x86: lindent arch/i386/math-emu

lindent these files:
                                       errors   lines of code   errors/KLOC
 arch/x86/math-emu/                      2236            9424         237.2
 arch/x86/math-emu/                       128            8706          14.7

no other changes. No code changed:

   text    data     bss     dec     hex filename
   5589802  612739 3833856 10036397         9924ad vmlinux.before
   5589802  612739 3833856 10036397         9924ad vmlinux.after

the intent of this patch is to ease the automated tracking of kernel
code quality - it's just much easier for us to maintain it if every file
in arch/x86 is supposed to be clean.

NOTE: it is a known problem of lindent that it causes some style damage
of its own, but it's a safe tool (well, except for the gcc array range
initializers extension), so we did the bulk of the changes via lindent,
and did the manual fixups in a followup patch.

the resulting math-emu code has been tested by Thomas Gleixner on a real
386 DX CPU as well, and it works fine.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
diff --git a/arch/x86/math-emu/poly_tan.c b/arch/x86/math-emu/poly_tan.c
index 8df3e03..c0d181e 100644
--- a/arch/x86/math-emu/poly_tan.c
+++ b/arch/x86/math-emu/poly_tan.c
@@ -17,206 +17,196 @@
 #include "control_w.h"
 #include "poly.h"
 
-
 #define	HiPOWERop	3	/* odd poly, positive terms */
-static const unsigned long long oddplterm[HiPOWERop] =
-{
-  0x0000000000000000LL,
-  0x0051a1cf08fca228LL,
-  0x0000000071284ff7LL
+static const unsigned long long oddplterm[HiPOWERop] = {
+	0x0000000000000000LL,
+	0x0051a1cf08fca228LL,
+	0x0000000071284ff7LL
 };
 
 #define	HiPOWERon	2	/* odd poly, negative terms */
-static const unsigned long long oddnegterm[HiPOWERon] =
-{
-   0x1291a9a184244e80LL,
-   0x0000583245819c21LL
+static const unsigned long long oddnegterm[HiPOWERon] = {
+	0x1291a9a184244e80LL,
+	0x0000583245819c21LL
 };
 
 #define	HiPOWERep	2	/* even poly, positive terms */
-static const unsigned long long evenplterm[HiPOWERep] =
-{
-  0x0e848884b539e888LL,
-  0x00003c7f18b887daLL
+static const unsigned long long evenplterm[HiPOWERep] = {
+	0x0e848884b539e888LL,
+	0x00003c7f18b887daLL
 };
 
 #define	HiPOWERen	2	/* even poly, negative terms */
-static const unsigned long long evennegterm[HiPOWERen] =
-{
-  0xf1f0200fd51569ccLL,
-  0x003afb46105c4432LL
+static const unsigned long long evennegterm[HiPOWERen] = {
+	0xf1f0200fd51569ccLL,
+	0x003afb46105c4432LL
 };
 
 static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
 
-
 /*--- poly_tan() ------------------------------------------------------------+
  |                                                                           |
  +---------------------------------------------------------------------------*/
-void	poly_tan(FPU_REG *st0_ptr)
+void poly_tan(FPU_REG * st0_ptr)
 {
-  long int    		exponent;
-  int                   invert;
-  Xsig                  argSq, argSqSq, accumulatoro, accumulatore, accum,
-                        argSignif, fix_up;
-  unsigned long         adj;
+	long int exponent;
+	int invert;
+	Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
+	    argSignif, fix_up;
+	unsigned long adj;
 
-  exponent = exponent(st0_ptr);
+	exponent = exponent(st0_ptr);
 
 #ifdef PARANOID
-  if ( signnegative(st0_ptr) )	/* Can't hack a number < 0.0 */
-    { arith_invalid(0); return; }  /* Need a positive number */
+	if (signnegative(st0_ptr)) {	/* Can't hack a number < 0.0 */
+		arith_invalid(0);
+		return;
+	}			/* Need a positive number */
 #endif /* PARANOID */
 
-  /* Split the problem into two domains, smaller and larger than pi/4 */
-  if ( (exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) )
-    {
-      /* The argument is greater than (approx) pi/4 */
-      invert = 1;
-      accum.lsw = 0;
-      XSIG_LL(accum) = significand(st0_ptr);
- 
-      if ( exponent == 0 )
-	{
-	  /* The argument is >= 1.0 */
-	  /* Put the binary point at the left. */
-	  XSIG_LL(accum) <<= 1;
-	}
-      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
-      XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
-      /* This is a special case which arises due to rounding. */
-      if ( XSIG_LL(accum) == 0xffffffffffffffffLL )
-	{
-	  FPU_settag0(TAG_Valid);
-	  significand(st0_ptr) = 0x8a51e04daabda360LL;
-	  setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative);
-	  return;
+	/* Split the problem into two domains, smaller and larger than pi/4 */
+	if ((exponent == 0)
+	    || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) {
+		/* The argument is greater than (approx) pi/4 */
+		invert = 1;
+		accum.lsw = 0;
+		XSIG_LL(accum) = significand(st0_ptr);
+
+		if (exponent == 0) {
+			/* The argument is >= 1.0 */
+			/* Put the binary point at the left. */
+			XSIG_LL(accum) <<= 1;
+		}
+		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
+		XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
+		/* This is a special case which arises due to rounding. */
+		if (XSIG_LL(accum) == 0xffffffffffffffffLL) {
+			FPU_settag0(TAG_Valid);
+			significand(st0_ptr) = 0x8a51e04daabda360LL;
+			setexponent16(st0_ptr,
+				      (0x41 + EXTENDED_Ebias) | SIGN_Negative);
+			return;
+		}
+
+		argSignif.lsw = accum.lsw;
+		XSIG_LL(argSignif) = XSIG_LL(accum);
+		exponent = -1 + norm_Xsig(&argSignif);
+	} else {
+		invert = 0;
+		argSignif.lsw = 0;
+		XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
+
+		if (exponent < -1) {
+			/* shift the argument right by the required places */
+			if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >=
+			    0x80000000U)
+				XSIG_LL(accum)++;	/* round up */
+		}
 	}
 
-      argSignif.lsw = accum.lsw;
-      XSIG_LL(argSignif) = XSIG_LL(accum);
-      exponent = -1 + norm_Xsig(&argSignif);
-    }
-  else
-    {
-      invert = 0;
-      argSignif.lsw = 0;
-      XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
- 
-      if ( exponent < -1 )
-	{
-	  /* shift the argument right by the required places */
-	  if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U )
-	    XSIG_LL(accum) ++;	/* round up */
+	XSIG_LL(argSq) = XSIG_LL(accum);
+	argSq.lsw = accum.lsw;
+	mul_Xsig_Xsig(&argSq, &argSq);
+	XSIG_LL(argSqSq) = XSIG_LL(argSq);
+	argSqSq.lsw = argSq.lsw;
+	mul_Xsig_Xsig(&argSqSq, &argSqSq);
+
+	/* Compute the negative terms for the numerator polynomial */
+	accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
+	polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm,
+			HiPOWERon - 1);
+	mul_Xsig_Xsig(&accumulatoro, &argSq);
+	negate_Xsig(&accumulatoro);
+	/* Add the positive terms */
+	polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm,
+			HiPOWERop - 1);
+
+	/* Compute the positive terms for the denominator polynomial */
+	accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
+	polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm,
+			HiPOWERep - 1);
+	mul_Xsig_Xsig(&accumulatore, &argSq);
+	negate_Xsig(&accumulatore);
+	/* Add the negative terms */
+	polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm,
+			HiPOWERen - 1);
+	/* Multiply by arg^2 */
+	mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
+	mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
+	/* de-normalize and divide by 2 */
+	shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1);
+	negate_Xsig(&accumulatore);	/* This does 1 - accumulator */
+
+	/* Now find the ratio. */
+	if (accumulatore.msw == 0) {
+		/* accumulatoro must contain 1.0 here, (actually, 0) but it
+		   really doesn't matter what value we use because it will
+		   have negligible effect in later calculations
+		 */
+		XSIG_LL(accum) = 0x8000000000000000LL;
+		accum.lsw = 0;
+	} else {
+		div_Xsig(&accumulatoro, &accumulatore, &accum);
 	}
-    }
 
-  XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw;
-  mul_Xsig_Xsig(&argSq, &argSq);
-  XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw;
-  mul_Xsig_Xsig(&argSqSq, &argSqSq);
+	/* Multiply by 1/3 * arg^3 */
+	mul64_Xsig(&accum, &XSIG_LL(argSignif));
+	mul64_Xsig(&accum, &XSIG_LL(argSignif));
+	mul64_Xsig(&accum, &XSIG_LL(argSignif));
+	mul64_Xsig(&accum, &twothirds);
+	shr_Xsig(&accum, -2 * (exponent + 1));
 
-  /* Compute the negative terms for the numerator polynomial */
-  accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
-  polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1);
-  mul_Xsig_Xsig(&accumulatoro, &argSq);
-  negate_Xsig(&accumulatoro);
-  /* Add the positive terms */
-  polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1);
+	/* tan(arg) = arg + accum */
+	add_two_Xsig(&accum, &argSignif, &exponent);
 
-  
-  /* Compute the positive terms for the denominator polynomial */
-  accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
-  polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1);
-  mul_Xsig_Xsig(&accumulatore, &argSq);
-  negate_Xsig(&accumulatore);
-  /* Add the negative terms */
-  polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1);
-  /* Multiply by arg^2 */
-  mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
-  mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
-  /* de-normalize and divide by 2 */
-  shr_Xsig(&accumulatore, -2*(1+exponent) + 1);
-  negate_Xsig(&accumulatore);      /* This does 1 - accumulator */
+	if (invert) {
+		/* We now have the value of tan(pi_2 - arg) where pi_2 is an
+		   approximation for pi/2
+		 */
+		/* The next step is to fix the answer to compensate for the
+		   error due to the approximation used for pi/2
+		 */
 
-  /* Now find the ratio. */
-  if ( accumulatore.msw == 0 )
-    {
-      /* accumulatoro must contain 1.0 here, (actually, 0) but it
-	 really doesn't matter what value we use because it will
-	 have negligible effect in later calculations
-	 */
-      XSIG_LL(accum) = 0x8000000000000000LL;
-      accum.lsw = 0;
-    }
-  else
-    {
-      div_Xsig(&accumulatoro, &accumulatore, &accum);
-    }
+		/* This is (approx) delta, the error in our approx for pi/2
+		   (see above). It has an exponent of -65
+		 */
+		XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
+		fix_up.lsw = 0;
 
-  /* Multiply by 1/3 * arg^3 */
-  mul64_Xsig(&accum, &XSIG_LL(argSignif));
-  mul64_Xsig(&accum, &XSIG_LL(argSignif));
-  mul64_Xsig(&accum, &XSIG_LL(argSignif));
-  mul64_Xsig(&accum, &twothirds);
-  shr_Xsig(&accum, -2*(exponent+1));
+		if (exponent == 0)
+			adj = 0xffffffff;	/* We want approx 1.0 here, but
+						   this is close enough. */
+		else if (exponent > -30) {
+			adj = accum.msw >> -(exponent + 1);	/* tan */
+			adj = mul_32_32(adj, adj);	/* tan^2 */
+		} else
+			adj = 0;
+		adj = mul_32_32(0x898cc517, adj);	/* delta * tan^2 */
 
-  /* tan(arg) = arg + accum */
-  add_two_Xsig(&accum, &argSignif, &exponent);
+		fix_up.msw += adj;
+		if (!(fix_up.msw & 0x80000000)) {	/* did fix_up overflow ? */
+			/* Yes, we need to add an msb */
+			shr_Xsig(&fix_up, 1);
+			fix_up.msw |= 0x80000000;
+			shr_Xsig(&fix_up, 64 + exponent);
+		} else
+			shr_Xsig(&fix_up, 65 + exponent);
 
-  if ( invert )
-    {
-      /* We now have the value of tan(pi_2 - arg) where pi_2 is an
-	 approximation for pi/2
-	 */
-      /* The next step is to fix the answer to compensate for the
-	 error due to the approximation used for pi/2
-	 */
+		add_two_Xsig(&accum, &fix_up, &exponent);
 
-      /* This is (approx) delta, the error in our approx for pi/2
-	 (see above). It has an exponent of -65
-	 */
-      XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
-      fix_up.lsw = 0;
-
-      if ( exponent == 0 )
-	adj = 0xffffffff;   /* We want approx 1.0 here, but
-			       this is close enough. */
-      else if ( exponent > -30 )
-	{
-	  adj = accum.msw >> -(exponent+1);      /* tan */
-	  adj = mul_32_32(adj, adj);             /* tan^2 */
+		/* accum now contains tan(pi/2 - arg).
+		   Use tan(arg) = 1.0 / tan(pi/2 - arg)
+		 */
+		accumulatoro.lsw = accumulatoro.midw = 0;
+		accumulatoro.msw = 0x80000000;
+		div_Xsig(&accumulatoro, &accum, &accum);
+		exponent = -exponent - 1;
 	}
-      else
-	adj = 0;
-      adj = mul_32_32(0x898cc517, adj);          /* delta * tan^2 */
 
-      fix_up.msw += adj;
-      if ( !(fix_up.msw & 0x80000000) )   /* did fix_up overflow ? */
-	{
-	  /* Yes, we need to add an msb */
-	  shr_Xsig(&fix_up, 1);
-	  fix_up.msw |= 0x80000000;
-	  shr_Xsig(&fix_up, 64 + exponent);
-	}
-      else
-	shr_Xsig(&fix_up, 65 + exponent);
-
-      add_two_Xsig(&accum, &fix_up, &exponent);
-
-      /* accum now contains tan(pi/2 - arg).
-	 Use tan(arg) = 1.0 / tan(pi/2 - arg)
-	 */
-      accumulatoro.lsw = accumulatoro.midw = 0;
-      accumulatoro.msw = 0x80000000;
-      div_Xsig(&accumulatoro, &accum, &accum);
-      exponent = - exponent - 1;
-    }
-
-  /* Transfer the result */
-  round_Xsig(&accum);
-  FPU_settag0(TAG_Valid);
-  significand(st0_ptr) = XSIG_LL(accum);
-  setexponent16(st0_ptr, exponent + EXTENDED_Ebias);  /* Result is positive. */
+	/* Transfer the result */
+	round_Xsig(&accum);
+	FPU_settag0(TAG_Valid);
+	significand(st0_ptr) = XSIG_LL(accum);
+	setexponent16(st0_ptr, exponent + EXTENDED_Ebias);	/* Result is positive. */
 
 }