blob: 9c19e5435a11faaa33df2a40a39ef2f7a4d06553 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*****************************************************************************/
2
3/*
4 * istallion.c -- stallion intelligent multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27/*****************************************************************************/
28
29#include <linux/config.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h>
33#include <linux/tty.h>
34#include <linux/tty_flip.h>
35#include <linux/serial.h>
36#include <linux/cdk.h>
37#include <linux/comstats.h>
38#include <linux/istallion.h>
39#include <linux/ioport.h>
40#include <linux/delay.h>
41#include <linux/init.h>
42#include <linux/devfs_fs_kernel.h>
43#include <linux/device.h>
44#include <linux/wait.h>
45
46#include <asm/io.h>
47#include <asm/uaccess.h>
48
49#ifdef CONFIG_PCI
50#include <linux/pci.h>
51#endif
52
53/*****************************************************************************/
54
55/*
56 * Define different board types. Not all of the following board types
57 * are supported by this driver. But I will use the standard "assigned"
58 * board numbers. Currently supported boards are abbreviated as:
59 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
60 * STAL = Stallion.
61 */
62#define BRD_UNKNOWN 0
63#define BRD_STALLION 1
64#define BRD_BRUMBY4 2
65#define BRD_ONBOARD2 3
66#define BRD_ONBOARD 4
67#define BRD_BRUMBY8 5
68#define BRD_BRUMBY16 6
69#define BRD_ONBOARDE 7
70#define BRD_ONBOARD32 9
71#define BRD_ONBOARD2_32 10
72#define BRD_ONBOARDRS 11
73#define BRD_EASYIO 20
74#define BRD_ECH 21
75#define BRD_ECHMC 22
76#define BRD_ECP 23
77#define BRD_ECPE 24
78#define BRD_ECPMC 25
79#define BRD_ECHPCI 26
80#define BRD_ECH64PCI 27
81#define BRD_EASYIOPCI 28
82#define BRD_ECPPCI 29
83
84#define BRD_BRUMBY BRD_BRUMBY4
85
86/*
87 * Define a configuration structure to hold the board configuration.
88 * Need to set this up in the code (for now) with the boards that are
89 * to be configured into the system. This is what needs to be modified
90 * when adding/removing/modifying boards. Each line entry in the
91 * stli_brdconf[] array is a board. Each line contains io/irq/memory
92 * ranges for that board (as well as what type of board it is).
93 * Some examples:
94 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
95 * This line will configure an EasyConnection 8/64 at io address 2a0,
96 * and shared memory address of cc000. Multiple EasyConnection 8/64
97 * boards can share the same shared memory address space. No interrupt
98 * is required for this board type.
99 * Another example:
100 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
101 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
102 * shared memory address of 0x80000000 (2 GByte). Multiple
103 * EasyConnection 8/64 EISA boards can share the same shared memory
104 * address space. No interrupt is required for this board type.
105 * Another example:
106 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
107 * This line will configure an ONboard (ISA type) at io address 240,
108 * and shared memory address of d0000. Multiple ONboards can share
109 * the same shared memory address space. No interrupt required.
110 * Another example:
111 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
112 * This line will configure a Brumby board (any number of ports!) at
113 * io address 360 and shared memory address of c8000. All Brumby boards
114 * configured into a system must have their own separate io and memory
115 * addresses. No interrupt is required.
116 * Another example:
117 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
118 * This line will configure an original Stallion board at io address 330
119 * and shared memory address d0000 (this would only be valid for a "V4.0"
120 * or Rev.O Stallion board). All Stallion boards configured into the
121 * system must have their own separate io and memory addresses. No
122 * interrupt is required.
123 */
124
125typedef struct {
126 int brdtype;
127 int ioaddr1;
128 int ioaddr2;
129 unsigned long memaddr;
130 int irq;
131 int irqtype;
132} stlconf_t;
133
134static stlconf_t stli_brdconf[] = {
135 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
136};
137
138static int stli_nrbrds = sizeof(stli_brdconf) / sizeof(stlconf_t);
139
140/*
141 * There is some experimental EISA board detection code in this driver.
142 * By default it is disabled, but for those that want to try it out,
143 * then set the define below to be 1.
144 */
145#define STLI_EISAPROBE 0
146
147/*****************************************************************************/
148
149/*
150 * Define some important driver characteristics. Device major numbers
151 * allocated as per Linux Device Registry.
152 */
153#ifndef STL_SIOMEMMAJOR
154#define STL_SIOMEMMAJOR 28
155#endif
156#ifndef STL_SERIALMAJOR
157#define STL_SERIALMAJOR 24
158#endif
159#ifndef STL_CALLOUTMAJOR
160#define STL_CALLOUTMAJOR 25
161#endif
162
163/*****************************************************************************/
164
165/*
166 * Define our local driver identity first. Set up stuff to deal with
167 * all the local structures required by a serial tty driver.
168 */
169static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
170static char *stli_drvname = "istallion";
171static char *stli_drvversion = "5.6.0";
172static char *stli_serialname = "ttyE";
173
174static struct tty_driver *stli_serial;
175
176/*
177 * We will need to allocate a temporary write buffer for chars that
178 * come direct from user space. The problem is that a copy from user
179 * space might cause a page fault (typically on a system that is
180 * swapping!). All ports will share one buffer - since if the system
181 * is already swapping a shared buffer won't make things any worse.
182 */
183static char *stli_tmpwritebuf;
184static DECLARE_MUTEX(stli_tmpwritesem);
185
186#define STLI_TXBUFSIZE 4096
187
188/*
189 * Use a fast local buffer for cooked characters. Typically a whole
190 * bunch of cooked characters come in for a port, 1 at a time. So we
191 * save those up into a local buffer, then write out the whole lot
192 * with a large memcpy. Just use 1 buffer for all ports, since its
193 * use it is only need for short periods of time by each port.
194 */
195static char *stli_txcookbuf;
196static int stli_txcooksize;
197static int stli_txcookrealsize;
198static struct tty_struct *stli_txcooktty;
199
200/*
201 * Define a local default termios struct. All ports will be created
202 * with this termios initially. Basically all it defines is a raw port
203 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
204 */
205static struct termios stli_deftermios = {
206 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
207 .c_cc = INIT_C_CC,
208};
209
210/*
211 * Define global stats structures. Not used often, and can be
212 * re-used for each stats call.
213 */
214static comstats_t stli_comstats;
215static combrd_t stli_brdstats;
216static asystats_t stli_cdkstats;
217static stlibrd_t stli_dummybrd;
218static stliport_t stli_dummyport;
219
220/*****************************************************************************/
221
222static stlibrd_t *stli_brds[STL_MAXBRDS];
223
224static int stli_shared;
225
226/*
227 * Per board state flags. Used with the state field of the board struct.
228 * Not really much here... All we need to do is keep track of whether
229 * the board has been detected, and whether it is actually running a slave
230 * or not.
231 */
232#define BST_FOUND 0x1
233#define BST_STARTED 0x2
234
235/*
236 * Define the set of port state flags. These are marked for internal
237 * state purposes only, usually to do with the state of communications
238 * with the slave. Most of them need to be updated atomically, so always
239 * use the bit setting operations (unless protected by cli/sti).
240 */
241#define ST_INITIALIZING 1
242#define ST_OPENING 2
243#define ST_CLOSING 3
244#define ST_CMDING 4
245#define ST_TXBUSY 5
246#define ST_RXING 6
247#define ST_DOFLUSHRX 7
248#define ST_DOFLUSHTX 8
249#define ST_DOSIGS 9
250#define ST_RXSTOP 10
251#define ST_GETSIGS 11
252
253/*
254 * Define an array of board names as printable strings. Handy for
255 * referencing boards when printing trace and stuff.
256 */
257static char *stli_brdnames[] = {
258 "Unknown",
259 "Stallion",
260 "Brumby",
261 "ONboard-MC",
262 "ONboard",
263 "Brumby",
264 "Brumby",
265 "ONboard-EI",
266 (char *) NULL,
267 "ONboard",
268 "ONboard-MC",
269 "ONboard-MC",
270 (char *) NULL,
271 (char *) NULL,
272 (char *) NULL,
273 (char *) NULL,
274 (char *) NULL,
275 (char *) NULL,
276 (char *) NULL,
277 (char *) NULL,
278 "EasyIO",
279 "EC8/32-AT",
280 "EC8/32-MC",
281 "EC8/64-AT",
282 "EC8/64-EI",
283 "EC8/64-MC",
284 "EC8/32-PCI",
285 "EC8/64-PCI",
286 "EasyIO-PCI",
287 "EC/RA-PCI",
288};
289
290/*****************************************************************************/
291
292#ifdef MODULE
293/*
294 * Define some string labels for arguments passed from the module
295 * load line. These allow for easy board definitions, and easy
296 * modification of the io, memory and irq resoucres.
297 */
298
299static char *board0[8];
300static char *board1[8];
301static char *board2[8];
302static char *board3[8];
303
304static char **stli_brdsp[] = {
305 (char **) &board0,
306 (char **) &board1,
307 (char **) &board2,
308 (char **) &board3
309};
310
311/*
312 * Define a set of common board names, and types. This is used to
313 * parse any module arguments.
314 */
315
316typedef struct stlibrdtype {
317 char *name;
318 int type;
319} stlibrdtype_t;
320
321static stlibrdtype_t stli_brdstr[] = {
322 { "stallion", BRD_STALLION },
323 { "1", BRD_STALLION },
324 { "brumby", BRD_BRUMBY },
325 { "brumby4", BRD_BRUMBY },
326 { "brumby/4", BRD_BRUMBY },
327 { "brumby-4", BRD_BRUMBY },
328 { "brumby8", BRD_BRUMBY },
329 { "brumby/8", BRD_BRUMBY },
330 { "brumby-8", BRD_BRUMBY },
331 { "brumby16", BRD_BRUMBY },
332 { "brumby/16", BRD_BRUMBY },
333 { "brumby-16", BRD_BRUMBY },
334 { "2", BRD_BRUMBY },
335 { "onboard2", BRD_ONBOARD2 },
336 { "onboard-2", BRD_ONBOARD2 },
337 { "onboard/2", BRD_ONBOARD2 },
338 { "onboard-mc", BRD_ONBOARD2 },
339 { "onboard/mc", BRD_ONBOARD2 },
340 { "onboard-mca", BRD_ONBOARD2 },
341 { "onboard/mca", BRD_ONBOARD2 },
342 { "3", BRD_ONBOARD2 },
343 { "onboard", BRD_ONBOARD },
344 { "onboardat", BRD_ONBOARD },
345 { "4", BRD_ONBOARD },
346 { "onboarde", BRD_ONBOARDE },
347 { "onboard-e", BRD_ONBOARDE },
348 { "onboard/e", BRD_ONBOARDE },
349 { "onboard-ei", BRD_ONBOARDE },
350 { "onboard/ei", BRD_ONBOARDE },
351 { "7", BRD_ONBOARDE },
352 { "ecp", BRD_ECP },
353 { "ecpat", BRD_ECP },
354 { "ec8/64", BRD_ECP },
355 { "ec8/64-at", BRD_ECP },
356 { "ec8/64-isa", BRD_ECP },
357 { "23", BRD_ECP },
358 { "ecpe", BRD_ECPE },
359 { "ecpei", BRD_ECPE },
360 { "ec8/64-e", BRD_ECPE },
361 { "ec8/64-ei", BRD_ECPE },
362 { "24", BRD_ECPE },
363 { "ecpmc", BRD_ECPMC },
364 { "ec8/64-mc", BRD_ECPMC },
365 { "ec8/64-mca", BRD_ECPMC },
366 { "25", BRD_ECPMC },
367 { "ecppci", BRD_ECPPCI },
368 { "ec/ra", BRD_ECPPCI },
369 { "ec/ra-pc", BRD_ECPPCI },
370 { "ec/ra-pci", BRD_ECPPCI },
371 { "29", BRD_ECPPCI },
372};
373
374/*
375 * Define the module agruments.
376 */
377MODULE_AUTHOR("Greg Ungerer");
378MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
379MODULE_LICENSE("GPL");
380
381
382MODULE_PARM(board0, "1-3s");
383MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
384MODULE_PARM(board1, "1-3s");
385MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
386MODULE_PARM(board2, "1-3s");
387MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
388MODULE_PARM(board3, "1-3s");
389MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
390
391#endif
392
393/*
394 * Set up a default memory address table for EISA board probing.
395 * The default addresses are all bellow 1Mbyte, which has to be the
396 * case anyway. They should be safe, since we only read values from
397 * them, and interrupts are disabled while we do it. If the higher
398 * memory support is compiled in then we also try probing around
399 * the 1Gb, 2Gb and 3Gb areas as well...
400 */
401static unsigned long stli_eisamemprobeaddrs[] = {
402 0xc0000, 0xd0000, 0xe0000, 0xf0000,
403 0x80000000, 0x80010000, 0x80020000, 0x80030000,
404 0x40000000, 0x40010000, 0x40020000, 0x40030000,
405 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
406 0xff000000, 0xff010000, 0xff020000, 0xff030000,
407};
408
409static int stli_eisamempsize = sizeof(stli_eisamemprobeaddrs) / sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410
411/*
412 * Define the Stallion PCI vendor and device IDs.
413 */
414#ifdef CONFIG_PCI
415#ifndef PCI_VENDOR_ID_STALLION
416#define PCI_VENDOR_ID_STALLION 0x124d
417#endif
418#ifndef PCI_DEVICE_ID_ECRA
419#define PCI_DEVICE_ID_ECRA 0x0004
420#endif
421
422static struct pci_device_id istallion_pci_tbl[] = {
423 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
424 { 0 }
425};
426MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
427
428#endif /* CONFIG_PCI */
429
430/*****************************************************************************/
431
432/*
433 * Hardware configuration info for ECP boards. These defines apply
434 * to the directly accessible io ports of the ECP. There is a set of
435 * defines for each ECP board type, ISA, EISA, MCA and PCI.
436 */
437#define ECP_IOSIZE 4
438
439#define ECP_MEMSIZE (128 * 1024)
440#define ECP_PCIMEMSIZE (256 * 1024)
441
442#define ECP_ATPAGESIZE (4 * 1024)
443#define ECP_MCPAGESIZE (4 * 1024)
444#define ECP_EIPAGESIZE (64 * 1024)
445#define ECP_PCIPAGESIZE (64 * 1024)
446
447#define STL_EISAID 0x8c4e
448
449/*
450 * Important defines for the ISA class of ECP board.
451 */
452#define ECP_ATIREG 0
453#define ECP_ATCONFR 1
454#define ECP_ATMEMAR 2
455#define ECP_ATMEMPR 3
456#define ECP_ATSTOP 0x1
457#define ECP_ATINTENAB 0x10
458#define ECP_ATENABLE 0x20
459#define ECP_ATDISABLE 0x00
460#define ECP_ATADDRMASK 0x3f000
461#define ECP_ATADDRSHFT 12
462
463/*
464 * Important defines for the EISA class of ECP board.
465 */
466#define ECP_EIIREG 0
467#define ECP_EIMEMARL 1
468#define ECP_EICONFR 2
469#define ECP_EIMEMARH 3
470#define ECP_EIENABLE 0x1
471#define ECP_EIDISABLE 0x0
472#define ECP_EISTOP 0x4
473#define ECP_EIEDGE 0x00
474#define ECP_EILEVEL 0x80
475#define ECP_EIADDRMASKL 0x00ff0000
476#define ECP_EIADDRSHFTL 16
477#define ECP_EIADDRMASKH 0xff000000
478#define ECP_EIADDRSHFTH 24
479#define ECP_EIBRDENAB 0xc84
480
481#define ECP_EISAID 0x4
482
483/*
484 * Important defines for the Micro-channel class of ECP board.
485 * (It has a lot in common with the ISA boards.)
486 */
487#define ECP_MCIREG 0
488#define ECP_MCCONFR 1
489#define ECP_MCSTOP 0x20
490#define ECP_MCENABLE 0x80
491#define ECP_MCDISABLE 0x00
492
493/*
494 * Important defines for the PCI class of ECP board.
495 * (It has a lot in common with the other ECP boards.)
496 */
497#define ECP_PCIIREG 0
498#define ECP_PCICONFR 1
499#define ECP_PCISTOP 0x01
500
501/*
502 * Hardware configuration info for ONboard and Brumby boards. These
503 * defines apply to the directly accessible io ports of these boards.
504 */
505#define ONB_IOSIZE 16
506#define ONB_MEMSIZE (64 * 1024)
507#define ONB_ATPAGESIZE (64 * 1024)
508#define ONB_MCPAGESIZE (64 * 1024)
509#define ONB_EIMEMSIZE (128 * 1024)
510#define ONB_EIPAGESIZE (64 * 1024)
511
512/*
513 * Important defines for the ISA class of ONboard board.
514 */
515#define ONB_ATIREG 0
516#define ONB_ATMEMAR 1
517#define ONB_ATCONFR 2
518#define ONB_ATSTOP 0x4
519#define ONB_ATENABLE 0x01
520#define ONB_ATDISABLE 0x00
521#define ONB_ATADDRMASK 0xff0000
522#define ONB_ATADDRSHFT 16
523
524#define ONB_MEMENABLO 0
525#define ONB_MEMENABHI 0x02
526
527/*
528 * Important defines for the EISA class of ONboard board.
529 */
530#define ONB_EIIREG 0
531#define ONB_EIMEMARL 1
532#define ONB_EICONFR 2
533#define ONB_EIMEMARH 3
534#define ONB_EIENABLE 0x1
535#define ONB_EIDISABLE 0x0
536#define ONB_EISTOP 0x4
537#define ONB_EIEDGE 0x00
538#define ONB_EILEVEL 0x80
539#define ONB_EIADDRMASKL 0x00ff0000
540#define ONB_EIADDRSHFTL 16
541#define ONB_EIADDRMASKH 0xff000000
542#define ONB_EIADDRSHFTH 24
543#define ONB_EIBRDENAB 0xc84
544
545#define ONB_EISAID 0x1
546
547/*
548 * Important defines for the Brumby boards. They are pretty simple,
549 * there is not much that is programmably configurable.
550 */
551#define BBY_IOSIZE 16
552#define BBY_MEMSIZE (64 * 1024)
553#define BBY_PAGESIZE (16 * 1024)
554
555#define BBY_ATIREG 0
556#define BBY_ATCONFR 1
557#define BBY_ATSTOP 0x4
558
559/*
560 * Important defines for the Stallion boards. They are pretty simple,
561 * there is not much that is programmably configurable.
562 */
563#define STAL_IOSIZE 16
564#define STAL_MEMSIZE (64 * 1024)
565#define STAL_PAGESIZE (64 * 1024)
566
567/*
568 * Define the set of status register values for EasyConnection panels.
569 * The signature will return with the status value for each panel. From
570 * this we can determine what is attached to the board - before we have
571 * actually down loaded any code to it.
572 */
573#define ECH_PNLSTATUS 2
574#define ECH_PNL16PORT 0x20
575#define ECH_PNLIDMASK 0x07
576#define ECH_PNLXPID 0x40
577#define ECH_PNLINTRPEND 0x80
578
579/*
580 * Define some macros to do things to the board. Even those these boards
581 * are somewhat related there is often significantly different ways of
582 * doing some operation on it (like enable, paging, reset, etc). So each
583 * board class has a set of functions which do the commonly required
584 * operations. The macros below basically just call these functions,
585 * generally checking for a NULL function - which means that the board
586 * needs nothing done to it to achieve this operation!
587 */
588#define EBRDINIT(brdp) \
589 if (brdp->init != NULL) \
590 (* brdp->init)(brdp)
591
592#define EBRDENABLE(brdp) \
593 if (brdp->enable != NULL) \
594 (* brdp->enable)(brdp);
595
596#define EBRDDISABLE(brdp) \
597 if (brdp->disable != NULL) \
598 (* brdp->disable)(brdp);
599
600#define EBRDINTR(brdp) \
601 if (brdp->intr != NULL) \
602 (* brdp->intr)(brdp);
603
604#define EBRDRESET(brdp) \
605 if (brdp->reset != NULL) \
606 (* brdp->reset)(brdp);
607
608#define EBRDGETMEMPTR(brdp,offset) \
609 (* brdp->getmemptr)(brdp, offset, __LINE__)
610
611/*
612 * Define the maximal baud rate, and the default baud base for ports.
613 */
614#define STL_MAXBAUD 460800
615#define STL_BAUDBASE 115200
616#define STL_CLOSEDELAY (5 * HZ / 10)
617
618/*****************************************************************************/
619
620/*
621 * Define macros to extract a brd or port number from a minor number.
622 */
623#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
624#define MINOR2PORT(min) ((min) & 0x3f)
625
626/*
627 * Define a baud rate table that converts termios baud rate selector
628 * into the actual baud rate value. All baud rate calculations are based
629 * on the actual baud rate required.
630 */
631static unsigned int stli_baudrates[] = {
632 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
633 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
634};
635
636/*****************************************************************************/
637
638/*
639 * Define some handy local macros...
640 */
641#undef MIN
642#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
643
644#undef TOLOWER
645#define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
646
647/*****************************************************************************/
648
649/*
650 * Prototype all functions in this driver!
651 */
652
653#ifdef MODULE
654static void stli_argbrds(void);
655static int stli_parsebrd(stlconf_t *confp, char **argp);
656
657static unsigned long stli_atol(char *str);
658#endif
659
660int stli_init(void);
661static int stli_open(struct tty_struct *tty, struct file *filp);
662static void stli_close(struct tty_struct *tty, struct file *filp);
663static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
664static void stli_putchar(struct tty_struct *tty, unsigned char ch);
665static void stli_flushchars(struct tty_struct *tty);
666static int stli_writeroom(struct tty_struct *tty);
667static int stli_charsinbuffer(struct tty_struct *tty);
668static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
669static void stli_settermios(struct tty_struct *tty, struct termios *old);
670static void stli_throttle(struct tty_struct *tty);
671static void stli_unthrottle(struct tty_struct *tty);
672static void stli_stop(struct tty_struct *tty);
673static void stli_start(struct tty_struct *tty);
674static void stli_flushbuffer(struct tty_struct *tty);
675static void stli_breakctl(struct tty_struct *tty, int state);
676static void stli_waituntilsent(struct tty_struct *tty, int timeout);
677static void stli_sendxchar(struct tty_struct *tty, char ch);
678static void stli_hangup(struct tty_struct *tty);
679static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
680
681static int stli_brdinit(stlibrd_t *brdp);
682static int stli_startbrd(stlibrd_t *brdp);
683static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
684static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
685static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
686static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
687static void stli_poll(unsigned long arg);
688static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
689static int stli_initopen(stlibrd_t *brdp, stliport_t *portp);
690static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
691static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
692static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
693static void stli_dohangup(void *arg);
694static int stli_setport(stliport_t *portp);
695static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
696static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
697static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp);
698static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
699static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
700static long stli_mktiocm(unsigned long sigvalue);
701static void stli_read(stlibrd_t *brdp, stliport_t *portp);
702static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
703static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
704static int stli_getbrdstats(combrd_t __user *bp);
705static int stli_getportstats(stliport_t *portp, comstats_t __user *cp);
706static int stli_portcmdstats(stliport_t *portp);
707static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
708static int stli_getportstruct(stliport_t __user *arg);
709static int stli_getbrdstruct(stlibrd_t __user *arg);
710static void *stli_memalloc(int len);
711static stlibrd_t *stli_allocbrd(void);
712
713static void stli_ecpinit(stlibrd_t *brdp);
714static void stli_ecpenable(stlibrd_t *brdp);
715static void stli_ecpdisable(stlibrd_t *brdp);
716static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
717static void stli_ecpreset(stlibrd_t *brdp);
718static void stli_ecpintr(stlibrd_t *brdp);
719static void stli_ecpeiinit(stlibrd_t *brdp);
720static void stli_ecpeienable(stlibrd_t *brdp);
721static void stli_ecpeidisable(stlibrd_t *brdp);
722static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
723static void stli_ecpeireset(stlibrd_t *brdp);
724static void stli_ecpmcenable(stlibrd_t *brdp);
725static void stli_ecpmcdisable(stlibrd_t *brdp);
726static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
727static void stli_ecpmcreset(stlibrd_t *brdp);
728static void stli_ecppciinit(stlibrd_t *brdp);
729static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
730static void stli_ecppcireset(stlibrd_t *brdp);
731
732static void stli_onbinit(stlibrd_t *brdp);
733static void stli_onbenable(stlibrd_t *brdp);
734static void stli_onbdisable(stlibrd_t *brdp);
735static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
736static void stli_onbreset(stlibrd_t *brdp);
737static void stli_onbeinit(stlibrd_t *brdp);
738static void stli_onbeenable(stlibrd_t *brdp);
739static void stli_onbedisable(stlibrd_t *brdp);
740static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
741static void stli_onbereset(stlibrd_t *brdp);
742static void stli_bbyinit(stlibrd_t *brdp);
743static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
744static void stli_bbyreset(stlibrd_t *brdp);
745static void stli_stalinit(stlibrd_t *brdp);
746static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
747static void stli_stalreset(stlibrd_t *brdp);
748
749static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
750
751static int stli_initecp(stlibrd_t *brdp);
752static int stli_initonb(stlibrd_t *brdp);
753static int stli_eisamemprobe(stlibrd_t *brdp);
754static int stli_initports(stlibrd_t *brdp);
755
756#ifdef CONFIG_PCI
757static int stli_initpcibrd(int brdtype, struct pci_dev *devp);
758#endif
759
760/*****************************************************************************/
761
762/*
763 * Define the driver info for a user level shared memory device. This
764 * device will work sort of like the /dev/kmem device - except that it
765 * will give access to the shared memory on the Stallion intelligent
766 * board. This is also a very useful debugging tool.
767 */
768static struct file_operations stli_fsiomem = {
769 .owner = THIS_MODULE,
770 .read = stli_memread,
771 .write = stli_memwrite,
772 .ioctl = stli_memioctl,
773};
774
775/*****************************************************************************/
776
777/*
778 * Define a timer_list entry for our poll routine. The slave board
779 * is polled every so often to see if anything needs doing. This is
780 * much cheaper on host cpu than using interrupts. It turns out to
781 * not increase character latency by much either...
782 */
Ingo Molnar8d06afa2005-09-09 13:10:40 -0700783static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700784
785static int stli_timeron;
786
787/*
788 * Define the calculation for the timeout routine.
789 */
790#define STLI_TIMEOUT (jiffies + 1)
791
792/*****************************************************************************/
793
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800794static struct class *istallion_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700795
796#ifdef MODULE
797
798/*
799 * Loadable module initialization stuff.
800 */
801
802static int __init istallion_module_init(void)
803{
804 unsigned long flags;
805
806#ifdef DEBUG
807 printk("init_module()\n");
808#endif
809
810 save_flags(flags);
811 cli();
812 stli_init();
813 restore_flags(flags);
814
815 return(0);
816}
817
818/*****************************************************************************/
819
820static void __exit istallion_module_exit(void)
821{
822 stlibrd_t *brdp;
823 stliport_t *portp;
824 unsigned long flags;
825 int i, j;
826
827#ifdef DEBUG
828 printk("cleanup_module()\n");
829#endif
830
831 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
832 stli_drvversion);
833
834 save_flags(flags);
835 cli();
836
837/*
838 * Free up all allocated resources used by the ports. This includes
839 * memory and interrupts.
840 */
841 if (stli_timeron) {
842 stli_timeron = 0;
843 del_timer(&stli_timerlist);
844 }
845
846 i = tty_unregister_driver(stli_serial);
847 if (i) {
848 printk("STALLION: failed to un-register tty driver, "
849 "errno=%d\n", -i);
850 restore_flags(flags);
851 return;
852 }
853 put_tty_driver(stli_serial);
854 for (i = 0; i < 4; i++) {
855 devfs_remove("staliomem/%d", i);
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800856 class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857 }
858 devfs_remove("staliomem");
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800859 class_destroy(istallion_class);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700860 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
861 printk("STALLION: failed to un-register serial memory device, "
862 "errno=%d\n", -i);
863 if (stli_tmpwritebuf != (char *) NULL)
864 kfree(stli_tmpwritebuf);
865 if (stli_txcookbuf != (char *) NULL)
866 kfree(stli_txcookbuf);
867
868 for (i = 0; (i < stli_nrbrds); i++) {
869 if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL)
870 continue;
871 for (j = 0; (j < STL_MAXPORTS); j++) {
872 portp = brdp->ports[j];
873 if (portp != (stliport_t *) NULL) {
874 if (portp->tty != (struct tty_struct *) NULL)
875 tty_hangup(portp->tty);
876 kfree(portp);
877 }
878 }
879
880 iounmap(brdp->membase);
881 if (brdp->iosize > 0)
882 release_region(brdp->iobase, brdp->iosize);
883 kfree(brdp);
884 stli_brds[i] = (stlibrd_t *) NULL;
885 }
886
887 restore_flags(flags);
888}
889
890module_init(istallion_module_init);
891module_exit(istallion_module_exit);
892
893/*****************************************************************************/
894
895/*
896 * Check for any arguments passed in on the module load command line.
897 */
898
899static void stli_argbrds(void)
900{
901 stlconf_t conf;
902 stlibrd_t *brdp;
903 int nrargs, i;
904
905#ifdef DEBUG
906 printk("stli_argbrds()\n");
907#endif
908
909 nrargs = sizeof(stli_brdsp) / sizeof(char **);
910
911 for (i = stli_nrbrds; (i < nrargs); i++) {
912 memset(&conf, 0, sizeof(conf));
913 if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
914 continue;
915 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
916 continue;
917 stli_nrbrds = i + 1;
918 brdp->brdnr = i;
919 brdp->brdtype = conf.brdtype;
920 brdp->iobase = conf.ioaddr1;
921 brdp->memaddr = conf.memaddr;
922 stli_brdinit(brdp);
923 }
924}
925
926/*****************************************************************************/
927
928/*
929 * Convert an ascii string number into an unsigned long.
930 */
931
932static unsigned long stli_atol(char *str)
933{
934 unsigned long val;
935 int base, c;
936 char *sp;
937
938 val = 0;
939 sp = str;
940 if ((*sp == '0') && (*(sp+1) == 'x')) {
941 base = 16;
942 sp += 2;
943 } else if (*sp == '0') {
944 base = 8;
945 sp++;
946 } else {
947 base = 10;
948 }
949
950 for (; (*sp != 0); sp++) {
951 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
952 if ((c < 0) || (c >= base)) {
953 printk("STALLION: invalid argument %s\n", str);
954 val = 0;
955 break;
956 }
957 val = (val * base) + c;
958 }
959 return(val);
960}
961
962/*****************************************************************************/
963
964/*
965 * Parse the supplied argument string, into the board conf struct.
966 */
967
968static int stli_parsebrd(stlconf_t *confp, char **argp)
969{
970 char *sp;
971 int nrbrdnames, i;
972
973#ifdef DEBUG
974 printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
975#endif
976
977 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
978 return(0);
979
980 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
981 *sp = TOLOWER(*sp);
982
983 nrbrdnames = sizeof(stli_brdstr) / sizeof(stlibrdtype_t);
984 for (i = 0; (i < nrbrdnames); i++) {
985 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
986 break;
987 }
988 if (i >= nrbrdnames) {
989 printk("STALLION: unknown board name, %s?\n", argp[0]);
990 return(0);
991 }
992
993 confp->brdtype = stli_brdstr[i].type;
994 if ((argp[1] != (char *) NULL) && (*argp[1] != 0))
995 confp->ioaddr1 = stli_atol(argp[1]);
996 if ((argp[2] != (char *) NULL) && (*argp[2] != 0))
997 confp->memaddr = stli_atol(argp[2]);
998 return(1);
999}
1000
1001#endif
1002
1003/*****************************************************************************/
1004
1005/*
1006 * Local driver kernel malloc routine.
1007 */
1008
1009static void *stli_memalloc(int len)
1010{
1011 return((void *) kmalloc(len, GFP_KERNEL));
1012}
1013
1014/*****************************************************************************/
1015
1016static int stli_open(struct tty_struct *tty, struct file *filp)
1017{
1018 stlibrd_t *brdp;
1019 stliport_t *portp;
1020 unsigned int minordev;
1021 int brdnr, portnr, rc;
1022
1023#ifdef DEBUG
1024 printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty,
1025 (int) filp, tty->name);
1026#endif
1027
1028 minordev = tty->index;
1029 brdnr = MINOR2BRD(minordev);
1030 if (brdnr >= stli_nrbrds)
1031 return(-ENODEV);
1032 brdp = stli_brds[brdnr];
1033 if (brdp == (stlibrd_t *) NULL)
1034 return(-ENODEV);
1035 if ((brdp->state & BST_STARTED) == 0)
1036 return(-ENODEV);
1037 portnr = MINOR2PORT(minordev);
1038 if ((portnr < 0) || (portnr > brdp->nrports))
1039 return(-ENODEV);
1040
1041 portp = brdp->ports[portnr];
1042 if (portp == (stliport_t *) NULL)
1043 return(-ENODEV);
1044 if (portp->devnr < 1)
1045 return(-ENODEV);
1046
1047
1048/*
1049 * Check if this port is in the middle of closing. If so then wait
1050 * until it is closed then return error status based on flag settings.
1051 * The sleep here does not need interrupt protection since the wakeup
1052 * for it is done with the same context.
1053 */
1054 if (portp->flags & ASYNC_CLOSING) {
1055 interruptible_sleep_on(&portp->close_wait);
1056 if (portp->flags & ASYNC_HUP_NOTIFY)
1057 return(-EAGAIN);
1058 return(-ERESTARTSYS);
1059 }
1060
1061/*
1062 * On the first open of the device setup the port hardware, and
1063 * initialize the per port data structure. Since initializing the port
1064 * requires several commands to the board we will need to wait for any
1065 * other open that is already initializing the port.
1066 */
1067 portp->tty = tty;
1068 tty->driver_data = portp;
1069 portp->refcount++;
1070
1071 wait_event_interruptible(portp->raw_wait,
1072 !test_bit(ST_INITIALIZING, &portp->state));
1073 if (signal_pending(current))
1074 return(-ERESTARTSYS);
1075
1076 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1077 set_bit(ST_INITIALIZING, &portp->state);
1078 if ((rc = stli_initopen(brdp, portp)) >= 0) {
1079 portp->flags |= ASYNC_INITIALIZED;
1080 clear_bit(TTY_IO_ERROR, &tty->flags);
1081 }
1082 clear_bit(ST_INITIALIZING, &portp->state);
1083 wake_up_interruptible(&portp->raw_wait);
1084 if (rc < 0)
1085 return(rc);
1086 }
1087
1088/*
1089 * Check if this port is in the middle of closing. If so then wait
1090 * until it is closed then return error status, based on flag settings.
1091 * The sleep here does not need interrupt protection since the wakeup
1092 * for it is done with the same context.
1093 */
1094 if (portp->flags & ASYNC_CLOSING) {
1095 interruptible_sleep_on(&portp->close_wait);
1096 if (portp->flags & ASYNC_HUP_NOTIFY)
1097 return(-EAGAIN);
1098 return(-ERESTARTSYS);
1099 }
1100
1101/*
1102 * Based on type of open being done check if it can overlap with any
1103 * previous opens still in effect. If we are a normal serial device
1104 * then also we might have to wait for carrier.
1105 */
1106 if (!(filp->f_flags & O_NONBLOCK)) {
1107 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1108 return(rc);
1109 }
1110 portp->flags |= ASYNC_NORMAL_ACTIVE;
1111 return(0);
1112}
1113
1114/*****************************************************************************/
1115
1116static void stli_close(struct tty_struct *tty, struct file *filp)
1117{
1118 stlibrd_t *brdp;
1119 stliport_t *portp;
1120 unsigned long flags;
1121
1122#ifdef DEBUG
1123 printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1124#endif
1125
1126 portp = tty->driver_data;
1127 if (portp == (stliport_t *) NULL)
1128 return;
1129
1130 save_flags(flags);
1131 cli();
1132 if (tty_hung_up_p(filp)) {
1133 restore_flags(flags);
1134 return;
1135 }
1136 if ((tty->count == 1) && (portp->refcount != 1))
1137 portp->refcount = 1;
1138 if (portp->refcount-- > 1) {
1139 restore_flags(flags);
1140 return;
1141 }
1142
1143 portp->flags |= ASYNC_CLOSING;
1144
1145/*
1146 * May want to wait for data to drain before closing. The BUSY flag
1147 * keeps track of whether we are still transmitting or not. It is
1148 * updated by messages from the slave - indicating when all chars
1149 * really have drained.
1150 */
1151 if (tty == stli_txcooktty)
1152 stli_flushchars(tty);
1153 tty->closing = 1;
1154 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1155 tty_wait_until_sent(tty, portp->closing_wait);
1156
1157 portp->flags &= ~ASYNC_INITIALIZED;
1158 brdp = stli_brds[portp->brdnr];
1159 stli_rawclose(brdp, portp, 0, 0);
1160 if (tty->termios->c_cflag & HUPCL) {
1161 stli_mkasysigs(&portp->asig, 0, 0);
1162 if (test_bit(ST_CMDING, &portp->state))
1163 set_bit(ST_DOSIGS, &portp->state);
1164 else
1165 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1166 sizeof(asysigs_t), 0);
1167 }
1168 clear_bit(ST_TXBUSY, &portp->state);
1169 clear_bit(ST_RXSTOP, &portp->state);
1170 set_bit(TTY_IO_ERROR, &tty->flags);
1171 if (tty->ldisc.flush_buffer)
1172 (tty->ldisc.flush_buffer)(tty);
1173 set_bit(ST_DOFLUSHRX, &portp->state);
1174 stli_flushbuffer(tty);
1175
1176 tty->closing = 0;
1177 portp->tty = (struct tty_struct *) NULL;
1178
1179 if (portp->openwaitcnt) {
1180 if (portp->close_delay)
1181 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1182 wake_up_interruptible(&portp->open_wait);
1183 }
1184
1185 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1186 wake_up_interruptible(&portp->close_wait);
1187 restore_flags(flags);
1188}
1189
1190/*****************************************************************************/
1191
1192/*
1193 * Carry out first open operations on a port. This involves a number of
1194 * commands to be sent to the slave. We need to open the port, set the
1195 * notification events, set the initial port settings, get and set the
1196 * initial signal values. We sleep and wait in between each one. But
1197 * this still all happens pretty quickly.
1198 */
1199
1200static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1201{
1202 struct tty_struct *tty;
1203 asynotify_t nt;
1204 asyport_t aport;
1205 int rc;
1206
1207#ifdef DEBUG
1208 printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
1209#endif
1210
1211 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1212 return(rc);
1213
1214 memset(&nt, 0, sizeof(asynotify_t));
1215 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1216 nt.signal = SG_DCD;
1217 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1218 sizeof(asynotify_t), 0)) < 0)
1219 return(rc);
1220
1221 tty = portp->tty;
1222 if (tty == (struct tty_struct *) NULL)
1223 return(-ENODEV);
1224 stli_mkasyport(portp, &aport, tty->termios);
1225 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1226 sizeof(asyport_t), 0)) < 0)
1227 return(rc);
1228
1229 set_bit(ST_GETSIGS, &portp->state);
1230 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1231 sizeof(asysigs_t), 1)) < 0)
1232 return(rc);
1233 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1234 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1235 stli_mkasysigs(&portp->asig, 1, 1);
1236 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1237 sizeof(asysigs_t), 0)) < 0)
1238 return(rc);
1239
1240 return(0);
1241}
1242
1243/*****************************************************************************/
1244
1245/*
1246 * Send an open message to the slave. This will sleep waiting for the
1247 * acknowledgement, so must have user context. We need to co-ordinate
1248 * with close events here, since we don't want open and close events
1249 * to overlap.
1250 */
1251
1252static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1253{
1254 volatile cdkhdr_t *hdrp;
1255 volatile cdkctrl_t *cp;
1256 volatile unsigned char *bits;
1257 unsigned long flags;
1258 int rc;
1259
1260#ifdef DEBUG
1261 printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1262 (int) brdp, (int) portp, (int) arg, wait);
1263#endif
1264
1265/*
1266 * Send a message to the slave to open this port.
1267 */
1268 save_flags(flags);
1269 cli();
1270
1271/*
1272 * Slave is already closing this port. This can happen if a hangup
1273 * occurs on this port. So we must wait until it is complete. The
1274 * order of opens and closes may not be preserved across shared
1275 * memory, so we must wait until it is complete.
1276 */
1277 wait_event_interruptible(portp->raw_wait,
1278 !test_bit(ST_CLOSING, &portp->state));
1279 if (signal_pending(current)) {
1280 restore_flags(flags);
1281 return -ERESTARTSYS;
1282 }
1283
1284/*
1285 * Everything is ready now, so write the open message into shared
1286 * memory. Once the message is in set the service bits to say that
1287 * this port wants service.
1288 */
1289 EBRDENABLE(brdp);
1290 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1291 cp->openarg = arg;
1292 cp->open = 1;
1293 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1294 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1295 portp->portidx;
1296 *bits |= portp->portbit;
1297 EBRDDISABLE(brdp);
1298
1299 if (wait == 0) {
1300 restore_flags(flags);
1301 return(0);
1302 }
1303
1304/*
1305 * Slave is in action, so now we must wait for the open acknowledgment
1306 * to come back.
1307 */
1308 rc = 0;
1309 set_bit(ST_OPENING, &portp->state);
1310 wait_event_interruptible(portp->raw_wait,
1311 !test_bit(ST_OPENING, &portp->state));
1312 if (signal_pending(current))
1313 rc = -ERESTARTSYS;
1314 restore_flags(flags);
1315
1316 if ((rc == 0) && (portp->rc != 0))
1317 rc = -EIO;
1318 return(rc);
1319}
1320
1321/*****************************************************************************/
1322
1323/*
1324 * Send a close message to the slave. Normally this will sleep waiting
1325 * for the acknowledgement, but if wait parameter is 0 it will not. If
1326 * wait is true then must have user context (to sleep).
1327 */
1328
1329static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1330{
1331 volatile cdkhdr_t *hdrp;
1332 volatile cdkctrl_t *cp;
1333 volatile unsigned char *bits;
1334 unsigned long flags;
1335 int rc;
1336
1337#ifdef DEBUG
1338 printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1339 (int) brdp, (int) portp, (int) arg, wait);
1340#endif
1341
1342 save_flags(flags);
1343 cli();
1344
1345/*
1346 * Slave is already closing this port. This can happen if a hangup
1347 * occurs on this port.
1348 */
1349 if (wait) {
1350 wait_event_interruptible(portp->raw_wait,
1351 !test_bit(ST_CLOSING, &portp->state));
1352 if (signal_pending(current)) {
1353 restore_flags(flags);
1354 return -ERESTARTSYS;
1355 }
1356 }
1357
1358/*
1359 * Write the close command into shared memory.
1360 */
1361 EBRDENABLE(brdp);
1362 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1363 cp->closearg = arg;
1364 cp->close = 1;
1365 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1366 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1367 portp->portidx;
1368 *bits |= portp->portbit;
1369 EBRDDISABLE(brdp);
1370
1371 set_bit(ST_CLOSING, &portp->state);
1372 if (wait == 0) {
1373 restore_flags(flags);
1374 return(0);
1375 }
1376
1377/*
1378 * Slave is in action, so now we must wait for the open acknowledgment
1379 * to come back.
1380 */
1381 rc = 0;
1382 wait_event_interruptible(portp->raw_wait,
1383 !test_bit(ST_CLOSING, &portp->state));
1384 if (signal_pending(current))
1385 rc = -ERESTARTSYS;
1386 restore_flags(flags);
1387
1388 if ((rc == 0) && (portp->rc != 0))
1389 rc = -EIO;
1390 return(rc);
1391}
1392
1393/*****************************************************************************/
1394
1395/*
1396 * Send a command to the slave and wait for the response. This must
1397 * have user context (it sleeps). This routine is generic in that it
1398 * can send any type of command. Its purpose is to wait for that command
1399 * to complete (as opposed to initiating the command then returning).
1400 */
1401
1402static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1403{
1404 unsigned long flags;
1405
1406#ifdef DEBUG
1407 printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1408 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
1409 (int) arg, size, copyback);
1410#endif
1411
1412 save_flags(flags);
1413 cli();
1414 wait_event_interruptible(portp->raw_wait,
1415 !test_bit(ST_CMDING, &portp->state));
1416 if (signal_pending(current)) {
1417 restore_flags(flags);
1418 return -ERESTARTSYS;
1419 }
1420
1421 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1422
1423 wait_event_interruptible(portp->raw_wait,
1424 !test_bit(ST_CMDING, &portp->state));
1425 if (signal_pending(current)) {
1426 restore_flags(flags);
1427 return -ERESTARTSYS;
1428 }
1429 restore_flags(flags);
1430
1431 if (portp->rc != 0)
1432 return(-EIO);
1433 return(0);
1434}
1435
1436/*****************************************************************************/
1437
1438/*
1439 * Send the termios settings for this port to the slave. This sleeps
1440 * waiting for the command to complete - so must have user context.
1441 */
1442
1443static int stli_setport(stliport_t *portp)
1444{
1445 stlibrd_t *brdp;
1446 asyport_t aport;
1447
1448#ifdef DEBUG
1449 printk("stli_setport(portp=%x)\n", (int) portp);
1450#endif
1451
1452 if (portp == (stliport_t *) NULL)
1453 return(-ENODEV);
1454 if (portp->tty == (struct tty_struct *) NULL)
1455 return(-ENODEV);
1456 if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds))
1457 return(-ENODEV);
1458 brdp = stli_brds[portp->brdnr];
1459 if (brdp == (stlibrd_t *) NULL)
1460 return(-ENODEV);
1461
1462 stli_mkasyport(portp, &aport, portp->tty->termios);
1463 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1464}
1465
1466/*****************************************************************************/
1467
1468/*
1469 * Possibly need to wait for carrier (DCD signal) to come high. Say
1470 * maybe because if we are clocal then we don't need to wait...
1471 */
1472
1473static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1474{
1475 unsigned long flags;
1476 int rc, doclocal;
1477
1478#ifdef DEBUG
1479 printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1480 (int) brdp, (int) portp, (int) filp);
1481#endif
1482
1483 rc = 0;
1484 doclocal = 0;
1485
1486 if (portp->tty->termios->c_cflag & CLOCAL)
1487 doclocal++;
1488
1489 save_flags(flags);
1490 cli();
1491 portp->openwaitcnt++;
1492 if (! tty_hung_up_p(filp))
1493 portp->refcount--;
1494
1495 for (;;) {
1496 stli_mkasysigs(&portp->asig, 1, 1);
1497 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1498 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1499 break;
1500 if (tty_hung_up_p(filp) ||
1501 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1502 if (portp->flags & ASYNC_HUP_NOTIFY)
1503 rc = -EBUSY;
1504 else
1505 rc = -ERESTARTSYS;
1506 break;
1507 }
1508 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1509 (doclocal || (portp->sigs & TIOCM_CD))) {
1510 break;
1511 }
1512 if (signal_pending(current)) {
1513 rc = -ERESTARTSYS;
1514 break;
1515 }
1516 interruptible_sleep_on(&portp->open_wait);
1517 }
1518
1519 if (! tty_hung_up_p(filp))
1520 portp->refcount++;
1521 portp->openwaitcnt--;
1522 restore_flags(flags);
1523
1524 return(rc);
1525}
1526
1527/*****************************************************************************/
1528
1529/*
1530 * Write routine. Take the data and put it in the shared memory ring
1531 * queue. If port is not already sending chars then need to mark the
1532 * service bits for this port.
1533 */
1534
1535static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1536{
1537 volatile cdkasy_t *ap;
1538 volatile cdkhdr_t *hdrp;
1539 volatile unsigned char *bits;
1540 unsigned char *shbuf, *chbuf;
1541 stliport_t *portp;
1542 stlibrd_t *brdp;
1543 unsigned int len, stlen, head, tail, size;
1544 unsigned long flags;
1545
1546#ifdef DEBUG
1547 printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1548 (int) tty, (int) buf, count);
1549#endif
1550
1551 if ((tty == (struct tty_struct *) NULL) ||
1552 (stli_tmpwritebuf == (char *) NULL))
1553 return(0);
1554 if (tty == stli_txcooktty)
1555 stli_flushchars(tty);
1556 portp = tty->driver_data;
1557 if (portp == (stliport_t *) NULL)
1558 return(0);
1559 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1560 return(0);
1561 brdp = stli_brds[portp->brdnr];
1562 if (brdp == (stlibrd_t *) NULL)
1563 return(0);
1564 chbuf = (unsigned char *) buf;
1565
1566/*
1567 * All data is now local, shove as much as possible into shared memory.
1568 */
1569 save_flags(flags);
1570 cli();
1571 EBRDENABLE(brdp);
1572 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1573 head = (unsigned int) ap->txq.head;
1574 tail = (unsigned int) ap->txq.tail;
1575 if (tail != ((unsigned int) ap->txq.tail))
1576 tail = (unsigned int) ap->txq.tail;
1577 size = portp->txsize;
1578 if (head >= tail) {
1579 len = size - (head - tail) - 1;
1580 stlen = size - head;
1581 } else {
1582 len = tail - head - 1;
1583 stlen = len;
1584 }
1585
1586 len = MIN(len, count);
1587 count = 0;
1588 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1589
1590 while (len > 0) {
1591 stlen = MIN(len, stlen);
1592 memcpy((shbuf + head), chbuf, stlen);
1593 chbuf += stlen;
1594 len -= stlen;
1595 count += stlen;
1596 head += stlen;
1597 if (head >= size) {
1598 head = 0;
1599 stlen = tail;
1600 }
1601 }
1602
1603 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1604 ap->txq.head = head;
1605 if (test_bit(ST_TXBUSY, &portp->state)) {
1606 if (ap->changed.data & DT_TXEMPTY)
1607 ap->changed.data &= ~DT_TXEMPTY;
1608 }
1609 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1610 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1611 portp->portidx;
1612 *bits |= portp->portbit;
1613 set_bit(ST_TXBUSY, &portp->state);
1614 EBRDDISABLE(brdp);
1615
1616 restore_flags(flags);
1617
1618 return(count);
1619}
1620
1621/*****************************************************************************/
1622
1623/*
1624 * Output a single character. We put it into a temporary local buffer
1625 * (for speed) then write out that buffer when the flushchars routine
1626 * is called. There is a safety catch here so that if some other port
1627 * writes chars before the current buffer has been, then we write them
1628 * first them do the new ports.
1629 */
1630
1631static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1632{
1633#ifdef DEBUG
1634 printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1635#endif
1636
1637 if (tty == (struct tty_struct *) NULL)
1638 return;
1639 if (tty != stli_txcooktty) {
1640 if (stli_txcooktty != (struct tty_struct *) NULL)
1641 stli_flushchars(stli_txcooktty);
1642 stli_txcooktty = tty;
1643 }
1644
1645 stli_txcookbuf[stli_txcooksize++] = ch;
1646}
1647
1648/*****************************************************************************/
1649
1650/*
1651 * Transfer characters from the local TX cooking buffer to the board.
1652 * We sort of ignore the tty that gets passed in here. We rely on the
1653 * info stored with the TX cook buffer to tell us which port to flush
1654 * the data on. In any case we clean out the TX cook buffer, for re-use
1655 * by someone else.
1656 */
1657
1658static void stli_flushchars(struct tty_struct *tty)
1659{
1660 volatile cdkhdr_t *hdrp;
1661 volatile unsigned char *bits;
1662 volatile cdkasy_t *ap;
1663 struct tty_struct *cooktty;
1664 stliport_t *portp;
1665 stlibrd_t *brdp;
1666 unsigned int len, stlen, head, tail, size, count, cooksize;
1667 unsigned char *buf, *shbuf;
1668 unsigned long flags;
1669
1670#ifdef DEBUG
1671 printk("stli_flushchars(tty=%x)\n", (int) tty);
1672#endif
1673
1674 cooksize = stli_txcooksize;
1675 cooktty = stli_txcooktty;
1676 stli_txcooksize = 0;
1677 stli_txcookrealsize = 0;
1678 stli_txcooktty = (struct tty_struct *) NULL;
1679
1680 if (tty == (struct tty_struct *) NULL)
1681 return;
1682 if (cooktty == (struct tty_struct *) NULL)
1683 return;
1684 if (tty != cooktty)
1685 tty = cooktty;
1686 if (cooksize == 0)
1687 return;
1688
1689 portp = tty->driver_data;
1690 if (portp == (stliport_t *) NULL)
1691 return;
1692 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1693 return;
1694 brdp = stli_brds[portp->brdnr];
1695 if (brdp == (stlibrd_t *) NULL)
1696 return;
1697
1698 save_flags(flags);
1699 cli();
1700 EBRDENABLE(brdp);
1701
1702 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1703 head = (unsigned int) ap->txq.head;
1704 tail = (unsigned int) ap->txq.tail;
1705 if (tail != ((unsigned int) ap->txq.tail))
1706 tail = (unsigned int) ap->txq.tail;
1707 size = portp->txsize;
1708 if (head >= tail) {
1709 len = size - (head - tail) - 1;
1710 stlen = size - head;
1711 } else {
1712 len = tail - head - 1;
1713 stlen = len;
1714 }
1715
1716 len = MIN(len, cooksize);
1717 count = 0;
1718 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1719 buf = stli_txcookbuf;
1720
1721 while (len > 0) {
1722 stlen = MIN(len, stlen);
1723 memcpy((shbuf + head), buf, stlen);
1724 buf += stlen;
1725 len -= stlen;
1726 count += stlen;
1727 head += stlen;
1728 if (head >= size) {
1729 head = 0;
1730 stlen = tail;
1731 }
1732 }
1733
1734 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1735 ap->txq.head = head;
1736
1737 if (test_bit(ST_TXBUSY, &portp->state)) {
1738 if (ap->changed.data & DT_TXEMPTY)
1739 ap->changed.data &= ~DT_TXEMPTY;
1740 }
1741 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1742 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1743 portp->portidx;
1744 *bits |= portp->portbit;
1745 set_bit(ST_TXBUSY, &portp->state);
1746
1747 EBRDDISABLE(brdp);
1748 restore_flags(flags);
1749}
1750
1751/*****************************************************************************/
1752
1753static int stli_writeroom(struct tty_struct *tty)
1754{
1755 volatile cdkasyrq_t *rp;
1756 stliport_t *portp;
1757 stlibrd_t *brdp;
1758 unsigned int head, tail, len;
1759 unsigned long flags;
1760
1761#ifdef DEBUG
1762 printk("stli_writeroom(tty=%x)\n", (int) tty);
1763#endif
1764
1765 if (tty == (struct tty_struct *) NULL)
1766 return(0);
1767 if (tty == stli_txcooktty) {
1768 if (stli_txcookrealsize != 0) {
1769 len = stli_txcookrealsize - stli_txcooksize;
1770 return(len);
1771 }
1772 }
1773
1774 portp = tty->driver_data;
1775 if (portp == (stliport_t *) NULL)
1776 return(0);
1777 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1778 return(0);
1779 brdp = stli_brds[portp->brdnr];
1780 if (brdp == (stlibrd_t *) NULL)
1781 return(0);
1782
1783 save_flags(flags);
1784 cli();
1785 EBRDENABLE(brdp);
1786 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1787 head = (unsigned int) rp->head;
1788 tail = (unsigned int) rp->tail;
1789 if (tail != ((unsigned int) rp->tail))
1790 tail = (unsigned int) rp->tail;
1791 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1792 len--;
1793 EBRDDISABLE(brdp);
1794 restore_flags(flags);
1795
1796 if (tty == stli_txcooktty) {
1797 stli_txcookrealsize = len;
1798 len -= stli_txcooksize;
1799 }
1800 return(len);
1801}
1802
1803/*****************************************************************************/
1804
1805/*
1806 * Return the number of characters in the transmit buffer. Normally we
1807 * will return the number of chars in the shared memory ring queue.
1808 * We need to kludge around the case where the shared memory buffer is
1809 * empty but not all characters have drained yet, for this case just
1810 * return that there is 1 character in the buffer!
1811 */
1812
1813static int stli_charsinbuffer(struct tty_struct *tty)
1814{
1815 volatile cdkasyrq_t *rp;
1816 stliport_t *portp;
1817 stlibrd_t *brdp;
1818 unsigned int head, tail, len;
1819 unsigned long flags;
1820
1821#ifdef DEBUG
1822 printk("stli_charsinbuffer(tty=%x)\n", (int) tty);
1823#endif
1824
1825 if (tty == (struct tty_struct *) NULL)
1826 return(0);
1827 if (tty == stli_txcooktty)
1828 stli_flushchars(tty);
1829 portp = tty->driver_data;
1830 if (portp == (stliport_t *) NULL)
1831 return(0);
1832 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1833 return(0);
1834 brdp = stli_brds[portp->brdnr];
1835 if (brdp == (stlibrd_t *) NULL)
1836 return(0);
1837
1838 save_flags(flags);
1839 cli();
1840 EBRDENABLE(brdp);
1841 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1842 head = (unsigned int) rp->head;
1843 tail = (unsigned int) rp->tail;
1844 if (tail != ((unsigned int) rp->tail))
1845 tail = (unsigned int) rp->tail;
1846 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1847 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1848 len = 1;
1849 EBRDDISABLE(brdp);
1850 restore_flags(flags);
1851
1852 return(len);
1853}
1854
1855/*****************************************************************************/
1856
1857/*
1858 * Generate the serial struct info.
1859 */
1860
1861static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
1862{
1863 struct serial_struct sio;
1864 stlibrd_t *brdp;
1865
1866#ifdef DEBUG
1867 printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1868#endif
1869
1870 memset(&sio, 0, sizeof(struct serial_struct));
1871 sio.type = PORT_UNKNOWN;
1872 sio.line = portp->portnr;
1873 sio.irq = 0;
1874 sio.flags = portp->flags;
1875 sio.baud_base = portp->baud_base;
1876 sio.close_delay = portp->close_delay;
1877 sio.closing_wait = portp->closing_wait;
1878 sio.custom_divisor = portp->custom_divisor;
1879 sio.xmit_fifo_size = 0;
1880 sio.hub6 = 0;
1881
1882 brdp = stli_brds[portp->brdnr];
1883 if (brdp != (stlibrd_t *) NULL)
1884 sio.port = brdp->iobase;
1885
1886 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1887 -EFAULT : 0;
1888}
1889
1890/*****************************************************************************/
1891
1892/*
1893 * Set port according to the serial struct info.
1894 * At this point we do not do any auto-configure stuff, so we will
1895 * just quietly ignore any requests to change irq, etc.
1896 */
1897
1898static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
1899{
1900 struct serial_struct sio;
1901 int rc;
1902
1903#ifdef DEBUG
1904 printk("stli_setserial(portp=%p,sp=%p)\n", portp, sp);
1905#endif
1906
1907 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1908 return -EFAULT;
1909 if (!capable(CAP_SYS_ADMIN)) {
1910 if ((sio.baud_base != portp->baud_base) ||
1911 (sio.close_delay != portp->close_delay) ||
1912 ((sio.flags & ~ASYNC_USR_MASK) !=
1913 (portp->flags & ~ASYNC_USR_MASK)))
1914 return(-EPERM);
1915 }
1916
1917 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1918 (sio.flags & ASYNC_USR_MASK);
1919 portp->baud_base = sio.baud_base;
1920 portp->close_delay = sio.close_delay;
1921 portp->closing_wait = sio.closing_wait;
1922 portp->custom_divisor = sio.custom_divisor;
1923
1924 if ((rc = stli_setport(portp)) < 0)
1925 return(rc);
1926 return(0);
1927}
1928
1929/*****************************************************************************/
1930
1931static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1932{
1933 stliport_t *portp = tty->driver_data;
1934 stlibrd_t *brdp;
1935 int rc;
1936
1937 if (portp == (stliport_t *) NULL)
1938 return(-ENODEV);
1939 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1940 return(0);
1941 brdp = stli_brds[portp->brdnr];
1942 if (brdp == (stlibrd_t *) NULL)
1943 return(0);
1944 if (tty->flags & (1 << TTY_IO_ERROR))
1945 return(-EIO);
1946
1947 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1948 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1949 return(rc);
1950
1951 return stli_mktiocm(portp->asig.sigvalue);
1952}
1953
1954static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1955 unsigned int set, unsigned int clear)
1956{
1957 stliport_t *portp = tty->driver_data;
1958 stlibrd_t *brdp;
1959 int rts = -1, dtr = -1;
1960
1961 if (portp == (stliport_t *) NULL)
1962 return(-ENODEV);
1963 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1964 return(0);
1965 brdp = stli_brds[portp->brdnr];
1966 if (brdp == (stlibrd_t *) NULL)
1967 return(0);
1968 if (tty->flags & (1 << TTY_IO_ERROR))
1969 return(-EIO);
1970
1971 if (set & TIOCM_RTS)
1972 rts = 1;
1973 if (set & TIOCM_DTR)
1974 dtr = 1;
1975 if (clear & TIOCM_RTS)
1976 rts = 0;
1977 if (clear & TIOCM_DTR)
1978 dtr = 0;
1979
1980 stli_mkasysigs(&portp->asig, dtr, rts);
1981
1982 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1983 sizeof(asysigs_t), 0);
1984}
1985
1986static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1987{
1988 stliport_t *portp;
1989 stlibrd_t *brdp;
1990 unsigned int ival;
1991 int rc;
1992 void __user *argp = (void __user *)arg;
1993
1994#ifdef DEBUG
1995 printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1996 (int) tty, (int) file, cmd, (int) arg);
1997#endif
1998
1999 if (tty == (struct tty_struct *) NULL)
2000 return(-ENODEV);
2001 portp = tty->driver_data;
2002 if (portp == (stliport_t *) NULL)
2003 return(-ENODEV);
2004 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2005 return(0);
2006 brdp = stli_brds[portp->brdnr];
2007 if (brdp == (stlibrd_t *) NULL)
2008 return(0);
2009
2010 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
2011 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
2012 if (tty->flags & (1 << TTY_IO_ERROR))
2013 return(-EIO);
2014 }
2015
2016 rc = 0;
2017
2018 switch (cmd) {
2019 case TIOCGSOFTCAR:
2020 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
2021 (unsigned __user *) arg);
2022 break;
2023 case TIOCSSOFTCAR:
2024 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
2025 tty->termios->c_cflag =
2026 (tty->termios->c_cflag & ~CLOCAL) |
2027 (ival ? CLOCAL : 0);
2028 break;
2029 case TIOCGSERIAL:
2030 rc = stli_getserial(portp, argp);
2031 break;
2032 case TIOCSSERIAL:
2033 rc = stli_setserial(portp, argp);
2034 break;
2035 case STL_GETPFLAG:
2036 rc = put_user(portp->pflag, (unsigned __user *)argp);
2037 break;
2038 case STL_SETPFLAG:
2039 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
2040 stli_setport(portp);
2041 break;
2042 case COM_GETPORTSTATS:
2043 rc = stli_getportstats(portp, argp);
2044 break;
2045 case COM_CLRPORTSTATS:
2046 rc = stli_clrportstats(portp, argp);
2047 break;
2048 case TIOCSERCONFIG:
2049 case TIOCSERGWILD:
2050 case TIOCSERSWILD:
2051 case TIOCSERGETLSR:
2052 case TIOCSERGSTRUCT:
2053 case TIOCSERGETMULTI:
2054 case TIOCSERSETMULTI:
2055 default:
2056 rc = -ENOIOCTLCMD;
2057 break;
2058 }
2059
2060 return(rc);
2061}
2062
2063/*****************************************************************************/
2064
2065/*
2066 * This routine assumes that we have user context and can sleep.
2067 * Looks like it is true for the current ttys implementation..!!
2068 */
2069
2070static void stli_settermios(struct tty_struct *tty, struct termios *old)
2071{
2072 stliport_t *portp;
2073 stlibrd_t *brdp;
2074 struct termios *tiosp;
2075 asyport_t aport;
2076
2077#ifdef DEBUG
2078 printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
2079#endif
2080
2081 if (tty == (struct tty_struct *) NULL)
2082 return;
2083 portp = tty->driver_data;
2084 if (portp == (stliport_t *) NULL)
2085 return;
2086 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2087 return;
2088 brdp = stli_brds[portp->brdnr];
2089 if (brdp == (stlibrd_t *) NULL)
2090 return;
2091
2092 tiosp = tty->termios;
2093 if ((tiosp->c_cflag == old->c_cflag) &&
2094 (tiosp->c_iflag == old->c_iflag))
2095 return;
2096
2097 stli_mkasyport(portp, &aport, tiosp);
2098 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
2099 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
2100 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
2101 sizeof(asysigs_t), 0);
2102 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
2103 tty->hw_stopped = 0;
2104 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
2105 wake_up_interruptible(&portp->open_wait);
2106}
2107
2108/*****************************************************************************/
2109
2110/*
2111 * Attempt to flow control who ever is sending us data. We won't really
2112 * do any flow control action here. We can't directly, and even if we
2113 * wanted to we would have to send a command to the slave. The slave
2114 * knows how to flow control, and will do so when its buffers reach its
2115 * internal high water marks. So what we will do is set a local state
2116 * bit that will stop us sending any RX data up from the poll routine
2117 * (which is the place where RX data from the slave is handled).
2118 */
2119
2120static void stli_throttle(struct tty_struct *tty)
2121{
2122 stliport_t *portp;
2123
2124#ifdef DEBUG
2125 printk("stli_throttle(tty=%x)\n", (int) tty);
2126#endif
2127
2128 if (tty == (struct tty_struct *) NULL)
2129 return;
2130 portp = tty->driver_data;
2131 if (portp == (stliport_t *) NULL)
2132 return;
2133
2134 set_bit(ST_RXSTOP, &portp->state);
2135}
2136
2137/*****************************************************************************/
2138
2139/*
2140 * Unflow control the device sending us data... That means that all
2141 * we have to do is clear the RXSTOP state bit. The next poll call
2142 * will then be able to pass the RX data back up.
2143 */
2144
2145static void stli_unthrottle(struct tty_struct *tty)
2146{
2147 stliport_t *portp;
2148
2149#ifdef DEBUG
2150 printk("stli_unthrottle(tty=%x)\n", (int) tty);
2151#endif
2152
2153 if (tty == (struct tty_struct *) NULL)
2154 return;
2155 portp = tty->driver_data;
2156 if (portp == (stliport_t *) NULL)
2157 return;
2158
2159 clear_bit(ST_RXSTOP, &portp->state);
2160}
2161
2162/*****************************************************************************/
2163
2164/*
2165 * Stop the transmitter. Basically to do this we will just turn TX
2166 * interrupts off.
2167 */
2168
2169static void stli_stop(struct tty_struct *tty)
2170{
2171 stlibrd_t *brdp;
2172 stliport_t *portp;
2173 asyctrl_t actrl;
2174
2175#ifdef DEBUG
2176 printk("stli_stop(tty=%x)\n", (int) tty);
2177#endif
2178
2179 if (tty == (struct tty_struct *) NULL)
2180 return;
2181 portp = tty->driver_data;
2182 if (portp == (stliport_t *) NULL)
2183 return;
2184 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2185 return;
2186 brdp = stli_brds[portp->brdnr];
2187 if (brdp == (stlibrd_t *) NULL)
2188 return;
2189
2190 memset(&actrl, 0, sizeof(asyctrl_t));
2191 actrl.txctrl = CT_STOPFLOW;
2192#if 0
2193 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2194#endif
2195}
2196
2197/*****************************************************************************/
2198
2199/*
2200 * Start the transmitter again. Just turn TX interrupts back on.
2201 */
2202
2203static void stli_start(struct tty_struct *tty)
2204{
2205 stliport_t *portp;
2206 stlibrd_t *brdp;
2207 asyctrl_t actrl;
2208
2209#ifdef DEBUG
2210 printk("stli_start(tty=%x)\n", (int) tty);
2211#endif
2212
2213 if (tty == (struct tty_struct *) NULL)
2214 return;
2215 portp = tty->driver_data;
2216 if (portp == (stliport_t *) NULL)
2217 return;
2218 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2219 return;
2220 brdp = stli_brds[portp->brdnr];
2221 if (brdp == (stlibrd_t *) NULL)
2222 return;
2223
2224 memset(&actrl, 0, sizeof(asyctrl_t));
2225 actrl.txctrl = CT_STARTFLOW;
2226#if 0
2227 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2228#endif
2229}
2230
2231/*****************************************************************************/
2232
2233/*
2234 * Scheduler called hang up routine. This is called from the scheduler,
2235 * not direct from the driver "poll" routine. We can't call it there
2236 * since the real local hangup code will enable/disable the board and
2237 * other things that we can't do while handling the poll. Much easier
2238 * to deal with it some time later (don't really care when, hangups
2239 * aren't that time critical).
2240 */
2241
2242static void stli_dohangup(void *arg)
2243{
2244 stliport_t *portp;
2245
2246#ifdef DEBUG
2247 printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg);
2248#endif
2249
2250 /*
2251 * FIXME: There's a module removal race here: tty_hangup
2252 * calls schedule_work which will call into this
2253 * driver later.
2254 */
2255 portp = (stliport_t *) arg;
2256 if (portp != (stliport_t *) NULL) {
2257 if (portp->tty != (struct tty_struct *) NULL) {
2258 tty_hangup(portp->tty);
2259 }
2260 }
2261}
2262
2263/*****************************************************************************/
2264
2265/*
2266 * Hangup this port. This is pretty much like closing the port, only
2267 * a little more brutal. No waiting for data to drain. Shutdown the
2268 * port and maybe drop signals. This is rather tricky really. We want
2269 * to close the port as well.
2270 */
2271
2272static void stli_hangup(struct tty_struct *tty)
2273{
2274 stliport_t *portp;
2275 stlibrd_t *brdp;
2276 unsigned long flags;
2277
2278#ifdef DEBUG
2279 printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty);
2280#endif
2281
2282 if (tty == (struct tty_struct *) NULL)
2283 return;
2284 portp = tty->driver_data;
2285 if (portp == (stliport_t *) NULL)
2286 return;
2287 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2288 return;
2289 brdp = stli_brds[portp->brdnr];
2290 if (brdp == (stlibrd_t *) NULL)
2291 return;
2292
2293 portp->flags &= ~ASYNC_INITIALIZED;
2294
2295 save_flags(flags);
2296 cli();
2297 if (! test_bit(ST_CLOSING, &portp->state))
2298 stli_rawclose(brdp, portp, 0, 0);
2299 if (tty->termios->c_cflag & HUPCL) {
2300 stli_mkasysigs(&portp->asig, 0, 0);
2301 if (test_bit(ST_CMDING, &portp->state)) {
2302 set_bit(ST_DOSIGS, &portp->state);
2303 set_bit(ST_DOFLUSHTX, &portp->state);
2304 set_bit(ST_DOFLUSHRX, &portp->state);
2305 } else {
2306 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2307 &portp->asig, sizeof(asysigs_t), 0);
2308 }
2309 }
2310 restore_flags(flags);
2311
2312 clear_bit(ST_TXBUSY, &portp->state);
2313 clear_bit(ST_RXSTOP, &portp->state);
2314 set_bit(TTY_IO_ERROR, &tty->flags);
2315 portp->tty = (struct tty_struct *) NULL;
2316 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
2317 portp->refcount = 0;
2318 wake_up_interruptible(&portp->open_wait);
2319}
2320
2321/*****************************************************************************/
2322
2323/*
2324 * Flush characters from the lower buffer. We may not have user context
2325 * so we cannot sleep waiting for it to complete. Also we need to check
2326 * if there is chars for this port in the TX cook buffer, and flush them
2327 * as well.
2328 */
2329
2330static void stli_flushbuffer(struct tty_struct *tty)
2331{
2332 stliport_t *portp;
2333 stlibrd_t *brdp;
2334 unsigned long ftype, flags;
2335
2336#ifdef DEBUG
2337 printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty);
2338#endif
2339
2340 if (tty == (struct tty_struct *) NULL)
2341 return;
2342 portp = tty->driver_data;
2343 if (portp == (stliport_t *) NULL)
2344 return;
2345 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2346 return;
2347 brdp = stli_brds[portp->brdnr];
2348 if (brdp == (stlibrd_t *) NULL)
2349 return;
2350
2351 save_flags(flags);
2352 cli();
2353 if (tty == stli_txcooktty) {
2354 stli_txcooktty = (struct tty_struct *) NULL;
2355 stli_txcooksize = 0;
2356 stli_txcookrealsize = 0;
2357 }
2358 if (test_bit(ST_CMDING, &portp->state)) {
2359 set_bit(ST_DOFLUSHTX, &portp->state);
2360 } else {
2361 ftype = FLUSHTX;
2362 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2363 ftype |= FLUSHRX;
2364 clear_bit(ST_DOFLUSHRX, &portp->state);
2365 }
2366 stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
2367 sizeof(unsigned long), 0);
2368 }
2369 restore_flags(flags);
2370
2371 wake_up_interruptible(&tty->write_wait);
2372 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2373 tty->ldisc.write_wakeup)
2374 (tty->ldisc.write_wakeup)(tty);
2375}
2376
2377/*****************************************************************************/
2378
2379static void stli_breakctl(struct tty_struct *tty, int state)
2380{
2381 stlibrd_t *brdp;
2382 stliport_t *portp;
2383 long arg;
2384 /* long savestate, savetime; */
2385
2386#ifdef DEBUG
2387 printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state);
2388#endif
2389
2390 if (tty == (struct tty_struct *) NULL)
2391 return;
2392 portp = tty->driver_data;
2393 if (portp == (stliport_t *) NULL)
2394 return;
2395 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2396 return;
2397 brdp = stli_brds[portp->brdnr];
2398 if (brdp == (stlibrd_t *) NULL)
2399 return;
2400
2401/*
2402 * Due to a bug in the tty send_break() code we need to preserve
2403 * the current process state and timeout...
2404 savetime = current->timeout;
2405 savestate = current->state;
2406 */
2407
2408 arg = (state == -1) ? BREAKON : BREAKOFF;
2409 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2410
2411/*
2412 *
2413 current->timeout = savetime;
2414 current->state = savestate;
2415 */
2416}
2417
2418/*****************************************************************************/
2419
2420static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2421{
2422 stliport_t *portp;
2423 unsigned long tend;
2424
2425#ifdef DEBUG
2426 printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout);
2427#endif
2428
2429 if (tty == (struct tty_struct *) NULL)
2430 return;
2431 portp = tty->driver_data;
2432 if (portp == (stliport_t *) NULL)
2433 return;
2434
2435 if (timeout == 0)
2436 timeout = HZ;
2437 tend = jiffies + timeout;
2438
2439 while (test_bit(ST_TXBUSY, &portp->state)) {
2440 if (signal_pending(current))
2441 break;
2442 msleep_interruptible(20);
2443 if (time_after_eq(jiffies, tend))
2444 break;
2445 }
2446}
2447
2448/*****************************************************************************/
2449
2450static void stli_sendxchar(struct tty_struct *tty, char ch)
2451{
2452 stlibrd_t *brdp;
2453 stliport_t *portp;
2454 asyctrl_t actrl;
2455
2456#ifdef DEBUG
2457 printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
2458#endif
2459
2460 if (tty == (struct tty_struct *) NULL)
2461 return;
2462 portp = tty->driver_data;
2463 if (portp == (stliport_t *) NULL)
2464 return;
2465 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2466 return;
2467 brdp = stli_brds[portp->brdnr];
2468 if (brdp == (stlibrd_t *) NULL)
2469 return;
2470
2471 memset(&actrl, 0, sizeof(asyctrl_t));
2472 if (ch == STOP_CHAR(tty)) {
2473 actrl.rxctrl = CT_STOPFLOW;
2474 } else if (ch == START_CHAR(tty)) {
2475 actrl.rxctrl = CT_STARTFLOW;
2476 } else {
2477 actrl.txctrl = CT_SENDCHR;
2478 actrl.tximdch = ch;
2479 }
2480
2481 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2482}
2483
2484/*****************************************************************************/
2485
2486#define MAXLINE 80
2487
2488/*
2489 * Format info for a specified port. The line is deliberately limited
2490 * to 80 characters. (If it is too long it will be truncated, if too
2491 * short then padded with spaces).
2492 */
2493
2494static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2495{
2496 char *sp, *uart;
2497 int rc, cnt;
2498
2499 rc = stli_portcmdstats(portp);
2500
2501 uart = "UNKNOWN";
2502 if (brdp->state & BST_STARTED) {
2503 switch (stli_comstats.hwid) {
2504 case 0: uart = "2681"; break;
2505 case 1: uart = "SC26198"; break;
2506 default: uart = "CD1400"; break;
2507 }
2508 }
2509
2510 sp = pos;
2511 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2512
2513 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2514 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2515 (int) stli_comstats.rxtotal);
2516
2517 if (stli_comstats.rxframing)
2518 sp += sprintf(sp, " fe:%d",
2519 (int) stli_comstats.rxframing);
2520 if (stli_comstats.rxparity)
2521 sp += sprintf(sp, " pe:%d",
2522 (int) stli_comstats.rxparity);
2523 if (stli_comstats.rxbreaks)
2524 sp += sprintf(sp, " brk:%d",
2525 (int) stli_comstats.rxbreaks);
2526 if (stli_comstats.rxoverrun)
2527 sp += sprintf(sp, " oe:%d",
2528 (int) stli_comstats.rxoverrun);
2529
2530 cnt = sprintf(sp, "%s%s%s%s%s ",
2531 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2532 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2533 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2534 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2535 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2536 *sp = ' ';
2537 sp += cnt;
2538 }
2539
2540 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2541 *sp++ = ' ';
2542 if (cnt >= MAXLINE)
2543 pos[(MAXLINE - 2)] = '+';
2544 pos[(MAXLINE - 1)] = '\n';
2545
2546 return(MAXLINE);
2547}
2548
2549/*****************************************************************************/
2550
2551/*
2552 * Port info, read from the /proc file system.
2553 */
2554
2555static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2556{
2557 stlibrd_t *brdp;
2558 stliport_t *portp;
2559 int brdnr, portnr, totalport;
2560 int curoff, maxoff;
2561 char *pos;
2562
2563#ifdef DEBUG
2564 printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2565 "data=%x\n", (int) page, (int) start, (int) off, count,
2566 (int) eof, (int) data);
2567#endif
2568
2569 pos = page;
2570 totalport = 0;
2571 curoff = 0;
2572
2573 if (off == 0) {
2574 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2575 stli_drvversion);
2576 while (pos < (page + MAXLINE - 1))
2577 *pos++ = ' ';
2578 *pos++ = '\n';
2579 }
2580 curoff = MAXLINE;
2581
2582/*
2583 * We scan through for each board, panel and port. The offset is
2584 * calculated on the fly, and irrelevant ports are skipped.
2585 */
2586 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2587 brdp = stli_brds[brdnr];
2588 if (brdp == (stlibrd_t *) NULL)
2589 continue;
2590 if (brdp->state == 0)
2591 continue;
2592
2593 maxoff = curoff + (brdp->nrports * MAXLINE);
2594 if (off >= maxoff) {
2595 curoff = maxoff;
2596 continue;
2597 }
2598
2599 totalport = brdnr * STL_MAXPORTS;
2600 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2601 totalport++) {
2602 portp = brdp->ports[portnr];
2603 if (portp == (stliport_t *) NULL)
2604 continue;
2605 if (off >= (curoff += MAXLINE))
2606 continue;
2607 if ((pos - page + MAXLINE) > count)
2608 goto stli_readdone;
2609 pos += stli_portinfo(brdp, portp, totalport, pos);
2610 }
2611 }
2612
2613 *eof = 1;
2614
2615stli_readdone:
2616 *start = page;
2617 return(pos - page);
2618}
2619
2620/*****************************************************************************/
2621
2622/*
2623 * Generic send command routine. This will send a message to the slave,
2624 * of the specified type with the specified argument. Must be very
2625 * careful of data that will be copied out from shared memory -
2626 * containing command results. The command completion is all done from
2627 * a poll routine that does not have user context. Therefore you cannot
2628 * copy back directly into user space, or to the kernel stack of a
2629 * process. This routine does not sleep, so can be called from anywhere.
2630 */
2631
2632static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2633{
2634 volatile cdkhdr_t *hdrp;
2635 volatile cdkctrl_t *cp;
2636 volatile unsigned char *bits;
2637 unsigned long flags;
2638
2639#ifdef DEBUG
2640 printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2641 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
2642 (int) arg, size, copyback);
2643#endif
2644
2645 save_flags(flags);
2646 cli();
2647
2648 if (test_bit(ST_CMDING, &portp->state)) {
2649 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2650 (int) cmd);
2651 restore_flags(flags);
2652 return;
2653 }
2654
2655 EBRDENABLE(brdp);
2656 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2657 if (size > 0) {
2658 memcpy((void *) &(cp->args[0]), arg, size);
2659 if (copyback) {
2660 portp->argp = arg;
2661 portp->argsize = size;
2662 }
2663 }
2664 cp->status = 0;
2665 cp->cmd = cmd;
2666 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2667 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
2668 portp->portidx;
2669 *bits |= portp->portbit;
2670 set_bit(ST_CMDING, &portp->state);
2671 EBRDDISABLE(brdp);
2672 restore_flags(flags);
2673}
2674
2675/*****************************************************************************/
2676
2677/*
2678 * Read data from shared memory. This assumes that the shared memory
2679 * is enabled and that interrupts are off. Basically we just empty out
2680 * the shared memory buffer into the tty buffer. Must be careful to
2681 * handle the case where we fill up the tty buffer, but still have
2682 * more chars to unload.
2683 */
2684
2685static void stli_read(stlibrd_t *brdp, stliport_t *portp)
2686{
2687 volatile cdkasyrq_t *rp;
2688 volatile char *shbuf;
2689 struct tty_struct *tty;
2690 unsigned int head, tail, size;
2691 unsigned int len, stlen;
2692
2693#ifdef DEBUG
2694 printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n",
2695 (int) brdp, (int) portp);
2696#endif
2697
2698 if (test_bit(ST_RXSTOP, &portp->state))
2699 return;
2700 tty = portp->tty;
2701 if (tty == (struct tty_struct *) NULL)
2702 return;
2703
2704 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2705 head = (unsigned int) rp->head;
2706 if (head != ((unsigned int) rp->head))
2707 head = (unsigned int) rp->head;
2708 tail = (unsigned int) rp->tail;
2709 size = portp->rxsize;
2710 if (head >= tail) {
2711 len = head - tail;
2712 stlen = len;
2713 } else {
2714 len = size - (tail - head);
2715 stlen = size - tail;
2716 }
2717
2718 len = MIN(len, (TTY_FLIPBUF_SIZE - tty->flip.count));
2719 shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2720
2721 while (len > 0) {
2722 stlen = MIN(len, stlen);
2723 memcpy(tty->flip.char_buf_ptr, (char *) (shbuf + tail), stlen);
2724 memset(tty->flip.flag_buf_ptr, 0, stlen);
2725 tty->flip.char_buf_ptr += stlen;
2726 tty->flip.flag_buf_ptr += stlen;
2727 tty->flip.count += stlen;
2728
2729 len -= stlen;
2730 tail += stlen;
2731 if (tail >= size) {
2732 tail = 0;
2733 stlen = head;
2734 }
2735 }
2736 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2737 rp->tail = tail;
2738
2739 if (head != tail)
2740 set_bit(ST_RXING, &portp->state);
2741
2742 tty_schedule_flip(tty);
2743}
2744
2745/*****************************************************************************/
2746
2747/*
2748 * Set up and carry out any delayed commands. There is only a small set
2749 * of slave commands that can be done "off-level". So it is not too
2750 * difficult to deal with them here.
2751 */
2752
2753static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
2754{
2755 int cmd;
2756
2757 if (test_bit(ST_DOSIGS, &portp->state)) {
2758 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2759 test_bit(ST_DOFLUSHRX, &portp->state))
2760 cmd = A_SETSIGNALSF;
2761 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2762 cmd = A_SETSIGNALSFTX;
2763 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2764 cmd = A_SETSIGNALSFRX;
2765 else
2766 cmd = A_SETSIGNALS;
2767 clear_bit(ST_DOFLUSHTX, &portp->state);
2768 clear_bit(ST_DOFLUSHRX, &portp->state);
2769 clear_bit(ST_DOSIGS, &portp->state);
2770 memcpy((void *) &(cp->args[0]), (void *) &portp->asig,
2771 sizeof(asysigs_t));
2772 cp->status = 0;
2773 cp->cmd = cmd;
2774 set_bit(ST_CMDING, &portp->state);
2775 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2776 test_bit(ST_DOFLUSHRX, &portp->state)) {
2777 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2778 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2779 clear_bit(ST_DOFLUSHTX, &portp->state);
2780 clear_bit(ST_DOFLUSHRX, &portp->state);
2781 memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2782 cp->status = 0;
2783 cp->cmd = A_FLUSH;
2784 set_bit(ST_CMDING, &portp->state);
2785 }
2786}
2787
2788/*****************************************************************************/
2789
2790/*
2791 * Host command service checking. This handles commands or messages
2792 * coming from the slave to the host. Must have board shared memory
2793 * enabled and interrupts off when called. Notice that by servicing the
2794 * read data last we don't need to change the shared memory pointer
2795 * during processing (which is a slow IO operation).
2796 * Return value indicates if this port is still awaiting actions from
2797 * the slave (like open, command, or even TX data being sent). If 0
2798 * then port is still busy, otherwise no longer busy.
2799 */
2800
2801static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2802{
2803 volatile cdkasy_t *ap;
2804 volatile cdkctrl_t *cp;
2805 struct tty_struct *tty;
2806 asynotify_t nt;
2807 unsigned long oldsigs;
2808 int rc, donerx;
2809
2810#ifdef DEBUG
2811 printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n",
2812 (int) brdp, channr);
2813#endif
2814
2815 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
2816 cp = &ap->ctrl;
2817
2818/*
2819 * Check if we are waiting for an open completion message.
2820 */
2821 if (test_bit(ST_OPENING, &portp->state)) {
2822 rc = (int) cp->openarg;
2823 if ((cp->open == 0) && (rc != 0)) {
2824 if (rc > 0)
2825 rc--;
2826 cp->openarg = 0;
2827 portp->rc = rc;
2828 clear_bit(ST_OPENING, &portp->state);
2829 wake_up_interruptible(&portp->raw_wait);
2830 }
2831 }
2832
2833/*
2834 * Check if we are waiting for a close completion message.
2835 */
2836 if (test_bit(ST_CLOSING, &portp->state)) {
2837 rc = (int) cp->closearg;
2838 if ((cp->close == 0) && (rc != 0)) {
2839 if (rc > 0)
2840 rc--;
2841 cp->closearg = 0;
2842 portp->rc = rc;
2843 clear_bit(ST_CLOSING, &portp->state);
2844 wake_up_interruptible(&portp->raw_wait);
2845 }
2846 }
2847
2848/*
2849 * Check if we are waiting for a command completion message. We may
2850 * need to copy out the command results associated with this command.
2851 */
2852 if (test_bit(ST_CMDING, &portp->state)) {
2853 rc = cp->status;
2854 if ((cp->cmd == 0) && (rc != 0)) {
2855 if (rc > 0)
2856 rc--;
2857 if (portp->argp != (void *) NULL) {
2858 memcpy(portp->argp, (void *) &(cp->args[0]),
2859 portp->argsize);
2860 portp->argp = (void *) NULL;
2861 }
2862 cp->status = 0;
2863 portp->rc = rc;
2864 clear_bit(ST_CMDING, &portp->state);
2865 stli_dodelaycmd(portp, cp);
2866 wake_up_interruptible(&portp->raw_wait);
2867 }
2868 }
2869
2870/*
2871 * Check for any notification messages ready. This includes lots of
2872 * different types of events - RX chars ready, RX break received,
2873 * TX data low or empty in the slave, modem signals changed state.
2874 */
2875 donerx = 0;
2876
2877 if (ap->notify) {
2878 nt = ap->changed;
2879 ap->notify = 0;
2880 tty = portp->tty;
2881
2882 if (nt.signal & SG_DCD) {
2883 oldsigs = portp->sigs;
2884 portp->sigs = stli_mktiocm(nt.sigvalue);
2885 clear_bit(ST_GETSIGS, &portp->state);
2886 if ((portp->sigs & TIOCM_CD) &&
2887 ((oldsigs & TIOCM_CD) == 0))
2888 wake_up_interruptible(&portp->open_wait);
2889 if ((oldsigs & TIOCM_CD) &&
2890 ((portp->sigs & TIOCM_CD) == 0)) {
2891 if (portp->flags & ASYNC_CHECK_CD) {
2892 if (tty)
2893 schedule_work(&portp->tqhangup);
2894 }
2895 }
2896 }
2897
2898 if (nt.data & DT_TXEMPTY)
2899 clear_bit(ST_TXBUSY, &portp->state);
2900 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2901 if (tty != (struct tty_struct *) NULL) {
2902 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2903 tty->ldisc.write_wakeup) {
2904 (tty->ldisc.write_wakeup)(tty);
2905 EBRDENABLE(brdp);
2906 }
2907 wake_up_interruptible(&tty->write_wait);
2908 }
2909 }
2910
2911 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2912 if (tty != (struct tty_struct *) NULL) {
2913 if (tty->flip.count < TTY_FLIPBUF_SIZE) {
2914 tty->flip.count++;
2915 *tty->flip.flag_buf_ptr++ = TTY_BREAK;
2916 *tty->flip.char_buf_ptr++ = 0;
2917 if (portp->flags & ASYNC_SAK) {
2918 do_SAK(tty);
2919 EBRDENABLE(brdp);
2920 }
2921 tty_schedule_flip(tty);
2922 }
2923 }
2924 }
2925
2926 if (nt.data & DT_RXBUSY) {
2927 donerx++;
2928 stli_read(brdp, portp);
2929 }
2930 }
2931
2932/*
2933 * It might seem odd that we are checking for more RX chars here.
2934 * But, we need to handle the case where the tty buffer was previously
2935 * filled, but we had more characters to pass up. The slave will not
2936 * send any more RX notify messages until the RX buffer has been emptied.
2937 * But it will leave the service bits on (since the buffer is not empty).
2938 * So from here we can try to process more RX chars.
2939 */
2940 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2941 clear_bit(ST_RXING, &portp->state);
2942 stli_read(brdp, portp);
2943 }
2944
2945 return((test_bit(ST_OPENING, &portp->state) ||
2946 test_bit(ST_CLOSING, &portp->state) ||
2947 test_bit(ST_CMDING, &portp->state) ||
2948 test_bit(ST_TXBUSY, &portp->state) ||
2949 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2950}
2951
2952/*****************************************************************************/
2953
2954/*
2955 * Service all ports on a particular board. Assumes that the boards
2956 * shared memory is enabled, and that the page pointer is pointed
2957 * at the cdk header structure.
2958 */
2959
2960static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
2961{
2962 stliport_t *portp;
2963 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2964 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2965 unsigned char *slavep;
2966 int bitpos, bitat, bitsize;
2967 int channr, nrdevs, slavebitchange;
2968
2969 bitsize = brdp->bitsize;
2970 nrdevs = brdp->nrdevs;
2971
2972/*
2973 * Check if slave wants any service. Basically we try to do as
2974 * little work as possible here. There are 2 levels of service
2975 * bits. So if there is nothing to do we bail early. We check
2976 * 8 service bits at a time in the inner loop, so we can bypass
2977 * the lot if none of them want service.
2978 */
2979 memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset),
2980 bitsize);
2981
2982 memset(&slavebits[0], 0, bitsize);
2983 slavebitchange = 0;
2984
2985 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2986 if (hostbits[bitpos] == 0)
2987 continue;
2988 channr = bitpos * 8;
2989 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2990 if (hostbits[bitpos] & bitat) {
2991 portp = brdp->ports[(channr - 1)];
2992 if (stli_hostcmd(brdp, portp)) {
2993 slavebitchange++;
2994 slavebits[bitpos] |= bitat;
2995 }
2996 }
2997 }
2998 }
2999
3000/*
3001 * If any of the ports are no longer busy then update them in the
3002 * slave request bits. We need to do this after, since a host port
3003 * service may initiate more slave requests.
3004 */
3005 if (slavebitchange) {
3006 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3007 slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
3008 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
3009 if (slavebits[bitpos])
3010 slavep[bitpos] &= ~slavebits[bitpos];
3011 }
3012 }
3013}
3014
3015/*****************************************************************************/
3016
3017/*
3018 * Driver poll routine. This routine polls the boards in use and passes
3019 * messages back up to host when necessary. This is actually very
3020 * CPU efficient, since we will always have the kernel poll clock, it
3021 * adds only a few cycles when idle (since board service can be
3022 * determined very easily), but when loaded generates no interrupts
3023 * (with their expensive associated context change).
3024 */
3025
3026static void stli_poll(unsigned long arg)
3027{
3028 volatile cdkhdr_t *hdrp;
3029 stlibrd_t *brdp;
3030 int brdnr;
3031
3032 stli_timerlist.expires = STLI_TIMEOUT;
3033 add_timer(&stli_timerlist);
3034
3035/*
3036 * Check each board and do any servicing required.
3037 */
3038 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
3039 brdp = stli_brds[brdnr];
3040 if (brdp == (stlibrd_t *) NULL)
3041 continue;
3042 if ((brdp->state & BST_STARTED) == 0)
3043 continue;
3044
3045 EBRDENABLE(brdp);
3046 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3047 if (hdrp->hostreq)
3048 stli_brdpoll(brdp, hdrp);
3049 EBRDDISABLE(brdp);
3050 }
3051}
3052
3053/*****************************************************************************/
3054
3055/*
3056 * Translate the termios settings into the port setting structure of
3057 * the slave.
3058 */
3059
3060static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
3061{
3062#ifdef DEBUG
3063 printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3064 (int) portp, (int) pp, (int) tiosp);
3065#endif
3066
3067 memset(pp, 0, sizeof(asyport_t));
3068
3069/*
3070 * Start of by setting the baud, char size, parity and stop bit info.
3071 */
3072 pp->baudout = tiosp->c_cflag & CBAUD;
3073 if (pp->baudout & CBAUDEX) {
3074 pp->baudout &= ~CBAUDEX;
3075 if ((pp->baudout < 1) || (pp->baudout > 4))
3076 tiosp->c_cflag &= ~CBAUDEX;
3077 else
3078 pp->baudout += 15;
3079 }
3080 pp->baudout = stli_baudrates[pp->baudout];
3081 if ((tiosp->c_cflag & CBAUD) == B38400) {
3082 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3083 pp->baudout = 57600;
3084 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3085 pp->baudout = 115200;
3086 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3087 pp->baudout = 230400;
3088 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3089 pp->baudout = 460800;
3090 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3091 pp->baudout = (portp->baud_base / portp->custom_divisor);
3092 }
3093 if (pp->baudout > STL_MAXBAUD)
3094 pp->baudout = STL_MAXBAUD;
3095 pp->baudin = pp->baudout;
3096
3097 switch (tiosp->c_cflag & CSIZE) {
3098 case CS5:
3099 pp->csize = 5;
3100 break;
3101 case CS6:
3102 pp->csize = 6;
3103 break;
3104 case CS7:
3105 pp->csize = 7;
3106 break;
3107 default:
3108 pp->csize = 8;
3109 break;
3110 }
3111
3112 if (tiosp->c_cflag & CSTOPB)
3113 pp->stopbs = PT_STOP2;
3114 else
3115 pp->stopbs = PT_STOP1;
3116
3117 if (tiosp->c_cflag & PARENB) {
3118 if (tiosp->c_cflag & PARODD)
3119 pp->parity = PT_ODDPARITY;
3120 else
3121 pp->parity = PT_EVENPARITY;
3122 } else {
3123 pp->parity = PT_NOPARITY;
3124 }
3125
3126/*
3127 * Set up any flow control options enabled.
3128 */
3129 if (tiosp->c_iflag & IXON) {
3130 pp->flow |= F_IXON;
3131 if (tiosp->c_iflag & IXANY)
3132 pp->flow |= F_IXANY;
3133 }
3134 if (tiosp->c_cflag & CRTSCTS)
3135 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
3136
3137 pp->startin = tiosp->c_cc[VSTART];
3138 pp->stopin = tiosp->c_cc[VSTOP];
3139 pp->startout = tiosp->c_cc[VSTART];
3140 pp->stopout = tiosp->c_cc[VSTOP];
3141
3142/*
3143 * Set up the RX char marking mask with those RX error types we must
3144 * catch. We can get the slave to help us out a little here, it will
3145 * ignore parity errors and breaks for us, and mark parity errors in
3146 * the data stream.
3147 */
3148 if (tiosp->c_iflag & IGNPAR)
3149 pp->iflag |= FI_IGNRXERRS;
3150 if (tiosp->c_iflag & IGNBRK)
3151 pp->iflag |= FI_IGNBREAK;
3152
3153 portp->rxmarkmsk = 0;
3154 if (tiosp->c_iflag & (INPCK | PARMRK))
3155 pp->iflag |= FI_1MARKRXERRS;
3156 if (tiosp->c_iflag & BRKINT)
3157 portp->rxmarkmsk |= BRKINT;
3158
3159/*
3160 * Set up clocal processing as required.
3161 */
3162 if (tiosp->c_cflag & CLOCAL)
3163 portp->flags &= ~ASYNC_CHECK_CD;
3164 else
3165 portp->flags |= ASYNC_CHECK_CD;
3166
3167/*
3168 * Transfer any persistent flags into the asyport structure.
3169 */
3170 pp->pflag = (portp->pflag & 0xffff);
3171 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
3172 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
3173 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
3174}
3175
3176/*****************************************************************************/
3177
3178/*
3179 * Construct a slave signals structure for setting the DTR and RTS
3180 * signals as specified.
3181 */
3182
3183static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
3184{
3185#ifdef DEBUG
3186 printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3187 (int) sp, dtr, rts);
3188#endif
3189
3190 memset(sp, 0, sizeof(asysigs_t));
3191 if (dtr >= 0) {
3192 sp->signal |= SG_DTR;
3193 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
3194 }
3195 if (rts >= 0) {
3196 sp->signal |= SG_RTS;
3197 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
3198 }
3199}
3200
3201/*****************************************************************************/
3202
3203/*
3204 * Convert the signals returned from the slave into a local TIOCM type
3205 * signals value. We keep them locally in TIOCM format.
3206 */
3207
3208static long stli_mktiocm(unsigned long sigvalue)
3209{
3210 long tiocm;
3211
3212#ifdef DEBUG
3213 printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
3214#endif
3215
3216 tiocm = 0;
3217 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
3218 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
3219 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
3220 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
3221 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
3222 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
3223 return(tiocm);
3224}
3225
3226/*****************************************************************************/
3227
3228/*
3229 * All panels and ports actually attached have been worked out. All
3230 * we need to do here is set up the appropriate per port data structures.
3231 */
3232
3233static int stli_initports(stlibrd_t *brdp)
3234{
3235 stliport_t *portp;
3236 int i, panelnr, panelport;
3237
3238#ifdef DEBUG
3239 printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp);
3240#endif
3241
3242 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
3243 portp = (stliport_t *) stli_memalloc(sizeof(stliport_t));
3244 if (portp == (stliport_t *) NULL) {
3245 printk("STALLION: failed to allocate port structure\n");
3246 continue;
3247 }
3248
3249 memset(portp, 0, sizeof(stliport_t));
3250 portp->magic = STLI_PORTMAGIC;
3251 portp->portnr = i;
3252 portp->brdnr = brdp->brdnr;
3253 portp->panelnr = panelnr;
3254 portp->baud_base = STL_BAUDBASE;
3255 portp->close_delay = STL_CLOSEDELAY;
3256 portp->closing_wait = 30 * HZ;
3257 INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
3258 init_waitqueue_head(&portp->open_wait);
3259 init_waitqueue_head(&portp->close_wait);
3260 init_waitqueue_head(&portp->raw_wait);
3261 panelport++;
3262 if (panelport >= brdp->panels[panelnr]) {
3263 panelport = 0;
3264 panelnr++;
3265 }
3266 brdp->ports[i] = portp;
3267 }
3268
3269 return(0);
3270}
3271
3272/*****************************************************************************/
3273
3274/*
3275 * All the following routines are board specific hardware operations.
3276 */
3277
3278static void stli_ecpinit(stlibrd_t *brdp)
3279{
3280 unsigned long memconf;
3281
3282#ifdef DEBUG
3283 printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp);
3284#endif
3285
3286 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3287 udelay(10);
3288 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3289 udelay(100);
3290
3291 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
3292 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
3293}
3294
3295/*****************************************************************************/
3296
3297static void stli_ecpenable(stlibrd_t *brdp)
3298{
3299#ifdef DEBUG
3300 printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp);
3301#endif
3302 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
3303}
3304
3305/*****************************************************************************/
3306
3307static void stli_ecpdisable(stlibrd_t *brdp)
3308{
3309#ifdef DEBUG
3310 printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp);
3311#endif
3312 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3313}
3314
3315/*****************************************************************************/
3316
3317static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3318{
3319 void *ptr;
3320 unsigned char val;
3321
3322#ifdef DEBUG
3323 printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3324 (int) offset);
3325#endif
3326
3327 if (offset > brdp->memsize) {
3328 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3329 "range at line=%d(%d), brd=%d\n",
3330 (int) offset, line, __LINE__, brdp->brdnr);
3331 ptr = NULL;
3332 val = 0;
3333 } else {
3334 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
3335 val = (unsigned char) (offset / ECP_ATPAGESIZE);
3336 }
3337 outb(val, (brdp->iobase + ECP_ATMEMPR));
3338 return(ptr);
3339}
3340
3341/*****************************************************************************/
3342
3343static void stli_ecpreset(stlibrd_t *brdp)
3344{
3345#ifdef DEBUG
3346 printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp);
3347#endif
3348
3349 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3350 udelay(10);
3351 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3352 udelay(500);
3353}
3354
3355/*****************************************************************************/
3356
3357static void stli_ecpintr(stlibrd_t *brdp)
3358{
3359#ifdef DEBUG
3360 printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp);
3361#endif
3362 outb(0x1, brdp->iobase);
3363}
3364
3365/*****************************************************************************/
3366
3367/*
3368 * The following set of functions act on ECP EISA boards.
3369 */
3370
3371static void stli_ecpeiinit(stlibrd_t *brdp)
3372{
3373 unsigned long memconf;
3374
3375#ifdef DEBUG
3376 printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp);
3377#endif
3378
3379 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3380 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3381 udelay(10);
3382 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3383 udelay(500);
3384
3385 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3386 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3387 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3388 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3389}
3390
3391/*****************************************************************************/
3392
3393static void stli_ecpeienable(stlibrd_t *brdp)
3394{
3395 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3396}
3397
3398/*****************************************************************************/
3399
3400static void stli_ecpeidisable(stlibrd_t *brdp)
3401{
3402 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3403}
3404
3405/*****************************************************************************/
3406
3407static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3408{
3409 void *ptr;
3410 unsigned char val;
3411
3412#ifdef DEBUG
3413 printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3414 (int) brdp, (int) offset, line);
3415#endif
3416
3417 if (offset > brdp->memsize) {
3418 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3419 "range at line=%d(%d), brd=%d\n",
3420 (int) offset, line, __LINE__, brdp->brdnr);
3421 ptr = NULL;
3422 val = 0;
3423 } else {
3424 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3425 if (offset < ECP_EIPAGESIZE)
3426 val = ECP_EIENABLE;
3427 else
3428 val = ECP_EIENABLE | 0x40;
3429 }
3430 outb(val, (brdp->iobase + ECP_EICONFR));
3431 return(ptr);
3432}
3433
3434/*****************************************************************************/
3435
3436static void stli_ecpeireset(stlibrd_t *brdp)
3437{
3438 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3439 udelay(10);
3440 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3441 udelay(500);
3442}
3443
3444/*****************************************************************************/
3445
3446/*
3447 * The following set of functions act on ECP MCA boards.
3448 */
3449
3450static void stli_ecpmcenable(stlibrd_t *brdp)
3451{
3452 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3453}
3454
3455/*****************************************************************************/
3456
3457static void stli_ecpmcdisable(stlibrd_t *brdp)
3458{
3459 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3460}
3461
3462/*****************************************************************************/
3463
3464static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3465{
3466 void *ptr;
3467 unsigned char val;
3468
3469 if (offset > brdp->memsize) {
3470 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3471 "range at line=%d(%d), brd=%d\n",
3472 (int) offset, line, __LINE__, brdp->brdnr);
3473 ptr = NULL;
3474 val = 0;
3475 } else {
3476 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3477 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3478 }
3479 outb(val, (brdp->iobase + ECP_MCCONFR));
3480 return(ptr);
3481}
3482
3483/*****************************************************************************/
3484
3485static void stli_ecpmcreset(stlibrd_t *brdp)
3486{
3487 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3488 udelay(10);
3489 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3490 udelay(500);
3491}
3492
3493/*****************************************************************************/
3494
3495/*
3496 * The following set of functions act on ECP PCI boards.
3497 */
3498
3499static void stli_ecppciinit(stlibrd_t *brdp)
3500{
3501#ifdef DEBUG
3502 printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp);
3503#endif
3504
3505 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3506 udelay(10);
3507 outb(0, (brdp->iobase + ECP_PCICONFR));
3508 udelay(500);
3509}
3510
3511/*****************************************************************************/
3512
3513static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3514{
3515 void *ptr;
3516 unsigned char val;
3517
3518#ifdef DEBUG
3519 printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3520 (int) brdp, (int) offset, line);
3521#endif
3522
3523 if (offset > brdp->memsize) {
3524 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3525 "range at line=%d(%d), board=%d\n",
3526 (int) offset, line, __LINE__, brdp->brdnr);
3527 ptr = NULL;
3528 val = 0;
3529 } else {
3530 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3531 val = (offset / ECP_PCIPAGESIZE) << 1;
3532 }
3533 outb(val, (brdp->iobase + ECP_PCICONFR));
3534 return(ptr);
3535}
3536
3537/*****************************************************************************/
3538
3539static void stli_ecppcireset(stlibrd_t *brdp)
3540{
3541 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3542 udelay(10);
3543 outb(0, (brdp->iobase + ECP_PCICONFR));
3544 udelay(500);
3545}
3546
3547/*****************************************************************************/
3548
3549/*
3550 * The following routines act on ONboards.
3551 */
3552
3553static void stli_onbinit(stlibrd_t *brdp)
3554{
3555 unsigned long memconf;
3556
3557#ifdef DEBUG
3558 printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp);
3559#endif
3560
3561 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3562 udelay(10);
3563 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3564 mdelay(1000);
3565
3566 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3567 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3568 outb(0x1, brdp->iobase);
3569 mdelay(1);
3570}
3571
3572/*****************************************************************************/
3573
3574static void stli_onbenable(stlibrd_t *brdp)
3575{
3576#ifdef DEBUG
3577 printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp);
3578#endif
3579 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3580}
3581
3582/*****************************************************************************/
3583
3584static void stli_onbdisable(stlibrd_t *brdp)
3585{
3586#ifdef DEBUG
3587 printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp);
3588#endif
3589 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3590}
3591
3592/*****************************************************************************/
3593
3594static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3595{
3596 void *ptr;
3597
3598#ifdef DEBUG
3599 printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3600 (int) offset);
3601#endif
3602
3603 if (offset > brdp->memsize) {
3604 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3605 "range at line=%d(%d), brd=%d\n",
3606 (int) offset, line, __LINE__, brdp->brdnr);
3607 ptr = NULL;
3608 } else {
3609 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3610 }
3611 return(ptr);
3612}
3613
3614/*****************************************************************************/
3615
3616static void stli_onbreset(stlibrd_t *brdp)
3617{
3618
3619#ifdef DEBUG
3620 printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp);
3621#endif
3622
3623 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3624 udelay(10);
3625 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3626 mdelay(1000);
3627}
3628
3629/*****************************************************************************/
3630
3631/*
3632 * The following routines act on ONboard EISA.
3633 */
3634
3635static void stli_onbeinit(stlibrd_t *brdp)
3636{
3637 unsigned long memconf;
3638
3639#ifdef DEBUG
3640 printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp);
3641#endif
3642
3643 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3644 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3645 udelay(10);
3646 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3647 mdelay(1000);
3648
3649 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3650 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3651 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3652 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3653 outb(0x1, brdp->iobase);
3654 mdelay(1);
3655}
3656
3657/*****************************************************************************/
3658
3659static void stli_onbeenable(stlibrd_t *brdp)
3660{
3661#ifdef DEBUG
3662 printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp);
3663#endif
3664 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3665}
3666
3667/*****************************************************************************/
3668
3669static void stli_onbedisable(stlibrd_t *brdp)
3670{
3671#ifdef DEBUG
3672 printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp);
3673#endif
3674 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3675}
3676
3677/*****************************************************************************/
3678
3679static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3680{
3681 void *ptr;
3682 unsigned char val;
3683
3684#ifdef DEBUG
3685 printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3686 (int) brdp, (int) offset, line);
3687#endif
3688
3689 if (offset > brdp->memsize) {
3690 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3691 "range at line=%d(%d), brd=%d\n",
3692 (int) offset, line, __LINE__, brdp->brdnr);
3693 ptr = NULL;
3694 val = 0;
3695 } else {
3696 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3697 if (offset < ONB_EIPAGESIZE)
3698 val = ONB_EIENABLE;
3699 else
3700 val = ONB_EIENABLE | 0x40;
3701 }
3702 outb(val, (brdp->iobase + ONB_EICONFR));
3703 return(ptr);
3704}
3705
3706/*****************************************************************************/
3707
3708static void stli_onbereset(stlibrd_t *brdp)
3709{
3710
3711#ifdef DEBUG
3712 printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp);
3713#endif
3714
3715 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3716 udelay(10);
3717 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3718 mdelay(1000);
3719}
3720
3721/*****************************************************************************/
3722
3723/*
3724 * The following routines act on Brumby boards.
3725 */
3726
3727static void stli_bbyinit(stlibrd_t *brdp)
3728{
3729
3730#ifdef DEBUG
3731 printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp);
3732#endif
3733
3734 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3735 udelay(10);
3736 outb(0, (brdp->iobase + BBY_ATCONFR));
3737 mdelay(1000);
3738 outb(0x1, brdp->iobase);
3739 mdelay(1);
3740}
3741
3742/*****************************************************************************/
3743
3744static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3745{
3746 void *ptr;
3747 unsigned char val;
3748
3749#ifdef DEBUG
3750 printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3751 (int) offset);
3752#endif
3753
3754 if (offset > brdp->memsize) {
3755 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3756 "range at line=%d(%d), brd=%d\n",
3757 (int) offset, line, __LINE__, brdp->brdnr);
3758 ptr = NULL;
3759 val = 0;
3760 } else {
3761 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3762 val = (unsigned char) (offset / BBY_PAGESIZE);
3763 }
3764 outb(val, (brdp->iobase + BBY_ATCONFR));
3765 return(ptr);
3766}
3767
3768/*****************************************************************************/
3769
3770static void stli_bbyreset(stlibrd_t *brdp)
3771{
3772
3773#ifdef DEBUG
3774 printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp);
3775#endif
3776
3777 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3778 udelay(10);
3779 outb(0, (brdp->iobase + BBY_ATCONFR));
3780 mdelay(1000);
3781}
3782
3783/*****************************************************************************/
3784
3785/*
3786 * The following routines act on original old Stallion boards.
3787 */
3788
3789static void stli_stalinit(stlibrd_t *brdp)
3790{
3791
3792#ifdef DEBUG
3793 printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp);
3794#endif
3795
3796 outb(0x1, brdp->iobase);
3797 mdelay(1000);
3798}
3799
3800/*****************************************************************************/
3801
3802static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3803{
3804 void *ptr;
3805
3806#ifdef DEBUG
3807 printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3808 (int) offset);
3809#endif
3810
3811 if (offset > brdp->memsize) {
3812 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3813 "range at line=%d(%d), brd=%d\n",
3814 (int) offset, line, __LINE__, brdp->brdnr);
3815 ptr = NULL;
3816 } else {
3817 ptr = brdp->membase + (offset % STAL_PAGESIZE);
3818 }
3819 return(ptr);
3820}
3821
3822/*****************************************************************************/
3823
3824static void stli_stalreset(stlibrd_t *brdp)
3825{
3826 volatile unsigned long *vecp;
3827
3828#ifdef DEBUG
3829 printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp);
3830#endif
3831
3832 vecp = (volatile unsigned long *) (brdp->membase + 0x30);
3833 *vecp = 0xffff0000;
3834 outb(0, brdp->iobase);
3835 mdelay(1000);
3836}
3837
3838/*****************************************************************************/
3839
3840/*
3841 * Try to find an ECP board and initialize it. This handles only ECP
3842 * board types.
3843 */
3844
3845static int stli_initecp(stlibrd_t *brdp)
3846{
3847 cdkecpsig_t sig;
3848 cdkecpsig_t *sigsp;
3849 unsigned int status, nxtid;
3850 char *name;
3851 int panelnr, nrports;
3852
3853#ifdef DEBUG
3854 printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp);
3855#endif
3856
3857 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3858 return -EIO;
3859
3860 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3861 {
3862 release_region(brdp->iobase, brdp->iosize);
3863 return(-ENODEV);
3864 }
3865
3866 brdp->iosize = ECP_IOSIZE;
3867
3868/*
3869 * Based on the specific board type setup the common vars to access
3870 * and enable shared memory. Set all board specific information now
3871 * as well.
3872 */
3873 switch (brdp->brdtype) {
3874 case BRD_ECP:
3875 brdp->membase = (void *) brdp->memaddr;
3876 brdp->memsize = ECP_MEMSIZE;
3877 brdp->pagesize = ECP_ATPAGESIZE;
3878 brdp->init = stli_ecpinit;
3879 brdp->enable = stli_ecpenable;
3880 brdp->reenable = stli_ecpenable;
3881 brdp->disable = stli_ecpdisable;
3882 brdp->getmemptr = stli_ecpgetmemptr;
3883 brdp->intr = stli_ecpintr;
3884 brdp->reset = stli_ecpreset;
3885 name = "serial(EC8/64)";
3886 break;
3887
3888 case BRD_ECPE:
3889 brdp->membase = (void *) brdp->memaddr;
3890 brdp->memsize = ECP_MEMSIZE;
3891 brdp->pagesize = ECP_EIPAGESIZE;
3892 brdp->init = stli_ecpeiinit;
3893 brdp->enable = stli_ecpeienable;
3894 brdp->reenable = stli_ecpeienable;
3895 brdp->disable = stli_ecpeidisable;
3896 brdp->getmemptr = stli_ecpeigetmemptr;
3897 brdp->intr = stli_ecpintr;
3898 brdp->reset = stli_ecpeireset;
3899 name = "serial(EC8/64-EI)";
3900 break;
3901
3902 case BRD_ECPMC:
3903 brdp->membase = (void *) brdp->memaddr;
3904 brdp->memsize = ECP_MEMSIZE;
3905 brdp->pagesize = ECP_MCPAGESIZE;
3906 brdp->init = NULL;
3907 brdp->enable = stli_ecpmcenable;
3908 brdp->reenable = stli_ecpmcenable;
3909 brdp->disable = stli_ecpmcdisable;
3910 brdp->getmemptr = stli_ecpmcgetmemptr;
3911 brdp->intr = stli_ecpintr;
3912 brdp->reset = stli_ecpmcreset;
3913 name = "serial(EC8/64-MCA)";
3914 break;
3915
3916 case BRD_ECPPCI:
3917 brdp->membase = (void *) brdp->memaddr;
3918 brdp->memsize = ECP_PCIMEMSIZE;
3919 brdp->pagesize = ECP_PCIPAGESIZE;
3920 brdp->init = stli_ecppciinit;
3921 brdp->enable = NULL;
3922 brdp->reenable = NULL;
3923 brdp->disable = NULL;
3924 brdp->getmemptr = stli_ecppcigetmemptr;
3925 brdp->intr = stli_ecpintr;
3926 brdp->reset = stli_ecppcireset;
3927 name = "serial(EC/RA-PCI)";
3928 break;
3929
3930 default:
3931 release_region(brdp->iobase, brdp->iosize);
3932 return(-EINVAL);
3933 }
3934
3935/*
3936 * The per-board operations structure is all set up, so now let's go
3937 * and get the board operational. Firstly initialize board configuration
3938 * registers. Set the memory mapping info so we can get at the boards
3939 * shared memory.
3940 */
3941 EBRDINIT(brdp);
3942
3943 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3944 if (brdp->membase == (void *) NULL)
3945 {
3946 release_region(brdp->iobase, brdp->iosize);
3947 return(-ENOMEM);
3948 }
3949
3950/*
3951 * Now that all specific code is set up, enable the shared memory and
3952 * look for the a signature area that will tell us exactly what board
3953 * this is, and what it is connected to it.
3954 */
3955 EBRDENABLE(brdp);
3956 sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3957 memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
3958 EBRDDISABLE(brdp);
3959
3960#if 0
3961 printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3962 __FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0],
3963 (int) sig.panelid[1], (int) sig.panelid[2],
3964 (int) sig.panelid[3], (int) sig.panelid[4],
3965 (int) sig.panelid[5], (int) sig.panelid[6],
3966 (int) sig.panelid[7]);
3967#endif
3968
3969 if (sig.magic != ECP_MAGIC)
3970 {
3971 release_region(brdp->iobase, brdp->iosize);
3972 return(-ENODEV);
3973 }
3974
3975/*
3976 * Scan through the signature looking at the panels connected to the
3977 * board. Calculate the total number of ports as we go.
3978 */
3979 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3980 status = sig.panelid[nxtid];
3981 if ((status & ECH_PNLIDMASK) != nxtid)
3982 break;
3983
3984 brdp->panelids[panelnr] = status;
3985 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3986 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3987 nxtid++;
3988 brdp->panels[panelnr] = nrports;
3989 brdp->nrports += nrports;
3990 nxtid++;
3991 brdp->nrpanels++;
3992 }
3993
3994
3995 brdp->state |= BST_FOUND;
3996 return(0);
3997}
3998
3999/*****************************************************************************/
4000
4001/*
4002 * Try to find an ONboard, Brumby or Stallion board and initialize it.
4003 * This handles only these board types.
4004 */
4005
4006static int stli_initonb(stlibrd_t *brdp)
4007{
4008 cdkonbsig_t sig;
4009 cdkonbsig_t *sigsp;
4010 char *name;
4011 int i;
4012
4013#ifdef DEBUG
4014 printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp);
4015#endif
4016
4017/*
4018 * Do a basic sanity check on the IO and memory addresses.
4019 */
4020 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
4021 return(-ENODEV);
4022
4023 brdp->iosize = ONB_IOSIZE;
4024
4025 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
4026 return -EIO;
4027
4028/*
4029 * Based on the specific board type setup the common vars to access
4030 * and enable shared memory. Set all board specific information now
4031 * as well.
4032 */
4033 switch (brdp->brdtype) {
4034 case BRD_ONBOARD:
4035 case BRD_ONBOARD32:
4036 case BRD_ONBOARD2:
4037 case BRD_ONBOARD2_32:
4038 case BRD_ONBOARDRS:
4039 brdp->membase = (void *) brdp->memaddr;
4040 brdp->memsize = ONB_MEMSIZE;
4041 brdp->pagesize = ONB_ATPAGESIZE;
4042 brdp->init = stli_onbinit;
4043 brdp->enable = stli_onbenable;
4044 brdp->reenable = stli_onbenable;
4045 brdp->disable = stli_onbdisable;
4046 brdp->getmemptr = stli_onbgetmemptr;
4047 brdp->intr = stli_ecpintr;
4048 brdp->reset = stli_onbreset;
4049 if (brdp->memaddr > 0x100000)
4050 brdp->enabval = ONB_MEMENABHI;
4051 else
4052 brdp->enabval = ONB_MEMENABLO;
4053 name = "serial(ONBoard)";
4054 break;
4055
4056 case BRD_ONBOARDE:
4057 brdp->membase = (void *) brdp->memaddr;
4058 brdp->memsize = ONB_EIMEMSIZE;
4059 brdp->pagesize = ONB_EIPAGESIZE;
4060 brdp->init = stli_onbeinit;
4061 brdp->enable = stli_onbeenable;
4062 brdp->reenable = stli_onbeenable;
4063 brdp->disable = stli_onbedisable;
4064 brdp->getmemptr = stli_onbegetmemptr;
4065 brdp->intr = stli_ecpintr;
4066 brdp->reset = stli_onbereset;
4067 name = "serial(ONBoard/E)";
4068 break;
4069
4070 case BRD_BRUMBY4:
4071 case BRD_BRUMBY8:
4072 case BRD_BRUMBY16:
4073 brdp->membase = (void *) brdp->memaddr;
4074 brdp->memsize = BBY_MEMSIZE;
4075 brdp->pagesize = BBY_PAGESIZE;
4076 brdp->init = stli_bbyinit;
4077 brdp->enable = NULL;
4078 brdp->reenable = NULL;
4079 brdp->disable = NULL;
4080 brdp->getmemptr = stli_bbygetmemptr;
4081 brdp->intr = stli_ecpintr;
4082 brdp->reset = stli_bbyreset;
4083 name = "serial(Brumby)";
4084 break;
4085
4086 case BRD_STALLION:
4087 brdp->membase = (void *) brdp->memaddr;
4088 brdp->memsize = STAL_MEMSIZE;
4089 brdp->pagesize = STAL_PAGESIZE;
4090 brdp->init = stli_stalinit;
4091 brdp->enable = NULL;
4092 brdp->reenable = NULL;
4093 brdp->disable = NULL;
4094 brdp->getmemptr = stli_stalgetmemptr;
4095 brdp->intr = stli_ecpintr;
4096 brdp->reset = stli_stalreset;
4097 name = "serial(Stallion)";
4098 break;
4099
4100 default:
4101 release_region(brdp->iobase, brdp->iosize);
4102 return(-EINVAL);
4103 }
4104
4105/*
4106 * The per-board operations structure is all set up, so now let's go
4107 * and get the board operational. Firstly initialize board configuration
4108 * registers. Set the memory mapping info so we can get at the boards
4109 * shared memory.
4110 */
4111 EBRDINIT(brdp);
4112
4113 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4114 if (brdp->membase == (void *) NULL)
4115 {
4116 release_region(brdp->iobase, brdp->iosize);
4117 return(-ENOMEM);
4118 }
4119
4120/*
4121 * Now that all specific code is set up, enable the shared memory and
4122 * look for the a signature area that will tell us exactly what board
4123 * this is, and how many ports.
4124 */
4125 EBRDENABLE(brdp);
4126 sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
4127 memcpy(&sig, sigsp, sizeof(cdkonbsig_t));
4128 EBRDDISABLE(brdp);
4129
4130#if 0
4131 printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4132 __FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
4133 sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
4134#endif
4135
4136 if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
4137 (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
4138 {
4139 release_region(brdp->iobase, brdp->iosize);
4140 return(-ENODEV);
4141 }
4142
4143/*
4144 * Scan through the signature alive mask and calculate how many ports
4145 * there are on this board.
4146 */
4147 brdp->nrpanels = 1;
4148 if (sig.amask1) {
4149 brdp->nrports = 32;
4150 } else {
4151 for (i = 0; (i < 16); i++) {
4152 if (((sig.amask0 << i) & 0x8000) == 0)
4153 break;
4154 }
4155 brdp->nrports = i;
4156 }
4157 brdp->panels[0] = brdp->nrports;
4158
4159
4160 brdp->state |= BST_FOUND;
4161 return(0);
4162}
4163
4164/*****************************************************************************/
4165
4166/*
4167 * Start up a running board. This routine is only called after the
4168 * code has been down loaded to the board and is operational. It will
4169 * read in the memory map, and get the show on the road...
4170 */
4171
4172static int stli_startbrd(stlibrd_t *brdp)
4173{
4174 volatile cdkhdr_t *hdrp;
4175 volatile cdkmem_t *memp;
4176 volatile cdkasy_t *ap;
4177 unsigned long flags;
4178 stliport_t *portp;
4179 int portnr, nrdevs, i, rc;
4180
4181#ifdef DEBUG
4182 printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp);
4183#endif
4184
4185 rc = 0;
4186
4187 save_flags(flags);
4188 cli();
4189 EBRDENABLE(brdp);
4190 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
4191 nrdevs = hdrp->nrdevs;
4192
4193#if 0
4194 printk("%s(%d): CDK version %d.%d.%d --> "
4195 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4196 __FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification,
4197 hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp,
4198 (int) hdrp->slavep);
4199#endif
4200
4201 if (nrdevs < (brdp->nrports + 1)) {
4202 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
4203 "all devices, devices=%d\n", nrdevs);
4204 brdp->nrports = nrdevs - 1;
4205 }
4206 brdp->nrdevs = nrdevs;
4207 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
4208 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
4209 brdp->bitsize = (nrdevs + 7) / 8;
4210 memp = (volatile cdkmem_t *) hdrp->memp;
4211 if (((unsigned long) memp) > brdp->memsize) {
4212 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
4213 rc = -EIO;
4214 goto stli_donestartup;
4215 }
4216 memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp);
4217 if (memp->dtype != TYP_ASYNCTRL) {
4218 printk(KERN_ERR "STALLION: no slave control device found\n");
4219 goto stli_donestartup;
4220 }
4221 memp++;
4222
4223/*
4224 * Cycle through memory allocation of each port. We are guaranteed to
4225 * have all ports inside the first page of slave window, so no need to
4226 * change pages while reading memory map.
4227 */
4228 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
4229 if (memp->dtype != TYP_ASYNC)
4230 break;
4231 portp = brdp->ports[portnr];
4232 if (portp == (stliport_t *) NULL)
4233 break;
4234 portp->devnr = i;
4235 portp->addr = memp->offset;
4236 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
4237 portp->portidx = (unsigned char) (i / 8);
4238 portp->portbit = (unsigned char) (0x1 << (i % 8));
4239 }
4240
4241 hdrp->slavereq = 0xff;
4242
4243/*
4244 * For each port setup a local copy of the RX and TX buffer offsets
4245 * and sizes. We do this separate from the above, because we need to
4246 * move the shared memory page...
4247 */
4248 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
4249 portp = brdp->ports[portnr];
4250 if (portp == (stliport_t *) NULL)
4251 break;
4252 if (portp->addr == 0)
4253 break;
4254 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
4255 if (ap != (volatile cdkasy_t *) NULL) {
4256 portp->rxsize = ap->rxq.size;
4257 portp->txsize = ap->txq.size;
4258 portp->rxoffset = ap->rxq.offset;
4259 portp->txoffset = ap->txq.offset;
4260 }
4261 }
4262
4263stli_donestartup:
4264 EBRDDISABLE(brdp);
4265 restore_flags(flags);
4266
4267 if (rc == 0)
4268 brdp->state |= BST_STARTED;
4269
4270 if (! stli_timeron) {
4271 stli_timeron++;
4272 stli_timerlist.expires = STLI_TIMEOUT;
4273 add_timer(&stli_timerlist);
4274 }
4275
4276 return(rc);
4277}
4278
4279/*****************************************************************************/
4280
4281/*
4282 * Probe and initialize the specified board.
4283 */
4284
4285static int __init stli_brdinit(stlibrd_t *brdp)
4286{
4287#ifdef DEBUG
4288 printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp);
4289#endif
4290
4291 stli_brds[brdp->brdnr] = brdp;
4292
4293 switch (brdp->brdtype) {
4294 case BRD_ECP:
4295 case BRD_ECPE:
4296 case BRD_ECPMC:
4297 case BRD_ECPPCI:
4298 stli_initecp(brdp);
4299 break;
4300 case BRD_ONBOARD:
4301 case BRD_ONBOARDE:
4302 case BRD_ONBOARD2:
4303 case BRD_ONBOARD32:
4304 case BRD_ONBOARD2_32:
4305 case BRD_ONBOARDRS:
4306 case BRD_BRUMBY4:
4307 case BRD_BRUMBY8:
4308 case BRD_BRUMBY16:
4309 case BRD_STALLION:
4310 stli_initonb(brdp);
4311 break;
4312 case BRD_EASYIO:
4313 case BRD_ECH:
4314 case BRD_ECHMC:
4315 case BRD_ECHPCI:
4316 printk(KERN_ERR "STALLION: %s board type not supported in "
4317 "this driver\n", stli_brdnames[brdp->brdtype]);
4318 return(ENODEV);
4319 default:
4320 printk(KERN_ERR "STALLION: board=%d is unknown board "
4321 "type=%d\n", brdp->brdnr, brdp->brdtype);
4322 return(ENODEV);
4323 }
4324
4325 if ((brdp->state & BST_FOUND) == 0) {
4326 printk(KERN_ERR "STALLION: %s board not found, board=%d "
4327 "io=%x mem=%x\n",
4328 stli_brdnames[brdp->brdtype], brdp->brdnr,
4329 brdp->iobase, (int) brdp->memaddr);
4330 return(ENODEV);
4331 }
4332
4333 stli_initports(brdp);
4334 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
4335 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
4336 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
4337 brdp->nrpanels, brdp->nrports);
4338 return(0);
4339}
4340
4341/*****************************************************************************/
4342
4343/*
4344 * Probe around trying to find where the EISA boards shared memory
4345 * might be. This is a bit if hack, but it is the best we can do.
4346 */
4347
4348static int stli_eisamemprobe(stlibrd_t *brdp)
4349{
4350 cdkecpsig_t ecpsig, *ecpsigp;
4351 cdkonbsig_t onbsig, *onbsigp;
4352 int i, foundit;
4353
4354#ifdef DEBUG
4355 printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp);
4356#endif
4357
4358/*
4359 * First up we reset the board, to get it into a known state. There
4360 * is only 2 board types here we need to worry about. Don;t use the
4361 * standard board init routine here, it programs up the shared
4362 * memory address, and we don't know it yet...
4363 */
4364 if (brdp->brdtype == BRD_ECPE) {
4365 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
4366 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
4367 udelay(10);
4368 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
4369 udelay(500);
4370 stli_ecpeienable(brdp);
4371 } else if (brdp->brdtype == BRD_ONBOARDE) {
4372 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
4373 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
4374 udelay(10);
4375 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
4376 mdelay(100);
4377 outb(0x1, brdp->iobase);
4378 mdelay(1);
4379 stli_onbeenable(brdp);
4380 } else {
4381 return(-ENODEV);
4382 }
4383
4384 foundit = 0;
4385 brdp->memsize = ECP_MEMSIZE;
4386
4387/*
4388 * Board shared memory is enabled, so now we have a poke around and
4389 * see if we can find it.
4390 */
4391 for (i = 0; (i < stli_eisamempsize); i++) {
4392 brdp->memaddr = stli_eisamemprobeaddrs[i];
4393 brdp->membase = (void *) brdp->memaddr;
4394 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4395 if (brdp->membase == (void *) NULL)
4396 continue;
4397
4398 if (brdp->brdtype == BRD_ECPE) {
4399 ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp,
4400 CDK_SIGADDR, __LINE__);
4401 memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
4402 if (ecpsig.magic == ECP_MAGIC)
4403 foundit = 1;
4404 } else {
4405 onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp,
4406 CDK_SIGADDR, __LINE__);
4407 memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t));
4408 if ((onbsig.magic0 == ONB_MAGIC0) &&
4409 (onbsig.magic1 == ONB_MAGIC1) &&
4410 (onbsig.magic2 == ONB_MAGIC2) &&
4411 (onbsig.magic3 == ONB_MAGIC3))
4412 foundit = 1;
4413 }
4414
4415 iounmap(brdp->membase);
4416 if (foundit)
4417 break;
4418 }
4419
4420/*
4421 * Regardless of whether we found the shared memory or not we must
4422 * disable the region. After that return success or failure.
4423 */
4424 if (brdp->brdtype == BRD_ECPE)
4425 stli_ecpeidisable(brdp);
4426 else
4427 stli_onbedisable(brdp);
4428
4429 if (! foundit) {
4430 brdp->memaddr = 0;
4431 brdp->membase = NULL;
4432 printk(KERN_ERR "STALLION: failed to probe shared memory "
4433 "region for %s in EISA slot=%d\n",
4434 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
4435 return(-ENODEV);
4436 }
4437 return(0);
4438}
4439
4440static int stli_getbrdnr(void)
4441{
4442 int i;
4443
4444 for (i = 0; i < STL_MAXBRDS; i++) {
4445 if (!stli_brds[i]) {
4446 if (i >= stli_nrbrds)
4447 stli_nrbrds = i + 1;
4448 return i;
4449 }
4450 }
4451 return -1;
4452}
4453
4454/*****************************************************************************/
4455
4456/*
4457 * Probe around and try to find any EISA boards in system. The biggest
4458 * problem here is finding out what memory address is associated with
4459 * an EISA board after it is found. The registers of the ECPE and
4460 * ONboardE are not readable - so we can't read them from there. We
4461 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
4462 * actually have any way to find out the real value. The best we can
4463 * do is go probing around in the usual places hoping we can find it.
4464 */
4465
4466static int stli_findeisabrds(void)
4467{
4468 stlibrd_t *brdp;
4469 unsigned int iobase, eid;
4470 int i;
4471
4472#ifdef DEBUG
4473 printk(KERN_DEBUG "stli_findeisabrds()\n");
4474#endif
4475
4476/*
4477 * Firstly check if this is an EISA system. Do this by probing for
4478 * the system board EISA ID. If this is not an EISA system then
4479 * don't bother going any further!
4480 */
4481 outb(0xff, 0xc80);
4482 if (inb(0xc80) == 0xff)
4483 return(0);
4484
4485/*
4486 * Looks like an EISA system, so go searching for EISA boards.
4487 */
4488 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
4489 outb(0xff, (iobase + 0xc80));
4490 eid = inb(iobase + 0xc80);
4491 eid |= inb(iobase + 0xc81) << 8;
4492 if (eid != STL_EISAID)
4493 continue;
4494
4495/*
4496 * We have found a board. Need to check if this board was
4497 * statically configured already (just in case!).
4498 */
4499 for (i = 0; (i < STL_MAXBRDS); i++) {
4500 brdp = stli_brds[i];
4501 if (brdp == (stlibrd_t *) NULL)
4502 continue;
4503 if (brdp->iobase == iobase)
4504 break;
4505 }
4506 if (i < STL_MAXBRDS)
4507 continue;
4508
4509/*
4510 * We have found a Stallion board and it is not configured already.
4511 * Allocate a board structure and initialize it.
4512 */
4513 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4514 return(-ENOMEM);
4515 if ((brdp->brdnr = stli_getbrdnr()) < 0)
4516 return(-ENOMEM);
4517 eid = inb(iobase + 0xc82);
4518 if (eid == ECP_EISAID)
4519 brdp->brdtype = BRD_ECPE;
4520 else if (eid == ONB_EISAID)
4521 brdp->brdtype = BRD_ONBOARDE;
4522 else
4523 brdp->brdtype = BRD_UNKNOWN;
4524 brdp->iobase = iobase;
4525 outb(0x1, (iobase + 0xc84));
4526 if (stli_eisamemprobe(brdp))
4527 outb(0, (iobase + 0xc84));
4528 stli_brdinit(brdp);
4529 }
4530
4531 return(0);
4532}
4533
4534/*****************************************************************************/
4535
4536/*
4537 * Find the next available board number that is free.
4538 */
4539
4540/*****************************************************************************/
4541
4542#ifdef CONFIG_PCI
4543
4544/*
4545 * We have a Stallion board. Allocate a board structure and
4546 * initialize it. Read its IO and MEMORY resources from PCI
4547 * configuration space.
4548 */
4549
4550static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4551{
4552 stlibrd_t *brdp;
4553
4554#ifdef DEBUG
4555 printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4556 brdtype, dev->bus->number, dev->devfn);
4557#endif
4558
4559 if (pci_enable_device(devp))
4560 return(-EIO);
4561 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4562 return(-ENOMEM);
4563 if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4564 printk(KERN_INFO "STALLION: too many boards found, "
4565 "maximum supported %d\n", STL_MAXBRDS);
4566 return(0);
4567 }
4568 brdp->brdtype = brdtype;
4569
4570#ifdef DEBUG
4571 printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__,
4572 pci_resource_start(devp, 0),
4573 pci_resource_start(devp, 1),
4574 pci_resource_start(devp, 2),
4575 pci_resource_start(devp, 3));
4576#endif
4577
4578/*
4579 * We have all resources from the board, so lets setup the actual
4580 * board structure now.
4581 */
4582 brdp->iobase = pci_resource_start(devp, 3);
4583 brdp->memaddr = pci_resource_start(devp, 2);
4584 stli_brdinit(brdp);
4585
4586 return(0);
4587}
4588
4589/*****************************************************************************/
4590
4591/*
4592 * Find all Stallion PCI boards that might be installed. Initialize each
4593 * one as it is found.
4594 */
4595
4596static int stli_findpcibrds(void)
4597{
4598 struct pci_dev *dev = NULL;
4599 int rc;
4600
4601#ifdef DEBUG
4602 printk("stli_findpcibrds()\n");
4603#endif
4604
4605 while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION,
4606 PCI_DEVICE_ID_ECRA, dev))) {
4607 if ((rc = stli_initpcibrd(BRD_ECPPCI, dev)))
4608 return(rc);
4609 }
4610
4611 return(0);
4612}
4613
4614#endif
4615
4616/*****************************************************************************/
4617
4618/*
4619 * Allocate a new board structure. Fill out the basic info in it.
4620 */
4621
4622static stlibrd_t *stli_allocbrd(void)
4623{
4624 stlibrd_t *brdp;
4625
4626 brdp = (stlibrd_t *) stli_memalloc(sizeof(stlibrd_t));
4627 if (brdp == (stlibrd_t *) NULL) {
4628 printk(KERN_ERR "STALLION: failed to allocate memory "
4629 "(size=%d)\n", sizeof(stlibrd_t));
4630 return((stlibrd_t *) NULL);
4631 }
4632
4633 memset(brdp, 0, sizeof(stlibrd_t));
4634 brdp->magic = STLI_BOARDMAGIC;
4635 return(brdp);
4636}
4637
4638/*****************************************************************************/
4639
4640/*
4641 * Scan through all the boards in the configuration and see what we
4642 * can find.
4643 */
4644
4645static int stli_initbrds(void)
4646{
4647 stlibrd_t *brdp, *nxtbrdp;
4648 stlconf_t *confp;
4649 int i, j;
4650
4651#ifdef DEBUG
4652 printk(KERN_DEBUG "stli_initbrds()\n");
4653#endif
4654
4655 if (stli_nrbrds > STL_MAXBRDS) {
4656 printk(KERN_INFO "STALLION: too many boards in configuration "
4657 "table, truncating to %d\n", STL_MAXBRDS);
4658 stli_nrbrds = STL_MAXBRDS;
4659 }
4660
4661/*
4662 * Firstly scan the list of static boards configured. Allocate
4663 * resources and initialize the boards as found. If this is a
4664 * module then let the module args override static configuration.
4665 */
4666 for (i = 0; (i < stli_nrbrds); i++) {
4667 confp = &stli_brdconf[i];
4668#ifdef MODULE
4669 stli_parsebrd(confp, stli_brdsp[i]);
4670#endif
4671 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4672 return(-ENOMEM);
4673 brdp->brdnr = i;
4674 brdp->brdtype = confp->brdtype;
4675 brdp->iobase = confp->ioaddr1;
4676 brdp->memaddr = confp->memaddr;
4677 stli_brdinit(brdp);
4678 }
4679
4680/*
4681 * Static configuration table done, so now use dynamic methods to
4682 * see if any more boards should be configured.
4683 */
4684#ifdef MODULE
4685 stli_argbrds();
4686#endif
Adrian Bunkdbc6b5f2005-06-25 14:59:03 -07004687 if (STLI_EISAPROBE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004688 stli_findeisabrds();
4689#ifdef CONFIG_PCI
4690 stli_findpcibrds();
4691#endif
4692
4693/*
4694 * All found boards are initialized. Now for a little optimization, if
4695 * no boards are sharing the "shared memory" regions then we can just
4696 * leave them all enabled. This is in fact the usual case.
4697 */
4698 stli_shared = 0;
4699 if (stli_nrbrds > 1) {
4700 for (i = 0; (i < stli_nrbrds); i++) {
4701 brdp = stli_brds[i];
4702 if (brdp == (stlibrd_t *) NULL)
4703 continue;
4704 for (j = i + 1; (j < stli_nrbrds); j++) {
4705 nxtbrdp = stli_brds[j];
4706 if (nxtbrdp == (stlibrd_t *) NULL)
4707 continue;
4708 if ((brdp->membase >= nxtbrdp->membase) &&
4709 (brdp->membase <= (nxtbrdp->membase +
4710 nxtbrdp->memsize - 1))) {
4711 stli_shared++;
4712 break;
4713 }
4714 }
4715 }
4716 }
4717
4718 if (stli_shared == 0) {
4719 for (i = 0; (i < stli_nrbrds); i++) {
4720 brdp = stli_brds[i];
4721 if (brdp == (stlibrd_t *) NULL)
4722 continue;
4723 if (brdp->state & BST_FOUND) {
4724 EBRDENABLE(brdp);
4725 brdp->enable = NULL;
4726 brdp->disable = NULL;
4727 }
4728 }
4729 }
4730
4731 return(0);
4732}
4733
4734/*****************************************************************************/
4735
4736/*
4737 * Code to handle an "staliomem" read operation. This device is the
4738 * contents of the board shared memory. It is used for down loading
4739 * the slave image (and debugging :-)
4740 */
4741
4742static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4743{
4744 unsigned long flags;
4745 void *memptr;
4746 stlibrd_t *brdp;
4747 int brdnr, size, n;
4748
4749#ifdef DEBUG
4750 printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4751 (int) fp, (int) buf, count, (int) offp);
4752#endif
4753
4754 brdnr = iminor(fp->f_dentry->d_inode);
4755 if (brdnr >= stli_nrbrds)
4756 return(-ENODEV);
4757 brdp = stli_brds[brdnr];
4758 if (brdp == (stlibrd_t *) NULL)
4759 return(-ENODEV);
4760 if (brdp->state == 0)
4761 return(-ENODEV);
4762 if (fp->f_pos >= brdp->memsize)
4763 return(0);
4764
4765 size = MIN(count, (brdp->memsize - fp->f_pos));
4766
4767 save_flags(flags);
4768 cli();
4769 EBRDENABLE(brdp);
4770 while (size > 0) {
4771 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4772 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4773 if (copy_to_user(buf, memptr, n)) {
4774 count = -EFAULT;
4775 goto out;
4776 }
4777 fp->f_pos += n;
4778 buf += n;
4779 size -= n;
4780 }
4781out:
4782 EBRDDISABLE(brdp);
4783 restore_flags(flags);
4784
4785 return(count);
4786}
4787
4788/*****************************************************************************/
4789
4790/*
4791 * Code to handle an "staliomem" write operation. This device is the
4792 * contents of the board shared memory. It is used for down loading
4793 * the slave image (and debugging :-)
4794 */
4795
4796static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4797{
4798 unsigned long flags;
4799 void *memptr;
4800 stlibrd_t *brdp;
4801 char __user *chbuf;
4802 int brdnr, size, n;
4803
4804#ifdef DEBUG
4805 printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4806 (int) fp, (int) buf, count, (int) offp);
4807#endif
4808
4809 brdnr = iminor(fp->f_dentry->d_inode);
4810 if (brdnr >= stli_nrbrds)
4811 return(-ENODEV);
4812 brdp = stli_brds[brdnr];
4813 if (brdp == (stlibrd_t *) NULL)
4814 return(-ENODEV);
4815 if (brdp->state == 0)
4816 return(-ENODEV);
4817 if (fp->f_pos >= brdp->memsize)
4818 return(0);
4819
4820 chbuf = (char __user *) buf;
4821 size = MIN(count, (brdp->memsize - fp->f_pos));
4822
4823 save_flags(flags);
4824 cli();
4825 EBRDENABLE(brdp);
4826 while (size > 0) {
4827 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4828 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4829 if (copy_from_user(memptr, chbuf, n)) {
4830 count = -EFAULT;
4831 goto out;
4832 }
4833 fp->f_pos += n;
4834 chbuf += n;
4835 size -= n;
4836 }
4837out:
4838 EBRDDISABLE(brdp);
4839 restore_flags(flags);
4840
4841 return(count);
4842}
4843
4844/*****************************************************************************/
4845
4846/*
4847 * Return the board stats structure to user app.
4848 */
4849
4850static int stli_getbrdstats(combrd_t __user *bp)
4851{
4852 stlibrd_t *brdp;
4853 int i;
4854
4855 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4856 return -EFAULT;
4857 if (stli_brdstats.brd >= STL_MAXBRDS)
4858 return(-ENODEV);
4859 brdp = stli_brds[stli_brdstats.brd];
4860 if (brdp == (stlibrd_t *) NULL)
4861 return(-ENODEV);
4862
4863 memset(&stli_brdstats, 0, sizeof(combrd_t));
4864 stli_brdstats.brd = brdp->brdnr;
4865 stli_brdstats.type = brdp->brdtype;
4866 stli_brdstats.hwid = 0;
4867 stli_brdstats.state = brdp->state;
4868 stli_brdstats.ioaddr = brdp->iobase;
4869 stli_brdstats.memaddr = brdp->memaddr;
4870 stli_brdstats.nrpanels = brdp->nrpanels;
4871 stli_brdstats.nrports = brdp->nrports;
4872 for (i = 0; (i < brdp->nrpanels); i++) {
4873 stli_brdstats.panels[i].panel = i;
4874 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4875 stli_brdstats.panels[i].nrports = brdp->panels[i];
4876 }
4877
4878 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4879 return -EFAULT;
4880 return(0);
4881}
4882
4883/*****************************************************************************/
4884
4885/*
4886 * Resolve the referenced port number into a port struct pointer.
4887 */
4888
4889static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
4890{
4891 stlibrd_t *brdp;
4892 int i;
4893
4894 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
4895 return((stliport_t *) NULL);
4896 brdp = stli_brds[brdnr];
4897 if (brdp == (stlibrd_t *) NULL)
4898 return((stliport_t *) NULL);
4899 for (i = 0; (i < panelnr); i++)
4900 portnr += brdp->panels[i];
4901 if ((portnr < 0) || (portnr >= brdp->nrports))
4902 return((stliport_t *) NULL);
4903 return(brdp->ports[portnr]);
4904}
4905
4906/*****************************************************************************/
4907
4908/*
4909 * Return the port stats structure to user app. A NULL port struct
4910 * pointer passed in means that we need to find out from the app
4911 * what port to get stats for (used through board control device).
4912 */
4913
4914static int stli_portcmdstats(stliport_t *portp)
4915{
4916 unsigned long flags;
4917 stlibrd_t *brdp;
4918 int rc;
4919
4920 memset(&stli_comstats, 0, sizeof(comstats_t));
4921
4922 if (portp == (stliport_t *) NULL)
4923 return(-ENODEV);
4924 brdp = stli_brds[portp->brdnr];
4925 if (brdp == (stlibrd_t *) NULL)
4926 return(-ENODEV);
4927
4928 if (brdp->state & BST_STARTED) {
4929 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4930 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4931 return(rc);
4932 } else {
4933 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4934 }
4935
4936 stli_comstats.brd = portp->brdnr;
4937 stli_comstats.panel = portp->panelnr;
4938 stli_comstats.port = portp->portnr;
4939 stli_comstats.state = portp->state;
4940 stli_comstats.flags = portp->flags;
4941
4942 save_flags(flags);
4943 cli();
4944 if (portp->tty != (struct tty_struct *) NULL) {
4945 if (portp->tty->driver_data == portp) {
4946 stli_comstats.ttystate = portp->tty->flags;
4947 stli_comstats.rxbuffered = portp->tty->flip.count;
4948 if (portp->tty->termios != (struct termios *) NULL) {
4949 stli_comstats.cflags = portp->tty->termios->c_cflag;
4950 stli_comstats.iflags = portp->tty->termios->c_iflag;
4951 stli_comstats.oflags = portp->tty->termios->c_oflag;
4952 stli_comstats.lflags = portp->tty->termios->c_lflag;
4953 }
4954 }
4955 }
4956 restore_flags(flags);
4957
4958 stli_comstats.txtotal = stli_cdkstats.txchars;
4959 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4960 stli_comstats.txbuffered = stli_cdkstats.txringq;
4961 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4962 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4963 stli_comstats.rxparity = stli_cdkstats.parity;
4964 stli_comstats.rxframing = stli_cdkstats.framing;
4965 stli_comstats.rxlost = stli_cdkstats.ringover;
4966 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4967 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4968 stli_comstats.txxon = stli_cdkstats.txstart;
4969 stli_comstats.txxoff = stli_cdkstats.txstop;
4970 stli_comstats.rxxon = stli_cdkstats.rxstart;
4971 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4972 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4973 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4974 stli_comstats.modem = stli_cdkstats.dcdcnt;
4975 stli_comstats.hwid = stli_cdkstats.hwid;
4976 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4977
4978 return(0);
4979}
4980
4981/*****************************************************************************/
4982
4983/*
4984 * Return the port stats structure to user app. A NULL port struct
4985 * pointer passed in means that we need to find out from the app
4986 * what port to get stats for (used through board control device).
4987 */
4988
4989static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
4990{
4991 stlibrd_t *brdp;
4992 int rc;
4993
4994 if (!portp) {
4995 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4996 return -EFAULT;
4997 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4998 stli_comstats.port);
4999 if (!portp)
5000 return -ENODEV;
5001 }
5002
5003 brdp = stli_brds[portp->brdnr];
5004 if (!brdp)
5005 return -ENODEV;
5006
5007 if ((rc = stli_portcmdstats(portp)) < 0)
5008 return rc;
5009
5010 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
5011 -EFAULT : 0;
5012}
5013
5014/*****************************************************************************/
5015
5016/*
5017 * Clear the port stats structure. We also return it zeroed out...
5018 */
5019
5020static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
5021{
5022 stlibrd_t *brdp;
5023 int rc;
5024
5025 if (!portp) {
5026 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
5027 return -EFAULT;
5028 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
5029 stli_comstats.port);
5030 if (!portp)
5031 return -ENODEV;
5032 }
5033
5034 brdp = stli_brds[portp->brdnr];
5035 if (!brdp)
5036 return -ENODEV;
5037
5038 if (brdp->state & BST_STARTED) {
5039 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
5040 return rc;
5041 }
5042
5043 memset(&stli_comstats, 0, sizeof(comstats_t));
5044 stli_comstats.brd = portp->brdnr;
5045 stli_comstats.panel = portp->panelnr;
5046 stli_comstats.port = portp->portnr;
5047
5048 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
5049 return -EFAULT;
5050 return 0;
5051}
5052
5053/*****************************************************************************/
5054
5055/*
5056 * Return the entire driver ports structure to a user app.
5057 */
5058
5059static int stli_getportstruct(stliport_t __user *arg)
5060{
5061 stliport_t *portp;
5062
5063 if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
5064 return -EFAULT;
5065 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
5066 stli_dummyport.portnr);
5067 if (!portp)
5068 return -ENODEV;
5069 if (copy_to_user(arg, portp, sizeof(stliport_t)))
5070 return -EFAULT;
5071 return 0;
5072}
5073
5074/*****************************************************************************/
5075
5076/*
5077 * Return the entire driver board structure to a user app.
5078 */
5079
5080static int stli_getbrdstruct(stlibrd_t __user *arg)
5081{
5082 stlibrd_t *brdp;
5083
5084 if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
5085 return -EFAULT;
5086 if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
5087 return -ENODEV;
5088 brdp = stli_brds[stli_dummybrd.brdnr];
5089 if (!brdp)
5090 return -ENODEV;
5091 if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
5092 return -EFAULT;
5093 return 0;
5094}
5095
5096/*****************************************************************************/
5097
5098/*
5099 * The "staliomem" device is also required to do some special operations on
5100 * the board. We need to be able to send an interrupt to the board,
5101 * reset it, and start/stop it.
5102 */
5103
5104static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
5105{
5106 stlibrd_t *brdp;
5107 int brdnr, rc, done;
5108 void __user *argp = (void __user *)arg;
5109
5110#ifdef DEBUG
5111 printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5112 (int) ip, (int) fp, cmd, (int) arg);
5113#endif
5114
5115/*
5116 * First up handle the board independent ioctls.
5117 */
5118 done = 0;
5119 rc = 0;
5120
5121 switch (cmd) {
5122 case COM_GETPORTSTATS:
5123 rc = stli_getportstats(NULL, argp);
5124 done++;
5125 break;
5126 case COM_CLRPORTSTATS:
5127 rc = stli_clrportstats(NULL, argp);
5128 done++;
5129 break;
5130 case COM_GETBRDSTATS:
5131 rc = stli_getbrdstats(argp);
5132 done++;
5133 break;
5134 case COM_READPORT:
5135 rc = stli_getportstruct(argp);
5136 done++;
5137 break;
5138 case COM_READBOARD:
5139 rc = stli_getbrdstruct(argp);
5140 done++;
5141 break;
5142 }
5143
5144 if (done)
5145 return(rc);
5146
5147/*
5148 * Now handle the board specific ioctls. These all depend on the
5149 * minor number of the device they were called from.
5150 */
5151 brdnr = iminor(ip);
5152 if (brdnr >= STL_MAXBRDS)
5153 return(-ENODEV);
5154 brdp = stli_brds[brdnr];
5155 if (!brdp)
5156 return(-ENODEV);
5157 if (brdp->state == 0)
5158 return(-ENODEV);
5159
5160 switch (cmd) {
5161 case STL_BINTR:
5162 EBRDINTR(brdp);
5163 break;
5164 case STL_BSTART:
5165 rc = stli_startbrd(brdp);
5166 break;
5167 case STL_BSTOP:
5168 brdp->state &= ~BST_STARTED;
5169 break;
5170 case STL_BRESET:
5171 brdp->state &= ~BST_STARTED;
5172 EBRDRESET(brdp);
5173 if (stli_shared == 0) {
5174 if (brdp->reenable != NULL)
5175 (* brdp->reenable)(brdp);
5176 }
5177 break;
5178 default:
5179 rc = -ENOIOCTLCMD;
5180 break;
5181 }
5182
5183 return(rc);
5184}
5185
5186static struct tty_operations stli_ops = {
5187 .open = stli_open,
5188 .close = stli_close,
5189 .write = stli_write,
5190 .put_char = stli_putchar,
5191 .flush_chars = stli_flushchars,
5192 .write_room = stli_writeroom,
5193 .chars_in_buffer = stli_charsinbuffer,
5194 .ioctl = stli_ioctl,
5195 .set_termios = stli_settermios,
5196 .throttle = stli_throttle,
5197 .unthrottle = stli_unthrottle,
5198 .stop = stli_stop,
5199 .start = stli_start,
5200 .hangup = stli_hangup,
5201 .flush_buffer = stli_flushbuffer,
5202 .break_ctl = stli_breakctl,
5203 .wait_until_sent = stli_waituntilsent,
5204 .send_xchar = stli_sendxchar,
5205 .read_proc = stli_readproc,
5206 .tiocmget = stli_tiocmget,
5207 .tiocmset = stli_tiocmset,
5208};
5209
5210/*****************************************************************************/
5211
5212int __init stli_init(void)
5213{
5214 int i;
5215 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
5216
5217 stli_initbrds();
5218
5219 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
5220 if (!stli_serial)
5221 return -ENOMEM;
5222
5223/*
5224 * Allocate a temporary write buffer.
5225 */
5226 stli_tmpwritebuf = (char *) stli_memalloc(STLI_TXBUFSIZE);
5227 if (stli_tmpwritebuf == (char *) NULL)
5228 printk(KERN_ERR "STALLION: failed to allocate memory "
5229 "(size=%d)\n", STLI_TXBUFSIZE);
5230 stli_txcookbuf = stli_memalloc(STLI_TXBUFSIZE);
5231 if (stli_txcookbuf == (char *) NULL)
5232 printk(KERN_ERR "STALLION: failed to allocate memory "
5233 "(size=%d)\n", STLI_TXBUFSIZE);
5234
5235/*
5236 * Set up a character driver for the shared memory region. We need this
5237 * to down load the slave code image. Also it is a useful debugging tool.
5238 */
5239 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
5240 printk(KERN_ERR "STALLION: failed to register serial memory "
5241 "device\n");
5242
5243 devfs_mk_dir("staliomem");
gregkh@suse.deca8eca62005-03-23 09:53:09 -08005244 istallion_class = class_create(THIS_MODULE, "staliomem");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005245 for (i = 0; i < 4; i++) {
5246 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
5247 S_IFCHR | S_IRUSR | S_IWUSR,
5248 "staliomem/%d", i);
gregkh@suse.deca8eca62005-03-23 09:53:09 -08005249 class_device_create(istallion_class, MKDEV(STL_SIOMEMMAJOR, i),
Linus Torvalds1da177e2005-04-16 15:20:36 -07005250 NULL, "staliomem%d", i);
5251 }
5252
5253/*
5254 * Set up the tty driver structure and register us as a driver.
5255 */
5256 stli_serial->owner = THIS_MODULE;
5257 stli_serial->driver_name = stli_drvname;
5258 stli_serial->name = stli_serialname;
5259 stli_serial->major = STL_SERIALMAJOR;
5260 stli_serial->minor_start = 0;
5261 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
5262 stli_serial->subtype = SERIAL_TYPE_NORMAL;
5263 stli_serial->init_termios = stli_deftermios;
5264 stli_serial->flags = TTY_DRIVER_REAL_RAW;
5265 tty_set_operations(stli_serial, &stli_ops);
5266
5267 if (tty_register_driver(stli_serial)) {
5268 put_tty_driver(stli_serial);
5269 printk(KERN_ERR "STALLION: failed to register serial driver\n");
5270 return -EBUSY;
5271 }
5272 return(0);
5273}
5274
5275/*****************************************************************************/