1,%fpcr		# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsglmul.x	FP_SCR0(%a6),%fp1	# execute sgl multiply
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fabs.x		%fp1			# make absolute value
+	fcmp.b		%fp1,&0x2		# is |result| < 2.b?
+	fbge.w		fsglmul_normal_exit	# no; no underflow occurred
+	bra.w		fsglmul_unfl		# yes, underflow occurred
+
+##############################################################################
+
+#
+# Single Precision Multiply: inputs are not both normalized; what are they?
+#
+fsglmul_not_norm:
+	mov.w		(tbl_fsglmul_op.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_fsglmul_op.b,%pc,%d1.w*1)
+
+	swbeg		&48
+tbl_fsglmul_op:
+	short		fsglmul_norm		- tbl_fsglmul_op # NORM x NORM
+	short		fsglmul_zero		- tbl_fsglmul_op # NORM x ZERO
+	short		fsglmul_inf_src		- tbl_fsglmul_op # NORM x INF
+	short		fsglmul_res_qnan	- tbl_fsglmul_op # NORM x QNAN
+	short		fsglmul_norm		- tbl_fsglmul_op # NORM x DENORM
+	short		fsglmul_res_snan	- tbl_fsglmul_op # NORM x SNAN
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+
+	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x NORM
+	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x ZERO
+	short		fsglmul_res_operr	- tbl_fsglmul_op # ZERO x INF
+	short		fsglmul_res_qnan	- tbl_fsglmul_op # ZERO x QNAN
+	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x DENORM
+	short		fsglmul_res_snan	- tbl_fsglmul_op # ZERO x SNAN
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+
+	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x NORM
+	short		fsglmul_res_operr	- tbl_fsglmul_op # INF x ZERO
+	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x INF
+	short		fsglmul_res_qnan	- tbl_fsglmul_op # INF x QNAN
+	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x DENORM
+	short		fsglmul_res_snan	- tbl_fsglmul_op # INF x SNAN
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+
+	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x NORM
+	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x ZERO
+	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x INF
+	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x QNAN
+	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x DENORM
+	short		fsglmul_res_snan	- tbl_fsglmul_op # QNAN x SNAN
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+
+	short		fsglmul_norm		- tbl_fsglmul_op # NORM x NORM
+	short		fsglmul_zero		- tbl_fsglmul_op # NORM x ZERO
+	short		fsglmul_inf_src		- tbl_fsglmul_op # NORM x INF
+	short		fsglmul_res_qnan	- tbl_fsglmul_op # NORM x QNAN
+	short		fsglmul_norm		- tbl_fsglmul_op # NORM x DENORM
+	short		fsglmul_res_snan	- tbl_fsglmul_op # NORM x SNAN
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+
+	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x NORM
+	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x ZERO
+	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x INF
+	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x QNAN
+	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x DENORM
+	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x SNAN
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+	short		tbl_fsglmul_op		- tbl_fsglmul_op #
+
+fsglmul_res_operr:
+	bra.l		res_operr
+fsglmul_res_snan:
+	bra.l		res_snan
+fsglmul_res_qnan:
+	bra.l		res_qnan
+fsglmul_zero:
+	bra.l		fmul_zero
+fsglmul_inf_src:
+	bra.l		fmul_inf_src
+fsglmul_inf_dst:
+	bra.l		fmul_inf_dst
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fsgldiv(): emulates the fsgldiv instruction			#
+#									#
+# XREF ****************************************************************	#
+#	scale_to_zero_src() - scale src exponent to zero		#
+#	scale_to_zero_dst() - scale dst exponent to zero		#
+#	unf_res4() - return default underflow result for sglop		#
+#	ovf_res() - return default overflow result			#
+#	res_qnan() - return QNAN result					#
+#	res_snan() - return SNAN result					#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	a1 = pointer to extended precision destination operand		#
+#	d0  rnd prec,mode						#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = result							#
+#	fp1 = EXOP (if exception occurred)				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Handle NANs, infinities, and zeroes as special cases. Divide	#
+# norms/denorms into ext/sgl/dbl precision.				#
+#	For norms/denorms, scale the exponents such that a divide	#
+# instruction won't cause an exception. Use the regular fsgldiv to	#
+# compute a result. Check if the regular operands would have taken	#
+# an exception. If so, return the default overflow/underflow result	#
+# and return the EXOP if exceptions are enabled. Else, scale the	#
+# result operand to the proper exponent.				#
+#									#
+#########################################################################
+
+	global		fsgldiv
+fsgldiv:
+	mov.l		%d0,L_SCR3(%a6)		# store rnd info
+
+	clr.w		%d1
+	mov.b		DTAG(%a6),%d1
+	lsl.b		&0x3,%d1
+	or.b		STAG(%a6),%d1		# combine src tags
+
+	bne.w		fsgldiv_not_norm	# optimize on non-norm input
+
+#
+# DIVIDE: NORMs and DENORMs ONLY!
+#
+fsgldiv_norm:
+	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6)
+	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6)
+	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6)
+
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+	bsr.l		scale_to_zero_src	# calculate scale factor 1
+	mov.l		%d0,-(%sp)		# save scale factor 1
+
+	bsr.l		scale_to_zero_dst	# calculate scale factor 2
+
+	neg.l		(%sp)			# S.F. = scale1 - scale2
+	add.l		%d0,(%sp)
+
+	mov.w		2+L_SCR3(%a6),%d1	# fetch precision,mode
+	lsr.b		&0x6,%d1
+	mov.l		(%sp)+,%d0
+	cmpi.l		%d0,&0x3fff-0x7ffe
+	ble.w		fsgldiv_may_ovfl
+
+	cmpi.l		%d0,&0x3fff-0x0000	# will result underflow?
+	beq.w		fsgldiv_may_unfl	# maybe
+	bgt.w		fsgldiv_unfl		# yes; go handle underflow
+
+fsgldiv_normal:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# save FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsgldiv.x	FP_SCR0(%a6),%fp0	# perform sgl divide
+
+	fmov.l		%fpsr,%d1		# save FPSR
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fsgldiv_normal_exit:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store result on stack
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	or.w		%d2,%d1			# concat old sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0
+	rts
+
+fsgldiv_may_ovfl:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# set FPSR
+
+	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute divide
+
+	fmov.l		%fpsr,%d1
+	fmov.l		&0x0,%fpcr
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX,N
+
+	fmovm.x		&0x01,-(%sp)		# save result to stack
+	mov.w		(%sp),%d1		# fetch new exponent
+	add.l		&0xc,%sp		# clear result
+	andi.l		&0x7fff,%d1		# strip sign
+	sub.l		%d0,%d1			# add scale factor
+	cmp.l		%d1,&0x7fff		# did divide overflow?
+	blt.b		fsgldiv_normal_exit
+
+fsgldiv_ovfl_tst:
+	or.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x13,%d1		# is OVFL or INEX enabled?
+	bne.b		fsgldiv_ovfl_ena	# yes
+
+fsgldiv_ovfl_dis:
+	btst		&neg_bit,FPSR_CC(%a6)	# is result negative
+	sne		%d1			# set sign param accordingly
+	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd
+	andi.b		&0x30,%d0		# kill precision
+	bsr.l		ovf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set INF if applicable
+	fmovm.x		(%a0),&0x80		# return default result in fp0
+	rts
+
+fsgldiv_ovfl_ena:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack
+
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	subi.l		&0x6000,%d1		# subtract new bias
+	andi.w		&0x7fff,%d1		# clear ms bit
+	or.w		%d2,%d1			# concat old sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	bra.b		fsgldiv_ovfl_dis
+
+fsgldiv_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute sgl divide
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0b,%d1		# is UNFL or INEX enabled?
+	bne.b		fsgldiv_unfl_ena	# yes
+
+fsgldiv_unfl_dis:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+
+	lea		FP_SCR0(%a6),%a0	# pass: result addr
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res4		# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+	rts
+
+#
+# UNFL is enabled.
+#
+fsgldiv_unfl_ena:
+	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsgldiv.x	FP_SCR0(%a6),%fp1	# execute sgl divide
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	addi.l		&0x6000,%d1		# add bias
+	andi.w		&0x7fff,%d1		# clear top bit
+	or.w		%d2,%d1			# concat old sign, new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	bra.b		fsgldiv_unfl_dis
+
+#
+# the divide operation MAY underflow:
+#
+fsgldiv_may_unfl:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute sgl divide
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	fabs.x		%fp0,%fp1		# make a copy of result
+	fcmp.b		%fp1,&0x1		# is |result| > 1.b?
+	fbgt.w		fsgldiv_normal_exit	# no; no underflow occurred
+	fblt.w		fsgldiv_unfl		# yes; underflow occurred
+
+#
+# we still don't know if underflow occurred. result is ~ equal to 1. but,
+# we don't know if the result was an underflow that rounded up to a 1
+# or a normalized number that rounded down to a 1. so, redo the entire
+# operation using RZ as the rounding mode to see what the pre-rounded
+# result is. this case should be relatively rare.
+#
+	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into %fp1
+
+	clr.l		%d1			# clear scratch register
+	ori.b		&rz_mode*0x10,%d1	# force RZ rnd mode
+
+	fmov.l		%d1,%fpcr		# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsgldiv.x	FP_SCR0(%a6),%fp1	# execute sgl divide
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fabs.x		%fp1			# make absolute value
+	fcmp.b		%fp1,&0x1		# is |result| < 1.b?
+	fbge.w		fsgldiv_normal_exit	# no; no underflow occurred
+	bra.w		fsgldiv_unfl		# yes; underflow occurred
+
+############################################################################
+
+#
+# Divide: inputs are not both normalized; what are they?
+#
+fsgldiv_not_norm:
+	mov.w		(tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_fsgldiv_op.b,%pc,%d1.w*1)
+
+	swbeg		&48
+tbl_fsgldiv_op:
+	short		fsgldiv_norm		- tbl_fsgldiv_op # NORM / NORM
+	short		fsgldiv_inf_load	- tbl_fsgldiv_op # NORM / ZERO
+	short		fsgldiv_zero_load	- tbl_fsgldiv_op # NORM / INF
+	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # NORM / QNAN
+	short		fsgldiv_norm		- tbl_fsgldiv_op # NORM / DENORM
+	short		fsgldiv_res_snan	- tbl_fsgldiv_op # NORM / SNAN
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+
+	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / NORM
+	short		fsgldiv_res_operr	- tbl_fsgldiv_op # ZERO / ZERO
+	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / INF
+	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # ZERO / QNAN
+	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / DENORM
+	short		fsgldiv_res_snan	- tbl_fsgldiv_op # ZERO / SNAN
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+
+	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / NORM
+	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / ZERO
+	short		fsgldiv_res_operr	- tbl_fsgldiv_op # INF / INF
+	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # INF / QNAN
+	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / DENORM
+	short		fsgldiv_res_snan	- tbl_fsgldiv_op # INF / SNAN
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+
+	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / NORM
+	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / ZERO
+	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / INF
+	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / QNAN
+	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / DENORM
+	short		fsgldiv_res_snan	- tbl_fsgldiv_op # QNAN / SNAN
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+
+	short		fsgldiv_norm		- tbl_fsgldiv_op # DENORM / NORM
+	short		fsgldiv_inf_load	- tbl_fsgldiv_op # DENORM / ZERO
+	short		fsgldiv_zero_load	- tbl_fsgldiv_op # DENORM / INF
+	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # DENORM / QNAN
+	short		fsgldiv_norm		- tbl_fsgldiv_op # DENORM / DENORM
+	short		fsgldiv_res_snan	- tbl_fsgldiv_op # DENORM / SNAN
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+
+	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / NORM
+	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / ZERO
+	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / INF
+	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / QNAN
+	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / DENORM
+	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / SNAN
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+	short		tbl_fsgldiv_op		- tbl_fsgldiv_op #
+
+fsgldiv_res_qnan:
+	bra.l		res_qnan
+fsgldiv_res_snan:
+	bra.l		res_snan
+fsgldiv_res_operr:
+	bra.l		res_operr
+fsgldiv_inf_load:
+	bra.l		fdiv_inf_load
+fsgldiv_zero_load:
+	bra.l		fdiv_zero_load
+fsgldiv_inf_dst:
+	bra.l		fdiv_inf_dst
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fadd(): emulates the fadd instruction				#
+#	fsadd(): emulates the fadd instruction				#
+#	fdadd(): emulates the fdadd instruction				#
+#									#
+# XREF ****************************************************************	#
+#	addsub_scaler2() - scale the operands so they won't take exc	#
+#	ovf_res() - return default overflow result			#
+#	unf_res() - return default underflow result			#
+#	res_qnan() - set QNAN result					#
+#	res_snan() - set SNAN result					#
+#	res_operr() - set OPERR result					#
+#	scale_to_zero_src() - set src operand exponent equal to zero	#
+#	scale_to_zero_dst() - set dst operand exponent equal to zero	#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	a1 = pointer to extended precision destination operand		#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = result							#
+#	fp1 = EXOP (if exception occurred)				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Handle NANs, infinities, and zeroes as special cases. Divide	#
+# norms into extended, single, and double precision.			#
+#	Do addition after scaling exponents such that exception won't	#
+# occur. Then, check result exponent to see if exception would have	#
+# occurred. If so, return default result and maybe EXOP. Else, insert	#
+# the correct result exponent and return. Set FPSR bits as appropriate.	#
+#									#
+#########################################################################
+
+	global		fsadd
+fsadd:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&s_mode*0x10,%d0	# insert sgl prec
+	bra.b		fadd
+
+	global		fdadd
+fdadd:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&d_mode*0x10,%d0	# insert dbl prec
+
+	global		fadd
+fadd:
+	mov.l		%d0,L_SCR3(%a6)		# store rnd info
+
+	clr.w		%d1
+	mov.b		DTAG(%a6),%d1
+	lsl.b		&0x3,%d1
+	or.b		STAG(%a6),%d1		# combine src tags
+
+	bne.w		fadd_not_norm		# optimize on non-norm input
+
+#
+# ADD: norms and denorms
+#
+fadd_norm:
+	bsr.l		addsub_scaler2		# scale exponents
+
+fadd_zero_entry:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fadd.x		FP_SCR0(%a6),%fp0	# execute add
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# fetch INEX2,N,Z
+
+	or.l		%d1,USER_FPSR(%a6)	# save exc and ccode bits
+
+	fbeq.w		fadd_zero_exit		# if result is zero, end now
+
+	mov.l		%d2,-(%sp)		# save d2
+
+	fmovm.x		&0x01,-(%sp)		# save result to stack
+
+	mov.w		2+L_SCR3(%a6),%d1
+	lsr.b		&0x6,%d1
+
+	mov.w		(%sp),%d2		# fetch new sign, exp
+	andi.l		&0x7fff,%d2		# strip sign
+	sub.l		%d0,%d2			# add scale factor
+
+	cmp.l		%d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow?
+	bge.b		fadd_ovfl		# yes
+
+	cmp.l		%d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow?
+	blt.w		fadd_unfl		# yes
+	beq.w		fadd_may_unfl		# maybe; go find out
+
+fadd_normal:
+	mov.w		(%sp),%d1
+	andi.w		&0x8000,%d1		# keep sign
+	or.w		%d2,%d1			# concat sign,new exp
+	mov.w		%d1,(%sp)		# insert new exponent
+
+	fmovm.x		(%sp)+,&0x80		# return result in fp0
+
+	mov.l		(%sp)+,%d2		# restore d2
+	rts
+
+fadd_zero_exit:
+#	fmov.s		&0x00000000,%fp0	# return zero in fp0
+	rts
+
+tbl_fadd_ovfl:
+	long		0x7fff			# ext ovfl
+	long		0x407f			# sgl ovfl
+	long		0x43ff			# dbl ovfl
+
+tbl_fadd_unfl:
+	long	        0x0000			# ext unfl
+	long		0x3f81			# sgl unfl
+	long		0x3c01			# dbl unfl
+
+fadd_ovfl:
+	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x13,%d1		# is OVFL or INEX enabled?
+	bne.b		fadd_ovfl_ena		# yes
+
+	add.l		&0xc,%sp
+fadd_ovfl_dis:
+	btst		&neg_bit,FPSR_CC(%a6)	# is result negative?
+	sne		%d1			# set sign param accordingly
+	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd
+	bsr.l		ovf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable
+	fmovm.x		(%a0),&0x80		# return default result in fp0
+	mov.l		(%sp)+,%d2		# restore d2
+	rts
+
+fadd_ovfl_ena:
+	mov.b		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# is precision extended?
+	bne.b		fadd_ovfl_ena_sd	# no; prec = sgl or dbl
+
+fadd_ovfl_ena_cont:
+	mov.w		(%sp),%d1
+	andi.w		&0x8000,%d1		# keep sign
+	subi.l		&0x6000,%d2		# add extra bias
+	andi.w		&0x7fff,%d2
+	or.w		%d2,%d1			# concat sign,new exp
+	mov.w		%d1,(%sp)		# insert new exponent
+
+	fmovm.x		(%sp)+,&0x40		# return EXOP in fp1
+	bra.b		fadd_ovfl_dis
+
+fadd_ovfl_ena_sd:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0x30,%d1		# keep rnd mode
+	fmov.l		%d1,%fpcr		# set FPCR
+
+	fadd.x		FP_SCR0(%a6),%fp0	# execute add
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	add.l		&0xc,%sp
+	fmovm.x		&0x01,-(%sp)
+	bra.b		fadd_ovfl_ena_cont
+
+fadd_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+	add.l		&0xc,%sp
+
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fadd.x		FP_SCR0(%a6),%fp0	# execute add
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# save status
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX,N
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0b,%d1		# is UNFL or INEX enabled?
+	bne.b		fadd_unfl_ena		# yes
+
+fadd_unfl_dis:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+
+	lea		FP_SCR0(%a6),%a0	# pass: result addr
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+	mov.l		(%sp)+,%d2		# restore d2
+	rts
+
+fadd_unfl_ena:
+	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# is precision extended?
+	bne.b		fadd_unfl_ena_sd	# no; sgl or dbl
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+fadd_unfl_ena_cont:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fadd.x		FP_SCR0(%a6),%fp1	# execute multiply
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	addi.l		&0x6000,%d1		# add new bias
+	andi.w		&0x7fff,%d1		# clear top bit
+	or.w		%d2,%d1			# concat sign,new exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	bra.w		fadd_unfl_dis
+
+fadd_unfl_ena_sd:
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0x30,%d1		# use only rnd mode
+	fmov.l		%d1,%fpcr		# set FPCR
+
+	bra.b		fadd_unfl_ena_cont
+
+#
+# result is equal to the smallest normalized number in the selected precision
+# if the precision is extended, this result could not have come from an
+# underflow that rounded up.
+#
+fadd_may_unfl:
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1
+	beq.w		fadd_normal		# yes; no underflow occurred
+
+	mov.l		0x4(%sp),%d1		# extract hi(man)
+	cmpi.l		%d1,&0x80000000		# is hi(man) = 0x80000000?
+	bne.w		fadd_normal		# no; no underflow occurred
+
+	tst.l		0x8(%sp)		# is lo(man) = 0x0?
+	bne.w		fadd_normal		# no; no underflow occurred
+
+	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
+	beq.w		fadd_normal		# no; no underflow occurred
+
+#
+# ok, so now the result has a exponent equal to the smallest normalized
+# exponent for the selected precision. also, the mantissa is equal to
+# 0x8000000000000000 and this mantissa is the result of rounding non-zero
+# g,r,s.
+# now, we must determine whether the pre-rounded result was an underflow
+# rounded "up" or a normalized number rounded "down".
+# so, we do this be re-executing the add using RZ as the rounding mode and
+# seeing if the new result is smaller or equal to the current result.
+#
+	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# keep rnd prec
+	ori.b		&rz_mode*0x10,%d1	# insert rnd mode
+	fmov.l		%d1,%fpcr		# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fadd.x		FP_SCR0(%a6),%fp1	# execute add
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	fabs.x		%fp0			# compare absolute values
+	fabs.x		%fp1
+	fcmp.x		%fp0,%fp1		# is first result > second?
+
+	fbgt.w		fadd_unfl		# yes; it's an underflow
+	bra.w		fadd_normal		# no; it's not an underflow
+
+##########################################################################
+
+#
+# Add: inputs are not both normalized; what are they?
+#
+fadd_not_norm:
+	mov.w		(tbl_fadd_op.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_fadd_op.b,%pc,%d1.w*1)
+
+	swbeg		&48
+tbl_fadd_op:
+	short		fadd_norm	- tbl_fadd_op # NORM + NORM
+	short		fadd_zero_src	- tbl_fadd_op # NORM + ZERO
+	short		fadd_inf_src	- tbl_fadd_op # NORM + INF
+	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN
+	short		fadd_norm	- tbl_fadd_op # NORM + DENORM
+	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN
+	short		tbl_fadd_op	- tbl_fadd_op #
+	short		tbl_fadd_op	- tbl_fadd_op #
+
+	short		fadd_zero_dst	- tbl_fadd_op # ZERO + NORM
+	short		fadd_zero_2	- tbl_fadd_op # ZERO + ZERO
+	short		fadd_inf_src	- tbl_fadd_op # ZERO + INF
+	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN
+	short		fadd_zero_dst	- tbl_fadd_op # ZERO + DENORM
+	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN
+	short		tbl_fadd_op	- tbl_fadd_op #
+	short		tbl_fadd_op	- tbl_fadd_op #
+
+	short		fadd_inf_dst	- tbl_fadd_op # INF + NORM
+	short		fadd_inf_dst	- tbl_fadd_op # INF + ZERO
+	short		fadd_inf_2	- tbl_fadd_op # INF + INF
+	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN
+	short		fadd_inf_dst	- tbl_fadd_op # INF + DENORM
+	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN
+	short		tbl_fadd_op	- tbl_fadd_op #
+	short		tbl_fadd_op	- tbl_fadd_op #
+
+	short		fadd_res_qnan	- tbl_fadd_op # QNAN + NORM
+	short		fadd_res_qnan	- tbl_fadd_op # QNAN + ZERO
+	short		fadd_res_qnan	- tbl_fadd_op # QNAN + INF
+	short		fadd_res_qnan	- tbl_fadd_op # QNAN + QNAN
+	short		fadd_res_qnan	- tbl_fadd_op # QNAN + DENORM
+	short		fadd_res_snan	- tbl_fadd_op # QNAN + SNAN
+	short		tbl_fadd_op	- tbl_fadd_op #
+	short		tbl_fadd_op	- tbl_fadd_op #
+
+	short		fadd_norm	- tbl_fadd_op # DENORM + NORM
+	short		fadd_zero_src	- tbl_fadd_op # DENORM + ZERO
+	short		fadd_inf_src	- tbl_fadd_op # DENORM + INF
+	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN
+	short		fadd_norm	- tbl_fadd_op # DENORM + DENORM
+	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN
+	short		tbl_fadd_op	- tbl_fadd_op #
+	short		tbl_fadd_op	- tbl_fadd_op #
+
+	short		fadd_res_snan	- tbl_fadd_op # SNAN + NORM
+	short		fadd_res_snan	- tbl_fadd_op # SNAN + ZERO
+	short		fadd_res_snan	- tbl_fadd_op # SNAN + INF
+	short		fadd_res_snan	- tbl_fadd_op # SNAN + QNAN
+	short		fadd_res_snan	- tbl_fadd_op # SNAN + DENORM
+	short		fadd_res_snan	- tbl_fadd_op # SNAN + SNAN
+	short		tbl_fadd_op	- tbl_fadd_op #
+	short		tbl_fadd_op	- tbl_fadd_op #
+
+fadd_res_qnan:
+	bra.l		res_qnan
+fadd_res_snan:
+	bra.l		res_snan
+
+#
+# both operands are ZEROes
+#
+fadd_zero_2:
+	mov.b		SRC_EX(%a0),%d0		# are the signs opposite
+	mov.b		DST_EX(%a1),%d1
+	eor.b		%d0,%d1
+	bmi.w		fadd_zero_2_chk_rm	# weed out (-ZERO)+(+ZERO)
+
+# the signs are the same. so determine whether they are positive or negative
+# and return the appropriately signed zero.
+	tst.b		%d0			# are ZEROes positive or negative?
+	bmi.b		fadd_zero_rm		# negative
+	fmov.s		&0x00000000,%fp0	# return +ZERO
+	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z
+	rts
+
+#
+# the ZEROes have opposite signs:
+# - therefore, we return +ZERO if the rounding modes are RN,RZ, or RP.
+# - -ZERO is returned in the case of RM.
+#
+fadd_zero_2_chk_rm:
+	mov.b		3+L_SCR3(%a6),%d1
+	andi.b		&0x30,%d1		# extract rnd mode
+	cmpi.b		%d1,&rm_mode*0x10	# is rnd mode == RM?
+	beq.b		fadd_zero_rm		# yes
+	fmov.s		&0x00000000,%fp0	# return +ZERO
+	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z
+	rts
+
+fadd_zero_rm:
+	fmov.s		&0x80000000,%fp0	# return -ZERO
+	mov.b		&neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z
+	rts
+
+#
+# one operand is a ZERO and the other is a DENORM or NORM. scale
+# the DENORM or NORM and jump to the regular fadd routine.
+#
+fadd_zero_dst:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	bsr.l		scale_to_zero_src	# scale the operand
+	clr.w		FP_SCR1_EX(%a6)
+	clr.l		FP_SCR1_HI(%a6)
+	clr.l		FP_SCR1_LO(%a6)
+	bra.w		fadd_zero_entry		# go execute fadd
+
+fadd_zero_src:
+	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6)
+	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6)
+	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6)
+	bsr.l		scale_to_zero_dst	# scale the operand
+	clr.w		FP_SCR0_EX(%a6)
+	clr.l		FP_SCR0_HI(%a6)
+	clr.l		FP_SCR0_LO(%a6)
+	bra.w		fadd_zero_entry		# go execute fadd
+
+#
+# both operands are INFs. an OPERR will result if the INFs have
+# different signs. else, an INF of the same sign is returned
+#
+fadd_inf_2:
+	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs
+	mov.b		DST_EX(%a1),%d1
+	eor.b		%d1,%d0
+	bmi.l		res_operr		# weed out (-INF)+(+INF)
+
+# ok, so it's not an OPERR. but, we do have to remember to return the
+# src INF since that's where the 881/882 gets the j-bit from...
+
+#
+# operands are INF and one of {ZERO, INF, DENORM, NORM}
+#
+fadd_inf_src:
+	fmovm.x		SRC(%a0),&0x80		# return src INF
+	tst.b		SRC_EX(%a0)		# is INF positive?
+	bpl.b		fadd_inf_done		# yes; we're done
+	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
+	rts
+
+#
+# operands are INF and one of {ZERO, INF, DENORM, NORM}
+#
+fadd_inf_dst:
+	fmovm.x		DST(%a1),&0x80		# return dst INF
+	tst.b		DST_EX(%a1)		# is INF positive?
+	bpl.b		fadd_inf_done		# yes; we're done
+	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
+	rts
+
+fadd_inf_done:
+	mov.b		&inf_bmask,FPSR_CC(%a6) # set INF
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fsub(): emulates the fsub instruction				#
+#	fssub(): emulates the fssub instruction				#
+#	fdsub(): emulates the fdsub instruction				#
+#									#
+# XREF ****************************************************************	#
+#	addsub_scaler2() - scale the operands so they won't take exc	#
+#	ovf_res() - return default overflow result			#
+#	unf_res() - return default underflow result			#
+#	res_qnan() - set QNAN result					#
+#	res_snan() - set SNAN result					#
+#	res_operr() - set OPERR result					#
+#	scale_to_zero_src() - set src operand exponent equal to zero	#
+#	scale_to_zero_dst() - set dst operand exponent equal to zero	#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	a1 = pointer to extended precision destination operand		#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = result							#
+#	fp1 = EXOP (if exception occurred)				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Handle NANs, infinities, and zeroes as special cases. Divide	#
+# norms into extended, single, and double precision.			#
+#	Do subtraction after scaling exponents such that exception won't#
+# occur. Then, check result exponent to see if exception would have	#
+# occurred. If so, return default result and maybe EXOP. Else, insert	#
+# the correct result exponent and return. Set FPSR bits as appropriate.	#
+#									#
+#########################################################################
+
+	global		fssub
+fssub:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&s_mode*0x10,%d0	# insert sgl prec
+	bra.b		fsub
+
+	global		fdsub
+fdsub:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&d_mode*0x10,%d0	# insert dbl prec
+
+	global		fsub
+fsub:
+	mov.l		%d0,L_SCR3(%a6)		# store rnd info
+
+	clr.w		%d1
+	mov.b		DTAG(%a6),%d1
+	lsl.b		&0x3,%d1
+	or.b		STAG(%a6),%d1		# combine src tags
+
+	bne.w		fsub_not_norm		# optimize on non-norm input
+
+#
+# SUB: norms and denorms
+#
+fsub_norm:
+	bsr.l		addsub_scaler2		# scale exponents
+
+fsub_zero_entry:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# fetch INEX2, N, Z
+
+	or.l		%d1,USER_FPSR(%a6)	# save exc and ccode bits
+
+	fbeq.w		fsub_zero_exit		# if result zero, end now
+
+	mov.l		%d2,-(%sp)		# save d2
+
+	fmovm.x		&0x01,-(%sp)		# save result to stack
+
+	mov.w		2+L_SCR3(%a6),%d1
+	lsr.b		&0x6,%d1
+
+	mov.w		(%sp),%d2		# fetch new exponent
+	andi.l		&0x7fff,%d2		# strip sign
+	sub.l		%d0,%d2			# add scale factor
+
+	cmp.l		%d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow?
+	bge.b		fsub_ovfl		# yes
+
+	cmp.l		%d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow?
+	blt.w		fsub_unfl		# yes
+	beq.w		fsub_may_unfl		# maybe; go find out
+
+fsub_normal:
+	mov.w		(%sp),%d1
+	andi.w		&0x8000,%d1		# keep sign
+	or.w		%d2,%d1			# insert new exponent
+	mov.w		%d1,(%sp)		# insert new exponent
+
+	fmovm.x		(%sp)+,&0x80		# return result in fp0
+
+	mov.l		(%sp)+,%d2		# restore d2
+	rts
+
+fsub_zero_exit:
+#	fmov.s		&0x00000000,%fp0	# return zero in fp0
+	rts
+
+tbl_fsub_ovfl:
+	long		0x7fff			# ext ovfl
+	long		0x407f			# sgl ovfl
+	long		0x43ff			# dbl ovfl
+
+tbl_fsub_unfl:
+	long	        0x0000			# ext unfl
+	long		0x3f81			# sgl unfl
+	long		0x3c01			# dbl unfl
+
+fsub_ovfl:
+	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x13,%d1		# is OVFL or INEX enabled?
+	bne.b		fsub_ovfl_ena		# yes
+
+	add.l		&0xc,%sp
+fsub_ovfl_dis:
+	btst		&neg_bit,FPSR_CC(%a6)	# is result negative?
+	sne		%d1			# set sign param accordingly
+	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd
+	bsr.l		ovf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable
+	fmovm.x		(%a0),&0x80		# return default result in fp0
+	mov.l		(%sp)+,%d2		# restore d2
+	rts
+
+fsub_ovfl_ena:
+	mov.b		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# is precision extended?
+	bne.b		fsub_ovfl_ena_sd	# no
+
+fsub_ovfl_ena_cont:
+	mov.w		(%sp),%d1		# fetch {sgn,exp}
+	andi.w		&0x8000,%d1		# keep sign
+	subi.l		&0x6000,%d2		# subtract new bias
+	andi.w		&0x7fff,%d2		# clear top bit
+	or.w		%d2,%d1			# concat sign,exp
+	mov.w		%d1,(%sp)		# insert new exponent
+
+	fmovm.x		(%sp)+,&0x40		# return EXOP in fp1
+	bra.b		fsub_ovfl_dis
+
+fsub_ovfl_ena_sd:
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0x30,%d1		# clear rnd prec
+	fmov.l		%d1,%fpcr		# set FPCR
+
+	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	add.l		&0xc,%sp
+	fmovm.x		&0x01,-(%sp)
+	bra.b		fsub_ovfl_ena_cont
+
+fsub_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+	add.l		&0xc,%sp
+
+	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op
+
+	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# save status
+
+	or.l		%d1,USER_FPSR(%a6)
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0b,%d1		# is UNFL or INEX enabled?
+	bne.b		fsub_unfl_ena		# yes
+
+fsub_unfl_dis:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+
+	lea		FP_SCR0(%a6),%a0	# pass: result addr
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# 'Z' may have been set
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+	mov.l		(%sp)+,%d2		# restore d2
+	rts
+
+fsub_unfl_ena:
+	fmovm.x		FP_SCR1(%a6),&0x40
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# is precision extended?
+	bne.b		fsub_unfl_ena_sd	# no
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+fsub_unfl_ena_cont:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsub.x		FP_SCR0(%a6),%fp1	# execute subtract
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	fmovm.x		&0x40,FP_SCR0(%a6)	# store result to stack
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	addi.l		&0x6000,%d1		# subtract new bias
+	andi.w		&0x7fff,%d1		# clear top bit
+	or.w		%d2,%d1			# concat sgn,exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	bra.w		fsub_unfl_dis
+
+fsub_unfl_ena_sd:
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0x30,%d1		# clear rnd prec
+	fmov.l		%d1,%fpcr		# set FPCR
+
+	bra.b		fsub_unfl_ena_cont
+
+#
+# result is equal to the smallest normalized number in the selected precision
+# if the precision is extended, this result could not have come from an
+# underflow that rounded up.
+#
+fsub_may_unfl:
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# fetch rnd prec
+	beq.w		fsub_normal		# yes; no underflow occurred
+
+	mov.l		0x4(%sp),%d1
+	cmpi.l		%d1,&0x80000000		# is hi(man) = 0x80000000?
+	bne.w		fsub_normal		# no; no underflow occurred
+
+	tst.l		0x8(%sp)		# is lo(man) = 0x0?
+	bne.w		fsub_normal		# no; no underflow occurred
+
+	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
+	beq.w		fsub_normal		# no; no underflow occurred
+
+#
+# ok, so now the result has a exponent equal to the smallest normalized
+# exponent for the selected precision. also, the mantissa is equal to
+# 0x8000000000000000 and this mantissa is the result of rounding non-zero
+# g,r,s.
+# now, we must determine whether the pre-rounded result was an underflow
+# rounded "up" or a normalized number rounded "down".
+# so, we do this be re-executing the add using RZ as the rounding mode and
+# seeing if the new result is smaller or equal to the current result.
+#
+	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1
+
+	mov.l		L_SCR3(%a6),%d1
+	andi.b		&0xc0,%d1		# keep rnd prec
+	ori.b		&rz_mode*0x10,%d1	# insert rnd mode
+	fmov.l		%d1,%fpcr		# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsub.x		FP_SCR0(%a6),%fp1	# execute subtract
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	fabs.x		%fp0			# compare absolute values
+	fabs.x		%fp1
+	fcmp.x		%fp0,%fp1		# is first result > second?
+
+	fbgt.w		fsub_unfl		# yes; it's an underflow
+	bra.w		fsub_normal		# no; it's not an underflow
+
+##########################################################################
+
+#
+# Sub: inputs are not both normalized; what are they?
+#
+fsub_not_norm:
+	mov.w		(tbl_fsub_op.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_fsub_op.b,%pc,%d1.w*1)
+
+	swbeg		&48
+tbl_fsub_op:
+	short		fsub_norm	- tbl_fsub_op # NORM - NORM
+	short		fsub_zero_src	- tbl_fsub_op # NORM - ZERO
+	short		fsub_inf_src	- tbl_fsub_op # NORM - INF
+	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN
+	short		fsub_norm	- tbl_fsub_op # NORM - DENORM
+	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN
+	short		tbl_fsub_op	- tbl_fsub_op #
+	short		tbl_fsub_op	- tbl_fsub_op #
+
+	short		fsub_zero_dst	- tbl_fsub_op # ZERO - NORM
+	short		fsub_zero_2	- tbl_fsub_op # ZERO - ZERO
+	short		fsub_inf_src	- tbl_fsub_op # ZERO - INF
+	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN
+	short		fsub_zero_dst	- tbl_fsub_op # ZERO - DENORM
+	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN
+	short		tbl_fsub_op	- tbl_fsub_op #
+	short		tbl_fsub_op	- tbl_fsub_op #
+
+	short		fsub_inf_dst	- tbl_fsub_op # INF - NORM
+	short		fsub_inf_dst	- tbl_fsub_op # INF - ZERO
+	short		fsub_inf_2	- tbl_fsub_op # INF - INF
+	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN
+	short		fsub_inf_dst	- tbl_fsub_op # INF - DENORM
+	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN
+	short		tbl_fsub_op	- tbl_fsub_op #
+	short		tbl_fsub_op	- tbl_fsub_op #
+
+	short		fsub_res_qnan	- tbl_fsub_op # QNAN - NORM
+	short		fsub_res_qnan	- tbl_fsub_op # QNAN - ZERO
+	short		fsub_res_qnan	- tbl_fsub_op # QNAN - INF
+	short		fsub_res_qnan	- tbl_fsub_op # QNAN - QNAN
+	short		fsub_res_qnan	- tbl_fsub_op # QNAN - DENORM
+	short		fsub_res_snan	- tbl_fsub_op # QNAN - SNAN
+	short		tbl_fsub_op	- tbl_fsub_op #
+	short		tbl_fsub_op	- tbl_fsub_op #
+
+	short		fsub_norm	- tbl_fsub_op # DENORM - NORM
+	short		fsub_zero_src	- tbl_fsub_op # DENORM - ZERO
+	short		fsub_inf_src	- tbl_fsub_op # DENORM - INF
+	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN
+	short		fsub_norm	- tbl_fsub_op # DENORM - DENORM
+	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN
+	short		tbl_fsub_op	- tbl_fsub_op #
+	short		tbl_fsub_op	- tbl_fsub_op #
+
+	short		fsub_res_snan	- tbl_fsub_op # SNAN - NORM
+	short		fsub_res_snan	- tbl_fsub_op # SNAN - ZERO
+	short		fsub_res_snan	- tbl_fsub_op # SNAN - INF
+	short		fsub_res_snan	- tbl_fsub_op # SNAN - QNAN
+	short		fsub_res_snan	- tbl_fsub_op # SNAN - DENORM
+	short		fsub_res_snan	- tbl_fsub_op # SNAN - SNAN
+	short		tbl_fsub_op	- tbl_fsub_op #
+	short		tbl_fsub_op	- tbl_fsub_op #
+
+fsub_res_qnan:
+	bra.l		res_qnan
+fsub_res_snan:
+	bra.l		res_snan
+
+#
+# both operands are ZEROes
+#
+fsub_zero_2:
+	mov.b		SRC_EX(%a0),%d0
+	mov.b		DST_EX(%a1),%d1
+	eor.b		%d1,%d0
+	bpl.b		fsub_zero_2_chk_rm
+
+# the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO
+	tst.b		%d0			# is dst negative?
+	bmi.b		fsub_zero_2_rm		# yes
+	fmov.s		&0x00000000,%fp0	# no; return +ZERO
+	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z
+	rts
+
+#
+# the ZEROes have the same signs:
+# - therefore, we return +ZERO if the rounding mode is RN,RZ, or RP
+# - -ZERO is returned in the case of RM.
+#
+fsub_zero_2_chk_rm:
+	mov.b		3+L_SCR3(%a6),%d1
+	andi.b		&0x30,%d1		# extract rnd mode
+	cmpi.b		%d1,&rm_mode*0x10	# is rnd mode = RM?
+	beq.b		fsub_zero_2_rm		# yes
+	fmov.s		&0x00000000,%fp0	# no; return +ZERO
+	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z
+	rts
+
+fsub_zero_2_rm:
+	fmov.s		&0x80000000,%fp0	# return -ZERO
+	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set Z/NEG
+	rts
+
+#
+# one operand is a ZERO and the other is a DENORM or a NORM.
+# scale the DENORM or NORM and jump to the regular fsub routine.
+#
+fsub_zero_dst:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+	bsr.l		scale_to_zero_src	# scale the operand
+	clr.w		FP_SCR1_EX(%a6)
+	clr.l		FP_SCR1_HI(%a6)
+	clr.l		FP_SCR1_LO(%a6)
+	bra.w		fsub_zero_entry		# go execute fsub
+
+fsub_zero_src:
+	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6)
+	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6)
+	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6)
+	bsr.l		scale_to_zero_dst	# scale the operand
+	clr.w		FP_SCR0_EX(%a6)
+	clr.l		FP_SCR0_HI(%a6)
+	clr.l		FP_SCR0_LO(%a6)
+	bra.w		fsub_zero_entry		# go execute fsub
+
+#
+# both operands are INFs. an OPERR will result if the INFs have the
+# same signs. else,
+#
+fsub_inf_2:
+	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs
+	mov.b		DST_EX(%a1),%d1
+	eor.b		%d1,%d0
+	bpl.l		res_operr		# weed out (-INF)+(+INF)
+
+# ok, so it's not an OPERR. but we do have to remember to return
+# the src INF since that's where the 881/882 gets the j-bit.
+
+fsub_inf_src:
+	fmovm.x		SRC(%a0),&0x80		# return src INF
+	fneg.x		%fp0			# invert sign
+	fbge.w		fsub_inf_done		# sign is now positive
+	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
+	rts
+
+fsub_inf_dst:
+	fmovm.x		DST(%a1),&0x80		# return dst INF
+	tst.b		DST_EX(%a1)		# is INF negative?
+	bpl.b		fsub_inf_done		# no
+	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
+	rts
+
+fsub_inf_done:
+	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fsqrt(): emulates the fsqrt instruction				#
+#	fssqrt(): emulates the fssqrt instruction			#
+#	fdsqrt(): emulates the fdsqrt instruction			#
+#									#
+# XREF ****************************************************************	#
+#	scale_sqrt() - scale the source operand				#
+#	unf_res() - return default underflow result			#
+#	ovf_res() - return default overflow result			#
+#	res_qnan_1op() - return QNAN result				#
+#	res_snan_1op() - return SNAN result				#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to extended precision source operand		#
+#	d0  rnd prec,mode						#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = result							#
+#	fp1 = EXOP (if exception occurred)				#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Handle NANs, infinities, and zeroes as special cases. Divide	#
+# norms/denorms into ext/sgl/dbl precision.				#
+#	For norms/denorms, scale the exponents such that a sqrt		#
+# instruction won't cause an exception. Use the regular fsqrt to	#
+# compute a result. Check if the regular operands would have taken	#
+# an exception. If so, return the default overflow/underflow result	#
+# and return the EXOP if exceptions are enabled. Else, scale the	#
+# result operand to the proper exponent.				#
+#									#
+#########################################################################
+
+	global		fssqrt
+fssqrt:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&s_mode*0x10,%d0	# insert sgl precision
+	bra.b		fsqrt
+
+	global		fdsqrt
+fdsqrt:
+	andi.b		&0x30,%d0		# clear rnd prec
+	ori.b		&d_mode*0x10,%d0	# insert dbl precision
+
+	global		fsqrt
+fsqrt:
+	mov.l		%d0,L_SCR3(%a6)		# store rnd info
+	clr.w		%d1
+	mov.b		STAG(%a6),%d1
+	bne.w		fsqrt_not_norm		# optimize on non-norm input
+
+#
+# SQUARE ROOT: norms and denorms ONLY!
+#
+fsqrt_norm:
+	tst.b		SRC_EX(%a0)		# is operand negative?
+	bmi.l		res_operr		# yes
+
+	andi.b		&0xc0,%d0		# is precision extended?
+	bne.b		fsqrt_not_ext		# no; go handle sgl or dbl
+
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsqrt.x		(%a0),%fp0		# execute square root
+
+	fmov.l		%fpsr,%d1
+	or.l		%d1,USER_FPSR(%a6)	# set N,INEX
+
+	rts
+
+fsqrt_denorm:
+	tst.b		SRC_EX(%a0)		# is operand negative?
+	bmi.l		res_operr		# yes
+
+	andi.b		&0xc0,%d0		# is precision extended?
+	bne.b		fsqrt_not_ext		# no; go handle sgl or dbl
+
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+	bsr.l		scale_sqrt		# calculate scale factor
+
+	bra.w		fsqrt_sd_normal
+
+#
+# operand is either single or double
+#
+fsqrt_not_ext:
+	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec
+	bne.w		fsqrt_dbl
+
+#
+# operand is to be rounded to single precision
+#
+fsqrt_sgl:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+	bsr.l		scale_sqrt		# calculate scale factor
+
+	cmpi.l		%d0,&0x3fff-0x3f81	# will move in underflow?
+	beq.w		fsqrt_sd_may_unfl
+	bgt.w		fsqrt_sd_unfl		# yes; go handle underflow
+	cmpi.l		%d0,&0x3fff-0x407f	# will move in overflow?
+	beq.w		fsqrt_sd_may_ovfl	# maybe; go check
+	blt.w		fsqrt_sd_ovfl		# yes; go handle overflow
+
+#
+# operand will NOT overflow or underflow when moved in to the fp reg file
+#
+fsqrt_sd_normal:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fsqrt.x		FP_SCR0(%a6),%fp0	# perform absolute
+
+	fmov.l		%fpsr,%d1		# save FPSR
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fsqrt_sd_normal_exit:
+	mov.l		%d2,-(%sp)		# save d2
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	sub.l		%d0,%d1			# add scale factor
+	andi.w		&0x8000,%d2		# keep old sign
+	or.w		%d1,%d2			# concat old sign,new exp
+	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent
+	mov.l		(%sp)+,%d2		# restore d2
+	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0
+	rts
+
+#
+# operand is to be rounded to double precision
+#
+fsqrt_dbl:
+	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6)
+	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6)
+	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+	bsr.l		scale_sqrt		# calculate scale factor
+
+	cmpi.l		%d0,&0x3fff-0x3c01	# will move in underflow?
+	beq.w		fsqrt_sd_may_unfl
+	bgt.b		fsqrt_sd_unfl		# yes; go handle underflow
+	cmpi.l		%d0,&0x3fff-0x43ff	# will move in overflow?
+	beq.w		fsqrt_sd_may_ovfl	# maybe; go check
+	blt.w		fsqrt_sd_ovfl		# yes; go handle overflow
+	bra.w		fsqrt_sd_normal		# no; ho handle normalized op
+
+# we're on the line here and the distinguising characteristic is whether
+# the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number
+# elsewise fall through to underflow.
+fsqrt_sd_may_unfl:
+	btst		&0x0,1+FP_SCR0_EX(%a6)	# is exponent 0x3fff?
+	bne.w		fsqrt_sd_normal		# yes, so no underflow
+
+#
+# operand WILL underflow when moved in to the fp register file
+#
+fsqrt_sd_unfl:
+	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR
+	fmov.l		&0x0,%fpsr		# clear FPSR
+
+	fsqrt.x		FP_SCR0(%a6),%fp0	# execute square root
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+# if underflow or inexact is enabled, go calculate EXOP first.
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x0b,%d1		# is UNFL or INEX enabled?
+	bne.b		fsqrt_sd_unfl_ena	# yes
+
+fsqrt_sd_unfl_dis:
+	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result
+
+	lea		FP_SCR0(%a6),%a0	# pass: result addr
+	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode
+	bsr.l		unf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set possible 'Z' ccode
+	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0
+	rts
+
+#
+# operand will underflow AND underflow is enabled.
+# therefore, we must return the result rounded to extended precision.
+#
+fsqrt_sd_unfl_ena:
+	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
+	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
+	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent
+
+	mov.l		%d2,-(%sp)		# save d2
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# subtract scale factor
+	addi.l		&0x6000,%d1		# add new bias
+	andi.w		&0x7fff,%d1
+	or.w		%d2,%d1			# concat new sign,new exp
+	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp
+	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1
+	mov.l		(%sp)+,%d2		# restore d2
+	bra.b		fsqrt_sd_unfl_dis
+
+#
+# operand WILL overflow.
+#
+fsqrt_sd_ovfl:
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fsqrt.x		FP_SCR0(%a6),%fp0	# perform square root
+
+	fmov.l		&0x0,%fpcr		# clear FPCR
+	fmov.l		%fpsr,%d1		# save FPSR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+fsqrt_sd_ovfl_tst:
+	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+	mov.b		FPCR_ENABLE(%a6),%d1
+	andi.b		&0x13,%d1		# is OVFL or INEX enabled?
+	bne.b		fsqrt_sd_ovfl_ena	# yes
+
+#
+# OVFL is not enabled; therefore, we must create the default result by
+# calling ovf_res().
+#
+fsqrt_sd_ovfl_dis:
+	btst		&neg_bit,FPSR_CC(%a6)	# is result negative?
+	sne		%d1			# set sign param accordingly
+	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode
+	bsr.l		ovf_res			# calculate default result
+	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable
+	fmovm.x		(%a0),&0x80		# return default result in fp0
+	rts
+
+#
+# OVFL is enabled.
+# the INEX2 bit has already been updated by the round to the correct precision.
+# now, round to extended(and don't alter the FPSR).
+#
+fsqrt_sd_ovfl_ena:
+	mov.l		%d2,-(%sp)		# save d2
+	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp}
+	mov.l		%d1,%d2			# make a copy
+	andi.l		&0x7fff,%d1		# strip sign
+	andi.w		&0x8000,%d2		# keep old sign
+	sub.l		%d0,%d1			# add scale factor
+	subi.l		&0x6000,%d1		# subtract bias
+	andi.w		&0x7fff,%d1
+	or.w		%d2,%d1			# concat sign,exp
+	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent
+	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1
+	mov.l		(%sp)+,%d2		# restore d2
+	bra.b		fsqrt_sd_ovfl_dis
+
+#
+# the move in MAY underflow. so...
+#
+fsqrt_sd_may_ovfl:
+	btst		&0x0,1+FP_SCR0_EX(%a6)	# is exponent 0x3fff?
+	bne.w		fsqrt_sd_ovfl		# yes, so overflow
+
+	fmov.l		&0x0,%fpsr		# clear FPSR
+	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR
+
+	fsqrt.x		FP_SCR0(%a6),%fp0	# perform absolute
+
+	fmov.l		%fpsr,%d1		# save status
+	fmov.l		&0x0,%fpcr		# clear FPCR
+
+	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N
+
+	fmov.x		%fp0,%fp1		# make a copy of result
+	fcmp.b		%fp1,&0x1		# is |result| >= 1.b?
+	fbge.w		fsqrt_sd_ovfl_tst	# yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+	bra.w		fsqrt_sd_normal_exit
+
+##########################################################################
+
+#
+# input is not normalized; what is it?
+#
+fsqrt_not_norm:
+	cmpi.b		%d1,&DENORM		# weed out DENORM
+	beq.w		fsqrt_denorm
+	cmpi.b		%d1,&ZERO		# weed out ZERO
+	beq.b		fsqrt_zero
+	cmpi.b		%d1,&INF		# weed out INF
+	beq.b		fsqrt_inf
+	cmpi.b		%d1,&SNAN		# weed out SNAN
+	beq.l		res_snan_1op
+	bra.l		res_qnan_1op
+
+#
+#	fsqrt(+0) = +0
+#	fsqrt(-0) = -0
+#	fsqrt(+INF) = +INF
+#	fsqrt(-INF) = OPERR
+#
+fsqrt_zero:
+	tst.b		SRC_EX(%a0)		# is ZERO positive or negative?
+	bmi.b		fsqrt_zero_m		# negative
+fsqrt_zero_p:
+	fmov.s		&0x00000000,%fp0	# return +ZERO
+	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit
+	rts
+fsqrt_zero_m:
+	fmov.s		&0x80000000,%fp0	# return -ZERO
+	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set 'Z','N' ccode bits
+	rts
+
+fsqrt_inf:
+	tst.b		SRC_EX(%a0)		# is INF positive or negative?
+	bmi.l		res_operr		# negative
+fsqrt_inf_p:
+	fmovm.x		SRC(%a0),&0x80		# return +INF in fp0
+	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	fetch_dreg(): fetch register according to index in d1		#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	d1 = index of register to fetch from				#
+#									#
+# OUTPUT **************************************************************	#
+#	d0 = value of register fetched					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	According to the index value in d1 which can range from zero	#
+# to fifteen, load the corresponding register file value (where		#
+# address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the	#
+# stack. The rest should still be in their original places.		#
+#									#
+#########################################################################
+
+# this routine leaves d1 intact for subsequent store_dreg calls.
+	global		fetch_dreg
+fetch_dreg:
+	mov.w		(tbl_fdreg.b,%pc,%d1.w*2),%d0
+	jmp		(tbl_fdreg.b,%pc,%d0.w*1)
+
+tbl_fdreg:
+	short		fdreg0 - tbl_fdreg
+	short		fdreg1 - tbl_fdreg
+	short		fdreg2 - tbl_fdreg
+	short		fdreg3 - tbl_fdreg
+	short		fdreg4 - tbl_fdreg
+	short		fdreg5 - tbl_fdreg
+	short		fdreg6 - tbl_fdreg
+	short		fdreg7 - tbl_fdreg
+	short		fdreg8 - tbl_fdreg
+	short		fdreg9 - tbl_fdreg
+	short		fdrega - tbl_fdreg
+	short		fdregb - tbl_fdreg
+	short		fdregc - tbl_fdreg
+	short		fdregd - tbl_fdreg
+	short		fdrege - tbl_fdreg
+	short		fdregf - tbl_fdreg
+
+fdreg0:
+	mov.l		EXC_DREGS+0x0(%a6),%d0
+	rts
+fdreg1:
+	mov.l		EXC_DREGS+0x4(%a6),%d0
+	rts
+fdreg2:
+	mov.l		%d2,%d0
+	rts
+fdreg3:
+	mov.l		%d3,%d0
+	rts
+fdreg4:
+	mov.l		%d4,%d0
+	rts
+fdreg5:
+	mov.l		%d5,%d0
+	rts
+fdreg6:
+	mov.l		%d6,%d0
+	rts
+fdreg7:
+	mov.l		%d7,%d0
+	rts
+fdreg8:
+	mov.l		EXC_DREGS+0x8(%a6),%d0
+	rts
+fdreg9:
+	mov.l		EXC_DREGS+0xc(%a6),%d0
+	rts
+fdrega:
+	mov.l		%a2,%d0
+	rts
+fdregb:
+	mov.l		%a3,%d0
+	rts
+fdregc:
+	mov.l		%a4,%d0
+	rts
+fdregd:
+	mov.l		%a5,%d0
+	rts
+fdrege:
+	mov.l		(%a6),%d0
+	rts
+fdregf:
+	mov.l		EXC_A7(%a6),%d0
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	store_dreg_l(): store longword to data register specified by d1	#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	d0 = longowrd value to store					#
+#	d1 = index of register to fetch from				#
+#									#
+# OUTPUT **************************************************************	#
+#	(data register is updated)					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	According to the index value in d1, store the longword value	#
+# in d0 to the corresponding data register. D0/D1 are on the stack	#
+# while the rest are in their initial places.				#
+#									#
+#########################################################################
+
+	global		store_dreg_l
+store_dreg_l:
+	mov.w		(tbl_sdregl.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_sdregl.b,%pc,%d1.w*1)
+
+tbl_sdregl:
+	short		sdregl0 - tbl_sdregl
+	short		sdregl1 - tbl_sdregl
+	short		sdregl2 - tbl_sdregl
+	short		sdregl3 - tbl_sdregl
+	short		sdregl4 - tbl_sdregl
+	short		sdregl5 - tbl_sdregl
+	short		sdregl6 - tbl_sdregl
+	short		sdregl7 - tbl_sdregl
+
+sdregl0:
+	mov.l		%d0,EXC_DREGS+0x0(%a6)
+	rts
+sdregl1:
+	mov.l		%d0,EXC_DREGS+0x4(%a6)
+	rts
+sdregl2:
+	mov.l		%d0,%d2
+	rts
+sdregl3:
+	mov.l		%d0,%d3
+	rts
+sdregl4:
+	mov.l		%d0,%d4
+	rts
+sdregl5:
+	mov.l		%d0,%d5
+	rts
+sdregl6:
+	mov.l		%d0,%d6
+	rts
+sdregl7:
+	mov.l		%d0,%d7
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	store_dreg_w(): store word to data register specified by d1	#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	d0 = word value to store					#
+#	d1 = index of register to fetch from				#
+#									#
+# OUTPUT **************************************************************	#
+#	(data register is updated)					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	According to the index value in d1, store the word value	#
+# in d0 to the corresponding data register. D0/D1 are on the stack	#
+# while the rest are in their initial places.				#
+#									#
+#########################################################################
+
+	global		store_dreg_w
+store_dreg_w:
+	mov.w		(tbl_sdregw.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_sdregw.b,%pc,%d1.w*1)
+
+tbl_sdregw:
+	short		sdregw0 - tbl_sdregw
+	short		sdregw1 - tbl_sdregw
+	short		sdregw2 - tbl_sdregw
+	short		sdregw3 - tbl_sdregw
+	short		sdregw4 - tbl_sdregw
+	short		sdregw5 - tbl_sdregw
+	short		sdregw6 - tbl_sdregw
+	short		sdregw7 - tbl_sdregw
+
+sdregw0:
+	mov.w		%d0,2+EXC_DREGS+0x0(%a6)
+	rts
+sdregw1:
+	mov.w		%d0,2+EXC_DREGS+0x4(%a6)
+	rts
+sdregw2:
+	mov.w		%d0,%d2
+	rts
+sdregw3:
+	mov.w		%d0,%d3
+	rts
+sdregw4:
+	mov.w		%d0,%d4
+	rts
+sdregw5:
+	mov.w		%d0,%d5
+	rts
+sdregw6:
+	mov.w		%d0,%d6
+	rts
+sdregw7:
+	mov.w		%d0,%d7
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	store_dreg_b(): store byte to data register specified by d1	#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	d0 = byte value to store					#
+#	d1 = index of register to fetch from				#
+#									#
+# OUTPUT **************************************************************	#
+#	(data register is updated)					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	According to the index value in d1, store the byte value	#
+# in d0 to the corresponding data register. D0/D1 are on the stack	#
+# while the rest are in their initial places.				#
+#									#
+#########################################################################
+
+	global		store_dreg_b
+store_dreg_b:
+	mov.w		(tbl_sdregb.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_sdregb.b,%pc,%d1.w*1)
+
+tbl_sdregb:
+	short		sdregb0 - tbl_sdregb
+	short		sdregb1 - tbl_sdregb
+	short		sdregb2 - tbl_sdregb
+	short		sdregb3 - tbl_sdregb
+	short		sdregb4 - tbl_sdregb
+	short		sdregb5 - tbl_sdregb
+	short		sdregb6 - tbl_sdregb
+	short		sdregb7 - tbl_sdregb
+
+sdregb0:
+	mov.b		%d0,3+EXC_DREGS+0x0(%a6)
+	rts
+sdregb1:
+	mov.b		%d0,3+EXC_DREGS+0x4(%a6)
+	rts
+sdregb2:
+	mov.b		%d0,%d2
+	rts
+sdregb3:
+	mov.b		%d0,%d3
+	rts
+sdregb4:
+	mov.b		%d0,%d4
+	rts
+sdregb5:
+	mov.b		%d0,%d5
+	rts
+sdregb6:
+	mov.b		%d0,%d6
+	rts
+sdregb7:
+	mov.b		%d0,%d7
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	inc_areg(): increment an address register by the value in d0	#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	d0 = amount to increment by					#
+#	d1 = index of address register to increment			#
+#									#
+# OUTPUT **************************************************************	#
+#	(address register is updated)					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Typically used for an instruction w/ a post-increment <ea>,	#
+# this routine adds the increment value in d0 to the address register	#
+# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside	#
+# in their original places.						#
+#	For a7, if the increment amount is one, then we have to		#
+# increment by two. For any a7 update, set the mia7_flag so that if	#
+# an access error exception occurs later in emulation, this address	#
+# register update can be undone.					#
+#									#
+#########################################################################
+
+	global		inc_areg
+inc_areg:
+	mov.w		(tbl_iareg.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_iareg.b,%pc,%d1.w*1)
+
+tbl_iareg:
+	short		iareg0 - tbl_iareg
+	short		iareg1 - tbl_iareg
+	short		iareg2 - tbl_iareg
+	short		iareg3 - tbl_iareg
+	short		iareg4 - tbl_iareg
+	short		iareg5 - tbl_iareg
+	short		iareg6 - tbl_iareg
+	short		iareg7 - tbl_iareg
+
+iareg0:	add.l		%d0,EXC_DREGS+0x8(%a6)
+	rts
+iareg1:	add.l		%d0,EXC_DREGS+0xc(%a6)
+	rts
+iareg2:	add.l		%d0,%a2
+	rts
+iareg3:	add.l		%d0,%a3
+	rts
+iareg4:	add.l		%d0,%a4
+	rts
+iareg5:	add.l		%d0,%a5
+	rts
+iareg6:	add.l		%d0,(%a6)
+	rts
+iareg7:	mov.b		&mia7_flg,SPCOND_FLG(%a6)
+	cmpi.b		%d0,&0x1
+	beq.b		iareg7b
+	add.l		%d0,EXC_A7(%a6)
+	rts
+iareg7b:
+	addq.l		&0x2,EXC_A7(%a6)
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	dec_areg(): decrement an address register by the value in d0	#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	d0 = amount to decrement by					#
+#	d1 = index of address register to decrement			#
+#									#
+# OUTPUT **************************************************************	#
+#	(address register is updated)					#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Typically used for an instruction w/ a pre-decrement <ea>,	#
+# this routine adds the decrement value in d0 to the address register	#
+# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside	#
+# in their original places.						#
+#	For a7, if the decrement amount is one, then we have to		#
+# decrement by two. For any a7 update, set the mda7_flag so that if	#
+# an access error exception occurs later in emulation, this address	#
+# register update can be undone.					#
+#									#
+#########################################################################
+
+	global		dec_areg
+dec_areg:
+	mov.w		(tbl_dareg.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_dareg.b,%pc,%d1.w*1)
+
+tbl_dareg:
+	short		dareg0 - tbl_dareg
+	short		dareg1 - tbl_dareg
+	short		dareg2 - tbl_dareg
+	short		dareg3 - tbl_dareg
+	short		dareg4 - tbl_dareg
+	short		dareg5 - tbl_dareg
+	short		dareg6 - tbl_dareg
+	short		dareg7 - tbl_dareg
+
+dareg0:	sub.l		%d0,EXC_DREGS+0x8(%a6)
+	rts
+dareg1:	sub.l		%d0,EXC_DREGS+0xc(%a6)
+	rts
+dareg2:	sub.l		%d0,%a2
+	rts
+dareg3:	sub.l		%d0,%a3
+	rts
+dareg4:	sub.l		%d0,%a4
+	rts
+dareg5:	sub.l		%d0,%a5
+	rts
+dareg6:	sub.l		%d0,(%a6)
+	rts
+dareg7:	mov.b		&mda7_flg,SPCOND_FLG(%a6)
+	cmpi.b		%d0,&0x1
+	beq.b		dareg7b
+	sub.l		%d0,EXC_A7(%a6)
+	rts
+dareg7b:
+	subq.l		&0x2,EXC_A7(%a6)
+	rts
+
+##############################################################################
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	load_fpn1(): load FP register value into FP_SRC(a6).		#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	d0 = index of FP register to load				#
+#									#
+# OUTPUT **************************************************************	#
+#	FP_SRC(a6) = value loaded from FP register file			#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Using the index in d0, load FP_SRC(a6) with a number from the	#
+# FP register file.							#
+#									#
+#########################################################################
+
+	global		load_fpn1
+load_fpn1:
+	mov.w		(tbl_load_fpn1.b,%pc,%d0.w*2), %d0
+	jmp		(tbl_load_fpn1.b,%pc,%d0.w*1)
+
+tbl_load_fpn1:
+	short		load_fpn1_0 - tbl_load_fpn1
+	short		load_fpn1_1 - tbl_load_fpn1
+	short		load_fpn1_2 - tbl_load_fpn1
+	short		load_fpn1_3 - tbl_load_fpn1
+	short		load_fpn1_4 - tbl_load_fpn1
+	short		load_fpn1_5 - tbl_load_fpn1
+	short		load_fpn1_6 - tbl_load_fpn1
+	short		load_fpn1_7 - tbl_load_fpn1
+
+load_fpn1_0:
+	mov.l		0+EXC_FP0(%a6), 0+FP_SRC(%a6)
+	mov.l		4+EXC_FP0(%a6), 4+FP_SRC(%a6)
+	mov.l		8+EXC_FP0(%a6), 8+FP_SRC(%a6)
+	lea		FP_SRC(%a6), %a0
+	rts
+load_fpn1_1:
+	mov.l		0+EXC_FP1(%a6), 0+FP_SRC(%a6)
+	mov.l		4+EXC_FP1(%a6), 4+FP_SRC(%a6)
+	mov.l		8+EXC_FP1(%a6), 8+FP_SRC(%a6)
+	lea		FP_SRC(%a6), %a0
+	rts
+load_fpn1_2:
+	fmovm.x		&0x20, FP_SRC(%a6)
+	lea		FP_SRC(%a6), %a0
+	rts
+load_fpn1_3:
+	fmovm.x		&0x10, FP_SRC(%a6)
+	lea		FP_SRC(%a6), %a0
+	rts
+load_fpn1_4:
+	fmovm.x		&0x08, FP_SRC(%a6)
+	lea		FP_SRC(%a6), %a0
+	rts
+load_fpn1_5:
+	fmovm.x		&0x04, FP_SRC(%a6)
+	lea		FP_SRC(%a6), %a0
+	rts
+load_fpn1_6:
+	fmovm.x		&0x02, FP_SRC(%a6)
+	lea		FP_SRC(%a6), %a0
+	rts
+load_fpn1_7:
+	fmovm.x		&0x01, FP_SRC(%a6)
+	lea		FP_SRC(%a6), %a0
+	rts
+
+#############################################################################
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	load_fpn2(): load FP register value into FP_DST(a6).		#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	d0 = index of FP register to load				#
+#									#
+# OUTPUT **************************************************************	#
+#	FP_DST(a6) = value loaded from FP register file			#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Using the index in d0, load FP_DST(a6) with a number from the	#
+# FP register file.							#
+#									#
+#########################################################################
+
+	global		load_fpn2
+load_fpn2:
+	mov.w		(tbl_load_fpn2.b,%pc,%d0.w*2), %d0
+	jmp		(tbl_load_fpn2.b,%pc,%d0.w*1)
+
+tbl_load_fpn2:
+	short		load_fpn2_0 - tbl_load_fpn2
+	short		load_fpn2_1 - tbl_load_fpn2
+	short		load_fpn2_2 - tbl_load_fpn2
+	short		load_fpn2_3 - tbl_load_fpn2
+	short		load_fpn2_4 - tbl_load_fpn2
+	short		load_fpn2_5 - tbl_load_fpn2
+	short		load_fpn2_6 - tbl_load_fpn2
+	short		load_fpn2_7 - tbl_load_fpn2
+
+load_fpn2_0:
+	mov.l		0+EXC_FP0(%a6), 0+FP_DST(%a6)
+	mov.l		4+EXC_FP0(%a6), 4+FP_DST(%a6)
+	mov.l		8+EXC_FP0(%a6), 8+FP_DST(%a6)
+	lea		FP_DST(%a6), %a0
+	rts
+load_fpn2_1:
+	mov.l		0+EXC_FP1(%a6), 0+FP_DST(%a6)
+	mov.l		4+EXC_FP1(%a6), 4+FP_DST(%a6)
+	mov.l		8+EXC_FP1(%a6), 8+FP_DST(%a6)
+	lea		FP_DST(%a6), %a0
+	rts
+load_fpn2_2:
+	fmovm.x		&0x20, FP_DST(%a6)
+	lea		FP_DST(%a6), %a0
+	rts
+load_fpn2_3:
+	fmovm.x		&0x10, FP_DST(%a6)
+	lea		FP_DST(%a6), %a0
+	rts
+load_fpn2_4:
+	fmovm.x		&0x08, FP_DST(%a6)
+	lea		FP_DST(%a6), %a0
+	rts
+load_fpn2_5:
+	fmovm.x		&0x04, FP_DST(%a6)
+	lea		FP_DST(%a6), %a0
+	rts
+load_fpn2_6:
+	fmovm.x		&0x02, FP_DST(%a6)
+	lea		FP_DST(%a6), %a0
+	rts
+load_fpn2_7:
+	fmovm.x		&0x01, FP_DST(%a6)
+	lea		FP_DST(%a6), %a0
+	rts
+
+#############################################################################
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	store_fpreg(): store an fp value to the fpreg designated d0.	#
+#									#
+# XREF ****************************************************************	#
+#	None								#
+#									#
+# INPUT ***************************************************************	#
+#	fp0 = extended precision value to store				#
+#	d0  = index of floating-point register				#
+#									#
+# OUTPUT **************************************************************	#
+#	None								#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Store the value in fp0 to the FP register designated by the	#
+# value in d0. The FP number can be DENORM or SNAN so we have to be	#
+# careful that we don't take an exception here.				#
+#									#
+#########################################################################
+
+	global		store_fpreg
+store_fpreg:
+	mov.w		(tbl_store_fpreg.b,%pc,%d0.w*2), %d0
+	jmp		(tbl_store_fpreg.b,%pc,%d0.w*1)
+
+tbl_store_fpreg:
+	short		store_fpreg_0 - tbl_store_fpreg
+	short		store_fpreg_1 - tbl_store_fpreg
+	short		store_fpreg_2 - tbl_store_fpreg
+	short		store_fpreg_3 - tbl_store_fpreg
+	short		store_fpreg_4 - tbl_store_fpreg
+	short		store_fpreg_5 - tbl_store_fpreg
+	short		store_fpreg_6 - tbl_store_fpreg
+	short		store_fpreg_7 - tbl_store_fpreg
+
+store_fpreg_0:
+	fmovm.x		&0x80, EXC_FP0(%a6)
+	rts
+store_fpreg_1:
+	fmovm.x		&0x80, EXC_FP1(%a6)
+	rts
+store_fpreg_2:
+	fmovm.x		&0x01, -(%sp)
+	fmovm.x		(%sp)+, &0x20
+	rts
+store_fpreg_3:
+	fmovm.x		&0x01, -(%sp)
+	fmovm.x		(%sp)+, &0x10
+	rts
+store_fpreg_4:
+	fmovm.x		&0x01, -(%sp)
+	fmovm.x		(%sp)+, &0x08
+	rts
+store_fpreg_5:
+	fmovm.x		&0x01, -(%sp)
+	fmovm.x		(%sp)+, &0x04
+	rts
+store_fpreg_6:
+	fmovm.x		&0x01, -(%sp)
+	fmovm.x		(%sp)+, &0x02
+	rts
+store_fpreg_7:
+	fmovm.x		&0x01, -(%sp)
+	fmovm.x		(%sp)+, &0x01
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	get_packed(): fetch a packed operand from memory and then	#
+#		      convert it to a floating-point binary number.	#
+#									#
+# XREF ****************************************************************	#
+#	_dcalc_ea() - calculate the correct <ea>			#
+#	_mem_read() - fetch the packed operand from memory		#
+#	facc_in_x() - the fetch failed so jump to special exit code	#
+#	decbin()    - convert packed to binary extended precision	#
+#									#
+# INPUT ***************************************************************	#
+#	None								#
+#									#
+# OUTPUT **************************************************************	#
+#	If no failure on _mem_read():					#
+#	FP_SRC(a6) = packed operand now as a binary FP number		#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Get the correct <ea> whihc is the value on the exception stack	#
+# frame w/ maybe a correction factor if the <ea> is -(an) or (an)+.	#
+# Then, fetch the operand from memory. If the fetch fails, exit		#
+# through facc_in_x().							#
+#	If the packed operand is a ZERO,NAN, or INF, convert it to	#
+# its binary representation here. Else, call decbin() which will	#
+# convert the packed value to an extended precision binary value.	#
+#									#
+#########################################################################
+
+# the stacked <ea> for packed is correct except for -(An).
+# the base reg must be updated for both -(An) and (An)+.
+	global		get_packed
+get_packed:
+	mov.l		&0xc,%d0		# packed is 12 bytes
+	bsr.l		_dcalc_ea		# fetch <ea>; correct An
+
+	lea		FP_SRC(%a6),%a1		# pass: ptr to super dst
+	mov.l		&0xc,%d0		# pass: 12 bytes
+	bsr.l		_dmem_read		# read packed operand
+
+	tst.l		%d1			# did dfetch fail?
+	bne.l		facc_in_x		# yes
+
+# The packed operand is an INF or a NAN if the exponent field is all ones.
+	bfextu		FP_SRC(%a6){&1:&15},%d0	# get exp
+	cmpi.w		%d0,&0x7fff		# INF or NAN?
+	bne.b		gp_try_zero		# no
+	rts					# operand is an INF or NAN
+
+# The packed operand is a zero if the mantissa is all zero, else it's
+# a normal packed op.
+gp_try_zero:
+	mov.b		3+FP_SRC(%a6),%d0	# get byte 4
+	andi.b		&0x0f,%d0		# clear all but last nybble
+	bne.b		gp_not_spec		# not a zero
+	tst.l		FP_SRC_HI(%a6)		# is lw 2 zero?
+	bne.b		gp_not_spec		# not a zero
+	tst.l		FP_SRC_LO(%a6)		# is lw 3 zero?
+	bne.b		gp_not_spec		# not a zero
+	rts					# operand is a ZERO
+gp_not_spec:
+	lea		FP_SRC(%a6),%a0		# pass: ptr to packed op
+	bsr.l		decbin			# convert to extended
+	fmovm.x		&0x80,FP_SRC(%a6)	# make this the srcop
+	rts
+
+#########################################################################
+# decbin(): Converts normalized packed bcd value pointed to by register	#
+#	    a0 to extended-precision value in fp0.			#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to normalized packed bcd value			#
+#									#
+# OUTPUT **************************************************************	#
+#	fp0 = exact fp representation of the packed bcd value.		#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Expected is a normal bcd (i.e. non-exceptional; all inf, zero,	#
+#	and NaN operands are dispatched without entering this routine)	#
+#	value in 68881/882 format at location (a0).			#
+#									#
+#	A1. Convert the bcd exponent to binary by successive adds and	#
+#	muls. Set the sign according to SE. Subtract 16 to compensate	#
+#	for the mantissa which is to be interpreted as 17 integer	#
+#	digits, rather than 1 integer and 16 fraction digits.		#
+#	Note: this operation can never overflow.			#
+#									#
+#	A2. Convert the bcd mantissa to binary by successive		#
+#	adds and muls in FP0. Set the sign according to SM.		#
+#	The mantissa digits will be converted with the decimal point	#
+#	assumed following the least-significant digit.			#
+#	Note: this operation can never overflow.			#
+#									#
+#	A3. Count the number of leading/trailing zeros in the		#
+#	bcd string.  If SE is positive, count the leading zeros;	#
+#	if negative, count the trailing zeros.  Set the adjusted	#
+#	exponent equal to the exponent from A1 and the zero count	#
+#	added if SM = 1 and subtracted if SM = 0.  Scale the		#
+#	mantissa the equivalent of forcing in the bcd value:		#
+#									#
+#	SM = 0	a non-zero digit in the integer position		#
+#	SM = 1	a non-zero digit in Mant0, lsd of the fraction		#
+#									#
+#	this will insure that any value, regardless of its		#
+#	representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted	#
+#	consistently.							#
+#									#
+#	A4. Calculate the factor 10^exp in FP1 using a table of		#
+#	10^(2^n) values.  To reduce the error in forming factors	#
+#	greater than 10^27, a directed rounding scheme is used with	#
+#	tables rounded to RN, RM, and RP, according to the table	#
+#	in the comments of the pwrten section.				#
+#									#
+#	A5. Form the final binary number by scaling the mantissa by	#
+#	the exponent factor.  This is done by multiplying the		#
+#	mantissa in FP0 by the factor in FP1 if the adjusted		#
+#	exponent sign is positive, and dividing FP0 by FP1 if		#
+#	it is negative.							#
+#									#
+#	Clean up and return. Check if the final mul or div was inexact.	#
+#	If so, set INEX1 in USER_FPSR.					#
+#									#
+#########################################################################
+
+#
+#	PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
+#	to nearest, minus, and plus, respectively.  The tables include
+#	10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding
+#	is required until the power is greater than 27, however, all
+#	tables include the first 5 for ease of indexing.
+#
+RTABLE:
+	byte		0,0,0,0
+	byte		2,3,2,3
+	byte		2,3,3,2
+	byte		3,2,2,3
+
+	set		FNIBS,7
+	set		FSTRT,0
+
+	set		ESTRT,4
+	set		EDIGITS,2
+
+	global		decbin
+decbin:
+	mov.l		0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input
+	mov.l		0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it
+	mov.l		0x8(%a0),FP_SCR0_LO(%a6)
+
+	lea		FP_SCR0(%a6),%a0
+
+	movm.l		&0x3c00,-(%sp)		# save d2-d5
+	fmovm.x		&0x1,-(%sp)		# save fp1
+#
+# Calculate exponent:
+#  1. Copy bcd value in memory for use as a working copy.
+#  2. Calculate absolute value of exponent in d1 by mul and add.
+#  3. Correct for exponent sign.
+#  4. Subtract 16 to compensate for interpreting the mant as all integer digits.
+#     (i.e., all digits assumed left of the decimal point.)
+#
+# Register usage:
+#
+#  calc_e:
+#	(*)  d0: temp digit storage
+#	(*)  d1: accumulator for binary exponent
+#	(*)  d2: digit count
+#	(*)  d3: offset pointer
+#	( )  d4: first word of bcd
+#	( )  a0: pointer to working bcd value
+#	( )  a6: pointer to original bcd value
+#	(*)  FP_SCR1: working copy of original bcd value
+#	(*)  L_SCR1: copy of original exponent word
+#
+calc_e:
+	mov.l		&EDIGITS,%d2		# # of nibbles (digits) in fraction part
+	mov.l		&ESTRT,%d3		# counter to pick up digits
+	mov.l		(%a0),%d4		# get first word of bcd
+	clr.l		%d1			# zero d1 for accumulator
+e_gd:
+	mulu.l		&0xa,%d1		# mul partial product by one digit place
+	bfextu		%d4{%d3:&4},%d0		# get the digit and zero extend into d0
+	add.l		%d0,%d1			# d1 = d1 + d0
+	addq.b		&4,%d3			# advance d3 to the next digit
+	dbf.w		%d2,e_gd		# if we have used all 3 digits, exit loop
+	btst		&30,%d4			# get SE
+	beq.b		e_pos			# don't negate if pos
+	neg.l		%d1			# negate before subtracting
+e_pos:
+	sub.l		&16,%d1			# sub to compensate for shift of mant
+	bge.b		e_save			# if still pos, do not neg
+	neg.l		%d1			# now negative, make pos and set SE
+	or.l		&0x40000000,%d4		# set SE in d4,
+	or.l		&0x40000000,(%a0)	# and in working bcd
+e_save:
+	mov.l		%d1,-(%sp)		# save exp on stack
+#
+#
+# Calculate mantissa:
+#  1. Calculate absolute value of mantissa in fp0 by mul and add.
+#  2. Correct for mantissa sign.
+#     (i.e., all digits assumed left of the decimal point.)
+#
+# Register usage:
+#
+#  calc_m:
+#	(*)  d0: temp digit storage
+#	(*)  d1: lword counter
+#	(*)  d2: digit count
+#	(*)  d3: offset pointer
+#	( )  d4: words 2 and 3 of bcd
+#	( )  a0: pointer to working bcd value
+#	( )  a6: pointer to original bcd value
+#	(*) fp0: mantissa accumulator
+#	( )  FP_SCR1: working copy of original bcd value
+#	( )  L_SCR1: copy of original exponent word
+#
+calc_m:
+	mov.l		&1,%d1			# word counter, init to 1
+	fmov.s		&0x00000000,%fp0	# accumulator
+#
+#
+#  Since the packed number has a long word between the first & second parts,
+#  get the integer digit then skip down & get the rest of the
+#  mantissa.  We will unroll the loop once.
+#
+	bfextu		(%a0){&28:&4},%d0	# integer part is ls digit in long word
+	fadd.b		%d0,%fp0		# add digit to sum in fp0
+#
+#
+#  Get the rest of the mantissa.
+#
+loadlw:
+	mov.l		(%a0,%d1.L*4),%d4	# load mantissa lonqword into d4
+	mov.l		&FSTRT,%d3		# counter to pick up digits
+	mov.l		&FNIBS,%d2		# reset number of digits per a0 ptr
+md2b:
+	fmul.s		&0x41200000,%fp0	# fp0 = fp0 * 10
+	bfextu		%d4{%d3:&4},%d0		# get the digit and zero extend
+	fadd.b		%d0,%fp0		# fp0 = fp0 + digit
+#
+#
+#  If all the digits (8) in that long word have been converted (d2=0),
+#  then inc d1 (=2) to point to the next long word and reset d3 to 0
+#  to initialize the digit offset, and set d2 to 7 for the digit count;
+#  else continue with this long word.
+#
+	addq.b		&4,%d3			# advance d3 to the next digit
+	dbf.w		%d2,md2b		# check for last digit in this lw
+nextlw:
+	addq.l		&1,%d1			# inc lw pointer in mantissa
+	cmp.l		%d1,&2			# test for last lw
+	ble.b		loadlw			# if not, get last one
+#
+#  Check the sign of the mant and make the value in fp0 the same sign.
+#
+m_sign:
+	btst		&31,(%a0)		# test sign of the mantissa
+	beq.b		ap_st_z			# if clear, go to append/strip zeros
+	fneg.x		%fp0			# if set, negate fp0
+#
+# Append/strip zeros:
+#
+#  For adjusted exponents which have an absolute value greater than 27*,
+#  this routine calculates the amount needed to normalize the mantissa
+#  for the adjusted exponent.  That number is subtracted from the exp
+#  if the exp was positive, and added if it was negative.  The purpose
+#  of this is to reduce the value of the exponent and the possibility
+#  of error in calculation of pwrten.
+#
+#  1. Branch on the sign of the adjusted exponent.
+#  2p.(positive exp)
+#   2. Check M16 and the digits in lwords 2 and 3 in decending order.
+#   3. Add one for each zero encountered until a non-zero digit.
+#   4. Subtract the count from the exp.
+#   5. Check if the exp has crossed zero in #3 above; make the exp abs
+#	   and set SE.
+#	6. Multiply the mantissa by 10**count.
+#  2n.(negative exp)
+#   2. Check the digits in lwords 3 and 2 in decending order.
+#   3. Add one for each zero encountered until a non-zero digit.
+#   4. Add the count to the exp.
+#   5. Check if the exp has crossed zero in #3 above; clear SE.
+#   6. Divide the mantissa by 10**count.
+#
+#  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than
+#   any adjustment due to append/strip zeros will drive the resultane
+#   exponent towards zero.  Since all pwrten constants with a power
+#   of 27 or less are exact, there is no need to use this routine to
+#   attempt to lessen the resultant exponent.
+#
+# Register usage:
+#
+#  ap_st_z:
+#	(*)  d0: temp digit storage
+#	(*)  d1: zero count
+#	(*)  d2: digit count
+#	(*)  d3: offset pointer
+#	( )  d4: first word of bcd
+#	(*)  d5: lword counter
+#	( )  a0: pointer to working bcd value
+#	( )  FP_SCR1: working copy of original bcd value
+#	( )  L_SCR1: copy of original exponent word
+#
+#
+# First check the absolute value of the exponent to see if this
+# routine is necessary.  If so, then check the sign of the exponent
+# and do append (+) or strip (-) zeros accordingly.
+# This section handles a positive adjusted exponent.
+#
+ap_st_z:
+	mov.l		(%sp),%d1		# load expA for range test
+	cmp.l		%d1,&27			# test is with 27
+	ble.w		pwrten			# if abs(expA) <28, skip ap/st zeros
+	btst		&30,(%a0)		# check sign of exp
+	bne.b		ap_st_n			# if neg, go to neg side
+	clr.l		%d1			# zero count reg
+	mov.l		(%a0),%d4		# load lword 1 to d4
+	bfextu		%d4{&28:&4},%d0		# get M16 in d0
+	bne.b		ap_p_fx			# if M16 is non-zero, go fix exp
+	addq.l		&1,%d1			# inc zero count
+	mov.l		&1,%d5			# init lword counter
+	mov.l		(%a0,%d5.L*4),%d4	# get lword 2 to d4
+	bne.b		ap_p_cl			# if lw 2 is zero, skip it
+	addq.l		&8,%d1			# and inc count by 8
+	addq.l		&1,%d5			# inc lword counter
+	mov.l		(%a0,%d5.L*4),%d4	# get lword 3 to d4
+ap_p_cl:
+	clr.l		%d3			# init offset reg
+	mov.l		&7,%d2			# init digit counter
+ap_p_gd:
+	bfextu		%d4{%d3:&4},%d0		# get digit
+	bne.b		ap_p_fx			# if non-zero, go to fix exp
+	addq.l		&4,%d3			# point to next digit
+	addq.l		&1,%d1			# inc digit counter
+	dbf.w		%d2,ap_p_gd		# get next digit
+ap_p_fx:
+	mov.l		%d1,%d0			# copy counter to d2
+	mov.l		(%sp),%d1		# get adjusted exp from memory
+	sub.l		%d0,%d1			# subtract count from exp
+	bge.b		ap_p_fm			# if still pos, go to pwrten
+	neg.l		%d1			# now its neg; get abs
+	mov.l		(%a0),%d4		# load lword 1 to d4
+	or.l		&0x40000000,%d4		# and set SE in d4
+	or.l		&0x40000000,(%a0)	# and in memory
+#
+# Calculate the mantissa multiplier to compensate for the striping of
+# zeros from the mantissa.
+#
+ap_p_fm:
+	lea.l		PTENRN(%pc),%a1		# get address of power-of-ten table
+	clr.l		%d3			# init table index
+	fmov.s		&0x3f800000,%fp1	# init fp1 to 1
+	mov.l		&3,%d2			# init d2 to count bits in counter
+ap_p_el:
+	asr.l		&1,%d0			# shift lsb into carry
+	bcc.b		ap_p_en			# if 1, mul fp1 by pwrten factor
+	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no)
+ap_p_en:
+	add.l		&12,%d3			# inc d3 to next rtable entry
+	tst.l		%d0			# check if d0 is zero
+	bne.b		ap_p_el			# if not, get next bit
+	fmul.x		%fp1,%fp0		# mul mantissa by 10**(no_bits_shifted)
+	bra.b		pwrten			# go calc pwrten
+#
+# This section handles a negative adjusted exponent.
+#
+ap_st_n:
+	clr.l		%d1			# clr counter
+	mov.l		&2,%d5			# set up d5 to point to lword 3
+	mov.l		(%a0,%d5.L*4),%d4	# get lword 3
+	bne.b		ap_n_cl			# if not zero, check digits
+	sub.l		&1,%d5			# dec d5 to point to lword 2
+	addq.l		&8,%d1			# inc counter by 8
+	mov.l		(%a0,%d5.L*4),%d4	# get lword 2
+ap_n_cl:
+	mov.l		&28,%d3			# point to last digit
+	mov.l		&7,%d2			# init digit counter
+ap_n_gd:
+	bfextu		%d4{%d3:&4},%d0		# get digit
+	bne.b		ap_n_fx			# if non-zero, go to exp fix
+	subq.l		&4,%d3			# point to previous digit
+	addq.l		&1,%d1			# inc digit counter
+	dbf.w		%d2,ap_n_gd		# get next digit
+ap_n_fx:
+	mov.l		%d1,%d0			# copy counter to d0
+	mov.l		(%sp),%d1		# get adjusted exp from memory
+	sub.l		%d0,%d1			# subtract count from exp
+	bgt.b		ap_n_fm			# if still pos, go fix mantissa
+	neg.l		%d1			# take abs of exp and clr SE
+	mov.l		(%a0),%d4		# load lword 1 to d4
+	and.l		&0xbfffffff,%d4		# and clr SE in d4
+	and.l		&0xbfffffff,(%a0)	# and in memory
+#
+# Calculate the mantissa multiplier to compensate for the appending of
+# zeros to the mantissa.
+#
+ap_n_fm:
+	lea.l		PTENRN(%pc),%a1		# get address of power-of-ten table
+	clr.l		%d3			# init table index
+	fmov.s		&0x3f800000,%fp1	# init fp1 to 1
+	mov.l		&3,%d2			# init d2 to count bits in counter
+ap_n_el:
+	asr.l		&1,%d0			# shift lsb into carry
+	bcc.b		ap_n_en			# if 1, mul fp1 by pwrten factor
+	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no)
+ap_n_en:
+	add.l		&12,%d3			# inc d3 to next rtable entry
+	tst.l		%d0			# check if d0 is zero
+	bne.b		ap_n_el			# if not, get next bit
+	fdiv.x		%fp1,%fp0		# div mantissa by 10**(no_bits_shifted)
+#
+#
+# Calculate power-of-ten factor from adjusted and shifted exponent.
+#
+# Register usage:
+#
+#  pwrten:
+#	(*)  d0: temp
+#	( )  d1: exponent
+#	(*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
+#	(*)  d3: FPCR work copy
+#	( )  d4: first word of bcd
+#	(*)  a1: RTABLE pointer
+#  calc_p:
+#	(*)  d0: temp
+#	( )  d1: exponent
+#	(*)  d3: PWRTxx table index
+#	( )  a0: pointer to working copy of bcd
+#	(*)  a1: PWRTxx pointer
+#	(*) fp1: power-of-ten accumulator
+#
+# Pwrten calculates the exponent factor in the selected rounding mode
+# according to the following table:
+#
+#	Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode
+#
+#	ANY	  ANY	RN	RN
+#
+#	 +	   +	RP	RP
+#	 -	   +	RP	RM
+#	 +	   -	RP	RM
+#	 -	   -	RP	RP
+#
+#	 +	   +	RM	RM
+#	 -	   +	RM	RP
+#	 +	   -	RM	RP
+#	 -	   -	RM	RM
+#
+#	 +	   +	RZ	RM
+#	 -	   +	RZ	RM
+#	 +	   -	RZ	RP
+#	 -	   -	RZ	RP
+#
+#
+pwrten:
+	mov.l		USER_FPCR(%a6),%d3	# get user's FPCR
+	bfextu		%d3{&26:&2},%d2		# isolate rounding mode bits
+	mov.l		(%a0),%d4		# reload 1st bcd word to d4
+	asl.l		&2,%d2			# format d2 to be
+	bfextu		%d4{&0:&2},%d0		# {FPCR[6],FPCR[5],SM,SE}
+	add.l		%d0,%d2			# in d2 as index into RTABLE
+	lea.l		RTABLE(%pc),%a1		# load rtable base
+	mov.b		(%a1,%d2),%d0		# load new rounding bits from table
+	clr.l		%d3			# clear d3 to force no exc and extended
+	bfins		%d0,%d3{&26:&2}		# stuff new rounding bits in FPCR
+	fmov.l		%d3,%fpcr		# write new FPCR
+	asr.l		&1,%d0			# write correct PTENxx table
+	bcc.b		not_rp			# to a1
+	lea.l		PTENRP(%pc),%a1		# it is RP
+	bra.b		calc_p			# go to init section
+not_rp:
+	asr.l		&1,%d0			# keep checking
+	bcc.b		not_rm
+	lea.l		PTENRM(%pc),%a1		# it is RM
+	bra.b		calc_p			# go to init section
+not_rm:
+	lea.l		PTENRN(%pc),%a1		# it is RN
+calc_p:
+	mov.l		%d1,%d0			# copy exp to d0;use d0
+	bpl.b		no_neg			# if exp is negative,
+	neg.l		%d0			# invert it
+	or.l		&0x40000000,(%a0)	# and set SE bit
+no_neg:
+	clr.l		%d3			# table index
+	fmov.s		&0x3f800000,%fp1	# init fp1 to 1
+e_loop:
+	asr.l		&1,%d0			# shift next bit into carry
+	bcc.b		e_next			# if zero, skip the mul
+	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no)
+e_next:
+	add.l		&12,%d3			# inc d3 to next rtable entry
+	tst.l		%d0			# check if d0 is zero
+	bne.b		e_loop			# not zero, continue shifting
+#
+#
+#  Check the sign of the adjusted exp and make the value in fp0 the
+#  same sign. If the exp was pos then multiply fp1*fp0;
+#  else divide fp0/fp1.
+#
+# Register Usage:
+#  norm:
+#	( )  a0: pointer to working bcd value
+#	(*) fp0: mantissa accumulator
+#	( ) fp1: scaling factor - 10**(abs(exp))
+#
+pnorm:
+	btst		&30,(%a0)		# test the sign of the exponent
+	beq.b		mul			# if clear, go to multiply
+div:
+	fdiv.x		%fp1,%fp0		# exp is negative, so divide mant by exp
+	bra.b		end_dec
+mul:
+	fmul.x		%fp1,%fp0		# exp is positive, so multiply by exp
+#
+#
+# Clean up and return with result in fp0.
+#
+# If the final mul/div in decbin incurred an inex exception,
+# it will be inex2, but will be reported as inex1 by get_op.
+#
+end_dec:
+	fmov.l		%fpsr,%d0		# get status register
+	bclr		&inex2_bit+8,%d0	# test for inex2 and clear it
+	beq.b		no_exc			# skip this if no exc
+	ori.w		&inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX
+no_exc:
+	add.l		&0x4,%sp		# clear 1 lw param
+	fmovm.x		(%sp)+,&0x40		# restore fp1
+	movm.l		(%sp)+,&0x3c		# restore d2-d5
+	fmov.l		&0x0,%fpcr
+	fmov.l		&0x0,%fpsr
+	rts
+
+#########################################################################
+# bindec(): Converts an input in extended precision format to bcd format#
+#									#
+# INPUT ***************************************************************	#
+#	a0 = pointer to the input extended precision value in memory.	#
+#	     the input may be either normalized, unnormalized, or	#
+#	     denormalized.						#
+#	d0 = contains the k-factor sign-extended to 32-bits.		#
+#									#
+# OUTPUT **************************************************************	#
+#	FP_SCR0(a6) = bcd format result on the stack.			#
+#									#
+# ALGORITHM ***********************************************************	#
+#									#
+#	A1.	Set RM and size ext;  Set SIGMA = sign of input.	#
+#		The k-factor is saved for use in d7. Clear the		#
+#		BINDEC_FLG for separating normalized/denormalized	#
+#		input.  If input is unnormalized or denormalized,	#
+#		normalize it.						#
+#									#
+#	A2.	Set X = abs(input).					#
+#									#
+#	A3.	Compute ILOG.						#
+#		ILOG is the log base 10 of the input value.  It is	#
+#		approximated by adding e + 0.f when the original	#
+#		value is viewed as 2^^e * 1.f in extended precision.	#
+#		This value is stored in d6.				#
+#									#
+#	A4.	Clr INEX bit.						#
+#		The operation in A3 above may have set INEX2.		#
+#									#
+#	A5.	Set ICTR = 0;						#
+#		ICTR is a flag used in A13.  It must be set before the	#
+#		loop entry A6.						#
+#									#
+#	A6.	Calculate LEN.						#
+#		LEN is the number of digits to be displayed.  The	#
+#		k-factor can dictate either the total number of digits,	#
+#		if it is a positive number, or the number of digits	#
+#		after the decimal point which are to be included as	#
+#		significant.  See the 68882 manual for examples.	#
+#		If LEN is computed to be greater than 17, set OPERR in	#
+#		USER_FPSR.  LEN is stored in d4.			#
+#									#
+#	A7.	Calculate SCALE.					#
+#		SCALE is equal to 10^ISCALE, where ISCALE is the number	#
+#		of decimal places needed to insure LEN integer digits	#
+#		in the output before conversion to bcd. LAMBDA is the	#
+#		sign of ISCALE, used in A9. Fp1 contains		#
+#		10^^(abs(ISCALE)) using a rounding mode which is a	#
+#		function of the original rounding mode and the signs	#
+#		of ISCALE and X.  A table is given in the code.		#
+#									#
+#	A8.	Clr INEX; Force RZ.					#
+#		The operation in A3 above may have set INEX2.		#
+#		RZ mode is forced for the scaling operation to insure	#
+#		only one rounding error.  The grs bits are collected in #
+#		the INEX flag for use in A10.				#
+#									#
+#	A9.	Scale X -> Y.						#
+#		The mantissa is scaled to the desired number of		#
+#		significant digits.  The excess digits are collected	#
+#		in INEX2.						#
+#									#
+#	A10.	Or in INEX.						#
+#		If INEX is set, round error occurred.  This is		#
+#		compensated for by 'or-ing' in the INEX2 flag to	#
+#		the lsb of Y.						#
+#									#
+#	A11.	Restore original FPCR; set size ext.			#
+#		Perform FINT operation in the user's rounding mode.	#
+#		Keep the size to extended.				#
+#									#
+#	A12.	Calculate YINT = FINT(Y) according to user's rounding	#
+#		mode.  The FPSP routine sintd0 is used.  The output	#
+#		is in fp0.						#
+#									#
+#	A13.	Check for LEN digits.					#
+#		If the int operation results in more than LEN digits,	#
+#		or less than LEN -1 digits, adjust ILOG and repeat from	#
+#		A6.  This test occurs only on the first pass.  If the	#
+#		result is exactly 10^LEN, decrement ILOG and divide	#
+#		the mantissa by 10.					#
+#									#
+#	A14.	Convert the mantissa to bcd.				#
+#		The binstr routine is used to convert the LEN digit	#
+#		mantissa to bcd in memory.  The input to binstr is	#
+#		to be a fraction; i.e. (mantissa)/10^LEN and adjusted	#
+#		such that the decimal point is to the left of bit 63.	#
+#		The bcd digits are stored in the correct position in	#
+#		the final string area in memory.			#
+#									#
+#	A15.	Convert the exponent to bcd.				#
+#		As in A14 above, the exp is converted to bcd and the	#
+#		digits are stored in the final string.			#
+#		Test the length of the final exponent string.  If the	#
+#		length is 4, set operr.					#
+#									#
+#	A16.	Write sign bits to final string.			#
+#									#
+#########################################################################
+
+set	BINDEC_FLG,	EXC_TEMP	# DENORM flag
+
+# Constants in extended precision
+PLOG2:
+	long		0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
+PLOG2UP1:
+	long		0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
+
+# Constants in single precision
+FONE:
+	long		0x3F800000,0x00000000,0x00000000,0x00000000
+FTWO:
+	long		0x40000000,0x00000000,0x00000000,0x00000000
+FTEN:
+	long		0x41200000,0x00000000,0x00000000,0x00000000
+F4933:
+	long		0x459A2800,0x00000000,0x00000000,0x00000000
+
+RBDTBL:
+	byte		0,0,0,0
+	byte		3,3,2,2
+	byte		3,2,2,3
+	byte		2,3,3,2
+
+#	Implementation Notes:
+#
+#	The registers are used as follows:
+#
+#		d0: scratch; LEN input to binstr
+#		d1: scratch
+#		d2: upper 32-bits of mantissa for binstr
+#		d3: scratch;lower 32-bits of mantissa for binstr
+#		d4: LEN
+#		d5: LAMBDA/ICTR
+#		d6: ILOG
+#		d7: k-factor
+#		a0: ptr for original operand/final result
+#		a1: scratch pointer
+#		a2: pointer to FP_X; abs(original value) in ext
+#		fp0: scratch
+#		fp1: scratch
+#		fp2: scratch
+#		F_SCR1:
+#		F_SCR2:
+#		L_SCR1:
+#		L_SCR2:
+
+	global		bindec
+bindec:
+	movm.l		&0x3f20,-(%sp)	#  {%d2-%d7/%a2}
+	fmovm.x		&0x7,-(%sp)	#  {%fp0-%fp2}
+
+# A1. Set RM and size ext. Set SIGMA = sign input;
+#     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
+#     separating  normalized/denormalized input.  If the input
+#     is a denormalized number, set the BINDEC_FLG memory word
+#     to signal denorm.  If the input is unnormalized, normalize
+#     the input and test for denormalized result.
+#
+	fmov.l		&rm_mode*0x10,%fpcr	# set RM and ext
+	mov.l		(%a0),L_SCR2(%a6)	# save exponent for sign check
+	mov.l		%d0,%d7		# move k-factor to d7
+
+	clr.b		BINDEC_FLG(%a6)	# clr norm/denorm flag
+	cmpi.b		STAG(%a6),&DENORM # is input a DENORM?
+	bne.w		A2_str		# no; input is a NORM
+
+#
+# Normalize the denorm
+#
+un_de_norm:
+	mov.w		(%a0),%d0
+	and.w		&0x7fff,%d0	# strip sign of normalized exp
+	mov.l		4(%a0),%d1
+	mov.l		8(%a0),%d2
+norm_loop:
+	sub.w		&1,%d0
+	lsl.l		&1,%d2
+	roxl.l		&1,%d1
+	tst.l		%d1
+	bge.b		norm_loop
+#
+# Test if the normalized input is denormalized
+#
+	tst.w		%d0
+	bgt.b		pos_exp		# if greater than zero, it is a norm
+	st		BINDEC_FLG(%a6)	# set flag for denorm
+pos_exp:
+	and.w		&0x7fff,%d0	# strip sign of normalized exp
+	mov.w		%d0,(%a0)
+	mov.l		%d1,4(%a0)
+	mov.l		%d2,8(%a0)
+
+# A2. Set X = abs(input).
+#
+A2_str:
+	mov.l		(%a0),FP_SCR1(%a6)	# move input to work space
+	mov.l		4(%a0),FP_SCR1+4(%a6)	# move input to work space
+	mov.l		8(%a0),FP_SCR1+8(%a6)	# move input to work space
+	and.l		&0x7fffffff,FP_SCR1(%a6)	# create abs(X)
+
+# A3. Compute ILOG.
+#     ILOG is the log base 10 of the input value.  It is approx-
+#     imated by adding e + 0.f when the original value is viewed
+#     as 2^^e * 1.f in extended precision.  This value is stored
+#     in d6.
+#
+# Register usage:
+#	Input/Output
+#	d0: k-factor/exponent
+#	d2: x/x
+#	d3: x/x
+#	d4: x/x
+#	d5: x/x
+#	d6: x/ILOG
+#	d7: k-factor/Unchanged
+#	a0: ptr for original operand/final result
+#	a1: x/x
+#	a2: x/x
+#	fp0: x/float(ILOG)
+#	fp1: x/x
+#	fp2: x/x
+#	F_SCR1:x/x
+#	F_SCR2:Abs(X)/Abs(X) with $3fff exponent
+#	L_SCR1:x/x
+#	L_SCR2:first word of X packed/Unchanged
+
+	tst.b		BINDEC_FLG(%a6)	# check for denorm
+	beq.b		A3_cont		# if clr, continue with norm
+	mov.l		&-4933,%d6	# force ILOG = -4933
+	bra.b		A4_str
+A3_cont:
+	mov.w		FP_SCR1(%a6),%d0	# move exp to d0
+	mov.w		&0x3fff,FP_SCR1(%a6)	# replace exponent with 0x3fff
+	fmov.x		FP_SCR1(%a6),%fp0	# now fp0 has 1.f
+	sub.w		&0x3fff,%d0	# strip off bias
+	fadd.w		%d0,%fp0	# add in exp
+	fsub.s		FONE(%pc),%fp0	# subtract off 1.0
+	fbge.w		pos_res		# if pos, branch
+	fmul.x		PLOG2UP1(%pc),%fp0	# if neg, mul by LOG2UP1
+	fmov.l		%fp0,%d6	# put ILOG in d6 as a lword
+	bra.b		A4_str		# go move out ILOG
+pos_res:
+	fmul.x		PLOG2(%pc),%fp0	# if pos, mul by LOG2
+	fmov.l		%fp0,%d6	# put ILOG in d6 as a lword
+
+
+# A4. Clr INEX bit.
+#     The operation in A3 above may have set INEX2.
+
+A4_str:
+	fmov.l		&0,%fpsr	# zero all of fpsr - nothing needed
+
+
+# A5. Set ICTR = 0;
+#     ICTR is a flag used in A13.  It must be set before the
+#     loop entry A6. The lower word of d5 is used for ICTR.
+
+	clr.w		%d5		# clear ICTR
+
+# A6. Calculate LEN.
+#     LEN is the number of digits to be displayed.  The k-factor
+#     can dictate either the total number of digits, if it is
+#     a positive number, or the number of digits after the
+#     original decimal point which are to be included as
+#     significant.  See the 68882 manual for examples.
+#     If LEN is computed to be greater than 17, set OPERR in
+#     USER_FPSR.  LEN is stored in d4.
+#
+# Register usage:
+#	Input/Output
+#	d0: exponent/Unchanged
+#	d2: x/x/scratch
+#	d3: x/x
+#	d4: exc picture/LEN
+#	d5: ICTR/Unchanged
+#	d6: ILOG/Unchanged
+#	d7: k-factor/Unchanged
+#	a0: ptr for original operand/final result
+#	a1: x/x
+#	a2: x/x
+#	fp0: float(ILOG)/Unchanged
+#	fp1: x/x
+#	fp2: x/x
+#	F_SCR1:x/x
+#	F_SCR2:Abs(X) with $3fff exponent/Unchanged
+#	L_SCR1:x/x
+#	L_SCR2:first word of X packed/Unchanged
+
+A6_str:
+	tst.l		%d7		# branch on sign of k
+	ble.b		k_neg		# if k <= 0, LEN = ILOG + 1 - k
+	mov.l		%d7,%d4		# if k > 0, LEN = k
+	bra.b		len_ck		# skip to LEN check
+k_neg:
+	mov.l		%d6,%d4		# first load ILOG to d4
+	sub.l		%d7,%d4		# subtract off k
+	addq.l		&1,%d4		# add in the 1
+len_ck:
+	tst.l		%d4		# LEN check: branch on sign of LEN
+	ble.b		LEN_ng		# if neg, set LEN = 1
+	cmp.l		%d4,&17		# test if LEN > 17
+	ble.b		A7_str		# if not, forget it
+	mov.l		&17,%d4		# set max LEN = 17
+	tst.l		%d7		# if negative, never set OPERR
+	ble.b		A7_str		# if positive, continue
+	or.l		&opaop_mask,USER_FPSR(%a6)	# set OPERR & AIOP in USER_FPSR
+	bra.b		A7_str		# finished here
+LEN_ng:
+	mov.l		&1,%d4		# min LEN is 1
+
+
+# A7. Calculate SCALE.
+#     SCALE is equal to 10^ISCALE, where ISCALE is the number
+#     of decimal places needed to insure LEN integer digits
+#     in the output before conversion to bcd. LAMBDA is the sign
+#     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
+#     the rounding mode as given in the following table (see
+#     Coonen, p. 7.23 as ref.; however, the SCALE variable is
+#     of opposite sign in bindec.sa from Coonen).
+#
+#	Initial					USE
+#	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5]
+#	----------------------------------------------
+#	 RN	00	   0	   0		00/0	RN
+#	 RN	00	   0	   1		00/0	RN
+#	 RN	00	   1	   0		00/0	RN
+#	 RN	00	   1	   1		00/0	RN
+#	 RZ	01	   0	   0		11/3	RP
+#	 RZ	01	   0	   1		11/3	RP
+#	 RZ	01	   1	   0		10/2	RM
+#	 RZ	01	   1	   1		10/2	RM
+#	 RM	10	   0	   0		11/3	RP
+#	 RM	10	   0	   1		10/2	RM
+#	 RM	10	   1	   0		10/2	RM
+#	 RM	10	   1	   1		11/3	RP
+#	 RP	11	   0	   0		10/2	RM
+#	 RP	11	   0	   1		11/3	RP
+#	 RP	11	   1	   0		11/3	RP
+#	 RP	11	   1	   1		10/2	RM
+#
+# Register usage:
+#	Input/Output
+#	d0: exponent/scratch - final is 0
+#	d2: x/0 or 24 for A9
+#	d3: x/scratch - offset ptr into PTENRM array
+#	d4: LEN/Unchanged
+#	d5: 0/ICTR:LAMBDA
+#	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
+#	d7: k-factor/Unchanged
+#	a0: ptr for original operand/final result
+#	a1: x/ptr to PTENRM array
+#	a2: x/x
+#	fp0: float(ILOG)/Unchanged
+#	fp1: x/10^ISCALE
+#	fp2: x/x
+#	F_SCR1:x/x
+#	F_SCR2:Abs(X) with $3fff exponent/Unchanged
+#	L_SCR1:x/x
+#	L_SCR2:first word of X packed/Unchanged
+
+A7_str:
+	tst.l		%d7		# test sign of k
+	bgt.b		k_pos		# if pos and > 0, skip this
+	cmp.l		%d7,%d6		# test k - ILOG
+	blt.b		k_pos		# if ILOG >= k, skip this
+	mov.l		%d7,%d6		# if ((k<0) & (ILOG < k)) ILOG = k
+k_pos:
+	mov.l		%d6,%d0		# calc ILOG + 1 - LEN in d0
+	addq.l		&1,%d0		# add the 1
+	sub.l		%d4,%d0		# sub off LEN
+	swap		%d5		# use upper word of d5 for LAMBDA
+	clr.w		%d5		# set it zero initially
+	clr.w		%d2		# set up d2 for very small case
+	tst.l		%d0		# test sign of ISCALE
+	bge.b		iscale		# if pos, skip next inst
+	addq.w		&1,%d5		# if neg, set LAMBDA true
+	cmp.l		%d0,&0xffffecd4	# test iscale <= -4908
+	bgt.b		no_inf		# if false, skip rest
+	add.l		&24,%d0		# add in 24 to iscale
+	mov.l		&24,%d2		# put 24 in d2 for A9
+no_inf:
+	neg.l		%d0		# and take abs of ISCALE
+iscale:
+	fmov.s		FONE(%pc),%fp1	# init fp1 to 1
+	bfextu		USER_FPCR(%a6){&26:&2},%d1	# get initial rmode bits
+	lsl.w		&1,%d1		# put them in bits 2:1
+	add.w		%d5,%d1		# add in LAMBDA
+	lsl.w		&1,%d1		# put them in bits 3:1
+	tst.l		L_SCR2(%a6)	# test sign of original x
+	bge.b		x_pos		# if pos, don't set bit 0
+	addq.l		&1,%d1		# if neg, set bit 0
+x_pos:
+	lea.l		RBDTBL(%pc),%a2	# load rbdtbl base
+	mov.b		(%a2,%d1),%d3	# load d3 with new rmode
+	lsl.l		&4,%d3		# put bits in proper position
+	fmov.l		%d3,%fpcr	# load bits into fpu
+	lsr.l		&4,%d3		# put bits in proper position
+	tst.b		%d3		# decode new rmode for pten table
+	bne.b		not_rn		# if zero, it is RN
+	lea.l		PTENRN(%pc),%a1	# load a1 with RN table base
+	bra.b		rmode		# exit decode
+not_rn:
+	lsr.b		&1,%d3		# get lsb in carry
+	bcc.b		not_rp2		# if carry clear, it is RM
+	lea.l		PTENRP(%pc),%a1	# load a1 with RP table base
+	bra.b		rmode		# exit decode
+not_rp2:
+	lea.l		PTENRM(%pc),%a1	# load a1 with RM table base
+rmode:
+	clr.l		%d3		# clr table index
+e_loop2:
+	lsr.l		&1,%d0		# shift next bit into carry
+	bcc.b		e_next2		# if zero, skip the mul
+	fmul.x		(%a1,%d3),%fp1	# mul by 10**(d3_bit_no)
+e_next2:
+	add.l		&12,%d3		# inc d3 to next pwrten table entry
+	tst.l		%d0		# test if ISCALE is zero
+	bne.b		e_loop2		# if not, loop
+
+# A8. Clr INEX; Force RZ.
+#     The operation in A3 above may have set INEX2.
+#     RZ mode is forced for the scaling operation to insure
+#     only one rounding error.  The grs bits are collected in
+#     the INEX flag for use in A10.
+#
+# Register usage:
+#	Input/Output
+
+	fmov.l		&0,%fpsr	# clr INEX
+	fmov.l		&rz_mode*0x10,%fpcr	# set RZ rounding mode
+
+# A9. Scale X -> Y.
+#     The mantissa is scaled to the desired number of significant
+#     digits.  The excess digits are collected in INEX2. If mul,
+#     Check d2 for excess 10 exponential value.  If not zero,
+#     the iscale value would have caused the pwrten calculation
+#     to overflow.  Only a negative iscale can cause this, so
+#     multiply by 10^(d2), which is now only allowed to be 24,
+#     with a multiply by 10^8 and 10^16, which is exact since
+#     10^24 is exact.  If the input was denormalized, we must
+#     create a busy stack frame with the mul command and the
+#     two operands, and allow the fpu to complete the multiply.
+#
+# Register usage:
+#	Input/Output
+#	d0: FPCR with RZ mode/Unchanged
+#	d2: 0 or 24/unchanged
+#	d3: x/x
+#	d4: LEN/Unchanged
+#	d5: ICTR:LAMBDA
+#	d6: ILOG/Unchanged
+#	d7: k-factor/Unchanged
+#	a0: ptr for original operand/final result
+#	a1: ptr to PTENRM array/Unchanged
+#	a2: x/x
+#	fp0: float(ILOG)/X adjusted for SCALE (Y)
+#	fp1: 10^ISCALE/Unchanged
+#	fp2: x/x
+#	F_SCR1:x/x
+#	F_SCR2:Abs(X) with $3fff exponent/Unchanged
+#	L_SCR1:x/x
+#	L_SCR2:first word of X packed/Unchanged
+
+A9_str:
+	fmov.x		(%a0),%fp0	# load X from memory
+	fabs.x		%fp0		# use abs(X)
+	tst.w		%d5		# LAMBDA is in lower word of d5
+	bne.b		sc_mul		# if neg (LAMBDA = 1), scale by mul
+	fdiv.x		%fp1,%fp0	# calculate X / SCALE -> Y to fp0
+	bra.w		A10_st		# branch to A10
+
+sc_mul:
+	tst.b		BINDEC_FLG(%a6)	# check for denorm
+	beq.w		A9_norm		# if norm, continue with mul
+
+# for DENORM, we must calculate:
+#	fp0 = input_op * 10^ISCALE * 10^24
+# since the input operand is a DENORM, we can't multiply it directly.
+# so, we do the multiplication of the exponents and mantissas separately.
+# in this way, we avoid underflow on intermediate stages of the
+# multiplication and guarantee a result without exception.
+	fmovm.x		&0x2,-(%sp)	# save 10^ISCALE to stack
+
+	mov.w		(%sp),%d3	# grab exponent
+	andi.w		&0x7fff,%d3	# clear sign
+	ori.w		&0x8000,(%a0)	# make DENORM exp negative
+	add.w		(%a0),%d3	# add DENORM exp to 10^ISCALE exp
+	subi.w		&0x3fff,%d3	# subtract BIAS
+	add.w		36(%a1),%d3
+	subi.w		&0x3fff,%d3	# subtract BIAS
+	add.w		48(%a1),%d3
+	subi.w		&0x3fff,%d3	# subtract BIAS
+
+	bmi.w		sc_mul_err	# is result is DENORM, punt!!!
+
+	andi.w		&0x8000,(%sp)	# keep sign
+	or.w		%d3,(%sp)	# insert new exponent
+	andi.w		&0x7fff,(%a0)	# clear sign bit on DENORM again
+	mov.l		0x8(%a0),-(%sp) # put input op mantissa on stk
+	mov.l		0x4(%a0),-(%sp)
+	mov.l		&0x3fff0000,-(%sp) # force exp to zero
+	fmovm.x		(%sp)+,&0x80	# load normalized DENORM into fp0
+	fmul.x		(%sp)+,%fp0
+
+#	fmul.x	36(%a1),%fp0	# multiply fp0 by 10^8
+#	fmul.x	48(%a1),%fp0	# multiply fp0 by 10^16
+	mov.l		36+8(%a1),-(%sp) # get 10^8 mantissa
+	mov.l		36+4(%a1),-(%sp)
+	mov.l		&0x3fff0000,-(%sp) # force exp to zero
+	mov.l		48+8(%a1),-(%sp) # get 10^16 mantissa
+	mov.l		48+4(%a1),-(%sp)
+	mov.l		&0x3fff0000,-(%sp)# force exp to zero
+	fmul.x		(%sp)+,%fp0	# multiply fp0 by 10^8
+	fmul.x		(%sp)+,%fp0	# multiply fp0 by 10^16
+	bra.b		A10_st
+
+sc_mul_err:
+	bra.b		sc_mul_err
+
+A9_norm:
+	tst.w		%d2		# test for small exp case
+	beq.b		A9_con		# if zero, continue as normal
+	fmul.x		36(%a1),%fp0	# multiply fp0 by 10^8
+	fmul.x		48(%a1),%fp0	# multiply fp0 by 10^16
+A9_con:
+	fmul.x		%fp1,%fp0	# calculate X * SCALE -> Y to fp0
+
+# A10. Or in INEX.
+#      If INEX is set, round error occurred.  This is compensated
+#      for by 'or-ing' in the INEX2 flag to the lsb of Y.
+#
+# Register usage:
+#	Input/Output
+#	d0: FPCR with RZ mode/FPSR with INEX2 isolated
+#	d2: x/x
+#	d3: x/x
+#	d4: LEN/Unchanged
+#	d5: ICTR:LAMBDA
+#	d6: ILOG/Unchanged
+#	d7: k-factor/Unchanged
+#	a0: ptr for original operand/final result
+#	a1: ptr to PTENxx array/Unchanged
+#	a2: x/ptr to FP_SCR1(a6)
+#	fp0: Y/Y with lsb adjusted
+#	fp1: 10^ISCALE/Unchanged
+#	fp2: x/x
+
+A10_st:
+	fmov.l		%fpsr,%d0	# get FPSR
+	fmov.x		%fp0,FP_SCR1(%a6)	# move Y to memory
+	lea.l		FP_SCR1(%a6),%a2	# load a2 with ptr to FP_SCR1
+	btst		&9,%d0		# check if INEX2 set
+	beq.b		A11_st		# if clear, skip rest
+	or.l		&1,8(%a2)	# or in 1 to lsb of mantissa
+	fmov.x		FP_SCR1(%a6),%fp0	# write adjusted Y back to fpu
+
+
+# A11. Restore original FPCR; set size ext.
+#      Perform FINT operation in the user's rounding mode.  Keep
+#      the size to extended.  The sintdo entry point in the sint
+#      routine expects the FPCR value to be in USER_FPCR for
+#      mode and precision.  The original FPCR is saved in L_SCR1.
+
+A11_st:
+	mov.l		USER_FPCR(%a6),L_SCR1(%a6)	# save it for later
+	and.l		&0x00000030,USER_FPCR(%a6)	# set size to ext,
+#					;block exceptions
+
+
+# A12. Calculate YINT = FINT(Y) according to user's rounding mode.
+#      The FPSP routine sintd0 is used.  The output is in fp0.
+#
+# Register usage:
+#	Input/Output
+#	d0: FPSR with AINEX cleared/FPCR with size set to ext
+#	d2: x/x/scratch
+#	d3: x/x
+#	d4: LEN/Unchanged
+#	d5: ICTR:LAMBDA/Unchanged
+#	d6: ILOG/Unchanged
+#	d7: k-factor/Unchanged
+#	a0: ptr for original operand/src ptr for sintdo
+#	a1: ptr to PTENxx array/Unchanged
+#	a2: ptr to FP_SCR1(a6)/Unchanged
+#	a6: temp pointer to FP_SCR1(a6) - orig value saved and restored
+#	fp0: Y/YINT
+#	fp1: 10^ISCALE/Unchanged
+#	fp2: x/x
+#	F_SCR1:x/x
+#	F_SCR2:Y adjusted for inex/Y with original exponent
+#	L_SCR1:x/original USER_FPCR
+#	L_SCR2:first word of X packed/Unchanged
+
+A12_st:
+	movm.l	&0xc0c0,-(%sp)	# save regs used by sintd0	 {%d0-%d1/%a0-%a1}
+	mov.l	L_SCR1(%a6),-(%sp)
+	mov.l	L_SCR2(%a6),-(%sp)
+
+	lea.l		FP_SCR1(%a6),%a0	# a0 is ptr to FP_SCR1(a6)
+	fmov.x		%fp0,(%a0)	# move Y to memory at FP_SCR1(a6)
+	tst.l		L_SCR2(%a6)	# test sign of original operand
+	bge.b		do_fint12		# if pos, use Y
+	or.l		&0x80000000,(%a0)	# if neg, use -Y
+do_fint12:
+	mov.l	USER_FPSR(%a6),-(%sp)
+#	bsr	sintdo		# sint routine returns int in fp0
+
+	fmov.l	USER_FPCR(%a6),%fpcr
+	fmov.l	&0x0,%fpsr			# clear the AEXC bits!!!
+##	mov.l		USER_FPCR(%a6),%d0	# ext prec/keep rnd mode
+##	andi.l		&0x00000030,%d0
+##	fmov.l		%d0,%fpcr
+	fint.x		FP_SCR1(%a6),%fp0	# do fint()
+	fmov.l	%fpsr,%d0
+	or.w	%d0,FPSR_EXCEPT(%a6)
+##	fmov.l		&0x0,%fpcr
+##	fmov.l		%fpsr,%d0		# don't keep ccodes
+##	or.w		%d0,FPSR_EXCEPT(%a6)
+
+	mov.b	(%sp),USER_FPSR(%a6)
+	add.l	&4,%sp
+
+	mov.l	(%sp)+,L_SCR2(%a6)
+	mov.l	(%sp)+,L_SCR1(%a6)
+	movm.l	(%sp)+,&0x303	# restore regs used by sint	 {%d0-%d1/%a0-%a1}
+
+	mov.l	L_SCR2(%a6),FP_SCR1(%a6)	# restore original exponent
+	mov.l	L_SCR1(%a6),USER_FPCR(%a6)	# restore user's FPCR
+
+# A13. Check for LEN digits.
+#      If the int operation results in more than LEN digits,
+#      or less than LEN -1 digits, adjust ILOG and repeat from
+#      A6.  This test occurs only on the first pass.  If the
+#      result is exactly 10^LEN, decrement ILOG and divide
+#      the mantissa by 10.  The calculation of 10^LEN cannot
+#      be inexact, since all powers of ten upto 10^27 are exact
+#      in extended precision, so the use of a previous power-of-ten
+#      table will introduce no error.
+#
+#
+# Register usage:
+#	Input/Output
+#	d0: FPCR with size set to ext/scratch final = 0
+#	d2: x/x
+#	d3: x/scratch final = x
+#	d4: LEN/LEN adjusted
+#	d5: ICTR:LAMBDA/LAMBDA:ICTR
+#	d6: ILOG/ILOG adjusted
+#	d7: k-factor/Unchanged
+#	a0: pointer into memory for packed bcd string formation
+#	a1: ptr to PTENxx array/Unchanged
+#	a2: ptr to FP_SCR1(a6)/Unchanged
+#	fp0: int portion of Y/abs(YINT) adjusted
+#	fp1: 10^ISCALE/Unchanged
+#	fp2: x/10^LEN
+#	F_SCR1:x/x
+#	F_SCR2:Y with original exponent/Unchanged
+#	L_SCR1:original USER_FPCR/Unchanged
+#	L_SCR2:first word of X packed/Unchanged
+
+A13_st:
+	swap		%d5		# put ICTR in lower word of d5
+	tst.w		%d5		# check if ICTR = 0
+	bne		not_zr		# if non-zero, go to second test
+#
+# Compute 10^(LEN-1)
+#
+	fmov.s		FONE(%pc),%fp2	# init fp2 to 1.0
+	mov.l		%d4,%d0		# put LEN in d0
+	subq.l		&1,%d0		# d0 = LEN -1
+	clr.l		%d3		# clr table index
+l_loop:
+	lsr.l		&1,%d0		# shift next bit into carry
+	bcc.b		l_next		# if zero, skip the mul
+	fmul.x		(%a1,%d3),%fp2	# mul by 10**(d3_bit_no)
+l_next:
+	add.l		&12,%d3		# inc d3 to next pwrten table entry
+	tst.l		%d0		# test if LEN is zero
+	bne.b		l_loop		# if not, loop
+#
+# 10^LEN-1 is computed for this test and A14.  If the input was
+# denormalized, check only the case in which YINT > 10^LEN.
+#
+	tst.b		BINDEC_FLG(%a6)	# check if input was norm
+	beq.b		A13_con		# if norm, continue with checking
+	fabs.x		%fp0		# take abs of YINT
+	bra		test_2
+#
+# Compare abs(YINT) to 10^(LEN-1) and 10^LEN
+#
+A13_con:
+	fabs.x		%fp0		# take abs of YINT
+	fcmp.x		%fp0,%fp2	# compare abs(YINT) with 10^(LEN-1)
+	fbge.w		test_2		# if greater, do next test
+	subq.l		&1,%d6		# subtract 1 from ILOG
+	mov.w		&1,%d5		# set ICTR
+	fmov.l		&rm_mode*0x10,%fpcr	# set rmode to RM
+	fmul.s		FTEN(%pc),%fp2	# compute 10^LEN
+	bra.w		A6_str		# return to A6 and recompute YINT
+test_2:
+	fmul.s		FTEN(%pc),%fp2	# compute 10^LEN
+	fcmp.x		%fp0,%fp2	# compare abs(YINT) with 10^LEN
+	fblt.w		A14_st		# if less, all is ok, go to A14
+	fbgt.w		fix_ex		# if greater, fix and redo
+	fdiv.s		FTEN(%pc),%fp0	# if equal, divide by 10
+	addq.l		&1,%d6		# and inc ILOG
+	bra.b		A14_st		# and continue elsewhere
+fix_ex:
+	addq.l		&1,%d6		# increment ILOG by 1
+	mov.w		&1,%d5		# set ICTR
+	fmov.l		&rm_mode*0x10,%fpcr	# set rmode to RM
+	bra.w		A6_str		# return to A6 and recompute YINT
+#
+# Since ICTR <> 0, we have already been through one adjustment,
+# and shouldn't have another; this is to check if abs(YINT) = 10^LEN
+# 10^LEN is again computed using whatever table is in a1 since the
+# value calculated cannot be inexact.
+#
+not_zr:
+	fmov.s		FONE(%pc),%fp2	# init fp2 to 1.0
+	mov.l		%d4,%d0		# put LEN in d0
+	clr.l		%d3		# clr table index
+z_loop:
+	lsr.l		&1,%d0		# shift next bit into carry
+	bcc.b		z_next		# if zero, skip the mul
+	fmul.x		(%a1,%d3),%fp2	# mul by 10**(d3_bit_no)
+z_next:
+	add.l		&12,%d3		# inc d3 to next pwrten table entry
+	tst.l		%d0		# test if LEN is zero
+	bne.b		z_loop		# if not, loop
+	fabs.x		%fp0		# get abs(YINT)
+	fcmp.x		%fp0,%fp2	# check if abs(YINT) = 10^LEN
+	fbneq.w		A14_st		# if not, skip this
+	fdiv.s		FTEN(%pc),%fp0	# divide abs(YINT) by 10
+	addq.l		&1,%d6		# and inc ILOG by 1
+	addq.l		&1,%d4		# and inc LEN
+	fmul.s		FTEN(%pc),%fp2	# if LEN++, the get 10^^LEN
+
+# A14. Convert the mantissa to bcd.
+#      The binstr routine is used to convert the LEN digit
+#      mantissa to bcd in memory.  The input to binstr is
+#      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
+#      such that the decimal point is to the left of bit 63.
+#      The bcd digits are stored in the correct position in
+#      the final string area in memory.
+#
+#
+# Register usage:
+#	Input/Output
+#	d0: x/LEN call to binstr - final is 0
+#	d1: x/0
+#	d2: x/ms 32-bits of mant of abs(YINT)
+#	d3: x/ls 32-bits of mant of abs(YINT)
+#	d4: LEN/Unchanged
+#	d5: ICTR:LAMBDA/LAMBDA:ICTR
+#	d6: ILOG
+#	d7: k-factor/Unchanged
+#	a0: pointer into memory for packed bcd string formation
+#	    /ptr to first mantissa byte in result string
+#	a1: ptr to PTENxx array/Unchanged
+#	a2: ptr to FP_SCR1(a6)/Unchanged
+#	fp0: int portion of Y/abs(YINT) adjusted
+#	fp1: 10^ISCALE/Unchanged
+#	fp2: 10^LEN/Unchanged
+#	F_SCR1:x/Work area for final result
+#	F_SCR2:Y with original exponent/Unchanged
+#	L_SCR1:original USER_FPCR/Unchanged
+#	L_SCR2:first word of X packed/Unchanged
+
+A14_st:
+	fmov.l		&rz_mode*0x10,%fpcr	# force rz for conversion
+	fdiv.x		%fp2,%fp0	# divide abs(YINT) by 10^LEN
+	lea.l		FP_SCR0(%a6),%a0
+	fmov.x		%fp0,(%a0)	# move abs(YINT)/10^LEN to memory
+	mov.l		4(%a0),%d2	# move 2nd word of FP_RES to d2
+	mov.l		8(%a0),%d3	# move 3rd word of FP_RES to d3
+	clr.l		4(%a0)		# zero word 2 of FP_RES
+	clr.l		8(%a0)		# zero word 3 of FP_RES
+	mov.l		(%a0),%d0	# move exponent to d0
+	swap		%d0		# put exponent in lower word
+	beq.b		no_sft		# if zero, don't shift
+	sub.l		&0x3ffd,%d0	# sub bias less 2 to make fract
+	tst.l		%d0		# check if > 1
+	bgt.b		no_sft		# if so, don't shift
+	neg.l		%d0		# make exp positive
+m_loop:
+	lsr.l		&1,%d2		# shift d2:d3 right, add 0s
+	roxr.l		&1,%d3		# the number of places
+	dbf.w		%d0,m_loop	# given in d0
+no_sft:
+	tst.l		%d2		# check for mantissa of zero
+	bne.b		no_zr		# if not, go on
+	tst.l		%d3		# continue zero check
+	beq.b		zer_m		# if zero, go directly to binstr
+no_zr:
+	clr.l		%d1		# put zero in d1 for addx
+	add.l		&0x00000080,%d3	# inc at bit 7
+	addx.l		%d1,%d2		# continue inc
+	and.l		&0xffffff80,%d3	# strip off lsb not used by 882
+zer_m:
+	mov.l		%d4,%d0		# put LEN in d0 for binstr call
+	addq.l		&3,%a0		# a0 points to M16 byte in result
+	bsr		binstr		# call binstr to convert mant
+
+
+# A15. Convert the exponent to bcd.
+#      As in A14 above, the exp is converted to bcd and the
+#      digits are stored in the final string.
+#
+#      Digits are stored in L_SCR1(a6) on return from BINDEC as:
+#
+#	 32               16 15                0
+#	-----------------------------------------
+#	|  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
+#	-----------------------------------------
+#
+# And are moved into their proper places in FP_SCR0.  If digit e4
+# is non-zero, OPERR is signaled.  In all cases, all 4 digits are
+# written as specified in the 881/882 manual for packed decimal.
+#
+# Register usage:
+#	Input/Output
+#	d0: x/LEN call to binstr - final is 0
+#	d1: x/scratch (0);shift count for final exponent packing
+#	d2: x/ms 32-bits of exp fraction/scratch
+#	d3: x/ls 32-bits of exp fraction
+#	d4: LEN/Unchanged
+#	d5: ICTR:LAMBDA/LAMBDA:ICTR
+#	d6: ILOG
+#	d7: k-factor/Unchanged
+#	a0: ptr to result string/ptr to L_SCR1(a6)
+#	a1: ptr to PTENxx array/Unchanged
+#	a2: ptr to FP_SCR1(a6)/Unchanged
+#	fp0: abs(YINT) adjusted/float(ILOG)
+#	fp1: 10^ISCALE/Unchanged
+#	fp2: 10^LEN/Unchanged
+#	F_SCR1:Work area for final result/BCD result
+#	F_SCR2:Y with original exponent/ILOG/10^4
+#	L_SCR1:original USER_FPCR/Exponent digits on return from binstr
+#	L_SCR2:first word of X packed/Unchanged
+
+A15_st:
+	tst.b		BINDEC_FLG(%a6)	# check for denorm
+	beq.b		not_denorm
+	ftest.x		%fp0		# test for zero
+	fbeq.w		den_zero	# if zero, use k-factor or 4933
+	fmov.l		%d6,%fp0	# float ILOG
+	fabs.x		%fp0		# get abs of ILOG
+	bra.b		convrt
+den_zero:
+	tst.l		%d7		# check sign of the k-factor
+	blt.b		use_ilog	# if negative, use ILOG
+	fmov.s		F4933(%pc),%fp0	# force exponent to 4933
+	bra.b		convrt		# do it
+use_ilog:
+	fmov.l		%d6,%fp0	# float ILOG
+	fabs.x		%fp0		# get abs of ILOG
+	bra.b		convrt
+not_denorm:
+	ftest.x		%fp0		# test for zero
+	fbneq.w		not_zero	# if zero, force exponent
+	fmov.s		FONE(%pc),%fp0	# force exponent to 1
+	bra.b		convrt		# do it
+not_zero:
+	fmov.l		%d6,%fp0	# float ILOG
+	fabs.x		%fp0		# get abs of ILOG
+convrt:
+	fdiv.x		24(%a1),%fp0	# compute ILOG/10^4
+	fmov.x		%fp0,FP_SCR1(%a6)	# store fp0 in memory
+	mov.l		4(%a2),%d2	# move word 2 to d2
+	mov.l		8(%a2),%d3	# move word 3 to d3
+	mov.w		(%a2),%d0	# move exp to d0
+	beq.b		x_loop_fin	# if zero, skip the shift
+	sub.w		&0x3ffd,%d0	# subtract off bias
+	neg.w		%d0		# make exp positive
+x_loop:
+	lsr.l		&1,%d2		# shift d2:d3 right
+	roxr.l		&1,%d3		# the number of places
+	dbf.w		%d0,x_loop	# given in d0
+x_loop_fin:
+	clr.l		%d1		# put zero in d1 for addx
+	add.l		&0x00000080,%d3	# inc at bit 6
+	addx.l		%d1,%d2		# continue inc
+	and.l		&0xffffff80,%d3	# strip off lsb not used by 882
+	mov.l		&4,%d0		# put 4 in d0 for binstr call
+	lea.l		L_SCR1(%a6),%a0	# a0 is ptr to L_SCR1 for exp digits
+	bsr		binstr		# call binstr to convert exp
+	mov.l		L_SCR1(%a6),%d0	# load L_SCR1 lword to d0
+	mov.l		&12,%d1		# use d1 for shift count
+	lsr.l		%d1,%d0		# shift d0 right by 12
+	bfins		%d0,FP_SCR0(%a6){&4:&12}	# put e3:e2:e1 in FP_SCR0
+	lsr.l		%d1,%d0		# shift d0 right by 12
+	bfins		%d0,FP_SCR0(%a6){&16:&4}	# put e4 in FP_SCR0
+	tst.b		%d0		# check if e4 is zero
+	beq.b		A16_st		# if zero, skip rest
+	or.l		&opaop_mask,USER_FPSR(%a6)	# set OPERR & AIOP in USER_FPSR
+
+
+# A16. Write sign bits to final string.
+#	   Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
+#
+# Register usage:
+#	Input/Output
+#	d0: x/scratch - final is x
+#	d2: x/x
+#	d3: x/x
+#	d4: LEN/Unchanged
+#	d5: ICTR:LAMBDA/LAMBDA:ICTR
+#	d6: ILOG/ILOG adjusted
+#	d7: k-factor/Unchanged
+#	a0: ptr to L_SCR1(a6)/Unchanged
+#	a1: ptr to PTENxx array/Unchanged
+#	a2: ptr to FP_SCR1(a6)/Unchanged
+#	fp0: float(ILOG)/Unchanged
+#	fp1: 10^ISCALE/Unchanged
+#	fp2: 10^LEN/Unchanged
+#	F_SCR1:BCD result with correct signs
+#	F_SCR2:ILOG/10^4
+#	L_SCR1:Exponent digits on return from binstr
+#	L_SCR2:first word of X packed/Unchanged
+
+A16_st:
+	clr.l		%d0		# clr d0 for collection of signs
+	and.b		&0x0f,FP_SCR0(%a6)	# clear first nibble of FP_SCR0
+	tst.l		L_SCR2(%a6)	# check sign of original mantissa
+	bge.b		mant_p		# if pos, don't set SM
+	mov.l		&2,%d0		# move 2 in to d0 for SM
+mant_p:
+	tst.l		%d6		# check sign of ILOG
+	bge.b		wr_sgn		# if pos, don't set SE
+	addq.l		&1,%d0		# set bit 0 in d0 for SE
+wr_sgn:
+	bfins		%d0,FP_SCR0(%a6){&0:&2}	# insert SM and SE into FP_SCR0
+
+# Clean up and restore all registers used.
+
+	fmov.l		&0,%fpsr	# clear possible inex2/ainex bits
+	fmovm.x		(%sp)+,&0xe0	#  {%fp0-%fp2}
+	movm.l		(%sp)+,&0x4fc	#  {%d2-%d7/%a2}
+	rts
+
+	global		PTENRN
+PTENRN:
+	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1
+	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2
+	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4
+	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8
+	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16
+	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32
+	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64
+	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128
+	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256
+	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512
+	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024
+	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048
+	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096
+
+	global		PTENRP
+PTENRP:
+	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1
+	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2
+	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4
+	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8
+	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16
+	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32
+	long		0x40D30000,0xC2781F49,0xFFCFA6D6	# 10 ^ 64
+	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128
+	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256
+	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512
+	long		0x4D480000,0xC9767586,0x81750C18	# 10 ^ 1024
+	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048
+	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096
+
+	global		PTENRM
+PTENRM:
+	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1
+	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2
+	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4
+	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8
+	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16
+	long		0x40690000,0x9DC5ADA8,0x2B70B59D	# 10 ^ 32
+	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64
+	long		0x41A80000,0x93BA47C9,0x80E98CDF	# 10 ^ 128
+	long		0x43510000,0xAA7EEBFB,0x9DF9DE8D	# 10 ^ 256
+	long		0x46A30000,0xE319A0AE,0xA60E91C6	# 10 ^ 512
+	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024
+	long		0x5A920000,0x9E8B3B5D,0xC53D5DE4	# 10 ^ 2048
+	long		0x75250000,0xC4605202,0x8A20979A	# 10 ^ 4096
+
+#########################################################################
+# binstr(): Converts a 64-bit binary integer to bcd.			#
+#									#
+# INPUT *************************************************************** #
+#	d2:d3 = 64-bit binary integer					#
+#	d0    = desired length (LEN)					#
+#	a0    = pointer to start in memory for bcd characters		#
+#		(This pointer must point to byte 4 of the first		#
+#		 lword of the packed decimal memory string.)		#
+#									#
+# OUTPUT ************************************************************** #
+#	a0 = pointer to LEN bcd digits representing the 64-bit integer.	#
+#									#
+# ALGORITHM ***********************************************************	#
+#	The 64-bit binary is assumed to have a decimal point before	#
+#	bit 63.  The fraction is multiplied by 10 using a mul by 2	#
+#	shift and a mul by 8 shift.  The bits shifted out of the	#
+#	msb form a decimal digit.  This process is iterated until	#
+#	LEN digits are formed.						#
+#									#
+# A1. Init d7 to 1.  D7 is the byte digit counter, and if 1, the	#
+#     digit formed will be assumed the least significant.  This is	#
+#     to force the first byte formed to have a 0 in the upper 4 bits.	#
+#									#
+# A2. Beginning of the loop:						#
+#     Copy the fraction in d2:d3 to d4:d5.				#
+#									#
+# A3. Multiply the fraction in d2:d3 by 8 using bit-field		#
+#     extracts and shifts.  The three msbs from d2 will go into d1.	#
+#									#
+# A4. Multiply the fraction in d4:d5 by 2 using shifts.  The msb	#
+#     will be collected by the carry.					#
+#									#
+# A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5	#
+#     into d2:d3.  D1 will contain the bcd digit formed.		#
+#									#
+# A6. Test d7.  If zero, the digit formed is the ms digit.  If non-	#
+#     zero, it is the ls digit.  Put the digit in its place in the	#
+#     upper word of d0.  If it is the ls digit, write the word		#
+#     from d0 to memory.						#
+#									#
+# A7. Decrement d6 (LEN counter) and repeat the loop until zero.	#
+#									#
+#########################################################################
+
+#	Implementation Notes:
+#
+#	The registers are used as follows:
+#
+#		d0: LEN counter
+#		d1: temp used to form the digit
+#		d2: upper 32-bits of fraction for mul by 8
+#		d3: lower 32-bits of fraction for mul by 8
+#		d4: upper 32-bits of fraction for mul by 2
+#		d5: lower 32-bits of fraction for mul by 2
+#		d6: temp for bit-field extracts
+#		d7: byte digit formation word;digit count {0,1}
+#		a0: pointer into memory for packed bcd string formation
+#
+
+	global		binstr
+binstr:
+	movm.l		&0xff00,-(%sp)	#  {%d0-%d7}
+
+#
+# A1: Init d7
+#
+	mov.l		&1,%d7		# init d7 for second digit
+	subq.l		&1,%d0		# for dbf d0 would have LEN+1 passes
+#
+# A2. Copy d2:d3 to d4:d5.  Start loop.
+#
+loop:
+	mov.l		%d2,%d4		# copy the fraction before muls
+	mov.l		%d3,%d5		# to d4:d5
+#
+# A3. Multiply d2:d3 by 8; extract msbs into d1.
+#
+	bfextu		%d2{&0:&3},%d1	# copy 3 msbs of d2 into d1
+	asl.l		&3,%d2		# shift d2 left by 3 places
+	bfextu		%d3{&0:&3},%d6	# copy 3 msbs of d3 into d6
+	asl.l		&3,%d3		# shift d3 left by 3 places
+	or.l		%d6,%d2		# or in msbs from d3 into d2
+#
+# A4. Multiply d4:d5 by 2; add carry out to d1.
+#
+	asl.l		&1,%d5		# mul d5 by 2
+	roxl.l		&1,%d4		# mul d4 by 2
+	swap		%d6		# put 0 in d6 lower word
+	addx.w		%d6,%d1		# add in extend from mul by 2
+#
+# A5. Add mul by 8 to mul by 2.  D1 contains the digit formed.
+#
+	add.l		%d5,%d3		# add lower 32 bits
+	nop				# ERRATA FIX #13 (Rev. 1.2 6/6/90)
+	addx.l		%d4,%d2		# add with extend upper 32 bits
+	nop				# ERRATA FIX #13 (Rev. 1.2 6/6/90)
+	addx.w		%d6,%d1		# add in extend from add to d1
+	swap		%d6		# with d6 = 0; put 0 in upper word
+#
+# A6. Test d7 and branch.
+#
+	tst.w		%d7		# if zero, store digit & to loop
+	beq.b		first_d		# if non-zero, form byte & write
+sec_d:
+	swap		%d7		# bring first digit to word d7b
+	asl.w		&4,%d7		# first digit in upper 4 bits d7b
+	add.w		%d1,%d7		# add in ls digit to d7b
+	mov.b		%d7,(%a0)+	# store d7b byte in memory
+	swap		%d7		# put LEN counter in word d7a
+	clr.w		%d7		# set d7a to signal no digits done
+	dbf.w		%d0,loop	# do loop some more!
+	bra.b		end_bstr	# finished, so exit
+first_d:
+	swap		%d7		# put digit word in d7b
+	mov.w		%d1,%d7		# put new digit in d7b
+	swap		%d7		# put LEN counter in word d7a
+	addq.w		&1,%d7		# set d7a to signal first digit done
+	dbf.w		%d0,loop	# do loop some more!
+	swap		%d7		# put last digit in string
+	lsl.w		&4,%d7		# move it to upper 4 bits
+	mov.b		%d7,(%a0)+	# store it in memory string
+#
+# Clean up and return with result in fp0.
+#
+end_bstr:
+	movm.l		(%sp)+,&0xff	#  {%d0-%d7}
+	rts
+
+#########################################################################
+# XDEF ****************************************************************	#
+#	facc_in_b(): dmem_read_byte failed				#
+#	facc_in_w(): dmem_read_word failed				#
+#	facc_in_l(): dmem_read_long failed				#
+#	facc_in_d(): dmem_read of dbl prec failed			#
+#	facc_in_x(): dmem_read of ext prec failed			#
+#									#
+#	facc_out_b(): dmem_write_byte failed				#
+#	facc_out_w(): dmem_write_word failed				#
+#	facc_out_l(): dmem_write_long failed				#
+#	facc_out_d(): dmem_write of dbl prec failed			#
+#	facc_out_x(): dmem_write of ext prec failed			#
+#									#
+# XREF ****************************************************************	#
+#	_real_access() - exit through access error handler		#
+#									#
+# INPUT ***************************************************************	#
+#	None								#
+#									#
+# OUTPUT **************************************************************	#
+#	None								#
+#									#
+# ALGORITHM ***********************************************************	#
+#	Flow jumps here when an FP data fetch call gets an error	#
+# result. This means the operating system wants an access error frame	#
+# made out of the current exception stack frame.			#
+#	So, we first call restore() which makes sure that any updated	#
+# -(an)+ register gets returned to its pre-exception value and then	#
+# we change the stack to an access error stack frame.			#
+#									#
+#########################################################################
+
+facc_in_b:
+	movq.l		&0x1,%d0			# one byte
+	bsr.w		restore				# fix An
+
+	mov.w		&0x0121,EXC_VOFF(%a6)		# set FSLW
+	bra.w		facc_finish
+
+facc_in_w:
+	movq.l		&0x2,%d0			# two bytes
+	bsr.w		restore				# fix An
+
+	mov.w		&0x0141,EXC_VOFF(%a6)		# set FSLW
+	bra.b		facc_finish
+
+facc_in_l:
+	movq.l		&0x4,%d0			# four bytes
+	bsr.w		restore				# fix An
+
+	mov.w		&0x0101,EXC_VOFF(%a6)		# set FSLW
+	bra.b		facc_finish
+
+facc_in_d:
+	movq.l		&0x8,%d0			# eight bytes
+	bsr.w		restore				# fix An
+
+	mov.w		&0x0161,EXC_VOFF(%a6)		# set FSLW
+	bra.b		facc_finish
+
+facc_in_x:
+	movq.l		&0xc,%d0			# twelve bytes
+	bsr.w		restore				# fix An
+
+	mov.w		&0x0161,EXC_VOFF(%a6)		# set FSLW
+	bra.b		facc_finish
+
+################################################################
+
+facc_out_b:
+	movq.l		&0x1,%d0			# one byte
+	bsr.w		restore				# restore An
+
+	mov.w		&0x00a1,EXC_VOFF(%a6)		# set FSLW
+	bra.b		facc_finish
+
+facc_out_w:
+	movq.l		&0x2,%d0			# two bytes
+	bsr.w		restore				# restore An
+
+	mov.w		&0x00c1,EXC_VOFF(%a6)		# set FSLW
+	bra.b		facc_finish
+
+facc_out_l:
+	movq.l		&0x4,%d0			# four bytes
+	bsr.w		restore				# restore An
+
+	mov.w		&0x0081,EXC_VOFF(%a6)		# set FSLW
+	bra.b		facc_finish
+
+facc_out_d:
+	movq.l		&0x8,%d0			# eight bytes
+	bsr.w		restore				# restore An
+
+	mov.w		&0x00e1,EXC_VOFF(%a6)		# set FSLW
+	bra.b		facc_finish
+
+facc_out_x:
+	mov.l		&0xc,%d0			# twelve bytes
+	bsr.w		restore				# restore An
+
+	mov.w		&0x00e1,EXC_VOFF(%a6)		# set FSLW
+
+# here's where we actually create the access error frame from the
+# current exception stack frame.
+facc_finish:
+	mov.l		USER_FPIAR(%a6),EXC_PC(%a6) # store current PC
+
+	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1
+	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1
+
+	unlk		%a6
+
+	mov.l		(%sp),-(%sp)		# store SR, hi(PC)
+	mov.l		0x8(%sp),0x4(%sp)	# store lo(PC)
+	mov.l		0xc(%sp),0x8(%sp)	# store EA
+	mov.l		&0x00000001,0xc(%sp)	# store FSLW
+	mov.w		0x6(%sp),0xc(%sp)	# fix FSLW (size)
+	mov.w		&0x4008,0x6(%sp)	# store voff
+
+	btst		&0x5,(%sp)		# supervisor or user mode?
+	beq.b		facc_out2		# user
+	bset		&0x2,0xd(%sp)		# set supervisor TM bit
+
+facc_out2:
+	bra.l		_real_access
+
+##################################################################
+
+# if the effective addressing mode was predecrement or postincrement,
+# the emulation has already changed its value to the correct post-
+# instruction value. but since we're exiting to the access error
+# handler, then AN must be returned to its pre-instruction value.
+# we do that here.
+restore:
+	mov.b		EXC_OPWORD+0x1(%a6),%d1
+	andi.b		&0x38,%d1		# extract opmode
+	cmpi.b		%d1,&0x18		# postinc?
+	beq.w		rest_inc
+	cmpi.b		%d1,&0x20		# predec?
+	beq.w		rest_dec
+	rts
+
+rest_inc:
+	mov.b		EXC_OPWORD+0x1(%a6),%d1
+	andi.w		&0x0007,%d1		# fetch An
+
+	mov.w		(tbl_rest_inc.b,%pc,%d1.w*2),%d1
+	jmp		(tbl_rest_inc.b,%pc,%d1.w*1)
+
+tbl_rest_inc:
+	short		ri_a0 - tbl_rest_inc
+	short		ri_a1 - tbl_rest_inc
+	short		ri_a2 - tbl_rest_inc
+	short		ri_a3 - tbl_rest_inc
+	short		ri_a4 - tbl_rest_inc
+	short		ri_a5 - tbl_rest_inc
+	short		ri_a6 - tbl_rest_inc
+	short		ri_a7 - tbl_rest_inc
+
+ri_a0:
+	sub.l		%d0,EXC_DREGS+0x8(%a6)	# fix stacked a0
+	rts
+ri_a1:
+	sub.l		%d0,EXC_DREGS+0xc(%a6)	# fix stacked a1
+	rts
+ri_a2:
+	sub.l		%d0,%a2			# fix a2
+	rts
+ri_a3:
+	sub.l		%d0,%a3			# fix a3
+	rts
+ri_a4:
+	sub.l		%d0,%a4			# fix a4
+	rts
+ri_a5:
+	sub.l		%d0,%a5			# fix a5
+	rts
+ri_a6:
+	sub.l		%d0,(%a6)		# fix stacked a6
+	rts
+# if it's a fmove out instruction, we don't have to fix a7
+# because we hadn't changed it yet. if it's an opclass two
+# instruction (data moved in) and the exception was in supervisor
+# mode, then also also wasn't updated. if it was user mode, then
+# restore the correct a7 which is in the USP currently.
+ri_a7:
+	cmpi.b		EXC_VOFF(%a6),&0x30	# move in or out?
+	bne.b		ri_a7_done		# out
+
+	btst		&0x5,EXC_SR(%a6)	# user or supervisor?
+	bne.b		ri_a7_done		# supervisor
+	movc		%usp,%a0		# restore USP
+	sub.l		%d0,%a0
+	movc		%a0,%usp
+ri_a7_done:
+	rts
+
+# need to invert adjustment value if the <ea> was predec
+rest_dec:
+	neg.l		%d0
+	bra.b		rest_inc