fs: kill i_alloc_sem

i_alloc_sem is a rather special rw_semaphore.  It's the last one that may
be released by a non-owner, and it's write side is always mirrored by
real exclusion.  It's intended use it to wait for all pending direct I/O
requests to finish before starting a truncate.

Replace it with a hand-grown construct:

 - exclusion for truncates is already guaranteed by i_mutex, so it can
   simply fall way
 - the reader side is replaced by an i_dio_count member in struct inode
   that counts the number of pending direct I/O requests.  Truncate can't
   proceed as long as it's non-zero
 - when i_dio_count reaches non-zero we wake up a pending truncate using
   wake_up_bit on a new bit in i_flags
 - new references to i_dio_count can't appear while we are waiting for
   it to read zero because the direct I/O count always needs i_mutex
   (or an equivalent like XFS's i_iolock) for starting a new operation.

This scheme is much simpler, and saves the space of a spinlock_t and a
struct list_head in struct inode (typically 160 bits on a non-debug 64-bit
system).

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
diff --git a/fs/ntfs/file.c b/fs/ntfs/file.c
index f4b1057..b59f5ac 100644
--- a/fs/ntfs/file.c
+++ b/fs/ntfs/file.c
@@ -1832,9 +1832,8 @@
 	 * fails again.
 	 */
 	if (unlikely(NInoTruncateFailed(ni))) {
-		down_write(&vi->i_alloc_sem);
+		inode_dio_wait(vi);
 		err = ntfs_truncate(vi);
-		up_write(&vi->i_alloc_sem);
 		if (err || NInoTruncateFailed(ni)) {
 			if (!err)
 				err = -EIO;