Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/drivers/char/ipmi/ipmi_si_intf.c b/drivers/char/ipmi/ipmi_si_intf.c
new file mode 100644
index 0000000..29de259
--- /dev/null
+++ b/drivers/char/ipmi/ipmi_si_intf.c
@@ -0,0 +1,2359 @@
+/*
+ * ipmi_si.c
+ *
+ * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
+ * BT).
+ *
+ * Author: MontaVista Software, Inc.
+ *         Corey Minyard <minyard@mvista.com>
+ *         source@mvista.com
+ *
+ * Copyright 2002 MontaVista Software Inc.
+ *
+ *  This program is free software; you can redistribute it and/or modify it
+ *  under the terms of the GNU General Public License as published by the
+ *  Free Software Foundation; either version 2 of the License, or (at your
+ *  option) any later version.
+ *
+ *
+ *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
+ *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+ *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *  You should have received a copy of the GNU General Public License along
+ *  with this program; if not, write to the Free Software Foundation, Inc.,
+ *  675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/*
+ * This file holds the "policy" for the interface to the SMI state
+ * machine.  It does the configuration, handles timers and interrupts,
+ * and drives the real SMI state machine.
+ */
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <asm/system.h>
+#include <linux/sched.h>
+#include <linux/timer.h>
+#include <linux/errno.h>
+#include <linux/spinlock.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/list.h>
+#include <linux/pci.h>
+#include <linux/ioport.h>
+#include <asm/irq.h>
+#ifdef CONFIG_HIGH_RES_TIMERS
+#include <linux/hrtime.h>
+# if defined(schedule_next_int)
+/* Old high-res timer code, do translations. */
+#  define get_arch_cycles(a) quick_update_jiffies_sub(a)
+#  define arch_cycles_per_jiffy cycles_per_jiffies
+# endif
+static inline void add_usec_to_timer(struct timer_list *t, long v)
+{
+	t->sub_expires += nsec_to_arch_cycle(v * 1000);
+	while (t->sub_expires >= arch_cycles_per_jiffy)
+	{
+		t->expires++;
+		t->sub_expires -= arch_cycles_per_jiffy;
+	}
+}
+#endif
+#include <linux/interrupt.h>
+#include <linux/rcupdate.h>
+#include <linux/ipmi_smi.h>
+#include <asm/io.h>
+#include "ipmi_si_sm.h"
+#include <linux/init.h>
+
+#define IPMI_SI_VERSION "v33"
+
+/* Measure times between events in the driver. */
+#undef DEBUG_TIMING
+
+/* Call every 10 ms. */
+#define SI_TIMEOUT_TIME_USEC	10000
+#define SI_USEC_PER_JIFFY	(1000000/HZ)
+#define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
+#define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
+                                       short timeout */
+
+enum si_intf_state {
+	SI_NORMAL,
+	SI_GETTING_FLAGS,
+	SI_GETTING_EVENTS,
+	SI_CLEARING_FLAGS,
+	SI_CLEARING_FLAGS_THEN_SET_IRQ,
+	SI_GETTING_MESSAGES,
+	SI_ENABLE_INTERRUPTS1,
+	SI_ENABLE_INTERRUPTS2
+	/* FIXME - add watchdog stuff. */
+};
+
+enum si_type {
+    SI_KCS, SI_SMIC, SI_BT
+};
+
+struct smi_info
+{
+	ipmi_smi_t             intf;
+	struct si_sm_data      *si_sm;
+	struct si_sm_handlers  *handlers;
+	enum si_type           si_type;
+	spinlock_t             si_lock;
+	spinlock_t             msg_lock;
+	struct list_head       xmit_msgs;
+	struct list_head       hp_xmit_msgs;
+	struct ipmi_smi_msg    *curr_msg;
+	enum si_intf_state     si_state;
+
+	/* Used to handle the various types of I/O that can occur with
+           IPMI */
+	struct si_sm_io io;
+	int (*io_setup)(struct smi_info *info);
+	void (*io_cleanup)(struct smi_info *info);
+	int (*irq_setup)(struct smi_info *info);
+	void (*irq_cleanup)(struct smi_info *info);
+	unsigned int io_size;
+
+	/* Flags from the last GET_MSG_FLAGS command, used when an ATTN
+	   is set to hold the flags until we are done handling everything
+	   from the flags. */
+#define RECEIVE_MSG_AVAIL	0x01
+#define EVENT_MSG_BUFFER_FULL	0x02
+#define WDT_PRE_TIMEOUT_INT	0x08
+	unsigned char       msg_flags;
+
+	/* If set to true, this will request events the next time the
+	   state machine is idle. */
+	atomic_t            req_events;
+
+	/* If true, run the state machine to completion on every send
+	   call.  Generally used after a panic to make sure stuff goes
+	   out. */
+	int                 run_to_completion;
+
+	/* The I/O port of an SI interface. */
+	int                 port;
+
+	/* The space between start addresses of the two ports.  For
+	   instance, if the first port is 0xca2 and the spacing is 4, then
+	   the second port is 0xca6. */
+	unsigned int        spacing;
+
+	/* zero if no irq; */
+	int                 irq;
+
+	/* The timer for this si. */
+	struct timer_list   si_timer;
+
+	/* The time (in jiffies) the last timeout occurred at. */
+	unsigned long       last_timeout_jiffies;
+
+	/* Used to gracefully stop the timer without race conditions. */
+	volatile int        stop_operation;
+	volatile int        timer_stopped;
+
+	/* The driver will disable interrupts when it gets into a
+	   situation where it cannot handle messages due to lack of
+	   memory.  Once that situation clears up, it will re-enable
+	   interrupts. */
+	int interrupt_disabled;
+
+	unsigned char ipmi_si_dev_rev;
+	unsigned char ipmi_si_fw_rev_major;
+	unsigned char ipmi_si_fw_rev_minor;
+	unsigned char ipmi_version_major;
+	unsigned char ipmi_version_minor;
+
+	/* Slave address, could be reported from DMI. */
+	unsigned char slave_addr;
+
+	/* Counters and things for the proc filesystem. */
+	spinlock_t count_lock;
+	unsigned long short_timeouts;
+	unsigned long long_timeouts;
+	unsigned long timeout_restarts;
+	unsigned long idles;
+	unsigned long interrupts;
+	unsigned long attentions;
+	unsigned long flag_fetches;
+	unsigned long hosed_count;
+	unsigned long complete_transactions;
+	unsigned long events;
+	unsigned long watchdog_pretimeouts;
+	unsigned long incoming_messages;
+};
+
+static void si_restart_short_timer(struct smi_info *smi_info);
+
+static void deliver_recv_msg(struct smi_info *smi_info,
+			     struct ipmi_smi_msg *msg)
+{
+	/* Deliver the message to the upper layer with the lock
+           released. */
+	spin_unlock(&(smi_info->si_lock));
+	ipmi_smi_msg_received(smi_info->intf, msg);
+	spin_lock(&(smi_info->si_lock));
+}
+
+static void return_hosed_msg(struct smi_info *smi_info)
+{
+	struct ipmi_smi_msg *msg = smi_info->curr_msg;
+
+	/* Make it a reponse */
+	msg->rsp[0] = msg->data[0] | 4;
+	msg->rsp[1] = msg->data[1];
+	msg->rsp[2] = 0xFF; /* Unknown error. */
+	msg->rsp_size = 3;
+
+	smi_info->curr_msg = NULL;
+	deliver_recv_msg(smi_info, msg);
+}
+
+static enum si_sm_result start_next_msg(struct smi_info *smi_info)
+{
+	int              rv;
+	struct list_head *entry = NULL;
+#ifdef DEBUG_TIMING
+	struct timeval t;
+#endif
+
+	/* No need to save flags, we aleady have interrupts off and we
+	   already hold the SMI lock. */
+	spin_lock(&(smi_info->msg_lock));
+
+	/* Pick the high priority queue first. */
+	if (! list_empty(&(smi_info->hp_xmit_msgs))) {
+		entry = smi_info->hp_xmit_msgs.next;
+	} else if (! list_empty(&(smi_info->xmit_msgs))) {
+		entry = smi_info->xmit_msgs.next;
+	}
+
+	if (!entry) {
+		smi_info->curr_msg = NULL;
+		rv = SI_SM_IDLE;
+	} else {
+		int err;
+
+		list_del(entry);
+		smi_info->curr_msg = list_entry(entry,
+						struct ipmi_smi_msg,
+						link);
+#ifdef DEBUG_TIMING
+		do_gettimeofday(&t);
+		printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
+#endif
+		err = smi_info->handlers->start_transaction(
+			smi_info->si_sm,
+			smi_info->curr_msg->data,
+			smi_info->curr_msg->data_size);
+		if (err) {
+			return_hosed_msg(smi_info);
+		}
+
+		rv = SI_SM_CALL_WITHOUT_DELAY;
+	}
+	spin_unlock(&(smi_info->msg_lock));
+
+	return rv;
+}
+
+static void start_enable_irq(struct smi_info *smi_info)
+{
+	unsigned char msg[2];
+
+	/* If we are enabling interrupts, we have to tell the
+	   BMC to use them. */
+	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
+	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
+
+	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
+	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
+}
+
+static void start_clear_flags(struct smi_info *smi_info)
+{
+	unsigned char msg[3];
+
+	/* Make sure the watchdog pre-timeout flag is not set at startup. */
+	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
+	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
+	msg[2] = WDT_PRE_TIMEOUT_INT;
+
+	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
+	smi_info->si_state = SI_CLEARING_FLAGS;
+}
+
+/* When we have a situtaion where we run out of memory and cannot
+   allocate messages, we just leave them in the BMC and run the system
+   polled until we can allocate some memory.  Once we have some
+   memory, we will re-enable the interrupt. */
+static inline void disable_si_irq(struct smi_info *smi_info)
+{
+	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
+		disable_irq_nosync(smi_info->irq);
+		smi_info->interrupt_disabled = 1;
+	}
+}
+
+static inline void enable_si_irq(struct smi_info *smi_info)
+{
+	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
+		enable_irq(smi_info->irq);
+		smi_info->interrupt_disabled = 0;
+	}
+}
+
+static void handle_flags(struct smi_info *smi_info)
+{
+	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
+		/* Watchdog pre-timeout */
+		spin_lock(&smi_info->count_lock);
+		smi_info->watchdog_pretimeouts++;
+		spin_unlock(&smi_info->count_lock);
+
+		start_clear_flags(smi_info);
+		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
+		spin_unlock(&(smi_info->si_lock));
+		ipmi_smi_watchdog_pretimeout(smi_info->intf);
+		spin_lock(&(smi_info->si_lock));
+	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
+		/* Messages available. */
+		smi_info->curr_msg = ipmi_alloc_smi_msg();
+		if (!smi_info->curr_msg) {
+			disable_si_irq(smi_info);
+			smi_info->si_state = SI_NORMAL;
+			return;
+		}
+		enable_si_irq(smi_info);
+
+		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
+		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
+		smi_info->curr_msg->data_size = 2;
+
+		smi_info->handlers->start_transaction(
+			smi_info->si_sm,
+			smi_info->curr_msg->data,
+			smi_info->curr_msg->data_size);
+		smi_info->si_state = SI_GETTING_MESSAGES;
+	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
+		/* Events available. */
+		smi_info->curr_msg = ipmi_alloc_smi_msg();
+		if (!smi_info->curr_msg) {
+			disable_si_irq(smi_info);
+			smi_info->si_state = SI_NORMAL;
+			return;
+		}
+		enable_si_irq(smi_info);
+
+		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
+		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
+		smi_info->curr_msg->data_size = 2;
+
+		smi_info->handlers->start_transaction(
+			smi_info->si_sm,
+			smi_info->curr_msg->data,
+			smi_info->curr_msg->data_size);
+		smi_info->si_state = SI_GETTING_EVENTS;
+	} else {
+		smi_info->si_state = SI_NORMAL;
+	}
+}
+
+static void handle_transaction_done(struct smi_info *smi_info)
+{
+	struct ipmi_smi_msg *msg;
+#ifdef DEBUG_TIMING
+	struct timeval t;
+
+	do_gettimeofday(&t);
+	printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
+#endif
+	switch (smi_info->si_state) {
+	case SI_NORMAL:
+		if (!smi_info->curr_msg)
+			break;
+
+		smi_info->curr_msg->rsp_size
+			= smi_info->handlers->get_result(
+				smi_info->si_sm,
+				smi_info->curr_msg->rsp,
+				IPMI_MAX_MSG_LENGTH);
+
+		/* Do this here becase deliver_recv_msg() releases the
+		   lock, and a new message can be put in during the
+		   time the lock is released. */
+		msg = smi_info->curr_msg;
+		smi_info->curr_msg = NULL;
+		deliver_recv_msg(smi_info, msg);
+		break;
+
+	case SI_GETTING_FLAGS:
+	{
+		unsigned char msg[4];
+		unsigned int  len;
+
+		/* We got the flags from the SMI, now handle them. */
+		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
+		if (msg[2] != 0) {
+			/* Error fetching flags, just give up for
+			   now. */
+			smi_info->si_state = SI_NORMAL;
+		} else if (len < 4) {
+			/* Hmm, no flags.  That's technically illegal, but
+			   don't use uninitialized data. */
+			smi_info->si_state = SI_NORMAL;
+		} else {
+			smi_info->msg_flags = msg[3];
+			handle_flags(smi_info);
+		}
+		break;
+	}
+
+	case SI_CLEARING_FLAGS:
+	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
+	{
+		unsigned char msg[3];
+
+		/* We cleared the flags. */
+		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
+		if (msg[2] != 0) {
+			/* Error clearing flags */
+			printk(KERN_WARNING
+			       "ipmi_si: Error clearing flags: %2.2x\n",
+			       msg[2]);
+		}
+		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
+			start_enable_irq(smi_info);
+		else
+			smi_info->si_state = SI_NORMAL;
+		break;
+	}
+
+	case SI_GETTING_EVENTS:
+	{
+		smi_info->curr_msg->rsp_size
+			= smi_info->handlers->get_result(
+				smi_info->si_sm,
+				smi_info->curr_msg->rsp,
+				IPMI_MAX_MSG_LENGTH);
+
+		/* Do this here becase deliver_recv_msg() releases the
+		   lock, and a new message can be put in during the
+		   time the lock is released. */
+		msg = smi_info->curr_msg;
+		smi_info->curr_msg = NULL;
+		if (msg->rsp[2] != 0) {
+			/* Error getting event, probably done. */
+			msg->done(msg);
+
+			/* Take off the event flag. */
+			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
+			handle_flags(smi_info);
+		} else {
+			spin_lock(&smi_info->count_lock);
+			smi_info->events++;
+			spin_unlock(&smi_info->count_lock);
+
+			/* Do this before we deliver the message
+			   because delivering the message releases the
+			   lock and something else can mess with the
+			   state. */
+			handle_flags(smi_info);
+
+			deliver_recv_msg(smi_info, msg);
+		}
+		break;
+	}
+
+	case SI_GETTING_MESSAGES:
+	{
+		smi_info->curr_msg->rsp_size
+			= smi_info->handlers->get_result(
+				smi_info->si_sm,
+				smi_info->curr_msg->rsp,
+				IPMI_MAX_MSG_LENGTH);
+
+		/* Do this here becase deliver_recv_msg() releases the
+		   lock, and a new message can be put in during the
+		   time the lock is released. */
+		msg = smi_info->curr_msg;
+		smi_info->curr_msg = NULL;
+		if (msg->rsp[2] != 0) {
+			/* Error getting event, probably done. */
+			msg->done(msg);
+
+			/* Take off the msg flag. */
+			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
+			handle_flags(smi_info);
+		} else {
+			spin_lock(&smi_info->count_lock);
+			smi_info->incoming_messages++;
+			spin_unlock(&smi_info->count_lock);
+
+			/* Do this before we deliver the message
+			   because delivering the message releases the
+			   lock and something else can mess with the
+			   state. */
+			handle_flags(smi_info);
+
+			deliver_recv_msg(smi_info, msg);
+		}
+		break;
+	}
+
+	case SI_ENABLE_INTERRUPTS1:
+	{
+		unsigned char msg[4];
+
+		/* We got the flags from the SMI, now handle them. */
+		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
+		if (msg[2] != 0) {
+			printk(KERN_WARNING
+			       "ipmi_si: Could not enable interrupts"
+			       ", failed get, using polled mode.\n");
+			smi_info->si_state = SI_NORMAL;
+		} else {
+			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
+			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
+			msg[2] = msg[3] | 1; /* enable msg queue int */
+			smi_info->handlers->start_transaction(
+				smi_info->si_sm, msg, 3);
+			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
+		}
+		break;
+	}
+
+	case SI_ENABLE_INTERRUPTS2:
+	{
+		unsigned char msg[4];
+
+		/* We got the flags from the SMI, now handle them. */
+		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
+		if (msg[2] != 0) {
+			printk(KERN_WARNING
+			       "ipmi_si: Could not enable interrupts"
+			       ", failed set, using polled mode.\n");
+		}
+		smi_info->si_state = SI_NORMAL;
+		break;
+	}
+	}
+}
+
+/* Called on timeouts and events.  Timeouts should pass the elapsed
+   time, interrupts should pass in zero. */
+static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
+					   int time)
+{
+	enum si_sm_result si_sm_result;
+
+ restart:
+	/* There used to be a loop here that waited a little while
+	   (around 25us) before giving up.  That turned out to be
+	   pointless, the minimum delays I was seeing were in the 300us
+	   range, which is far too long to wait in an interrupt.  So
+	   we just run until the state machine tells us something
+	   happened or it needs a delay. */
+	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
+	time = 0;
+	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
+	{
+		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
+	}
+
+	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
+	{
+		spin_lock(&smi_info->count_lock);
+		smi_info->complete_transactions++;
+		spin_unlock(&smi_info->count_lock);
+
+		handle_transaction_done(smi_info);
+		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
+	}
+	else if (si_sm_result == SI_SM_HOSED)
+	{
+		spin_lock(&smi_info->count_lock);
+		smi_info->hosed_count++;
+		spin_unlock(&smi_info->count_lock);
+
+		/* Do the before return_hosed_msg, because that
+		   releases the lock. */
+		smi_info->si_state = SI_NORMAL;
+		if (smi_info->curr_msg != NULL) {
+			/* If we were handling a user message, format
+                           a response to send to the upper layer to
+                           tell it about the error. */
+			return_hosed_msg(smi_info);
+		}
+		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
+	}
+
+	/* We prefer handling attn over new messages. */
+	if (si_sm_result == SI_SM_ATTN)
+	{
+		unsigned char msg[2];
+
+		spin_lock(&smi_info->count_lock);
+		smi_info->attentions++;
+		spin_unlock(&smi_info->count_lock);
+
+		/* Got a attn, send down a get message flags to see
+                   what's causing it.  It would be better to handle
+                   this in the upper layer, but due to the way
+                   interrupts work with the SMI, that's not really
+                   possible. */
+		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
+		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
+
+		smi_info->handlers->start_transaction(
+			smi_info->si_sm, msg, 2);
+		smi_info->si_state = SI_GETTING_FLAGS;
+		goto restart;
+	}
+
+	/* If we are currently idle, try to start the next message. */
+	if (si_sm_result == SI_SM_IDLE) {
+		spin_lock(&smi_info->count_lock);
+		smi_info->idles++;
+		spin_unlock(&smi_info->count_lock);
+
+		si_sm_result = start_next_msg(smi_info);
+		if (si_sm_result != SI_SM_IDLE)
+			goto restart;
+        }
+
+	if ((si_sm_result == SI_SM_IDLE)
+	    && (atomic_read(&smi_info->req_events)))
+	{
+		/* We are idle and the upper layer requested that I fetch
+		   events, so do so. */
+		unsigned char msg[2];
+
+		spin_lock(&smi_info->count_lock);
+		smi_info->flag_fetches++;
+		spin_unlock(&smi_info->count_lock);
+
+		atomic_set(&smi_info->req_events, 0);
+		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
+		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
+
+		smi_info->handlers->start_transaction(
+			smi_info->si_sm, msg, 2);
+		smi_info->si_state = SI_GETTING_FLAGS;
+		goto restart;
+	}
+
+	return si_sm_result;
+}
+
+static void sender(void                *send_info,
+		   struct ipmi_smi_msg *msg,
+		   int                 priority)
+{
+	struct smi_info   *smi_info = send_info;
+	enum si_sm_result result;
+	unsigned long     flags;
+#ifdef DEBUG_TIMING
+	struct timeval    t;
+#endif
+
+	spin_lock_irqsave(&(smi_info->msg_lock), flags);
+#ifdef DEBUG_TIMING
+	do_gettimeofday(&t);
+	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
+#endif
+
+	if (smi_info->run_to_completion) {
+		/* If we are running to completion, then throw it in
+		   the list and run transactions until everything is
+		   clear.  Priority doesn't matter here. */
+		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
+
+		/* We have to release the msg lock and claim the smi
+		   lock in this case, because of race conditions. */
+		spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
+
+		spin_lock_irqsave(&(smi_info->si_lock), flags);
+		result = smi_event_handler(smi_info, 0);
+		while (result != SI_SM_IDLE) {
+			udelay(SI_SHORT_TIMEOUT_USEC);
+			result = smi_event_handler(smi_info,
+						   SI_SHORT_TIMEOUT_USEC);
+		}
+		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
+		return;
+	} else {
+		if (priority > 0) {
+			list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
+		} else {
+			list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
+		}
+	}
+	spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
+
+	spin_lock_irqsave(&(smi_info->si_lock), flags);
+	if ((smi_info->si_state == SI_NORMAL)
+	    && (smi_info->curr_msg == NULL))
+	{
+		start_next_msg(smi_info);
+		si_restart_short_timer(smi_info);
+	}
+	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
+}
+
+static void set_run_to_completion(void *send_info, int i_run_to_completion)
+{
+	struct smi_info   *smi_info = send_info;
+	enum si_sm_result result;
+	unsigned long     flags;
+
+	spin_lock_irqsave(&(smi_info->si_lock), flags);
+
+	smi_info->run_to_completion = i_run_to_completion;
+	if (i_run_to_completion) {
+		result = smi_event_handler(smi_info, 0);
+		while (result != SI_SM_IDLE) {
+			udelay(SI_SHORT_TIMEOUT_USEC);
+			result = smi_event_handler(smi_info,
+						   SI_SHORT_TIMEOUT_USEC);
+		}
+	}
+
+	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
+}
+
+static void poll(void *send_info)
+{
+	struct smi_info *smi_info = send_info;
+
+	smi_event_handler(smi_info, 0);
+}
+
+static void request_events(void *send_info)
+{
+	struct smi_info *smi_info = send_info;
+
+	atomic_set(&smi_info->req_events, 1);
+}
+
+static int initialized = 0;
+
+/* Must be called with interrupts off and with the si_lock held. */
+static void si_restart_short_timer(struct smi_info *smi_info)
+{
+#if defined(CONFIG_HIGH_RES_TIMERS)
+	unsigned long flags;
+	unsigned long jiffies_now;
+
+	if (del_timer(&(smi_info->si_timer))) {
+		/* If we don't delete the timer, then it will go off
+		   immediately, anyway.  So we only process if we
+		   actually delete the timer. */
+
+		/* We already have irqsave on, so no need for it
+                   here. */
+		read_lock(&xtime_lock);
+		jiffies_now = jiffies;
+		smi_info->si_timer.expires = jiffies_now;
+		smi_info->si_timer.sub_expires = get_arch_cycles(jiffies_now);
+
+		add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
+
+		add_timer(&(smi_info->si_timer));
+		spin_lock_irqsave(&smi_info->count_lock, flags);
+		smi_info->timeout_restarts++;
+		spin_unlock_irqrestore(&smi_info->count_lock, flags);
+	}
+#endif
+}
+
+static void smi_timeout(unsigned long data)
+{
+	struct smi_info   *smi_info = (struct smi_info *) data;
+	enum si_sm_result smi_result;
+	unsigned long     flags;
+	unsigned long     jiffies_now;
+	unsigned long     time_diff;
+#ifdef DEBUG_TIMING
+	struct timeval    t;
+#endif
+
+	if (smi_info->stop_operation) {
+		smi_info->timer_stopped = 1;
+		return;
+	}
+
+	spin_lock_irqsave(&(smi_info->si_lock), flags);
+#ifdef DEBUG_TIMING
+	do_gettimeofday(&t);
+	printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
+#endif
+	jiffies_now = jiffies;
+	time_diff = ((jiffies_now - smi_info->last_timeout_jiffies)
+		     * SI_USEC_PER_JIFFY);
+	smi_result = smi_event_handler(smi_info, time_diff);
+
+	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
+
+	smi_info->last_timeout_jiffies = jiffies_now;
+
+	if ((smi_info->irq) && (! smi_info->interrupt_disabled)) {
+		/* Running with interrupts, only do long timeouts. */
+		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
+		spin_lock_irqsave(&smi_info->count_lock, flags);
+		smi_info->long_timeouts++;
+		spin_unlock_irqrestore(&smi_info->count_lock, flags);
+		goto do_add_timer;
+	}
+
+	/* If the state machine asks for a short delay, then shorten
+           the timer timeout. */
+	if (smi_result == SI_SM_CALL_WITH_DELAY) {
+		spin_lock_irqsave(&smi_info->count_lock, flags);
+		smi_info->short_timeouts++;
+		spin_unlock_irqrestore(&smi_info->count_lock, flags);
+#if defined(CONFIG_HIGH_RES_TIMERS)
+		read_lock(&xtime_lock);
+                smi_info->si_timer.expires = jiffies;
+                smi_info->si_timer.sub_expires
+                        = get_arch_cycles(smi_info->si_timer.expires);
+                read_unlock(&xtime_lock);
+		add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
+#else
+		smi_info->si_timer.expires = jiffies + 1;
+#endif
+	} else {
+		spin_lock_irqsave(&smi_info->count_lock, flags);
+		smi_info->long_timeouts++;
+		spin_unlock_irqrestore(&smi_info->count_lock, flags);
+		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
+#if defined(CONFIG_HIGH_RES_TIMERS)
+		smi_info->si_timer.sub_expires = 0;
+#endif
+	}
+
+ do_add_timer:
+	add_timer(&(smi_info->si_timer));
+}
+
+static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
+{
+	struct smi_info *smi_info = data;
+	unsigned long   flags;
+#ifdef DEBUG_TIMING
+	struct timeval  t;
+#endif
+
+	spin_lock_irqsave(&(smi_info->si_lock), flags);
+
+	spin_lock(&smi_info->count_lock);
+	smi_info->interrupts++;
+	spin_unlock(&smi_info->count_lock);
+
+	if (smi_info->stop_operation)
+		goto out;
+
+#ifdef DEBUG_TIMING
+	do_gettimeofday(&t);
+	printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
+#endif
+	smi_event_handler(smi_info, 0);
+ out:
+	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
+	return IRQ_HANDLED;
+}
+
+static struct ipmi_smi_handlers handlers =
+{
+	.owner                  = THIS_MODULE,
+	.sender			= sender,
+	.request_events		= request_events,
+	.set_run_to_completion  = set_run_to_completion,
+	.poll			= poll,
+};
+
+/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
+   a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS */
+
+#define SI_MAX_PARMS 4
+#define SI_MAX_DRIVERS ((SI_MAX_PARMS * 2) + 2)
+static struct smi_info *smi_infos[SI_MAX_DRIVERS] =
+{ NULL, NULL, NULL, NULL };
+
+#define DEVICE_NAME "ipmi_si"
+
+#define DEFAULT_KCS_IO_PORT	0xca2
+#define DEFAULT_SMIC_IO_PORT	0xca9
+#define DEFAULT_BT_IO_PORT	0xe4
+#define DEFAULT_REGSPACING	1
+
+static int           si_trydefaults = 1;
+static char          *si_type[SI_MAX_PARMS];
+#define MAX_SI_TYPE_STR 30
+static char          si_type_str[MAX_SI_TYPE_STR];
+static unsigned long addrs[SI_MAX_PARMS];
+static int num_addrs;
+static unsigned int  ports[SI_MAX_PARMS];
+static int num_ports;
+static int           irqs[SI_MAX_PARMS];
+static int num_irqs;
+static int           regspacings[SI_MAX_PARMS];
+static int num_regspacings = 0;
+static int           regsizes[SI_MAX_PARMS];
+static int num_regsizes = 0;
+static int           regshifts[SI_MAX_PARMS];
+static int num_regshifts = 0;
+static int slave_addrs[SI_MAX_PARMS];
+static int num_slave_addrs = 0;
+
+
+module_param_named(trydefaults, si_trydefaults, bool, 0);
+MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
+		 " default scan of the KCS and SMIC interface at the standard"
+		 " address");
+module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
+MODULE_PARM_DESC(type, "Defines the type of each interface, each"
+		 " interface separated by commas.  The types are 'kcs',"
+		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
+		 " the first interface to kcs and the second to bt");
+module_param_array(addrs, long, &num_addrs, 0);
+MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
+		 " addresses separated by commas.  Only use if an interface"
+		 " is in memory.  Otherwise, set it to zero or leave"
+		 " it blank.");
+module_param_array(ports, int, &num_ports, 0);
+MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
+		 " addresses separated by commas.  Only use if an interface"
+		 " is a port.  Otherwise, set it to zero or leave"
+		 " it blank.");
+module_param_array(irqs, int, &num_irqs, 0);
+MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
+		 " addresses separated by commas.  Only use if an interface"
+		 " has an interrupt.  Otherwise, set it to zero or leave"
+		 " it blank.");
+module_param_array(regspacings, int, &num_regspacings, 0);
+MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
+		 " and each successive register used by the interface.  For"
+		 " instance, if the start address is 0xca2 and the spacing"
+		 " is 2, then the second address is at 0xca4.  Defaults"
+		 " to 1.");
+module_param_array(regsizes, int, &num_regsizes, 0);
+MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
+		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
+		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
+		 " the 8-bit IPMI register has to be read from a larger"
+		 " register.");
+module_param_array(regshifts, int, &num_regshifts, 0);
+MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
+		 " IPMI register, in bits.  For instance, if the data"
+		 " is read from a 32-bit word and the IPMI data is in"
+		 " bit 8-15, then the shift would be 8");
+module_param_array(slave_addrs, int, &num_slave_addrs, 0);
+MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
+		 " the controller.  Normally this is 0x20, but can be"
+		 " overridden by this parm.  This is an array indexed"
+		 " by interface number.");
+
+
+#define IPMI_MEM_ADDR_SPACE 1
+#define IPMI_IO_ADDR_SPACE  2
+
+#if defined(CONFIG_ACPI_INTERPRETER) || defined(CONFIG_X86) || defined(CONFIG_PCI)
+static int is_new_interface(int intf, u8 addr_space, unsigned long base_addr)
+{
+	int i;
+
+	for (i = 0; i < SI_MAX_PARMS; ++i) {
+		/* Don't check our address. */
+		if (i == intf)
+			continue;
+		if (si_type[i] != NULL) {
+			if ((addr_space == IPMI_MEM_ADDR_SPACE &&
+			     base_addr == addrs[i]) ||
+			    (addr_space == IPMI_IO_ADDR_SPACE &&
+			     base_addr == ports[i]))
+				return 0;
+		}
+		else
+			break;
+	}
+
+	return 1;
+}
+#endif
+
+static int std_irq_setup(struct smi_info *info)
+{
+	int rv;
+
+	if (!info->irq)
+		return 0;
+
+	rv = request_irq(info->irq,
+			 si_irq_handler,
+			 SA_INTERRUPT,
+			 DEVICE_NAME,
+			 info);
+	if (rv) {
+		printk(KERN_WARNING
+		       "ipmi_si: %s unable to claim interrupt %d,"
+		       " running polled\n",
+		       DEVICE_NAME, info->irq);
+		info->irq = 0;
+	} else {
+		printk("  Using irq %d\n", info->irq);
+	}
+
+	return rv;
+}
+
+static void std_irq_cleanup(struct smi_info *info)
+{
+	if (!info->irq)
+		return;
+
+	free_irq(info->irq, info);
+}
+
+static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
+{
+	unsigned int *addr = io->info;
+
+	return inb((*addr)+(offset*io->regspacing));
+}
+
+static void port_outb(struct si_sm_io *io, unsigned int offset,
+		      unsigned char b)
+{
+	unsigned int *addr = io->info;
+
+	outb(b, (*addr)+(offset * io->regspacing));
+}
+
+static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
+{
+	unsigned int *addr = io->info;
+
+	return (inw((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
+}
+
+static void port_outw(struct si_sm_io *io, unsigned int offset,
+		      unsigned char b)
+{
+	unsigned int *addr = io->info;
+
+	outw(b << io->regshift, (*addr)+(offset * io->regspacing));
+}
+
+static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
+{
+	unsigned int *addr = io->info;
+
+	return (inl((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
+}
+
+static void port_outl(struct si_sm_io *io, unsigned int offset,
+		      unsigned char b)
+{
+	unsigned int *addr = io->info;
+
+	outl(b << io->regshift, (*addr)+(offset * io->regspacing));
+}
+
+static void port_cleanup(struct smi_info *info)
+{
+	unsigned int *addr = info->io.info;
+	int           mapsize;
+
+	if (addr && (*addr)) {
+		mapsize = ((info->io_size * info->io.regspacing)
+			   - (info->io.regspacing - info->io.regsize));
+
+		release_region (*addr, mapsize);
+	}
+	kfree(info);
+}
+
+static int port_setup(struct smi_info *info)
+{
+	unsigned int *addr = info->io.info;
+	int           mapsize;
+
+	if (!addr || (!*addr))
+		return -ENODEV;
+
+	info->io_cleanup = port_cleanup;
+
+	/* Figure out the actual inb/inw/inl/etc routine to use based
+	   upon the register size. */
+	switch (info->io.regsize) {
+	case 1:
+		info->io.inputb = port_inb;
+		info->io.outputb = port_outb;
+		break;
+	case 2:
+		info->io.inputb = port_inw;
+		info->io.outputb = port_outw;
+		break;
+	case 4:
+		info->io.inputb = port_inl;
+		info->io.outputb = port_outl;
+		break;
+	default:
+		printk("ipmi_si: Invalid register size: %d\n",
+		       info->io.regsize);
+		return -EINVAL;
+	}
+
+	/* Calculate the total amount of memory to claim.  This is an
+	 * unusual looking calculation, but it avoids claiming any
+	 * more memory than it has to.  It will claim everything
+	 * between the first address to the end of the last full
+	 * register. */
+	mapsize = ((info->io_size * info->io.regspacing)
+		   - (info->io.regspacing - info->io.regsize));
+
+	if (request_region(*addr, mapsize, DEVICE_NAME) == NULL)
+		return -EIO;
+	return 0;
+}
+
+static int try_init_port(int intf_num, struct smi_info **new_info)
+{
+	struct smi_info *info;
+
+	if (!ports[intf_num])
+		return -ENODEV;
+
+	if (!is_new_interface(intf_num, IPMI_IO_ADDR_SPACE,
+			      ports[intf_num]))
+		return -ENODEV;
+
+	info = kmalloc(sizeof(*info), GFP_KERNEL);
+	if (!info) {
+		printk(KERN_ERR "ipmi_si: Could not allocate SI data (1)\n");
+		return -ENOMEM;
+	}
+	memset(info, 0, sizeof(*info));
+
+	info->io_setup = port_setup;
+	info->io.info = &(ports[intf_num]);
+	info->io.addr = NULL;
+	info->io.regspacing = regspacings[intf_num];
+	if (!info->io.regspacing)
+		info->io.regspacing = DEFAULT_REGSPACING;
+	info->io.regsize = regsizes[intf_num];
+	if (!info->io.regsize)
+		info->io.regsize = DEFAULT_REGSPACING;
+	info->io.regshift = regshifts[intf_num];
+	info->irq = 0;
+	info->irq_setup = NULL;
+	*new_info = info;
+
+	if (si_type[intf_num] == NULL)
+		si_type[intf_num] = "kcs";
+
+	printk("ipmi_si: Trying \"%s\" at I/O port 0x%x\n",
+	       si_type[intf_num], ports[intf_num]);
+	return 0;
+}
+
+static unsigned char mem_inb(struct si_sm_io *io, unsigned int offset)
+{
+	return readb((io->addr)+(offset * io->regspacing));
+}
+
+static void mem_outb(struct si_sm_io *io, unsigned int offset,
+		     unsigned char b)
+{
+	writeb(b, (io->addr)+(offset * io->regspacing));
+}
+
+static unsigned char mem_inw(struct si_sm_io *io, unsigned int offset)
+{
+	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
+		&& 0xff;
+}
+
+static void mem_outw(struct si_sm_io *io, unsigned int offset,
+		     unsigned char b)
+{
+	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
+}
+
+static unsigned char mem_inl(struct si_sm_io *io, unsigned int offset)
+{
+	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
+		&& 0xff;
+}
+
+static void mem_outl(struct si_sm_io *io, unsigned int offset,
+		     unsigned char b)
+{
+	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
+}
+
+#ifdef readq
+static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
+{
+	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
+		&& 0xff;
+}
+
+static void mem_outq(struct si_sm_io *io, unsigned int offset,
+		     unsigned char b)
+{
+	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
+}
+#endif
+
+static void mem_cleanup(struct smi_info *info)
+{
+	unsigned long *addr = info->io.info;
+	int           mapsize;
+
+	if (info->io.addr) {
+		iounmap(info->io.addr);
+
+		mapsize = ((info->io_size * info->io.regspacing)
+			   - (info->io.regspacing - info->io.regsize));
+
+		release_mem_region(*addr, mapsize);
+	}
+	kfree(info);
+}
+
+static int mem_setup(struct smi_info *info)
+{
+	unsigned long *addr = info->io.info;
+	int           mapsize;
+
+	if (!addr || (!*addr))
+		return -ENODEV;
+
+	info->io_cleanup = mem_cleanup;
+
+	/* Figure out the actual readb/readw/readl/etc routine to use based
+	   upon the register size. */
+	switch (info->io.regsize) {
+	case 1:
+		info->io.inputb = mem_inb;
+		info->io.outputb = mem_outb;
+		break;
+	case 2:
+		info->io.inputb = mem_inw;
+		info->io.outputb = mem_outw;
+		break;
+	case 4:
+		info->io.inputb = mem_inl;
+		info->io.outputb = mem_outl;
+		break;
+#ifdef readq
+	case 8:
+		info->io.inputb = mem_inq;
+		info->io.outputb = mem_outq;
+		break;
+#endif
+	default:
+		printk("ipmi_si: Invalid register size: %d\n",
+		       info->io.regsize);
+		return -EINVAL;
+	}
+
+	/* Calculate the total amount of memory to claim.  This is an
+	 * unusual looking calculation, but it avoids claiming any
+	 * more memory than it has to.  It will claim everything
+	 * between the first address to the end of the last full
+	 * register. */
+	mapsize = ((info->io_size * info->io.regspacing)
+		   - (info->io.regspacing - info->io.regsize));
+
+	if (request_mem_region(*addr, mapsize, DEVICE_NAME) == NULL)
+		return -EIO;
+
+	info->io.addr = ioremap(*addr, mapsize);
+	if (info->io.addr == NULL) {
+		release_mem_region(*addr, mapsize);
+		return -EIO;
+	}
+	return 0;
+}
+
+static int try_init_mem(int intf_num, struct smi_info **new_info)
+{
+	struct smi_info *info;
+
+	if (!addrs[intf_num])
+		return -ENODEV;
+
+	if (!is_new_interface(intf_num, IPMI_MEM_ADDR_SPACE,
+			      addrs[intf_num]))
+		return -ENODEV;
+
+	info = kmalloc(sizeof(*info), GFP_KERNEL);
+	if (!info) {
+		printk(KERN_ERR "ipmi_si: Could not allocate SI data (2)\n");
+		return -ENOMEM;
+	}
+	memset(info, 0, sizeof(*info));
+
+	info->io_setup = mem_setup;
+	info->io.info = &addrs[intf_num];
+	info->io.addr = NULL;
+	info->io.regspacing = regspacings[intf_num];
+	if (!info->io.regspacing)
+		info->io.regspacing = DEFAULT_REGSPACING;
+	info->io.regsize = regsizes[intf_num];
+	if (!info->io.regsize)
+		info->io.regsize = DEFAULT_REGSPACING;
+	info->io.regshift = regshifts[intf_num];
+	info->irq = 0;
+	info->irq_setup = NULL;
+	*new_info = info;
+
+	if (si_type[intf_num] == NULL)
+		si_type[intf_num] = "kcs";
+
+	printk("ipmi_si: Trying \"%s\" at memory address 0x%lx\n",
+	       si_type[intf_num], addrs[intf_num]);
+	return 0;
+}
+
+
+#ifdef CONFIG_ACPI_INTERPRETER
+
+#include <linux/acpi.h>
+
+/* Once we get an ACPI failure, we don't try any more, because we go
+   through the tables sequentially.  Once we don't find a table, there
+   are no more. */
+static int acpi_failure = 0;
+
+/* For GPE-type interrupts. */
+static u32 ipmi_acpi_gpe(void *context)
+{
+	struct smi_info *smi_info = context;
+	unsigned long   flags;
+#ifdef DEBUG_TIMING
+	struct timeval t;
+#endif
+
+	spin_lock_irqsave(&(smi_info->si_lock), flags);
+
+	spin_lock(&smi_info->count_lock);
+	smi_info->interrupts++;
+	spin_unlock(&smi_info->count_lock);
+
+	if (smi_info->stop_operation)
+		goto out;
+
+#ifdef DEBUG_TIMING
+	do_gettimeofday(&t);
+	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
+#endif
+	smi_event_handler(smi_info, 0);
+ out:
+	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
+
+	return ACPI_INTERRUPT_HANDLED;
+}
+
+static int acpi_gpe_irq_setup(struct smi_info *info)
+{
+	acpi_status status;
+
+	if (!info->irq)
+		return 0;
+
+	/* FIXME - is level triggered right? */
+	status = acpi_install_gpe_handler(NULL,
+					  info->irq,
+					  ACPI_GPE_LEVEL_TRIGGERED,
+					  &ipmi_acpi_gpe,
+					  info);
+	if (status != AE_OK) {
+		printk(KERN_WARNING
+		       "ipmi_si: %s unable to claim ACPI GPE %d,"
+		       " running polled\n",
+		       DEVICE_NAME, info->irq);
+		info->irq = 0;
+		return -EINVAL;
+	} else {
+		printk("  Using ACPI GPE %d\n", info->irq);
+		return 0;
+	}
+}
+
+static void acpi_gpe_irq_cleanup(struct smi_info *info)
+{
+	if (!info->irq)
+		return;
+
+	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
+}
+
+/*
+ * Defined at
+ * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
+ */
+struct SPMITable {
+	s8	Signature[4];
+	u32	Length;
+	u8	Revision;
+	u8	Checksum;
+	s8	OEMID[6];
+	s8	OEMTableID[8];
+	s8	OEMRevision[4];
+	s8	CreatorID[4];
+	s8	CreatorRevision[4];
+	u8	InterfaceType;
+	u8	IPMIlegacy;
+	s16	SpecificationRevision;
+
+	/*
+	 * Bit 0 - SCI interrupt supported
+	 * Bit 1 - I/O APIC/SAPIC
+	 */
+	u8	InterruptType;
+
+	/* If bit 0 of InterruptType is set, then this is the SCI
+           interrupt in the GPEx_STS register. */
+	u8	GPE;
+
+	s16	Reserved;
+
+	/* If bit 1 of InterruptType is set, then this is the I/O
+           APIC/SAPIC interrupt. */
+	u32	GlobalSystemInterrupt;
+
+	/* The actual register address. */
+	struct acpi_generic_address addr;
+
+	u8	UID[4];
+
+	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
+};
+
+static int try_init_acpi(int intf_num, struct smi_info **new_info)
+{
+	struct smi_info  *info;
+	acpi_status      status;
+	struct SPMITable *spmi;
+	char             *io_type;
+	u8 		 addr_space;
+
+	if (acpi_failure)
+		return -ENODEV;
+
+	status = acpi_get_firmware_table("SPMI", intf_num+1,
+					 ACPI_LOGICAL_ADDRESSING,
+					 (struct acpi_table_header **) &spmi);
+	if (status != AE_OK) {
+		acpi_failure = 1;
+		return -ENODEV;
+	}
+
+	if (spmi->IPMIlegacy != 1) {
+	    printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
+  	    return -ENODEV;
+	}
+
+	if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
+		addr_space = IPMI_MEM_ADDR_SPACE;
+	else
+		addr_space = IPMI_IO_ADDR_SPACE;
+	if (!is_new_interface(-1, addr_space, spmi->addr.address))
+		return -ENODEV;
+
+	if (!spmi->addr.register_bit_width) {
+		acpi_failure = 1;
+		return -ENODEV;
+	}
+
+	/* Figure out the interface type. */
+	switch (spmi->InterfaceType)
+	{
+	case 1:	/* KCS */
+		si_type[intf_num] = "kcs";
+		break;
+
+	case 2:	/* SMIC */
+		si_type[intf_num] = "smic";
+		break;
+
+	case 3:	/* BT */
+		si_type[intf_num] = "bt";
+		break;
+
+	default:
+		printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
+			spmi->InterfaceType);
+		return -EIO;
+	}
+
+	info = kmalloc(sizeof(*info), GFP_KERNEL);
+	if (!info) {
+		printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
+		return -ENOMEM;
+	}
+	memset(info, 0, sizeof(*info));
+
+	if (spmi->InterruptType & 1) {
+		/* We've got a GPE interrupt. */
+		info->irq = spmi->GPE;
+		info->irq_setup = acpi_gpe_irq_setup;
+		info->irq_cleanup = acpi_gpe_irq_cleanup;
+	} else if (spmi->InterruptType & 2) {
+		/* We've got an APIC/SAPIC interrupt. */
+		info->irq = spmi->GlobalSystemInterrupt;
+		info->irq_setup = std_irq_setup;
+		info->irq_cleanup = std_irq_cleanup;
+	} else {
+		/* Use the default interrupt setting. */
+		info->irq = 0;
+		info->irq_setup = NULL;
+	}
+
+	regspacings[intf_num] = spmi->addr.register_bit_width / 8;
+	info->io.regspacing = spmi->addr.register_bit_width / 8;
+	regsizes[intf_num] = regspacings[intf_num];
+	info->io.regsize = regsizes[intf_num];
+	regshifts[intf_num] = spmi->addr.register_bit_offset;
+	info->io.regshift = regshifts[intf_num];
+
+	if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
+		io_type = "memory";
+		info->io_setup = mem_setup;
+		addrs[intf_num] = spmi->addr.address;
+		info->io.info = &(addrs[intf_num]);
+	} else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
+		io_type = "I/O";
+		info->io_setup = port_setup;
+		ports[intf_num] = spmi->addr.address;
+		info->io.info = &(ports[intf_num]);
+	} else {
+		kfree(info);
+		printk("ipmi_si: Unknown ACPI I/O Address type\n");
+		return -EIO;
+	}
+
+	*new_info = info;
+
+	printk("ipmi_si: ACPI/SPMI specifies \"%s\" %s SI @ 0x%lx\n",
+	       si_type[intf_num], io_type, (unsigned long) spmi->addr.address);
+	return 0;
+}
+#endif
+
+#ifdef CONFIG_X86
+typedef struct dmi_ipmi_data
+{
+	u8   		type;
+	u8   		addr_space;
+	unsigned long	base_addr;
+	u8   		irq;
+	u8              offset;
+	u8              slave_addr;
+} dmi_ipmi_data_t;
+
+static dmi_ipmi_data_t dmi_data[SI_MAX_DRIVERS];
+static int dmi_data_entries;
+
+typedef struct dmi_header
+{
+	u8	type;
+	u8	length;
+	u16	handle;
+} dmi_header_t;
+
+static int decode_dmi(dmi_header_t *dm, int intf_num)
+{
+	u8		*data = (u8 *)dm;
+	unsigned long  	base_addr;
+	u8		reg_spacing;
+	u8              len = dm->length;
+	dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num;
+
+	ipmi_data->type = data[4];
+
+	memcpy(&base_addr, data+8, sizeof(unsigned long));
+	if (len >= 0x11) {
+		if (base_addr & 1) {
+			/* I/O */
+			base_addr &= 0xFFFE;
+			ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
+		}
+		else {
+			/* Memory */
+			ipmi_data->addr_space = IPMI_MEM_ADDR_SPACE;
+		}
+		/* If bit 4 of byte 0x10 is set, then the lsb for the address
+		   is odd. */
+		ipmi_data->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
+
+		ipmi_data->irq = data[0x11];
+
+		/* The top two bits of byte 0x10 hold the register spacing. */
+		reg_spacing = (data[0x10] & 0xC0) >> 6;
+		switch(reg_spacing){
+		case 0x00: /* Byte boundaries */
+		    ipmi_data->offset = 1;
+		    break;
+		case 0x01: /* 32-bit boundaries */
+		    ipmi_data->offset = 4;
+		    break;
+		case 0x02: /* 16-byte boundaries */
+		    ipmi_data->offset = 16;
+		    break;
+		default:
+		    /* Some other interface, just ignore it. */
+		    return -EIO;
+		}
+	} else {
+		/* Old DMI spec. */
+		ipmi_data->base_addr = base_addr;
+		ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
+		ipmi_data->offset = 1;
+	}
+
+	ipmi_data->slave_addr = data[6];
+
+	if (is_new_interface(-1, ipmi_data->addr_space,ipmi_data->base_addr)) {
+		dmi_data_entries++;
+		return 0;
+	}
+
+	memset(ipmi_data, 0, sizeof(dmi_ipmi_data_t));
+
+	return -1;
+}
+
+static int dmi_table(u32 base, int len, int num)
+{
+	u8 		  *buf;
+	struct dmi_header *dm;
+	u8 		  *data;
+	int 		  i=1;
+	int		  status=-1;
+	int               intf_num = 0;
+
+	buf = ioremap(base, len);
+	if(buf==NULL)
+		return -1;
+
+	data = buf;
+
+	while(i<num && (data - buf) < len)
+	{
+		dm=(dmi_header_t *)data;
+
+		if((data-buf+dm->length) >= len)
+        		break;
+
+		if (dm->type == 38) {
+			if (decode_dmi(dm, intf_num) == 0) {
+				intf_num++;
+				if (intf_num >= SI_MAX_DRIVERS)
+					break;
+			}
+		}
+
+	        data+=dm->length;
+		while((data-buf) < len && (*data || data[1]))
+			data++;
+		data+=2;
+		i++;
+	}
+	iounmap(buf);
+
+	return status;
+}
+
+inline static int dmi_checksum(u8 *buf)
+{
+	u8   sum=0;
+	int  a;
+
+	for(a=0; a<15; a++)
+		sum+=buf[a];
+	return (sum==0);
+}
+
+static int dmi_decode(void)
+{
+	u8   buf[15];
+	u32  fp=0xF0000;
+
+#ifdef CONFIG_SIMNOW
+	return -1;
+#endif
+
+	while(fp < 0xFFFFF)
+	{
+		isa_memcpy_fromio(buf, fp, 15);
+		if(memcmp(buf, "_DMI_", 5)==0 && dmi_checksum(buf))
+		{
+			u16 num=buf[13]<<8|buf[12];
+			u16 len=buf[7]<<8|buf[6];
+			u32 base=buf[11]<<24|buf[10]<<16|buf[9]<<8|buf[8];
+
+			if(dmi_table(base, len, num) == 0)
+				return 0;
+		}
+		fp+=16;
+	}
+
+	return -1;
+}
+
+static int try_init_smbios(int intf_num, struct smi_info **new_info)
+{
+	struct smi_info   *info;
+	dmi_ipmi_data_t   *ipmi_data = dmi_data+intf_num;
+	char              *io_type;
+
+	if (intf_num >= dmi_data_entries)
+		return -ENODEV;
+
+	switch(ipmi_data->type) {
+		case 0x01: /* KCS */
+			si_type[intf_num] = "kcs";
+			break;
+		case 0x02: /* SMIC */
+			si_type[intf_num] = "smic";
+			break;
+		case 0x03: /* BT */
+			si_type[intf_num] = "bt";
+			break;
+		default:
+			return -EIO;
+	}
+
+	info = kmalloc(sizeof(*info), GFP_KERNEL);
+	if (!info) {
+		printk(KERN_ERR "ipmi_si: Could not allocate SI data (4)\n");
+		return -ENOMEM;
+	}
+	memset(info, 0, sizeof(*info));
+
+	if (ipmi_data->addr_space == 1) {
+		io_type = "memory";
+		info->io_setup = mem_setup;
+		addrs[intf_num] = ipmi_data->base_addr;
+		info->io.info = &(addrs[intf_num]);
+	} else if (ipmi_data->addr_space == 2) {
+		io_type = "I/O";
+		info->io_setup = port_setup;
+		ports[intf_num] = ipmi_data->base_addr;
+		info->io.info = &(ports[intf_num]);
+	} else {
+		kfree(info);
+		printk("ipmi_si: Unknown SMBIOS I/O Address type.\n");
+		return -EIO;
+	}
+
+	regspacings[intf_num] = ipmi_data->offset;
+	info->io.regspacing = regspacings[intf_num];
+	if (!info->io.regspacing)
+		info->io.regspacing = DEFAULT_REGSPACING;
+	info->io.regsize = DEFAULT_REGSPACING;
+	info->io.regshift = regshifts[intf_num];
+
+	info->slave_addr = ipmi_data->slave_addr;
+
+	irqs[intf_num] = ipmi_data->irq;
+
+	*new_info = info;
+
+	printk("ipmi_si: Found SMBIOS-specified state machine at %s"
+	       " address 0x%lx, slave address 0x%x\n",
+	       io_type, (unsigned long)ipmi_data->base_addr,
+	       ipmi_data->slave_addr);
+	return 0;
+}
+#endif /* CONFIG_X86 */
+
+#ifdef CONFIG_PCI
+
+#define PCI_ERMC_CLASSCODE  0x0C0700
+#define PCI_HP_VENDOR_ID    0x103C
+#define PCI_MMC_DEVICE_ID   0x121A
+#define PCI_MMC_ADDR_CW     0x10
+
+/* Avoid more than one attempt to probe pci smic. */
+static int pci_smic_checked = 0;
+
+static int find_pci_smic(int intf_num, struct smi_info **new_info)
+{
+	struct smi_info  *info;
+	int              error;
+	struct pci_dev   *pci_dev = NULL;
+	u16    		 base_addr;
+	int              fe_rmc = 0;
+
+	if (pci_smic_checked)
+		return -ENODEV;
+
+	pci_smic_checked = 1;
+
+	if ((pci_dev = pci_get_device(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID,
+				       NULL)))
+		;
+	else if ((pci_dev = pci_get_class(PCI_ERMC_CLASSCODE, NULL)) &&
+		 pci_dev->subsystem_vendor == PCI_HP_VENDOR_ID)
+		fe_rmc = 1;
+	else
+		return -ENODEV;
+
+	error = pci_read_config_word(pci_dev, PCI_MMC_ADDR_CW, &base_addr);
+	if (error)
+	{
+		pci_dev_put(pci_dev);
+		printk(KERN_ERR
+		       "ipmi_si: pci_read_config_word() failed (%d).\n",
+		       error);
+		return -ENODEV;
+	}
+
+	/* Bit 0: 1 specifies programmed I/O, 0 specifies memory mapped I/O */
+	if (!(base_addr & 0x0001))
+	{
+		pci_dev_put(pci_dev);
+		printk(KERN_ERR
+		       "ipmi_si: memory mapped I/O not supported for PCI"
+		       " smic.\n");
+		return -ENODEV;
+	}
+
+	base_addr &= 0xFFFE;
+	if (!fe_rmc)
+		/* Data register starts at base address + 1 in eRMC */
+		++base_addr;
+
+	if (!is_new_interface(-1, IPMI_IO_ADDR_SPACE, base_addr)) {
+		pci_dev_put(pci_dev);
+		return -ENODEV;
+	}
+
+	info = kmalloc(sizeof(*info), GFP_KERNEL);
+	if (!info) {
+		pci_dev_put(pci_dev);
+		printk(KERN_ERR "ipmi_si: Could not allocate SI data (5)\n");
+		return -ENOMEM;
+	}
+	memset(info, 0, sizeof(*info));
+
+	info->io_setup = port_setup;
+	ports[intf_num] = base_addr;
+	info->io.info = &(ports[intf_num]);
+	info->io.regspacing = regspacings[intf_num];
+	if (!info->io.regspacing)
+		info->io.regspacing = DEFAULT_REGSPACING;
+	info->io.regsize = DEFAULT_REGSPACING;
+	info->io.regshift = regshifts[intf_num];
+
+	*new_info = info;
+
+	irqs[intf_num] = pci_dev->irq;
+	si_type[intf_num] = "smic";
+
+	printk("ipmi_si: Found PCI SMIC at I/O address 0x%lx\n",
+		(long unsigned int) base_addr);
+
+	pci_dev_put(pci_dev);
+	return 0;
+}
+#endif /* CONFIG_PCI */
+
+static int try_init_plug_and_play(int intf_num, struct smi_info **new_info)
+{
+#ifdef CONFIG_PCI
+	if (find_pci_smic(intf_num, new_info)==0)
+		return 0;
+#endif
+	/* Include other methods here. */
+
+	return -ENODEV;
+}
+
+
+static int try_get_dev_id(struct smi_info *smi_info)
+{
+	unsigned char      msg[2];
+	unsigned char      *resp;
+	unsigned long      resp_len;
+	enum si_sm_result smi_result;
+	int               rv = 0;
+
+	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
+	if (!resp)
+		return -ENOMEM;
+
+	/* Do a Get Device ID command, since it comes back with some
+	   useful info. */
+	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
+	msg[1] = IPMI_GET_DEVICE_ID_CMD;
+	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
+
+	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
+	for (;;)
+	{
+		if (smi_result == SI_SM_CALL_WITH_DELAY) {
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			schedule_timeout(1);
+			smi_result = smi_info->handlers->event(
+				smi_info->si_sm, 100);
+		}
+		else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
+		{
+			smi_result = smi_info->handlers->event(
+				smi_info->si_sm, 0);
+		}
+		else
+			break;
+	}
+	if (smi_result == SI_SM_HOSED) {
+		/* We couldn't get the state machine to run, so whatever's at
+		   the port is probably not an IPMI SMI interface. */
+		rv = -ENODEV;
+		goto out;
+	}
+
+	/* Otherwise, we got some data. */
+	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
+						  resp, IPMI_MAX_MSG_LENGTH);
+	if (resp_len < 6) {
+		/* That's odd, it should be longer. */
+		rv = -EINVAL;
+		goto out;
+	}
+
+	if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
+		/* That's odd, it shouldn't be able to fail. */
+		rv = -EINVAL;
+		goto out;
+	}
+
+	/* Record info from the get device id, in case we need it. */
+	smi_info->ipmi_si_dev_rev = resp[4] & 0xf;
+	smi_info->ipmi_si_fw_rev_major = resp[5] & 0x7f;
+	smi_info->ipmi_si_fw_rev_minor = resp[6];
+	smi_info->ipmi_version_major = resp[7] & 0xf;
+	smi_info->ipmi_version_minor = resp[7] >> 4;
+
+ out:
+	kfree(resp);
+	return rv;
+}
+
+static int type_file_read_proc(char *page, char **start, off_t off,
+			       int count, int *eof, void *data)
+{
+	char            *out = (char *) page;
+	struct smi_info *smi = data;
+
+	switch (smi->si_type) {
+	    case SI_KCS:
+		return sprintf(out, "kcs\n");
+	    case SI_SMIC:
+		return sprintf(out, "smic\n");
+	    case SI_BT:
+		return sprintf(out, "bt\n");
+	    default:
+		return 0;
+	}
+}
+
+static int stat_file_read_proc(char *page, char **start, off_t off,
+			       int count, int *eof, void *data)
+{
+	char            *out = (char *) page;
+	struct smi_info *smi = data;
+
+	out += sprintf(out, "interrupts_enabled:    %d\n",
+		       smi->irq && !smi->interrupt_disabled);
+	out += sprintf(out, "short_timeouts:        %ld\n",
+		       smi->short_timeouts);
+	out += sprintf(out, "long_timeouts:         %ld\n",
+		       smi->long_timeouts);
+	out += sprintf(out, "timeout_restarts:      %ld\n",
+		       smi->timeout_restarts);
+	out += sprintf(out, "idles:                 %ld\n",
+		       smi->idles);
+	out += sprintf(out, "interrupts:            %ld\n",
+		       smi->interrupts);
+	out += sprintf(out, "attentions:            %ld\n",
+		       smi->attentions);
+	out += sprintf(out, "flag_fetches:          %ld\n",
+		       smi->flag_fetches);
+	out += sprintf(out, "hosed_count:           %ld\n",
+		       smi->hosed_count);
+	out += sprintf(out, "complete_transactions: %ld\n",
+		       smi->complete_transactions);
+	out += sprintf(out, "events:                %ld\n",
+		       smi->events);
+	out += sprintf(out, "watchdog_pretimeouts:  %ld\n",
+		       smi->watchdog_pretimeouts);
+	out += sprintf(out, "incoming_messages:     %ld\n",
+		       smi->incoming_messages);
+
+	return (out - ((char *) page));
+}
+
+/* Returns 0 if initialized, or negative on an error. */
+static int init_one_smi(int intf_num, struct smi_info **smi)
+{
+	int		rv;
+	struct smi_info *new_smi;
+
+
+	rv = try_init_mem(intf_num, &new_smi);
+	if (rv)
+		rv = try_init_port(intf_num, &new_smi);
+#ifdef CONFIG_ACPI_INTERPRETER
+	if ((rv) && (si_trydefaults)) {
+		rv = try_init_acpi(intf_num, &new_smi);
+	}
+#endif
+#ifdef CONFIG_X86
+	if ((rv) && (si_trydefaults)) {
+		rv = try_init_smbios(intf_num, &new_smi);
+        }
+#endif
+	if ((rv) && (si_trydefaults)) {
+		rv = try_init_plug_and_play(intf_num, &new_smi);
+	}
+
+
+	if (rv)
+		return rv;
+
+	/* So we know not to free it unless we have allocated one. */
+	new_smi->intf = NULL;
+	new_smi->si_sm = NULL;
+	new_smi->handlers = NULL;
+
+	if (!new_smi->irq_setup) {
+		new_smi->irq = irqs[intf_num];
+		new_smi->irq_setup = std_irq_setup;
+		new_smi->irq_cleanup = std_irq_cleanup;
+	}
+
+	/* Default to KCS if no type is specified. */
+	if (si_type[intf_num] == NULL) {
+		if (si_trydefaults)
+			si_type[intf_num] = "kcs";
+		else {
+			rv = -EINVAL;
+			goto out_err;
+		}
+	}
+
+	/* Set up the state machine to use. */
+	if (strcmp(si_type[intf_num], "kcs") == 0) {
+		new_smi->handlers = &kcs_smi_handlers;
+		new_smi->si_type = SI_KCS;
+	} else if (strcmp(si_type[intf_num], "smic") == 0) {
+		new_smi->handlers = &smic_smi_handlers;
+		new_smi->si_type = SI_SMIC;
+	} else if (strcmp(si_type[intf_num], "bt") == 0) {
+		new_smi->handlers = &bt_smi_handlers;
+		new_smi->si_type = SI_BT;
+	} else {
+		/* No support for anything else yet. */
+		rv = -EIO;
+		goto out_err;
+	}
+
+	/* Allocate the state machine's data and initialize it. */
+	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
+	if (!new_smi->si_sm) {
+		printk(" Could not allocate state machine memory\n");
+		rv = -ENOMEM;
+		goto out_err;
+	}
+	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
+							&new_smi->io);
+
+	/* Now that we know the I/O size, we can set up the I/O. */
+	rv = new_smi->io_setup(new_smi);
+	if (rv) {
+		printk(" Could not set up I/O space\n");
+		goto out_err;
+	}
+
+	spin_lock_init(&(new_smi->si_lock));
+	spin_lock_init(&(new_smi->msg_lock));
+	spin_lock_init(&(new_smi->count_lock));
+
+	/* Do low-level detection first. */
+	if (new_smi->handlers->detect(new_smi->si_sm)) {
+		rv = -ENODEV;
+		goto out_err;
+	}
+
+	/* Attempt a get device id command.  If it fails, we probably
+           don't have a SMI here. */
+	rv = try_get_dev_id(new_smi);
+	if (rv)
+		goto out_err;
+
+	/* Try to claim any interrupts. */
+	new_smi->irq_setup(new_smi);
+
+	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
+	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
+	new_smi->curr_msg = NULL;
+	atomic_set(&new_smi->req_events, 0);
+	new_smi->run_to_completion = 0;
+
+	new_smi->interrupt_disabled = 0;
+	new_smi->timer_stopped = 0;
+	new_smi->stop_operation = 0;
+
+	/* Start clearing the flags before we enable interrupts or the
+	   timer to avoid racing with the timer. */
+	start_clear_flags(new_smi);
+	/* IRQ is defined to be set when non-zero. */
+	if (new_smi->irq)
+		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
+
+	/* The ipmi_register_smi() code does some operations to
+	   determine the channel information, so we must be ready to
+	   handle operations before it is called.  This means we have
+	   to stop the timer if we get an error after this point. */
+	init_timer(&(new_smi->si_timer));
+	new_smi->si_timer.data = (long) new_smi;
+	new_smi->si_timer.function = smi_timeout;
+	new_smi->last_timeout_jiffies = jiffies;
+	new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
+	add_timer(&(new_smi->si_timer));
+
+	rv = ipmi_register_smi(&handlers,
+			       new_smi,
+			       new_smi->ipmi_version_major,
+			       new_smi->ipmi_version_minor,
+			       new_smi->slave_addr,
+			       &(new_smi->intf));
+	if (rv) {
+		printk(KERN_ERR
+		       "ipmi_si: Unable to register device: error %d\n",
+		       rv);
+		goto out_err_stop_timer;
+	}
+
+	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
+				     type_file_read_proc, NULL,
+				     new_smi, THIS_MODULE);
+	if (rv) {
+		printk(KERN_ERR
+		       "ipmi_si: Unable to create proc entry: %d\n",
+		       rv);
+		goto out_err_stop_timer;
+	}
+
+	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
+				     stat_file_read_proc, NULL,
+				     new_smi, THIS_MODULE);
+	if (rv) {
+		printk(KERN_ERR
+		       "ipmi_si: Unable to create proc entry: %d\n",
+		       rv);
+		goto out_err_stop_timer;
+	}
+
+	*smi = new_smi;
+
+	printk(" IPMI %s interface initialized\n", si_type[intf_num]);
+
+	return 0;
+
+ out_err_stop_timer:
+	new_smi->stop_operation = 1;
+
+	/* Wait for the timer to stop.  This avoids problems with race
+	   conditions removing the timer here. */
+	while (!new_smi->timer_stopped) {
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		schedule_timeout(1);
+	}
+
+ out_err:
+	if (new_smi->intf)
+		ipmi_unregister_smi(new_smi->intf);
+
+	new_smi->irq_cleanup(new_smi);
+
+	/* Wait until we know that we are out of any interrupt
+	   handlers might have been running before we freed the
+	   interrupt. */
+	synchronize_kernel();
+
+	if (new_smi->si_sm) {
+		if (new_smi->handlers)
+			new_smi->handlers->cleanup(new_smi->si_sm);
+		kfree(new_smi->si_sm);
+	}
+	new_smi->io_cleanup(new_smi);
+
+	return rv;
+}
+
+static __init int init_ipmi_si(void)
+{
+	int  rv = 0;
+	int  pos = 0;
+	int  i;
+	char *str;
+
+	if (initialized)
+		return 0;
+	initialized = 1;
+
+	/* Parse out the si_type string into its components. */
+	str = si_type_str;
+	if (*str != '\0') {
+		for (i=0; (i<SI_MAX_PARMS) && (*str != '\0'); i++) {
+			si_type[i] = str;
+			str = strchr(str, ',');
+			if (str) {
+				*str = '\0';
+				str++;
+			} else {
+				break;
+			}
+		}
+	}
+
+	printk(KERN_INFO "IPMI System Interface driver version "
+	       IPMI_SI_VERSION);
+	if (kcs_smi_handlers.version)
+		printk(", KCS version %s", kcs_smi_handlers.version);
+	if (smic_smi_handlers.version)
+		printk(", SMIC version %s", smic_smi_handlers.version);
+	if (bt_smi_handlers.version)
+   	        printk(", BT version %s", bt_smi_handlers.version);
+	printk("\n");
+
+#ifdef CONFIG_X86
+	dmi_decode();
+#endif
+
+	rv = init_one_smi(0, &(smi_infos[pos]));
+	if (rv && !ports[0] && si_trydefaults) {
+		/* If we are trying defaults and the initial port is
+                   not set, then set it. */
+		si_type[0] = "kcs";
+		ports[0] = DEFAULT_KCS_IO_PORT;
+		rv = init_one_smi(0, &(smi_infos[pos]));
+		if (rv) {
+			/* No KCS - try SMIC */
+			si_type[0] = "smic";
+			ports[0] = DEFAULT_SMIC_IO_PORT;
+			rv = init_one_smi(0, &(smi_infos[pos]));
+		}
+		if (rv) {
+			/* No SMIC - try BT */
+			si_type[0] = "bt";
+			ports[0] = DEFAULT_BT_IO_PORT;
+			rv = init_one_smi(0, &(smi_infos[pos]));
+		}
+	}
+	if (rv == 0)
+		pos++;
+
+	for (i=1; i < SI_MAX_PARMS; i++) {
+		rv = init_one_smi(i, &(smi_infos[pos]));
+		if (rv == 0)
+			pos++;
+	}
+
+	if (smi_infos[0] == NULL) {
+		printk("ipmi_si: Unable to find any System Interface(s)\n");
+		return -ENODEV;
+	}
+
+	return 0;
+}
+module_init(init_ipmi_si);
+
+static void __exit cleanup_one_si(struct smi_info *to_clean)
+{
+	int           rv;
+	unsigned long flags;
+
+	if (! to_clean)
+		return;
+
+	/* Tell the timer and interrupt handlers that we are shutting
+	   down. */
+	spin_lock_irqsave(&(to_clean->si_lock), flags);
+	spin_lock(&(to_clean->msg_lock));
+
+	to_clean->stop_operation = 1;
+
+	to_clean->irq_cleanup(to_clean);
+
+	spin_unlock(&(to_clean->msg_lock));
+	spin_unlock_irqrestore(&(to_clean->si_lock), flags);
+
+	/* Wait until we know that we are out of any interrupt
+	   handlers might have been running before we freed the
+	   interrupt. */
+	synchronize_kernel();
+
+	/* Wait for the timer to stop.  This avoids problems with race
+	   conditions removing the timer here. */
+	while (!to_clean->timer_stopped) {
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		schedule_timeout(1);
+	}
+
+	/* Interrupts and timeouts are stopped, now make sure the
+	   interface is in a clean state. */
+	while ((to_clean->curr_msg) || (to_clean->si_state != SI_NORMAL)) {
+		poll(to_clean);
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		schedule_timeout(1);
+	}
+
+	rv = ipmi_unregister_smi(to_clean->intf);
+	if (rv) {
+		printk(KERN_ERR
+		       "ipmi_si: Unable to unregister device: errno=%d\n",
+		       rv);
+	}
+
+	to_clean->handlers->cleanup(to_clean->si_sm);
+
+	kfree(to_clean->si_sm);
+
+	to_clean->io_cleanup(to_clean);
+}
+
+static __exit void cleanup_ipmi_si(void)
+{
+	int i;
+
+	if (!initialized)
+		return;
+
+	for (i=0; i<SI_MAX_DRIVERS; i++) {
+		cleanup_one_si(smi_infos[i]);
+	}
+}
+module_exit(cleanup_ipmi_si);
+
+MODULE_LICENSE("GPL");