blob: e34a934354978ba4541e97e0d8739c402ea1f1e7 [file] [log] [blame]
James Bottomley2908d772006-08-29 09:22:51 -05001/*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25#include <linux/pci.h>
26#include <linux/scatterlist.h>
27
28#include "sas_internal.h"
29
30#include <scsi/scsi_transport.h>
31#include <scsi/scsi_transport_sas.h>
32#include "../scsi_sas_internal.h"
33
34static int sas_discover_expander(struct domain_device *dev);
35static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36static int sas_configure_phy(struct domain_device *dev, int phy_id,
37 u8 *sas_addr, int include);
38static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
39
40#if 0
41/* FIXME: smp needs to migrate into the sas class */
42static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
43static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
44#endif
45
46/* ---------- SMP task management ---------- */
47
48static void smp_task_timedout(unsigned long _task)
49{
50 struct sas_task *task = (void *) _task;
51 unsigned long flags;
52
53 spin_lock_irqsave(&task->task_state_lock, flags);
54 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
55 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
56 spin_unlock_irqrestore(&task->task_state_lock, flags);
57
58 complete(&task->completion);
59}
60
61static void smp_task_done(struct sas_task *task)
62{
63 if (!del_timer(&task->timer))
64 return;
65 complete(&task->completion);
66}
67
68/* Give it some long enough timeout. In seconds. */
69#define SMP_TIMEOUT 10
70
71static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
72 void *resp, int resp_size)
73{
malahal@us.ibm.com42961ee2006-10-04 17:34:03 -070074 int res, retry;
75 struct sas_task *task = NULL;
James Bottomley2908d772006-08-29 09:22:51 -050076 struct sas_internal *i =
77 to_sas_internal(dev->port->ha->core.shost->transportt);
78
malahal@us.ibm.com42961ee2006-10-04 17:34:03 -070079 for (retry = 0; retry < 3; retry++) {
80 task = sas_alloc_task(GFP_KERNEL);
81 if (!task)
82 return -ENOMEM;
James Bottomley2908d772006-08-29 09:22:51 -050083
malahal@us.ibm.com42961ee2006-10-04 17:34:03 -070084 task->dev = dev;
85 task->task_proto = dev->tproto;
86 sg_init_one(&task->smp_task.smp_req, req, req_size);
87 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
James Bottomley2908d772006-08-29 09:22:51 -050088
malahal@us.ibm.com42961ee2006-10-04 17:34:03 -070089 task->task_done = smp_task_done;
James Bottomley2908d772006-08-29 09:22:51 -050090
malahal@us.ibm.com42961ee2006-10-04 17:34:03 -070091 task->timer.data = (unsigned long) task;
92 task->timer.function = smp_task_timedout;
93 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
94 add_timer(&task->timer);
James Bottomley2908d772006-08-29 09:22:51 -050095
malahal@us.ibm.com42961ee2006-10-04 17:34:03 -070096 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
James Bottomley2908d772006-08-29 09:22:51 -050097
malahal@us.ibm.com42961ee2006-10-04 17:34:03 -070098 if (res) {
99 del_timer(&task->timer);
100 SAS_DPRINTK("executing SMP task failed:%d\n", res);
James Bottomley2908d772006-08-29 09:22:51 -0500101 goto ex_err;
102 }
malahal@us.ibm.com42961ee2006-10-04 17:34:03 -0700103
104 wait_for_completion(&task->completion);
105 res = -ETASK;
106 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
107 SAS_DPRINTK("smp task timed out or aborted\n");
108 i->dft->lldd_abort_task(task);
109 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
110 SAS_DPRINTK("SMP task aborted and not done\n");
111 goto ex_err;
112 }
113 }
114 if (task->task_status.resp == SAS_TASK_COMPLETE &&
115 task->task_status.stat == SAM_GOOD) {
116 res = 0;
117 break;
118 } else {
119 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
120 "status 0x%x\n", __FUNCTION__,
121 SAS_ADDR(dev->sas_addr),
122 task->task_status.resp,
123 task->task_status.stat);
124 sas_free_task(task);
125 task = NULL;
126 }
James Bottomley2908d772006-08-29 09:22:51 -0500127 }
James Bottomley2908d772006-08-29 09:22:51 -0500128ex_err:
malahal@us.ibm.com42961ee2006-10-04 17:34:03 -0700129 BUG_ON(retry == 3 && task != NULL);
130 if (task != NULL) {
131 sas_free_task(task);
132 }
James Bottomley2908d772006-08-29 09:22:51 -0500133 return res;
134}
135
136/* ---------- Allocations ---------- */
137
138static inline void *alloc_smp_req(int size)
139{
140 u8 *p = kzalloc(size, GFP_KERNEL);
141 if (p)
142 p[0] = SMP_REQUEST;
143 return p;
144}
145
146static inline void *alloc_smp_resp(int size)
147{
148 return kzalloc(size, GFP_KERNEL);
149}
150
151/* ---------- Expander configuration ---------- */
152
153static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
154 void *disc_resp)
155{
156 struct expander_device *ex = &dev->ex_dev;
157 struct ex_phy *phy = &ex->ex_phy[phy_id];
158 struct smp_resp *resp = disc_resp;
159 struct discover_resp *dr = &resp->disc;
160 struct sas_rphy *rphy = dev->rphy;
161 int rediscover = (phy->phy != NULL);
162
163 if (!rediscover) {
164 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
165
166 /* FIXME: error_handling */
167 BUG_ON(!phy->phy);
168 }
169
170 switch (resp->result) {
171 case SMP_RESP_PHY_VACANT:
172 phy->phy_state = PHY_VACANT;
173 return;
174 default:
175 phy->phy_state = PHY_NOT_PRESENT;
176 return;
177 case SMP_RESP_FUNC_ACC:
178 phy->phy_state = PHY_EMPTY; /* do not know yet */
179 break;
180 }
181
182 phy->phy_id = phy_id;
183 phy->attached_dev_type = dr->attached_dev_type;
184 phy->linkrate = dr->linkrate;
185 phy->attached_sata_host = dr->attached_sata_host;
186 phy->attached_sata_dev = dr->attached_sata_dev;
187 phy->attached_sata_ps = dr->attached_sata_ps;
188 phy->attached_iproto = dr->iproto << 1;
189 phy->attached_tproto = dr->tproto << 1;
190 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
191 phy->attached_phy_id = dr->attached_phy_id;
192 phy->phy_change_count = dr->change_count;
193 phy->routing_attr = dr->routing_attr;
194 phy->virtual = dr->virtual;
195 phy->last_da_index = -1;
196
197 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
198 phy->phy->identify.target_port_protocols = phy->attached_tproto;
199 phy->phy->identify.phy_identifier = phy_id;
James Bottomleya01e70e2006-09-06 19:28:07 -0500200 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
201 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
202 phy->phy->minimum_linkrate = dr->pmin_linkrate;
203 phy->phy->maximum_linkrate = dr->pmax_linkrate;
James Bottomley88edf742006-09-06 17:36:13 -0500204 phy->phy->negotiated_linkrate = phy->linkrate;
James Bottomley2908d772006-08-29 09:22:51 -0500205
206 if (!rediscover)
207 sas_phy_add(phy->phy);
208
209 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
210 SAS_ADDR(dev->sas_addr), phy->phy_id,
211 phy->routing_attr == TABLE_ROUTING ? 'T' :
212 phy->routing_attr == DIRECT_ROUTING ? 'D' :
213 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
214 SAS_ADDR(phy->attached_sas_addr));
215
216 return;
217}
218
219#define DISCOVER_REQ_SIZE 16
220#define DISCOVER_RESP_SIZE 56
221
222static int sas_ex_phy_discover(struct domain_device *dev, int single)
223{
224 struct expander_device *ex = &dev->ex_dev;
225 int res = 0;
226 u8 *disc_req;
227 u8 *disc_resp;
228
229 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
230 if (!disc_req)
231 return -ENOMEM;
232
233 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
234 if (!disc_resp) {
235 kfree(disc_req);
236 return -ENOMEM;
237 }
238
239 disc_req[1] = SMP_DISCOVER;
240
241 if (0 <= single && single < ex->num_phys) {
242 disc_req[9] = single;
243 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
244 disc_resp, DISCOVER_RESP_SIZE);
245 if (res)
246 goto out_err;
247 sas_set_ex_phy(dev, single, disc_resp);
248 } else {
249 int i;
250
251 for (i = 0; i < ex->num_phys; i++) {
252 disc_req[9] = i;
253 res = smp_execute_task(dev, disc_req,
254 DISCOVER_REQ_SIZE, disc_resp,
255 DISCOVER_RESP_SIZE);
256 if (res)
257 goto out_err;
258 sas_set_ex_phy(dev, i, disc_resp);
259 }
260 }
261out_err:
262 kfree(disc_resp);
263 kfree(disc_req);
264 return res;
265}
266
267static int sas_expander_discover(struct domain_device *dev)
268{
269 struct expander_device *ex = &dev->ex_dev;
270 int res = -ENOMEM;
271
272 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
273 if (!ex->ex_phy)
274 return -ENOMEM;
275
276 res = sas_ex_phy_discover(dev, -1);
277 if (res)
278 goto out_err;
279
280 return 0;
281 out_err:
282 kfree(ex->ex_phy);
283 ex->ex_phy = NULL;
284 return res;
285}
286
287#define MAX_EXPANDER_PHYS 128
288
289static void ex_assign_report_general(struct domain_device *dev,
290 struct smp_resp *resp)
291{
292 struct report_general_resp *rg = &resp->rg;
293
294 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
295 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
296 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
297 dev->ex_dev.conf_route_table = rg->conf_route_table;
298 dev->ex_dev.configuring = rg->configuring;
299 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
300}
301
302#define RG_REQ_SIZE 8
303#define RG_RESP_SIZE 32
304
305static int sas_ex_general(struct domain_device *dev)
306{
307 u8 *rg_req;
308 struct smp_resp *rg_resp;
309 int res;
310 int i;
311
312 rg_req = alloc_smp_req(RG_REQ_SIZE);
313 if (!rg_req)
314 return -ENOMEM;
315
316 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
317 if (!rg_resp) {
318 kfree(rg_req);
319 return -ENOMEM;
320 }
321
322 rg_req[1] = SMP_REPORT_GENERAL;
323
324 for (i = 0; i < 5; i++) {
325 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
326 RG_RESP_SIZE);
327
328 if (res) {
329 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
330 SAS_ADDR(dev->sas_addr), res);
331 goto out;
332 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
333 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
334 SAS_ADDR(dev->sas_addr), rg_resp->result);
335 res = rg_resp->result;
336 goto out;
337 }
338
339 ex_assign_report_general(dev, rg_resp);
340
341 if (dev->ex_dev.configuring) {
342 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
343 SAS_ADDR(dev->sas_addr));
344 schedule_timeout_interruptible(5*HZ);
345 } else
346 break;
347 }
348out:
349 kfree(rg_req);
350 kfree(rg_resp);
351 return res;
352}
353
354static void ex_assign_manuf_info(struct domain_device *dev, void
355 *_mi_resp)
356{
357 u8 *mi_resp = _mi_resp;
358 struct sas_rphy *rphy = dev->rphy;
359 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
360
361 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
362 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
363 memcpy(edev->product_rev, mi_resp + 36,
364 SAS_EXPANDER_PRODUCT_REV_LEN);
365
366 if (mi_resp[8] & 1) {
367 memcpy(edev->component_vendor_id, mi_resp + 40,
368 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
369 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
370 edev->component_revision_id = mi_resp[50];
371 }
372}
373
374#define MI_REQ_SIZE 8
375#define MI_RESP_SIZE 64
376
377static int sas_ex_manuf_info(struct domain_device *dev)
378{
379 u8 *mi_req;
380 u8 *mi_resp;
381 int res;
382
383 mi_req = alloc_smp_req(MI_REQ_SIZE);
384 if (!mi_req)
385 return -ENOMEM;
386
387 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
388 if (!mi_resp) {
389 kfree(mi_req);
390 return -ENOMEM;
391 }
392
393 mi_req[1] = SMP_REPORT_MANUF_INFO;
394
395 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
396 if (res) {
397 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
398 SAS_ADDR(dev->sas_addr), res);
399 goto out;
400 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
401 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
402 SAS_ADDR(dev->sas_addr), mi_resp[2]);
403 goto out;
404 }
405
406 ex_assign_manuf_info(dev, mi_resp);
407out:
408 kfree(mi_req);
409 kfree(mi_resp);
410 return res;
411}
412
413#define PC_REQ_SIZE 44
414#define PC_RESP_SIZE 8
415
416int sas_smp_phy_control(struct domain_device *dev, int phy_id,
James Bottomleya01e70e2006-09-06 19:28:07 -0500417 enum phy_func phy_func,
418 struct sas_phy_linkrates *rates)
James Bottomley2908d772006-08-29 09:22:51 -0500419{
420 u8 *pc_req;
421 u8 *pc_resp;
422 int res;
423
424 pc_req = alloc_smp_req(PC_REQ_SIZE);
425 if (!pc_req)
426 return -ENOMEM;
427
428 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
429 if (!pc_resp) {
430 kfree(pc_req);
431 return -ENOMEM;
432 }
433
434 pc_req[1] = SMP_PHY_CONTROL;
435 pc_req[9] = phy_id;
436 pc_req[10]= phy_func;
James Bottomleya01e70e2006-09-06 19:28:07 -0500437 if (rates) {
438 pc_req[32] = rates->minimum_linkrate << 4;
439 pc_req[33] = rates->maximum_linkrate << 4;
440 }
James Bottomley2908d772006-08-29 09:22:51 -0500441
442 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
443
444 kfree(pc_resp);
445 kfree(pc_req);
446 return res;
447}
448
449static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
450{
451 struct expander_device *ex = &dev->ex_dev;
452 struct ex_phy *phy = &ex->ex_phy[phy_id];
453
James Bottomleya01e70e2006-09-06 19:28:07 -0500454 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
James Bottomley88edf742006-09-06 17:36:13 -0500455 phy->linkrate = SAS_PHY_DISABLED;
James Bottomley2908d772006-08-29 09:22:51 -0500456}
457
458static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
459{
460 struct expander_device *ex = &dev->ex_dev;
461 int i;
462
463 for (i = 0; i < ex->num_phys; i++) {
464 struct ex_phy *phy = &ex->ex_phy[i];
465
466 if (phy->phy_state == PHY_VACANT ||
467 phy->phy_state == PHY_NOT_PRESENT)
468 continue;
469
470 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
471 sas_ex_disable_phy(dev, i);
472 }
473}
474
475static int sas_dev_present_in_domain(struct asd_sas_port *port,
476 u8 *sas_addr)
477{
478 struct domain_device *dev;
479
480 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
481 return 1;
482 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
483 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
484 return 1;
485 }
486 return 0;
487}
488
489#define RPEL_REQ_SIZE 16
490#define RPEL_RESP_SIZE 32
491int sas_smp_get_phy_events(struct sas_phy *phy)
492{
493 int res;
494 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
495 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
496 u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
497 u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
498
499 if (!resp)
500 return -ENOMEM;
501
502 req[1] = SMP_REPORT_PHY_ERR_LOG;
503 req[9] = phy->number;
504
505 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
506 resp, RPEL_RESP_SIZE);
507
508 if (!res)
509 goto out;
510
511 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
512 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
513 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
514 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
515
516 out:
517 kfree(resp);
518 return res;
519
520}
521
522#define RPS_REQ_SIZE 16
523#define RPS_RESP_SIZE 60
524
525static int sas_get_report_phy_sata(struct domain_device *dev,
526 int phy_id,
527 struct smp_resp *rps_resp)
528{
529 int res;
530 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
531
532 if (!rps_req)
533 return -ENOMEM;
534
535 rps_req[1] = SMP_REPORT_PHY_SATA;
536 rps_req[9] = phy_id;
537
538 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
539 rps_resp, RPS_RESP_SIZE);
540
541 kfree(rps_req);
542 return 0;
543}
544
545static void sas_ex_get_linkrate(struct domain_device *parent,
546 struct domain_device *child,
547 struct ex_phy *parent_phy)
548{
549 struct expander_device *parent_ex = &parent->ex_dev;
550 struct sas_port *port;
551 int i;
552
553 child->pathways = 0;
554
555 port = parent_phy->port;
556
557 for (i = 0; i < parent_ex->num_phys; i++) {
558 struct ex_phy *phy = &parent_ex->ex_phy[i];
559
560 if (phy->phy_state == PHY_VACANT ||
561 phy->phy_state == PHY_NOT_PRESENT)
562 continue;
563
564 if (SAS_ADDR(phy->attached_sas_addr) ==
565 SAS_ADDR(child->sas_addr)) {
566
567 child->min_linkrate = min(parent->min_linkrate,
568 phy->linkrate);
569 child->max_linkrate = max(parent->max_linkrate,
570 phy->linkrate);
571 child->pathways++;
572 sas_port_add_phy(port, phy->phy);
573 }
574 }
575 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
576 child->pathways = min(child->pathways, parent->pathways);
577}
578
579static struct domain_device *sas_ex_discover_end_dev(
580 struct domain_device *parent, int phy_id)
581{
582 struct expander_device *parent_ex = &parent->ex_dev;
583 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
584 struct domain_device *child = NULL;
585 struct sas_rphy *rphy;
586 int res;
587
588 if (phy->attached_sata_host || phy->attached_sata_ps)
589 return NULL;
590
591 child = kzalloc(sizeof(*child), GFP_KERNEL);
592 if (!child)
593 return NULL;
594
595 child->parent = parent;
596 child->port = parent->port;
597 child->iproto = phy->attached_iproto;
598 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
599 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
600 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
601 BUG_ON(!phy->port);
602 /* FIXME: better error handling*/
603 BUG_ON(sas_port_add(phy->port) != 0);
604 sas_ex_get_linkrate(parent, child, phy);
605
606 if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
607 child->dev_type = SATA_DEV;
608 if (phy->attached_tproto & SAS_PROTO_STP)
609 child->tproto = phy->attached_tproto;
610 if (phy->attached_sata_dev)
611 child->tproto |= SATA_DEV;
612 res = sas_get_report_phy_sata(parent, phy_id,
613 &child->sata_dev.rps_resp);
614 if (res) {
615 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
616 "0x%x\n", SAS_ADDR(parent->sas_addr),
617 phy_id, res);
618 kfree(child);
619 return NULL;
620 }
621 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
622 sizeof(struct dev_to_host_fis));
623 sas_init_dev(child);
624 res = sas_discover_sata(child);
625 if (res) {
626 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
627 "%016llx:0x%x returned 0x%x\n",
628 SAS_ADDR(child->sas_addr),
629 SAS_ADDR(parent->sas_addr), phy_id, res);
630 kfree(child);
631 return NULL;
632 }
633 } else if (phy->attached_tproto & SAS_PROTO_SSP) {
634 child->dev_type = SAS_END_DEV;
635 rphy = sas_end_device_alloc(phy->port);
636 /* FIXME: error handling */
637 BUG_ON(!rphy);
638 child->tproto = phy->attached_tproto;
639 sas_init_dev(child);
640
641 child->rphy = rphy;
642 sas_fill_in_rphy(child, rphy);
643
644 spin_lock(&parent->port->dev_list_lock);
645 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
646 spin_unlock(&parent->port->dev_list_lock);
647
648 res = sas_discover_end_dev(child);
649 if (res) {
650 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
651 "at %016llx:0x%x returned 0x%x\n",
652 SAS_ADDR(child->sas_addr),
653 SAS_ADDR(parent->sas_addr), phy_id, res);
654 /* FIXME: this kfrees list elements without removing them */
655 //kfree(child);
656 return NULL;
657 }
658 } else {
659 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
660 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
661 phy_id);
662 }
663
664 list_add_tail(&child->siblings, &parent_ex->children);
665 return child;
666}
667
668static struct domain_device *sas_ex_discover_expander(
669 struct domain_device *parent, int phy_id)
670{
671 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
672 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
673 struct domain_device *child = NULL;
674 struct sas_rphy *rphy;
675 struct sas_expander_device *edev;
676 struct asd_sas_port *port;
677 int res;
678
679 if (phy->routing_attr == DIRECT_ROUTING) {
680 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
681 "allowed\n",
682 SAS_ADDR(parent->sas_addr), phy_id,
683 SAS_ADDR(phy->attached_sas_addr),
684 phy->attached_phy_id);
685 return NULL;
686 }
687 child = kzalloc(sizeof(*child), GFP_KERNEL);
688 if (!child)
689 return NULL;
690
691 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
692 /* FIXME: better error handling */
693 BUG_ON(sas_port_add(phy->port) != 0);
694
695
696 switch (phy->attached_dev_type) {
697 case EDGE_DEV:
698 rphy = sas_expander_alloc(phy->port,
699 SAS_EDGE_EXPANDER_DEVICE);
700 break;
701 case FANOUT_DEV:
702 rphy = sas_expander_alloc(phy->port,
703 SAS_FANOUT_EXPANDER_DEVICE);
704 break;
705 default:
706 rphy = NULL; /* shut gcc up */
707 BUG();
708 }
709 port = parent->port;
710 child->rphy = rphy;
711 edev = rphy_to_expander_device(rphy);
712 child->dev_type = phy->attached_dev_type;
713 child->parent = parent;
714 child->port = port;
715 child->iproto = phy->attached_iproto;
716 child->tproto = phy->attached_tproto;
717 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
718 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
719 sas_ex_get_linkrate(parent, child, phy);
720 edev->level = parent_ex->level + 1;
721 parent->port->disc.max_level = max(parent->port->disc.max_level,
722 edev->level);
723 sas_init_dev(child);
724 sas_fill_in_rphy(child, rphy);
725 sas_rphy_add(rphy);
726
727 spin_lock(&parent->port->dev_list_lock);
728 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
729 spin_unlock(&parent->port->dev_list_lock);
730
731 res = sas_discover_expander(child);
732 if (res) {
733 kfree(child);
734 return NULL;
735 }
736 list_add_tail(&child->siblings, &parent->ex_dev.children);
737 return child;
738}
739
740static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
741{
742 struct expander_device *ex = &dev->ex_dev;
743 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
744 struct domain_device *child = NULL;
745 int res = 0;
746
747 /* Phy state */
James Bottomley88edf742006-09-06 17:36:13 -0500748 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
James Bottomleya01e70e2006-09-06 19:28:07 -0500749 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
James Bottomley2908d772006-08-29 09:22:51 -0500750 res = sas_ex_phy_discover(dev, phy_id);
751 if (res)
752 return res;
753 }
754
755 /* Parent and domain coherency */
756 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
757 SAS_ADDR(dev->port->sas_addr))) {
758 sas_add_parent_port(dev, phy_id);
759 return 0;
760 }
761 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
762 SAS_ADDR(dev->parent->sas_addr))) {
763 sas_add_parent_port(dev, phy_id);
764 if (ex_phy->routing_attr == TABLE_ROUTING)
765 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
766 return 0;
767 }
768
769 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
770 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
771
772 if (ex_phy->attached_dev_type == NO_DEVICE) {
773 if (ex_phy->routing_attr == DIRECT_ROUTING) {
774 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
775 sas_configure_routing(dev, ex_phy->attached_sas_addr);
776 }
777 return 0;
James Bottomley88edf742006-09-06 17:36:13 -0500778 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
James Bottomley2908d772006-08-29 09:22:51 -0500779 return 0;
780
781 if (ex_phy->attached_dev_type != SAS_END_DEV &&
782 ex_phy->attached_dev_type != FANOUT_DEV &&
783 ex_phy->attached_dev_type != EDGE_DEV) {
784 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
785 "phy 0x%x\n", ex_phy->attached_dev_type,
786 SAS_ADDR(dev->sas_addr),
787 phy_id);
788 return 0;
789 }
790
791 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
792 if (res) {
793 SAS_DPRINTK("configure routing for dev %016llx "
794 "reported 0x%x. Forgotten\n",
795 SAS_ADDR(ex_phy->attached_sas_addr), res);
796 sas_disable_routing(dev, ex_phy->attached_sas_addr);
797 return res;
798 }
799
800 switch (ex_phy->attached_dev_type) {
801 case SAS_END_DEV:
802 child = sas_ex_discover_end_dev(dev, phy_id);
803 break;
804 case FANOUT_DEV:
805 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
806 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
807 "attached to ex %016llx phy 0x%x\n",
808 SAS_ADDR(ex_phy->attached_sas_addr),
809 ex_phy->attached_phy_id,
810 SAS_ADDR(dev->sas_addr),
811 phy_id);
812 sas_ex_disable_phy(dev, phy_id);
813 break;
814 } else
815 memcpy(dev->port->disc.fanout_sas_addr,
816 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
817 /* fallthrough */
818 case EDGE_DEV:
819 child = sas_ex_discover_expander(dev, phy_id);
820 break;
821 default:
822 break;
823 }
824
825 if (child) {
826 int i;
827
828 for (i = 0; i < ex->num_phys; i++) {
829 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
830 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
831 continue;
832
833 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
834 SAS_ADDR(child->sas_addr))
835 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
836 }
837 }
838
839 return res;
840}
841
842static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
843{
844 struct expander_device *ex = &dev->ex_dev;
845 int i;
846
847 for (i = 0; i < ex->num_phys; i++) {
848 struct ex_phy *phy = &ex->ex_phy[i];
849
850 if (phy->phy_state == PHY_VACANT ||
851 phy->phy_state == PHY_NOT_PRESENT)
852 continue;
853
854 if ((phy->attached_dev_type == EDGE_DEV ||
855 phy->attached_dev_type == FANOUT_DEV) &&
856 phy->routing_attr == SUBTRACTIVE_ROUTING) {
857
858 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
859
860 return 1;
861 }
862 }
863 return 0;
864}
865
866static int sas_check_level_subtractive_boundary(struct domain_device *dev)
867{
868 struct expander_device *ex = &dev->ex_dev;
869 struct domain_device *child;
870 u8 sub_addr[8] = {0, };
871
872 list_for_each_entry(child, &ex->children, siblings) {
873 if (child->dev_type != EDGE_DEV &&
874 child->dev_type != FANOUT_DEV)
875 continue;
876 if (sub_addr[0] == 0) {
877 sas_find_sub_addr(child, sub_addr);
878 continue;
879 } else {
880 u8 s2[8];
881
882 if (sas_find_sub_addr(child, s2) &&
883 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
884
885 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
886 "diverges from subtractive "
887 "boundary %016llx\n",
888 SAS_ADDR(dev->sas_addr),
889 SAS_ADDR(child->sas_addr),
890 SAS_ADDR(s2),
891 SAS_ADDR(sub_addr));
892
893 sas_ex_disable_port(child, s2);
894 }
895 }
896 }
897 return 0;
898}
899/**
900 * sas_ex_discover_devices -- discover devices attached to this expander
901 * dev: pointer to the expander domain device
902 * single: if you want to do a single phy, else set to -1;
903 *
904 * Configure this expander for use with its devices and register the
905 * devices of this expander.
906 */
907static int sas_ex_discover_devices(struct domain_device *dev, int single)
908{
909 struct expander_device *ex = &dev->ex_dev;
910 int i = 0, end = ex->num_phys;
911 int res = 0;
912
913 if (0 <= single && single < end) {
914 i = single;
915 end = i+1;
916 }
917
918 for ( ; i < end; i++) {
919 struct ex_phy *ex_phy = &ex->ex_phy[i];
920
921 if (ex_phy->phy_state == PHY_VACANT ||
922 ex_phy->phy_state == PHY_NOT_PRESENT ||
923 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
924 continue;
925
926 switch (ex_phy->linkrate) {
James Bottomley88edf742006-09-06 17:36:13 -0500927 case SAS_PHY_DISABLED:
928 case SAS_PHY_RESET_PROBLEM:
929 case SAS_SATA_PORT_SELECTOR:
James Bottomley2908d772006-08-29 09:22:51 -0500930 continue;
931 default:
932 res = sas_ex_discover_dev(dev, i);
933 if (res)
934 break;
935 continue;
936 }
937 }
938
939 if (!res)
940 sas_check_level_subtractive_boundary(dev);
941
942 return res;
943}
944
945static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
946{
947 struct expander_device *ex = &dev->ex_dev;
948 int i;
949 u8 *sub_sas_addr = NULL;
950
951 if (dev->dev_type != EDGE_DEV)
952 return 0;
953
954 for (i = 0; i < ex->num_phys; i++) {
955 struct ex_phy *phy = &ex->ex_phy[i];
956
957 if (phy->phy_state == PHY_VACANT ||
958 phy->phy_state == PHY_NOT_PRESENT)
959 continue;
960
961 if ((phy->attached_dev_type == FANOUT_DEV ||
962 phy->attached_dev_type == EDGE_DEV) &&
963 phy->routing_attr == SUBTRACTIVE_ROUTING) {
964
965 if (!sub_sas_addr)
966 sub_sas_addr = &phy->attached_sas_addr[0];
967 else if (SAS_ADDR(sub_sas_addr) !=
968 SAS_ADDR(phy->attached_sas_addr)) {
969
970 SAS_DPRINTK("ex %016llx phy 0x%x "
971 "diverges(%016llx) on subtractive "
972 "boundary(%016llx). Disabled\n",
973 SAS_ADDR(dev->sas_addr), i,
974 SAS_ADDR(phy->attached_sas_addr),
975 SAS_ADDR(sub_sas_addr));
976 sas_ex_disable_phy(dev, i);
977 }
978 }
979 }
980 return 0;
981}
982
983static void sas_print_parent_topology_bug(struct domain_device *child,
984 struct ex_phy *parent_phy,
985 struct ex_phy *child_phy)
986{
987 static const char ra_char[] = {
988 [DIRECT_ROUTING] = 'D',
989 [SUBTRACTIVE_ROUTING] = 'S',
990 [TABLE_ROUTING] = 'T',
991 };
992 static const char *ex_type[] = {
993 [EDGE_DEV] = "edge",
994 [FANOUT_DEV] = "fanout",
995 };
996 struct domain_device *parent = child->parent;
997
998 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
999 "has %c:%c routing link!\n",
1000
1001 ex_type[parent->dev_type],
1002 SAS_ADDR(parent->sas_addr),
1003 parent_phy->phy_id,
1004
1005 ex_type[child->dev_type],
1006 SAS_ADDR(child->sas_addr),
1007 child_phy->phy_id,
1008
1009 ra_char[parent_phy->routing_attr],
1010 ra_char[child_phy->routing_attr]);
1011}
1012
1013static int sas_check_eeds(struct domain_device *child,
1014 struct ex_phy *parent_phy,
1015 struct ex_phy *child_phy)
1016{
1017 int res = 0;
1018 struct domain_device *parent = child->parent;
1019
1020 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1021 res = -ENODEV;
1022 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1023 "phy S:0x%x, while there is a fanout ex %016llx\n",
1024 SAS_ADDR(parent->sas_addr),
1025 parent_phy->phy_id,
1026 SAS_ADDR(child->sas_addr),
1027 child_phy->phy_id,
1028 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1029 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1030 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1031 SAS_ADDR_SIZE);
1032 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1033 SAS_ADDR_SIZE);
1034 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1035 SAS_ADDR(parent->sas_addr)) ||
1036 (SAS_ADDR(parent->port->disc.eeds_a) ==
1037 SAS_ADDR(child->sas_addr)))
1038 &&
1039 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1040 SAS_ADDR(parent->sas_addr)) ||
1041 (SAS_ADDR(parent->port->disc.eeds_b) ==
1042 SAS_ADDR(child->sas_addr))))
1043 ;
1044 else {
1045 res = -ENODEV;
1046 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1047 "phy 0x%x link forms a third EEDS!\n",
1048 SAS_ADDR(parent->sas_addr),
1049 parent_phy->phy_id,
1050 SAS_ADDR(child->sas_addr),
1051 child_phy->phy_id);
1052 }
1053
1054 return res;
1055}
1056
1057/* Here we spill over 80 columns. It is intentional.
1058 */
1059static int sas_check_parent_topology(struct domain_device *child)
1060{
1061 struct expander_device *child_ex = &child->ex_dev;
1062 struct expander_device *parent_ex;
1063 int i;
1064 int res = 0;
1065
1066 if (!child->parent)
1067 return 0;
1068
1069 if (child->parent->dev_type != EDGE_DEV &&
1070 child->parent->dev_type != FANOUT_DEV)
1071 return 0;
1072
1073 parent_ex = &child->parent->ex_dev;
1074
1075 for (i = 0; i < parent_ex->num_phys; i++) {
1076 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1077 struct ex_phy *child_phy;
1078
1079 if (parent_phy->phy_state == PHY_VACANT ||
1080 parent_phy->phy_state == PHY_NOT_PRESENT)
1081 continue;
1082
1083 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1084 continue;
1085
1086 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1087
1088 switch (child->parent->dev_type) {
1089 case EDGE_DEV:
1090 if (child->dev_type == FANOUT_DEV) {
1091 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1092 child_phy->routing_attr != TABLE_ROUTING) {
1093 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1094 res = -ENODEV;
1095 }
1096 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1097 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1098 res = sas_check_eeds(child, parent_phy, child_phy);
1099 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1100 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1101 res = -ENODEV;
1102 }
1103 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1104 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1105 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1106 res = -ENODEV;
1107 }
1108 break;
1109 case FANOUT_DEV:
1110 if (parent_phy->routing_attr != TABLE_ROUTING ||
1111 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1112 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1113 res = -ENODEV;
1114 }
1115 break;
1116 default:
1117 break;
1118 }
1119 }
1120
1121 return res;
1122}
1123
1124#define RRI_REQ_SIZE 16
1125#define RRI_RESP_SIZE 44
1126
1127static int sas_configure_present(struct domain_device *dev, int phy_id,
1128 u8 *sas_addr, int *index, int *present)
1129{
1130 int i, res = 0;
1131 struct expander_device *ex = &dev->ex_dev;
1132 struct ex_phy *phy = &ex->ex_phy[phy_id];
1133 u8 *rri_req;
1134 u8 *rri_resp;
1135
1136 *present = 0;
1137 *index = 0;
1138
1139 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1140 if (!rri_req)
1141 return -ENOMEM;
1142
1143 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1144 if (!rri_resp) {
1145 kfree(rri_req);
1146 return -ENOMEM;
1147 }
1148
1149 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1150 rri_req[9] = phy_id;
1151
1152 for (i = 0; i < ex->max_route_indexes ; i++) {
1153 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1154 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1155 RRI_RESP_SIZE);
1156 if (res)
1157 goto out;
1158 res = rri_resp[2];
1159 if (res == SMP_RESP_NO_INDEX) {
1160 SAS_DPRINTK("overflow of indexes: dev %016llx "
1161 "phy 0x%x index 0x%x\n",
1162 SAS_ADDR(dev->sas_addr), phy_id, i);
1163 goto out;
1164 } else if (res != SMP_RESP_FUNC_ACC) {
1165 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1166 "result 0x%x\n", __FUNCTION__,
1167 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1168 goto out;
1169 }
1170 if (SAS_ADDR(sas_addr) != 0) {
1171 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1172 *index = i;
1173 if ((rri_resp[12] & 0x80) == 0x80)
1174 *present = 0;
1175 else
1176 *present = 1;
1177 goto out;
1178 } else if (SAS_ADDR(rri_resp+16) == 0) {
1179 *index = i;
1180 *present = 0;
1181 goto out;
1182 }
1183 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1184 phy->last_da_index < i) {
1185 phy->last_da_index = i;
1186 *index = i;
1187 *present = 0;
1188 goto out;
1189 }
1190 }
1191 res = -1;
1192out:
1193 kfree(rri_req);
1194 kfree(rri_resp);
1195 return res;
1196}
1197
1198#define CRI_REQ_SIZE 44
1199#define CRI_RESP_SIZE 8
1200
1201static int sas_configure_set(struct domain_device *dev, int phy_id,
1202 u8 *sas_addr, int index, int include)
1203{
1204 int res;
1205 u8 *cri_req;
1206 u8 *cri_resp;
1207
1208 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1209 if (!cri_req)
1210 return -ENOMEM;
1211
1212 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1213 if (!cri_resp) {
1214 kfree(cri_req);
1215 return -ENOMEM;
1216 }
1217
1218 cri_req[1] = SMP_CONF_ROUTE_INFO;
1219 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1220 cri_req[9] = phy_id;
1221 if (SAS_ADDR(sas_addr) == 0 || !include)
1222 cri_req[12] |= 0x80;
1223 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1224
1225 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1226 CRI_RESP_SIZE);
1227 if (res)
1228 goto out;
1229 res = cri_resp[2];
1230 if (res == SMP_RESP_NO_INDEX) {
1231 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1232 "index 0x%x\n",
1233 SAS_ADDR(dev->sas_addr), phy_id, index);
1234 }
1235out:
1236 kfree(cri_req);
1237 kfree(cri_resp);
1238 return res;
1239}
1240
1241static int sas_configure_phy(struct domain_device *dev, int phy_id,
1242 u8 *sas_addr, int include)
1243{
1244 int index;
1245 int present;
1246 int res;
1247
1248 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1249 if (res)
1250 return res;
1251 if (include ^ present)
1252 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1253
1254 return res;
1255}
1256
1257/**
1258 * sas_configure_parent -- configure routing table of parent
1259 * parent: parent expander
1260 * child: child expander
1261 * sas_addr: SAS port identifier of device directly attached to child
1262 */
1263static int sas_configure_parent(struct domain_device *parent,
1264 struct domain_device *child,
1265 u8 *sas_addr, int include)
1266{
1267 struct expander_device *ex_parent = &parent->ex_dev;
1268 int res = 0;
1269 int i;
1270
1271 if (parent->parent) {
1272 res = sas_configure_parent(parent->parent, parent, sas_addr,
1273 include);
1274 if (res)
1275 return res;
1276 }
1277
1278 if (ex_parent->conf_route_table == 0) {
1279 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1280 SAS_ADDR(parent->sas_addr));
1281 return 0;
1282 }
1283
1284 for (i = 0; i < ex_parent->num_phys; i++) {
1285 struct ex_phy *phy = &ex_parent->ex_phy[i];
1286
1287 if ((phy->routing_attr == TABLE_ROUTING) &&
1288 (SAS_ADDR(phy->attached_sas_addr) ==
1289 SAS_ADDR(child->sas_addr))) {
1290 res = sas_configure_phy(parent, i, sas_addr, include);
1291 if (res)
1292 return res;
1293 }
1294 }
1295
1296 return res;
1297}
1298
1299/**
1300 * sas_configure_routing -- configure routing
1301 * dev: expander device
1302 * sas_addr: port identifier of device directly attached to the expander device
1303 */
1304static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1305{
1306 if (dev->parent)
1307 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1308 return 0;
1309}
1310
1311static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1312{
1313 if (dev->parent)
1314 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1315 return 0;
1316}
1317
1318#if 0
1319#define SMP_BIN_ATTR_NAME "smp_portal"
1320
1321static void sas_ex_smp_hook(struct domain_device *dev)
1322{
1323 struct expander_device *ex_dev = &dev->ex_dev;
1324 struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1325
1326 memset(bin_attr, 0, sizeof(*bin_attr));
1327
1328 bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1329 bin_attr->attr.owner = THIS_MODULE;
1330 bin_attr->attr.mode = 0600;
1331
1332 bin_attr->size = 0;
1333 bin_attr->private = NULL;
1334 bin_attr->read = smp_portal_read;
1335 bin_attr->write= smp_portal_write;
1336 bin_attr->mmap = NULL;
1337
1338 ex_dev->smp_portal_pid = -1;
1339 init_MUTEX(&ex_dev->smp_sema);
1340}
1341#endif
1342
1343/**
1344 * sas_discover_expander -- expander discovery
1345 * @ex: pointer to expander domain device
1346 *
1347 * See comment in sas_discover_sata().
1348 */
1349static int sas_discover_expander(struct domain_device *dev)
1350{
1351 int res;
1352
1353 res = sas_notify_lldd_dev_found(dev);
1354 if (res)
1355 return res;
1356
1357 res = sas_ex_general(dev);
1358 if (res)
1359 goto out_err;
1360 res = sas_ex_manuf_info(dev);
1361 if (res)
1362 goto out_err;
1363
1364 res = sas_expander_discover(dev);
1365 if (res) {
1366 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1367 SAS_ADDR(dev->sas_addr), res);
1368 goto out_err;
1369 }
1370
1371 sas_check_ex_subtractive_boundary(dev);
1372 res = sas_check_parent_topology(dev);
1373 if (res)
1374 goto out_err;
1375 return 0;
1376out_err:
1377 sas_notify_lldd_dev_gone(dev);
1378 return res;
1379}
1380
1381static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1382{
1383 int res = 0;
1384 struct domain_device *dev;
1385
1386 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1387 if (dev->dev_type == EDGE_DEV ||
1388 dev->dev_type == FANOUT_DEV) {
1389 struct sas_expander_device *ex =
1390 rphy_to_expander_device(dev->rphy);
1391
1392 if (level == ex->level)
1393 res = sas_ex_discover_devices(dev, -1);
1394 else if (level > 0)
1395 res = sas_ex_discover_devices(port->port_dev, -1);
1396
1397 }
1398 }
1399
1400 return res;
1401}
1402
1403static int sas_ex_bfs_disc(struct asd_sas_port *port)
1404{
1405 int res;
1406 int level;
1407
1408 do {
1409 level = port->disc.max_level;
1410 res = sas_ex_level_discovery(port, level);
1411 mb();
1412 } while (level < port->disc.max_level);
1413
1414 return res;
1415}
1416
1417int sas_discover_root_expander(struct domain_device *dev)
1418{
1419 int res;
1420 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1421
1422 sas_rphy_add(dev->rphy);
1423
1424 ex->level = dev->port->disc.max_level; /* 0 */
1425 res = sas_discover_expander(dev);
1426 if (!res)
1427 sas_ex_bfs_disc(dev->port);
1428
1429 return res;
1430}
1431
1432/* ---------- Domain revalidation ---------- */
1433
1434static int sas_get_phy_discover(struct domain_device *dev,
1435 int phy_id, struct smp_resp *disc_resp)
1436{
1437 int res;
1438 u8 *disc_req;
1439
1440 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1441 if (!disc_req)
1442 return -ENOMEM;
1443
1444 disc_req[1] = SMP_DISCOVER;
1445 disc_req[9] = phy_id;
1446
1447 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1448 disc_resp, DISCOVER_RESP_SIZE);
1449 if (res)
1450 goto out;
1451 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1452 res = disc_resp->result;
1453 goto out;
1454 }
1455out:
1456 kfree(disc_req);
1457 return res;
1458}
1459
1460static int sas_get_phy_change_count(struct domain_device *dev,
1461 int phy_id, int *pcc)
1462{
1463 int res;
1464 struct smp_resp *disc_resp;
1465
1466 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1467 if (!disc_resp)
1468 return -ENOMEM;
1469
1470 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1471 if (!res)
1472 *pcc = disc_resp->disc.change_count;
1473
1474 kfree(disc_resp);
1475 return res;
1476}
1477
1478static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1479 int phy_id, u8 *attached_sas_addr)
1480{
1481 int res;
1482 struct smp_resp *disc_resp;
1483 struct discover_resp *dr;
1484
1485 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1486 if (!disc_resp)
1487 return -ENOMEM;
1488 dr = &disc_resp->disc;
1489
1490 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1491 if (!res) {
1492 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1493 if (dr->attached_dev_type == 0)
1494 memset(attached_sas_addr, 0, 8);
1495 }
1496 kfree(disc_resp);
1497 return res;
1498}
1499
1500static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1501 int from_phy)
1502{
1503 struct expander_device *ex = &dev->ex_dev;
1504 int res = 0;
1505 int i;
1506
1507 for (i = from_phy; i < ex->num_phys; i++) {
1508 int phy_change_count = 0;
1509
1510 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1511 if (res)
1512 goto out;
1513 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1514 ex->ex_phy[i].phy_change_count = phy_change_count;
1515 *phy_id = i;
1516 return 0;
1517 }
1518 }
1519out:
1520 return res;
1521}
1522
1523static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1524{
1525 int res;
1526 u8 *rg_req;
1527 struct smp_resp *rg_resp;
1528
1529 rg_req = alloc_smp_req(RG_REQ_SIZE);
1530 if (!rg_req)
1531 return -ENOMEM;
1532
1533 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1534 if (!rg_resp) {
1535 kfree(rg_req);
1536 return -ENOMEM;
1537 }
1538
1539 rg_req[1] = SMP_REPORT_GENERAL;
1540
1541 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1542 RG_RESP_SIZE);
1543 if (res)
1544 goto out;
1545 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1546 res = rg_resp->result;
1547 goto out;
1548 }
1549
1550 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1551out:
1552 kfree(rg_resp);
1553 kfree(rg_req);
1554 return res;
1555}
1556
1557static int sas_find_bcast_dev(struct domain_device *dev,
1558 struct domain_device **src_dev)
1559{
1560 struct expander_device *ex = &dev->ex_dev;
1561 int ex_change_count = -1;
1562 int res;
1563
1564 res = sas_get_ex_change_count(dev, &ex_change_count);
1565 if (res)
1566 goto out;
1567 if (ex_change_count != -1 &&
1568 ex_change_count != ex->ex_change_count) {
1569 *src_dev = dev;
1570 ex->ex_change_count = ex_change_count;
1571 } else {
1572 struct domain_device *ch;
1573
1574 list_for_each_entry(ch, &ex->children, siblings) {
1575 if (ch->dev_type == EDGE_DEV ||
1576 ch->dev_type == FANOUT_DEV) {
1577 res = sas_find_bcast_dev(ch, src_dev);
1578 if (src_dev)
1579 return res;
1580 }
1581 }
1582 }
1583out:
1584 return res;
1585}
1586
1587static void sas_unregister_ex_tree(struct domain_device *dev)
1588{
1589 struct expander_device *ex = &dev->ex_dev;
1590 struct domain_device *child, *n;
1591
1592 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1593 if (child->dev_type == EDGE_DEV ||
1594 child->dev_type == FANOUT_DEV)
1595 sas_unregister_ex_tree(child);
1596 else
1597 sas_unregister_dev(child);
1598 }
1599 sas_unregister_dev(dev);
1600}
1601
1602static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1603 int phy_id)
1604{
1605 struct expander_device *ex_dev = &parent->ex_dev;
1606 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1607 struct domain_device *child, *n;
1608
1609 list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1610 if (SAS_ADDR(child->sas_addr) ==
1611 SAS_ADDR(phy->attached_sas_addr)) {
1612 if (child->dev_type == EDGE_DEV ||
1613 child->dev_type == FANOUT_DEV)
1614 sas_unregister_ex_tree(child);
1615 else
1616 sas_unregister_dev(child);
1617 break;
1618 }
1619 }
1620 sas_disable_routing(parent, phy->attached_sas_addr);
1621 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1622 sas_port_delete_phy(phy->port, phy->phy);
1623 if (phy->port->num_phys == 0)
1624 sas_port_delete(phy->port);
1625 phy->port = NULL;
1626}
1627
1628static int sas_discover_bfs_by_root_level(struct domain_device *root,
1629 const int level)
1630{
1631 struct expander_device *ex_root = &root->ex_dev;
1632 struct domain_device *child;
1633 int res = 0;
1634
1635 list_for_each_entry(child, &ex_root->children, siblings) {
1636 if (child->dev_type == EDGE_DEV ||
1637 child->dev_type == FANOUT_DEV) {
1638 struct sas_expander_device *ex =
1639 rphy_to_expander_device(child->rphy);
1640
1641 if (level > ex->level)
1642 res = sas_discover_bfs_by_root_level(child,
1643 level);
1644 else if (level == ex->level)
1645 res = sas_ex_discover_devices(child, -1);
1646 }
1647 }
1648 return res;
1649}
1650
1651static int sas_discover_bfs_by_root(struct domain_device *dev)
1652{
1653 int res;
1654 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1655 int level = ex->level+1;
1656
1657 res = sas_ex_discover_devices(dev, -1);
1658 if (res)
1659 goto out;
1660 do {
1661 res = sas_discover_bfs_by_root_level(dev, level);
1662 mb();
1663 level += 1;
1664 } while (level <= dev->port->disc.max_level);
1665out:
1666 return res;
1667}
1668
1669static int sas_discover_new(struct domain_device *dev, int phy_id)
1670{
1671 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1672 struct domain_device *child;
1673 int res;
1674
1675 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1676 SAS_ADDR(dev->sas_addr), phy_id);
1677 res = sas_ex_phy_discover(dev, phy_id);
1678 if (res)
1679 goto out;
1680 res = sas_ex_discover_devices(dev, phy_id);
1681 if (res)
1682 goto out;
1683 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1684 if (SAS_ADDR(child->sas_addr) ==
1685 SAS_ADDR(ex_phy->attached_sas_addr)) {
1686 if (child->dev_type == EDGE_DEV ||
1687 child->dev_type == FANOUT_DEV)
1688 res = sas_discover_bfs_by_root(child);
1689 break;
1690 }
1691 }
1692out:
1693 return res;
1694}
1695
1696static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1697{
1698 struct expander_device *ex = &dev->ex_dev;
1699 struct ex_phy *phy = &ex->ex_phy[phy_id];
1700 u8 attached_sas_addr[8];
1701 int res;
1702
1703 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1704 switch (res) {
1705 case SMP_RESP_NO_PHY:
1706 phy->phy_state = PHY_NOT_PRESENT;
1707 sas_unregister_devs_sas_addr(dev, phy_id);
1708 goto out; break;
1709 case SMP_RESP_PHY_VACANT:
1710 phy->phy_state = PHY_VACANT;
1711 sas_unregister_devs_sas_addr(dev, phy_id);
1712 goto out; break;
1713 case SMP_RESP_FUNC_ACC:
1714 break;
1715 }
1716
1717 if (SAS_ADDR(attached_sas_addr) == 0) {
1718 phy->phy_state = PHY_EMPTY;
1719 sas_unregister_devs_sas_addr(dev, phy_id);
1720 } else if (SAS_ADDR(attached_sas_addr) ==
1721 SAS_ADDR(phy->attached_sas_addr)) {
1722 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1723 SAS_ADDR(dev->sas_addr), phy_id);
James Bottomleya01e70e2006-09-06 19:28:07 -05001724 sas_ex_phy_discover(dev, phy_id);
James Bottomley2908d772006-08-29 09:22:51 -05001725 } else
1726 res = sas_discover_new(dev, phy_id);
1727out:
1728 return res;
1729}
1730
1731static int sas_rediscover(struct domain_device *dev, const int phy_id)
1732{
1733 struct expander_device *ex = &dev->ex_dev;
1734 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1735 int res = 0;
1736 int i;
1737
1738 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1739 SAS_ADDR(dev->sas_addr), phy_id);
1740
1741 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1742 for (i = 0; i < ex->num_phys; i++) {
1743 struct ex_phy *phy = &ex->ex_phy[i];
1744
1745 if (i == phy_id)
1746 continue;
1747 if (SAS_ADDR(phy->attached_sas_addr) ==
1748 SAS_ADDR(changed_phy->attached_sas_addr)) {
1749 SAS_DPRINTK("phy%d part of wide port with "
1750 "phy%d\n", phy_id, i);
1751 goto out;
1752 }
1753 }
1754 res = sas_rediscover_dev(dev, phy_id);
1755 } else
1756 res = sas_discover_new(dev, phy_id);
1757out:
1758 return res;
1759}
1760
1761/**
1762 * sas_revalidate_domain -- revalidate the domain
1763 * @port: port to the domain of interest
1764 *
1765 * NOTE: this process _must_ quit (return) as soon as any connection
1766 * errors are encountered. Connection recovery is done elsewhere.
1767 * Discover process only interrogates devices in order to discover the
1768 * domain.
1769 */
1770int sas_ex_revalidate_domain(struct domain_device *port_dev)
1771{
1772 int res;
1773 struct domain_device *dev = NULL;
1774
1775 res = sas_find_bcast_dev(port_dev, &dev);
1776 if (res)
1777 goto out;
1778 if (dev) {
1779 struct expander_device *ex = &dev->ex_dev;
1780 int i = 0, phy_id;
1781
1782 do {
1783 phy_id = -1;
1784 res = sas_find_bcast_phy(dev, &phy_id, i);
1785 if (phy_id == -1)
1786 break;
1787 res = sas_rediscover(dev, phy_id);
1788 i = phy_id + 1;
1789 } while (i < ex->num_phys);
1790 }
1791out:
1792 return res;
1793}
1794
1795#if 0
1796/* ---------- SMP portal ---------- */
1797
1798static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
1799 size_t size)
1800{
1801 struct domain_device *dev = to_dom_device(kobj);
1802 struct expander_device *ex = &dev->ex_dev;
1803
1804 if (offs != 0)
1805 return -EFBIG;
1806 else if (size == 0)
1807 return 0;
1808
1809 down_interruptible(&ex->smp_sema);
1810 if (ex->smp_req)
1811 kfree(ex->smp_req);
1812 ex->smp_req = kzalloc(size, GFP_USER);
1813 if (!ex->smp_req) {
1814 up(&ex->smp_sema);
1815 return -ENOMEM;
1816 }
1817 memcpy(ex->smp_req, buf, size);
1818 ex->smp_req_size = size;
1819 ex->smp_portal_pid = current->pid;
1820 up(&ex->smp_sema);
1821
1822 return size;
1823}
1824
1825static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
1826 size_t size)
1827{
1828 struct domain_device *dev = to_dom_device(kobj);
1829 struct expander_device *ex = &dev->ex_dev;
1830 u8 *smp_resp;
1831 int res = -EINVAL;
1832
1833 /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1834 * it should be 0.
1835 */
1836
1837 down_interruptible(&ex->smp_sema);
1838 if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1839 goto out;
1840
1841 res = 0;
1842 if (size == 0)
1843 goto out;
1844
1845 res = -ENOMEM;
1846 smp_resp = alloc_smp_resp(size);
1847 if (!smp_resp)
1848 goto out;
1849 res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1850 smp_resp, size);
1851 if (!res) {
1852 memcpy(buf, smp_resp, size);
1853 res = size;
1854 }
1855
1856 kfree(smp_resp);
1857out:
1858 kfree(ex->smp_req);
1859 ex->smp_req = NULL;
1860 ex->smp_req_size = 0;
1861 ex->smp_portal_pid = -1;
1862 up(&ex->smp_sema);
1863 return res;
1864}
1865#endif