blob: 8790f0ab1983164efea464b6bee7a022e2df442c [file] [log] [blame]
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001/*
2 * PHY functions
3 *
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03004 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
Nick Kossifidis33a31822009-02-09 06:00:34 +02005 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03006 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02007 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
Jiri Slabyfa1c1142007-08-12 17:33:16 +02008 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090024#include <linux/slab.h>
Jiri Slabyfa1c1142007-08-12 17:33:16 +020025
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
Nick Kossifidis33a31822009-02-09 06:00:34 +020029#include "rfbuffer.h"
30#include "rfgain.h"
Jiri Slabyfa1c1142007-08-12 17:33:16 +020031
Nick Kossifidis9320b5c2010-11-23 20:36:45 +020032
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42 unsigned int i;
43 u32 srev;
44 u16 ret;
45
46 /*
47 * Set the radio chip access register
48 */
49 switch (chan) {
50 case CHANNEL_2GHZ:
51 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52 break;
53 case CHANNEL_5GHZ:
54 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55 break;
56 default:
57 return 0;
58 }
59
60 mdelay(2);
61
62 /* ...wait until PHY is ready and read the selected radio revision */
63 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65 for (i = 0; i < 8; i++)
66 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68 if (ah->ah_version == AR5K_AR5210) {
69 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71 } else {
72 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74 ((srev & 0x0f) << 4), 8);
75 }
76
77 /* Reset to the 5GHz mode */
78 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80 return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88 /* Check if the channel is in our supported range */
89 if (flags & CHANNEL_2GHZ) {
90 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92 return true;
93 } else if (flags & CHANNEL_5GHZ)
94 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96 return true;
97
98 return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102 struct ieee80211_channel *channel)
103{
104 u8 refclk_freq;
105
106 if ((ah->ah_radio == AR5K_RF5112) ||
107 (ah->ah_radio == AR5K_RF5413) ||
108 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109 refclk_freq = 40;
110 else
111 refclk_freq = 32;
112
113 if ((channel->center_freq % refclk_freq != 0) &&
114 ((channel->center_freq % refclk_freq < 10) ||
115 (channel->center_freq % refclk_freq > 22)))
116 return true;
117 else
118 return false;
119}
120
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125 const struct ath5k_rf_reg *rf_regs,
126 u32 val, u8 reg_id, bool set)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200127{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200128 const struct ath5k_rf_reg *rfreg = NULL;
129 u8 offset, bank, num_bits, col, position;
130 u16 entry;
131 u32 mask, data, last_bit, bits_shifted, first_bit;
132 u32 *rfb;
133 s32 bits_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200134 int i;
135
136 data = 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200137 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200138
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200139 for (i = 0; i < ah->ah_rf_regs_count; i++) {
140 if (rf_regs[i].index == reg_id) {
141 rfreg = &rf_regs[i];
142 break;
143 }
144 }
145
146 if (rfb == NULL || rfreg == NULL) {
147 ATH5K_PRINTF("Rf register not found!\n");
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200148 /* should not happen */
149 return 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200150 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200151
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200152 bank = rfreg->bank;
153 num_bits = rfreg->field.len;
154 first_bit = rfreg->field.pos;
155 col = rfreg->field.col;
156
157 /* first_bit is an offset from bank's
158 * start. Since we have all banks on
159 * the same array, we use this offset
160 * to mark each bank's start */
161 offset = ah->ah_offset[bank];
162
163 /* Boundary check */
164 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200165 ATH5K_PRINTF("invalid values at offset %u\n", offset);
166 return 0;
167 }
168
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200169 entry = ((first_bit - 1) / 8) + offset;
170 position = (first_bit - 1) % 8;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200171
Joe Perchese9010e22008-03-07 14:21:16 -0800172 if (set)
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200173 data = ath5k_hw_bitswap(val, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200174
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200175 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176 position = 0, entry++) {
177
178 last_bit = (position + bits_left > 8) ? 8 :
179 position + bits_left;
180
181 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182 (col * 8);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200183
Joe Perchese9010e22008-03-07 14:21:16 -0800184 if (set) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200185 rfb[entry] &= ~mask;
186 rfb[entry] |= ((data << position) << (col * 8)) & mask;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200187 data >>= (8 - position);
188 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200189 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190 << bits_shifted;
191 bits_shifted += last_bit - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200192 }
193
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200194 bits_left -= 8 - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200195 }
196
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200197 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200198
199 return data;
200}
201
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218 struct ieee80211_channel *channel)
219{
220 /* Get exponent and mantissa and set it */
221 u32 coef_scaled, coef_exp, coef_man,
222 ds_coef_exp, ds_coef_man, clock;
223
224 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225 !(channel->hw_value & CHANNEL_OFDM));
226
227 /* Get coefficient
228 * ALGO: coef = (5 * clock / carrier_freq) / 2
229 * we scale coef by shifting clock value by 24 for
230 * better precision since we use integers */
231 /* TODO: Half/quarter rate */
232 clock = (channel->hw_value & CHANNEL_TURBO) ? 80 : 40;
233 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
234
235 /* Get exponent
236 * ALGO: coef_exp = 14 - highest set bit position */
237 coef_exp = ilog2(coef_scaled);
238
239 /* Doesn't make sense if it's zero*/
240 if (!coef_scaled || !coef_exp)
241 return -EINVAL;
242
243 /* Note: we've shifted coef_scaled by 24 */
244 coef_exp = 14 - (coef_exp - 24);
245
246
247 /* Get mantissa (significant digits)
248 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
249 coef_man = coef_scaled +
250 (1 << (24 - coef_exp - 1));
251
252 /* Calculate delta slope coefficient exponent
253 * and mantissa (remove scaling) and set them on hw */
254 ds_coef_man = coef_man >> (24 - coef_exp);
255 ds_coef_exp = coef_exp - 16;
256
257 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
258 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
259 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
260 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
261
262 return 0;
263}
264
265int ath5k_hw_phy_disable(struct ath5k_hw *ah)
266{
267 /*Just a try M.F.*/
268 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
269
270 return 0;
271}
272
273
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200274/**********************\
275* RF Gain optimization *
276\**********************/
277
278/*
Bob Copelanda180a132010-08-15 13:03:12 -0400279 * This code is used to optimize RF gain on different environments
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200280 * (temperature mostly) based on feedback from a power detector.
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200281 *
282 * It's only used on RF5111 and RF5112, later RF chips seem to have
283 * auto adjustment on hw -notice they have a much smaller BANK 7 and
284 * no gain optimization ladder-.
285 *
286 * For more infos check out this patent doc
287 * http://www.freepatentsonline.com/7400691.html
288 *
289 * This paper describes power drops as seen on the receiver due to
290 * probe packets
291 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
292 * %20of%20Power%20Control.pdf
293 *
294 * And this is the MadWiFi bug entry related to the above
295 * http://madwifi-project.org/ticket/1659
296 * with various measurements and diagrams
297 *
298 * TODO: Deal with power drops due to probes by setting an apropriate
299 * tx power on the probe packets ! Make this part of the calibration process.
300 */
301
302/* Initialize ah_gain durring attach */
303int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
304{
305 /* Initialize the gain optimization values */
306 switch (ah->ah_radio) {
307 case AR5K_RF5111:
308 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
309 ah->ah_gain.g_low = 20;
310 ah->ah_gain.g_high = 35;
311 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
312 break;
313 case AR5K_RF5112:
314 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
315 ah->ah_gain.g_low = 20;
316 ah->ah_gain.g_high = 85;
317 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
318 break;
319 default:
320 return -EINVAL;
321 }
322
323 return 0;
324}
325
326/* Schedule a gain probe check on the next transmited packet.
327 * That means our next packet is going to be sent with lower
328 * tx power and a Peak to Average Power Detector (PAPD) will try
329 * to measure the gain.
330 *
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200331 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
332 * just after we enable the probe so that we don't mess with
333 * standard traffic ? Maybe it's time to use sw interrupts and
334 * a probe tasklet !!!
335 */
336static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
337{
338
339 /* Skip if gain calibration is inactive or
340 * we already handle a probe request */
341 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
342 return;
343
Nick Kossifidis8f655dd2009-03-15 22:20:35 +0200344 /* Send the packet with 2dB below max power as
345 * patent doc suggest */
Nick Kossifidisa0823812009-04-30 15:55:44 -0400346 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200347 AR5K_PHY_PAPD_PROBE_TXPOWER) |
348 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
349
350 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
351
352}
353
354/* Calculate gain_F measurement correction
355 * based on the current step for RF5112 rev. 2 */
356static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200357{
358 u32 mix, step;
359 u32 *rf;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200360 const struct ath5k_gain_opt *go;
361 const struct ath5k_gain_opt_step *g_step;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200362 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200363
364 /* Only RF5112 Rev. 2 supports it */
365 if ((ah->ah_radio != AR5K_RF5112) ||
366 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
367 return 0;
368
369 go = &rfgain_opt_5112;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200370 rf_regs = rf_regs_5112a;
371 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200372
373 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200374
375 if (ah->ah_rf_banks == NULL)
376 return 0;
377
378 rf = ah->ah_rf_banks;
379 ah->ah_gain.g_f_corr = 0;
380
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200381 /* No VGA (Variable Gain Amplifier) override, skip */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200382 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200383 return 0;
384
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200385 /* Mix gain stepping */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200386 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200387
388 /* Mix gain override */
389 mix = g_step->gos_param[0];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200390
391 switch (mix) {
392 case 3:
393 ah->ah_gain.g_f_corr = step * 2;
394 break;
395 case 2:
396 ah->ah_gain.g_f_corr = (step - 5) * 2;
397 break;
398 case 1:
399 ah->ah_gain.g_f_corr = step;
400 break;
401 default:
402 ah->ah_gain.g_f_corr = 0;
403 break;
404 }
405
406 return ah->ah_gain.g_f_corr;
407}
408
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200409/* Check if current gain_F measurement is in the range of our
410 * power detector windows. If we get a measurement outside range
411 * we know it's not accurate (detectors can't measure anything outside
412 * their detection window) so we must ignore it */
413static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200414{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200415 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200416 u32 step, mix_ovr, level[4];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200417 u32 *rf;
418
419 if (ah->ah_rf_banks == NULL)
420 return false;
421
422 rf = ah->ah_rf_banks;
423
424 if (ah->ah_radio == AR5K_RF5111) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200425
426 rf_regs = rf_regs_5111;
427 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
428
429 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
430 false);
431
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200432 level[0] = 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200433 level[1] = (step == 63) ? 50 : step + 4;
434 level[2] = (step != 63) ? 64 : level[0];
435 level[3] = level[2] + 50 ;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200436
437 ah->ah_gain.g_high = level[3] -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200438 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200439 ah->ah_gain.g_low = level[0] +
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200440 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200441 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200442
443 rf_regs = rf_regs_5112;
444 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
445
446 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
447 false);
448
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200449 level[0] = level[2] = 0;
450
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200451 if (mix_ovr == 1) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200452 level[1] = level[3] = 83;
453 } else {
454 level[1] = level[3] = 107;
455 ah->ah_gain.g_high = 55;
456 }
457 }
458
459 return (ah->ah_gain.g_current >= level[0] &&
460 ah->ah_gain.g_current <= level[1]) ||
461 (ah->ah_gain.g_current >= level[2] &&
462 ah->ah_gain.g_current <= level[3]);
463}
464
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200465/* Perform gain_F adjustment by choosing the right set
Bob Copelanda180a132010-08-15 13:03:12 -0400466 * of parameters from RF gain optimization ladder */
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200467static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200468{
469 const struct ath5k_gain_opt *go;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200470 const struct ath5k_gain_opt_step *g_step;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200471 int ret = 0;
472
473 switch (ah->ah_radio) {
474 case AR5K_RF5111:
475 go = &rfgain_opt_5111;
476 break;
477 case AR5K_RF5112:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200478 go = &rfgain_opt_5112;
479 break;
480 default:
481 return 0;
482 }
483
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200484 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200485
486 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200487
488 /* Reached maximum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200489 if (ah->ah_gain.g_step_idx == 0)
490 return -1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200491
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200492 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
493 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
494 ah->ah_gain.g_step_idx > 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200495 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200496 ah->ah_gain.g_target -= 2 *
497 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200498 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200499
500 ret = 1;
501 goto done;
502 }
503
504 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200505
506 /* Reached minimum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200507 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
508 return -2;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200509
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200510 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
511 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
512 ah->ah_gain.g_step_idx < go->go_steps_count-1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200513 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200514 ah->ah_gain.g_target -= 2 *
515 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200516 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200517
518 ret = 2;
519 goto done;
520 }
521
522done:
523 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
524 "ret %d, gain step %u, current gain %u, target gain %u\n",
525 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
526 ah->ah_gain.g_target);
527
528 return ret;
529}
530
Bob Copelanda180a132010-08-15 13:03:12 -0400531/* Main callback for thermal RF gain calibration engine
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200532 * Check for a new gain reading and schedule an adjustment
533 * if needed.
534 *
535 * TODO: Use sw interrupt to schedule reset if gain_F needs
536 * adjustment */
537enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
538{
539 u32 data, type;
540 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
541
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200542 if (ah->ah_rf_banks == NULL ||
543 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
544 return AR5K_RFGAIN_INACTIVE;
545
546 /* No check requested, either engine is inactive
547 * or an adjustment is already requested */
548 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
549 goto done;
550
551 /* Read the PAPD (Peak to Average Power Detector)
552 * register */
553 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
554
555 /* No probe is scheduled, read gain_F measurement */
556 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
557 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
558 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
559
560 /* If tx packet is CCK correct the gain_F measurement
561 * by cck ofdm gain delta */
562 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
563 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
564 ah->ah_gain.g_current +=
565 ee->ee_cck_ofdm_gain_delta;
566 else
567 ah->ah_gain.g_current +=
568 AR5K_GAIN_CCK_PROBE_CORR;
569 }
570
571 /* Further correct gain_F measurement for
572 * RF5112A radios */
573 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
574 ath5k_hw_rf_gainf_corr(ah);
575 ah->ah_gain.g_current =
576 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
577 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
578 0;
579 }
580
581 /* Check if measurement is ok and if we need
582 * to adjust gain, schedule a gain adjustment,
583 * else switch back to the acive state */
584 if (ath5k_hw_rf_check_gainf_readback(ah) &&
585 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
586 ath5k_hw_rf_gainf_adjust(ah)) {
587 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
588 } else {
589 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
590 }
591 }
592
593done:
594 return ah->ah_gain.g_state;
595}
596
Bob Copelanda180a132010-08-15 13:03:12 -0400597/* Write initial RF gain table to set the RF sensitivity
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200598 * this one works on all RF chips and has nothing to do
599 * with gain_F calibration */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200600static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200601{
602 const struct ath5k_ini_rfgain *ath5k_rfg;
603 unsigned int i, size;
604
605 switch (ah->ah_radio) {
606 case AR5K_RF5111:
607 ath5k_rfg = rfgain_5111;
608 size = ARRAY_SIZE(rfgain_5111);
609 break;
610 case AR5K_RF5112:
611 ath5k_rfg = rfgain_5112;
612 size = ARRAY_SIZE(rfgain_5112);
613 break;
614 case AR5K_RF2413:
615 ath5k_rfg = rfgain_2413;
616 size = ARRAY_SIZE(rfgain_2413);
617 break;
618 case AR5K_RF2316:
619 ath5k_rfg = rfgain_2316;
620 size = ARRAY_SIZE(rfgain_2316);
621 break;
622 case AR5K_RF5413:
623 ath5k_rfg = rfgain_5413;
624 size = ARRAY_SIZE(rfgain_5413);
625 break;
626 case AR5K_RF2317:
627 case AR5K_RF2425:
628 ath5k_rfg = rfgain_2425;
629 size = ARRAY_SIZE(rfgain_2425);
630 break;
631 default:
632 return -EINVAL;
633 }
634
635 switch (freq) {
636 case AR5K_INI_RFGAIN_2GHZ:
637 case AR5K_INI_RFGAIN_5GHZ:
638 break;
639 default:
640 return -EINVAL;
641 }
642
643 for (i = 0; i < size; i++) {
644 AR5K_REG_WAIT(i);
645 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
646 (u32)ath5k_rfg[i].rfg_register);
647 }
648
649 return 0;
650}
651
652
653
654/********************\
655* RF Registers setup *
656\********************/
657
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200658/*
Bob Copelanda180a132010-08-15 13:03:12 -0400659 * Setup RF registers by writing RF buffer on hw
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200660 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200661static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
662 struct ieee80211_channel *channel, unsigned int mode)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200663{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200664 const struct ath5k_rf_reg *rf_regs;
665 const struct ath5k_ini_rfbuffer *ini_rfb;
666 const struct ath5k_gain_opt *go = NULL;
667 const struct ath5k_gain_opt_step *g_step;
668 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
669 u8 ee_mode = 0;
670 u32 *rfb;
671 int i, obdb = -1, bank = -1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200672
673 switch (ah->ah_radio) {
674 case AR5K_RF5111:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200675 rf_regs = rf_regs_5111;
676 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
677 ini_rfb = rfb_5111;
678 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
679 go = &rfgain_opt_5111;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200680 break;
681 case AR5K_RF5112:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200682 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
683 rf_regs = rf_regs_5112a;
684 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
685 ini_rfb = rfb_5112a;
686 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
687 } else {
688 rf_regs = rf_regs_5112;
689 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
690 ini_rfb = rfb_5112;
691 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
692 }
693 go = &rfgain_opt_5112;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200694 break;
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500695 case AR5K_RF2413:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200696 rf_regs = rf_regs_2413;
697 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
698 ini_rfb = rfb_2413;
699 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
700 break;
701 case AR5K_RF2316:
702 rf_regs = rf_regs_2316;
703 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
704 ini_rfb = rfb_2316;
705 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
706 break;
707 case AR5K_RF5413:
708 rf_regs = rf_regs_5413;
709 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
710 ini_rfb = rfb_5413;
711 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
712 break;
713 case AR5K_RF2317:
714 rf_regs = rf_regs_2425;
715 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
716 ini_rfb = rfb_2317;
717 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500718 break;
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300719 case AR5K_RF2425:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200720 rf_regs = rf_regs_2425;
721 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
722 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
723 ini_rfb = rfb_2425;
724 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
725 } else {
726 ini_rfb = rfb_2417;
727 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
728 }
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300729 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200730 default:
731 return -EINVAL;
732 }
733
Bob Copelanda180a132010-08-15 13:03:12 -0400734 /* If it's the first time we set RF buffer, allocate
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200735 * ah->ah_rf_banks based on ah->ah_rf_banks_size
736 * we set above */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200737 if (ah->ah_rf_banks == NULL) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200738 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
739 GFP_KERNEL);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200740 if (ah->ah_rf_banks == NULL) {
741 ATH5K_ERR(ah->ah_sc, "out of memory\n");
742 return -ENOMEM;
743 }
744 }
745
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200746 /* Copy values to modify them */
747 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200748
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200749 for (i = 0; i < ah->ah_rf_banks_size; i++) {
750 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
751 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
752 return -EINVAL;
753 }
754
755 /* Bank changed, write down the offset */
756 if (bank != ini_rfb[i].rfb_bank) {
757 bank = ini_rfb[i].rfb_bank;
758 ah->ah_offset[bank] = i;
759 }
760
761 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
762 }
763
764 /* Set Output and Driver bias current (OB/DB) */
765 if (channel->hw_value & CHANNEL_2GHZ) {
766
767 if (channel->hw_value & CHANNEL_CCK)
768 ee_mode = AR5K_EEPROM_MODE_11B;
769 else
770 ee_mode = AR5K_EEPROM_MODE_11G;
771
772 /* For RF511X/RF211X combination we
773 * use b_OB and b_DB parameters stored
774 * in eeprom on ee->ee_ob[ee_mode][0]
775 *
776 * For all other chips we use OB/DB for 2Ghz
777 * stored in the b/g modal section just like
778 * 802.11a on ee->ee_ob[ee_mode][1] */
779 if ((ah->ah_radio == AR5K_RF5111) ||
780 (ah->ah_radio == AR5K_RF5112))
781 obdb = 0;
782 else
783 obdb = 1;
784
785 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
786 AR5K_RF_OB_2GHZ, true);
787
788 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
789 AR5K_RF_DB_2GHZ, true);
790
791 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
792 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
793 (ah->ah_radio == AR5K_RF5111)) {
794
795 /* For 11a, Turbo and XR we need to choose
796 * OB/DB based on frequency range */
797 ee_mode = AR5K_EEPROM_MODE_11A;
798 obdb = channel->center_freq >= 5725 ? 3 :
799 (channel->center_freq >= 5500 ? 2 :
800 (channel->center_freq >= 5260 ? 1 :
801 (channel->center_freq > 4000 ? 0 : -1)));
802
803 if (obdb < 0)
804 return -EINVAL;
805
806 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
807 AR5K_RF_OB_5GHZ, true);
808
809 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
810 AR5K_RF_DB_5GHZ, true);
811 }
812
813 g_step = &go->go_step[ah->ah_gain.g_step_idx];
814
815 /* Bank Modifications (chip-specific) */
816 if (ah->ah_radio == AR5K_RF5111) {
817
818 /* Set gain_F settings according to current step */
819 if (channel->hw_value & CHANNEL_OFDM) {
820
821 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
822 AR5K_PHY_FRAME_CTL_TX_CLIP,
823 g_step->gos_param[0]);
824
825 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
826 AR5K_RF_PWD_90, true);
827
828 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
829 AR5K_RF_PWD_84, true);
830
831 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
832 AR5K_RF_RFGAIN_SEL, true);
833
834 /* We programmed gain_F parameters, switch back
835 * to active state */
836 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
837
838 }
839
840 /* Bank 6/7 setup */
841
842 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
843 AR5K_RF_PWD_XPD, true);
844
845 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
846 AR5K_RF_XPD_GAIN, true);
847
848 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
849 AR5K_RF_GAIN_I, true);
850
851 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
852 AR5K_RF_PLO_SEL, true);
853
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200854 /* Tweak power detectors for half/quarter rate support */
855 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
856 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
857 u8 wait_i;
858
859 ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
860 AR5K_RF_WAIT_S, true);
861
862 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
863 0x1f : 0x10;
864
865 ath5k_hw_rfb_op(ah, rf_regs, wait_i,
866 AR5K_RF_WAIT_I, true);
867 ath5k_hw_rfb_op(ah, rf_regs, 3,
868 AR5K_RF_MAX_TIME, true);
869
870 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200871 }
872
873 if (ah->ah_radio == AR5K_RF5112) {
874
875 /* Set gain_F settings according to current step */
876 if (channel->hw_value & CHANNEL_OFDM) {
877
878 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
879 AR5K_RF_MIXGAIN_OVR, true);
880
881 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
882 AR5K_RF_PWD_138, true);
883
884 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
885 AR5K_RF_PWD_137, true);
886
887 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
888 AR5K_RF_PWD_136, true);
889
890 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
891 AR5K_RF_PWD_132, true);
892
893 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
894 AR5K_RF_PWD_131, true);
895
896 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
897 AR5K_RF_PWD_130, true);
898
899 /* We programmed gain_F parameters, switch back
900 * to active state */
901 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
902 }
903
904 /* Bank 6/7 setup */
905
906 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
907 AR5K_RF_XPD_SEL, true);
908
909 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
910 /* Rev. 1 supports only one xpd */
911 ath5k_hw_rfb_op(ah, rf_regs,
912 ee->ee_x_gain[ee_mode],
913 AR5K_RF_XPD_GAIN, true);
914
915 } else {
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300916 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
917 if (ee->ee_pd_gains[ee_mode] > 1) {
918 ath5k_hw_rfb_op(ah, rf_regs,
919 pdg_curve_to_idx[0],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200920 AR5K_RF_PD_GAIN_LO, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300921 ath5k_hw_rfb_op(ah, rf_regs,
922 pdg_curve_to_idx[1],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200923 AR5K_RF_PD_GAIN_HI, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300924 } else {
925 ath5k_hw_rfb_op(ah, rf_regs,
926 pdg_curve_to_idx[0],
927 AR5K_RF_PD_GAIN_LO, true);
928 ath5k_hw_rfb_op(ah, rf_regs,
929 pdg_curve_to_idx[0],
930 AR5K_RF_PD_GAIN_HI, true);
931 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200932
933 /* Lower synth voltage on Rev 2 */
934 ath5k_hw_rfb_op(ah, rf_regs, 2,
935 AR5K_RF_HIGH_VC_CP, true);
936
937 ath5k_hw_rfb_op(ah, rf_regs, 2,
938 AR5K_RF_MID_VC_CP, true);
939
940 ath5k_hw_rfb_op(ah, rf_regs, 2,
941 AR5K_RF_LOW_VC_CP, true);
942
943 ath5k_hw_rfb_op(ah, rf_regs, 2,
944 AR5K_RF_PUSH_UP, true);
945
946 /* Decrease power consumption on 5213+ BaseBand */
947 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
948 ath5k_hw_rfb_op(ah, rf_regs, 1,
949 AR5K_RF_PAD2GND, true);
950
951 ath5k_hw_rfb_op(ah, rf_regs, 1,
952 AR5K_RF_XB2_LVL, true);
953
954 ath5k_hw_rfb_op(ah, rf_regs, 1,
955 AR5K_RF_XB5_LVL, true);
956
957 ath5k_hw_rfb_op(ah, rf_regs, 1,
958 AR5K_RF_PWD_167, true);
959
960 ath5k_hw_rfb_op(ah, rf_regs, 1,
961 AR5K_RF_PWD_166, true);
962 }
963 }
964
965 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
966 AR5K_RF_GAIN_I, true);
967
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200968 /* Tweak power detector for half/quarter rates */
969 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
970 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
971 u8 pd_delay;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200972
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200973 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
974 0xf : 0x8;
975
976 ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
977 AR5K_RF_PD_PERIOD_A, true);
978 ath5k_hw_rfb_op(ah, rf_regs, 0xf,
979 AR5K_RF_PD_DELAY_A, true);
980
981 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200982 }
983
984 if (ah->ah_radio == AR5K_RF5413 &&
985 channel->hw_value & CHANNEL_2GHZ) {
986
987 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
988 true);
989
990 /* Set optimum value for early revisions (on pci-e chips) */
991 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
992 ah->ah_mac_srev < AR5K_SREV_AR5413)
993 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
994 AR5K_RF_PWD_ICLOBUF_2G, true);
995
996 }
997
998 /* Write RF banks on hw */
999 for (i = 0; i < ah->ah_rf_banks_size; i++) {
1000 AR5K_REG_WAIT(i);
1001 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1002 }
1003
1004 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001005}
1006
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001007
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001008/**************************\
1009 PHY/RF channel functions
1010\**************************/
1011
1012/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001013 * Convertion needed for RF5110
1014 */
1015static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1016{
1017 u32 athchan;
1018
1019 /*
1020 * Convert IEEE channel/MHz to an internal channel value used
1021 * by the AR5210 chipset. This has not been verified with
1022 * newer chipsets like the AR5212A who have a completely
1023 * different RF/PHY part.
1024 */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001025 athchan = (ath5k_hw_bitswap(
1026 (ieee80211_frequency_to_channel(
1027 channel->center_freq) - 24) / 2, 5)
1028 << 1) | (1 << 6) | 0x1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001029 return athchan;
1030}
1031
1032/*
1033 * Set channel on RF5110
1034 */
1035static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1036 struct ieee80211_channel *channel)
1037{
1038 u32 data;
1039
1040 /*
1041 * Set the channel and wait
1042 */
1043 data = ath5k_hw_rf5110_chan2athchan(channel);
1044 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1045 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1046 mdelay(1);
1047
1048 return 0;
1049}
1050
1051/*
1052 * Convertion needed for 5111
1053 */
1054static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1055 struct ath5k_athchan_2ghz *athchan)
1056{
1057 int channel;
1058
1059 /* Cast this value to catch negative channel numbers (>= -19) */
1060 channel = (int)ieee;
1061
1062 /*
1063 * Map 2GHz IEEE channel to 5GHz Atheros channel
1064 */
1065 if (channel <= 13) {
1066 athchan->a2_athchan = 115 + channel;
1067 athchan->a2_flags = 0x46;
1068 } else if (channel == 14) {
1069 athchan->a2_athchan = 124;
1070 athchan->a2_flags = 0x44;
1071 } else if (channel >= 15 && channel <= 26) {
1072 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1073 athchan->a2_flags = 0x46;
1074 } else
1075 return -EINVAL;
1076
1077 return 0;
1078}
1079
1080/*
1081 * Set channel on 5111
1082 */
1083static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1084 struct ieee80211_channel *channel)
1085{
1086 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001087 unsigned int ath5k_channel =
1088 ieee80211_frequency_to_channel(channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001089 u32 data0, data1, clock;
1090 int ret;
1091
1092 /*
1093 * Set the channel on the RF5111 radio
1094 */
1095 data0 = data1 = 0;
1096
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001097 if (channel->hw_value & CHANNEL_2GHZ) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001098 /* Map 2GHz channel to 5GHz Atheros channel ID */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001099 ret = ath5k_hw_rf5111_chan2athchan(
1100 ieee80211_frequency_to_channel(channel->center_freq),
1101 &ath5k_channel_2ghz);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001102 if (ret)
1103 return ret;
1104
1105 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1106 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1107 << 5) | (1 << 4);
1108 }
1109
1110 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1111 clock = 1;
1112 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1113 (clock << 1) | (1 << 10) | 1;
1114 } else {
1115 clock = 0;
1116 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1117 << 2) | (clock << 1) | (1 << 10) | 1;
1118 }
1119
1120 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1121 AR5K_RF_BUFFER);
1122 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1123 AR5K_RF_BUFFER_CONTROL_3);
1124
1125 return 0;
1126}
1127
1128/*
1129 * Set channel on 5112 and newer
1130 */
1131static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1132 struct ieee80211_channel *channel)
1133{
1134 u32 data, data0, data1, data2;
1135 u16 c;
1136
1137 data = data0 = data1 = data2 = 0;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001138 c = channel->center_freq;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001139
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001140 if (c < 4800) {
1141 if (!((c - 2224) % 5)) {
1142 data0 = ((2 * (c - 704)) - 3040) / 10;
1143 data1 = 1;
1144 } else if (!((c - 2192) % 5)) {
1145 data0 = ((2 * (c - 672)) - 3040) / 10;
1146 data1 = 0;
1147 } else
1148 return -EINVAL;
1149
1150 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
Bob Copeland1968cc72010-04-07 23:55:56 -04001151 } else if ((c % 5) != 2 || c > 5435) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001152 if (!(c % 20) && c >= 5120) {
1153 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1154 data2 = ath5k_hw_bitswap(3, 2);
1155 } else if (!(c % 10)) {
1156 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1157 data2 = ath5k_hw_bitswap(2, 2);
1158 } else if (!(c % 5)) {
1159 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1160 data2 = ath5k_hw_bitswap(1, 2);
1161 } else
1162 return -EINVAL;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001163 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001164 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001165 data2 = ath5k_hw_bitswap(0, 2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001166 }
1167
1168 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1169
1170 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1171 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1172
1173 return 0;
1174}
1175
1176/*
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001177 * Set the channel on the RF2425
1178 */
1179static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1180 struct ieee80211_channel *channel)
1181{
1182 u32 data, data0, data2;
1183 u16 c;
1184
1185 data = data0 = data2 = 0;
1186 c = channel->center_freq;
1187
1188 if (c < 4800) {
1189 data0 = ath5k_hw_bitswap((c - 2272), 8);
1190 data2 = 0;
1191 /* ? 5GHz ? */
Bob Copeland1968cc72010-04-07 23:55:56 -04001192 } else if ((c % 5) != 2 || c > 5435) {
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001193 if (!(c % 20) && c < 5120)
1194 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1195 else if (!(c % 10))
1196 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1197 else if (!(c % 5))
1198 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1199 else
1200 return -EINVAL;
1201 data2 = ath5k_hw_bitswap(1, 2);
1202 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001203 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001204 data2 = ath5k_hw_bitswap(0, 2);
1205 }
1206
1207 data = (data0 << 4) | data2 << 2 | 0x1001;
1208
1209 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1210 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1211
1212 return 0;
1213}
1214
1215/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001216 * Set a channel on the radio chip
1217 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001218static int ath5k_hw_channel(struct ath5k_hw *ah,
1219 struct ieee80211_channel *channel)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001220{
1221 int ret;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001222 /*
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001223 * Check bounds supported by the PHY (we don't care about regultory
1224 * restrictions at this point). Note: hw_value already has the band
1225 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1226 * of the band by that */
1227 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001228 ATH5K_ERR(ah->ah_sc,
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001229 "channel frequency (%u MHz) out of supported "
1230 "band range\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001231 channel->center_freq);
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001232 return -EINVAL;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001233 }
1234
1235 /*
1236 * Set the channel and wait
1237 */
1238 switch (ah->ah_radio) {
1239 case AR5K_RF5110:
1240 ret = ath5k_hw_rf5110_channel(ah, channel);
1241 break;
1242 case AR5K_RF5111:
1243 ret = ath5k_hw_rf5111_channel(ah, channel);
1244 break;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001245 case AR5K_RF2425:
1246 ret = ath5k_hw_rf2425_channel(ah, channel);
1247 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001248 default:
1249 ret = ath5k_hw_rf5112_channel(ah, channel);
1250 break;
1251 }
1252
1253 if (ret)
1254 return ret;
1255
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001256 /* Set JAPAN setting for channel 14 */
1257 if (channel->center_freq == 2484) {
1258 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1259 AR5K_PHY_CCKTXCTL_JAPAN);
1260 } else {
1261 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1262 AR5K_PHY_CCKTXCTL_WORLD);
1263 }
1264
Bob Copeland46026e82009-06-10 22:22:20 -04001265 ah->ah_current_channel = channel;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001266
1267 return 0;
1268}
1269
1270/*****************\
1271 PHY calibration
1272\*****************/
1273
Bob Copelande5e26472009-10-14 14:16:30 -04001274static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1275{
1276 s32 val;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001277
Bob Copelande5e26472009-10-14 14:16:30 -04001278 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
Andreas Herrmann7919a572010-08-30 19:04:01 +00001279 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
Bob Copelande5e26472009-10-14 14:16:30 -04001280}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001281
Bob Copelande5e26472009-10-14 14:16:30 -04001282void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1283{
1284 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001285
Bob Copelande5e26472009-10-14 14:16:30 -04001286 ah->ah_nfcal_hist.index = 0;
1287 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1288 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1289}
1290
1291static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1292{
1293 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1294 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1295 hist->nfval[hist->index] = noise_floor;
1296}
1297
1298static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1299{
1300 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1301 s16 tmp;
1302 int i, j;
1303
1304 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1305 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1306 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1307 if (sort[j] > sort[j-1]) {
1308 tmp = sort[j];
1309 sort[j] = sort[j-1];
1310 sort[j-1] = tmp;
1311 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001312 }
1313 }
Bob Copelande5e26472009-10-14 14:16:30 -04001314 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1315 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1316 "cal %d:%d\n", i, sort[i]);
1317 }
1318 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1319}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001320
Bob Copelande5e26472009-10-14 14:16:30 -04001321/*
1322 * When we tell the hardware to perform a noise floor calibration
1323 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1324 * sample-and-hold the minimum noise level seen at the antennas.
1325 * This value is then stored in a ring buffer of recently measured
1326 * noise floor values so we have a moving window of the last few
1327 * samples.
1328 *
1329 * The median of the values in the history is then loaded into the
1330 * hardware for its own use for RSSI and CCA measurements.
1331 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001332void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
Bob Copelande5e26472009-10-14 14:16:30 -04001333{
1334 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1335 u32 val;
1336 s16 nf, threshold;
1337 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001338
Bob Copelande5e26472009-10-14 14:16:30 -04001339 /* keep last value if calibration hasn't completed */
1340 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1341 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1342 "NF did not complete in calibration window\n");
1343
1344 return;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001345 }
1346
Bob Copelande5e26472009-10-14 14:16:30 -04001347 switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1348 case CHANNEL_A:
1349 case CHANNEL_T:
1350 case CHANNEL_XR:
1351 ee_mode = AR5K_EEPROM_MODE_11A;
1352 break;
1353 case CHANNEL_G:
1354 case CHANNEL_TG:
1355 ee_mode = AR5K_EEPROM_MODE_11G;
1356 break;
1357 default:
1358 case CHANNEL_B:
1359 ee_mode = AR5K_EEPROM_MODE_11B;
1360 break;
1361 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001362
Bob Copelande5e26472009-10-14 14:16:30 -04001363
1364 /* completed NF calibration, test threshold */
1365 nf = ath5k_hw_read_measured_noise_floor(ah);
1366 threshold = ee->ee_noise_floor_thr[ee_mode];
1367
1368 if (nf > threshold) {
1369 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1370 "noise floor failure detected; "
1371 "read %d, threshold %d\n",
1372 nf, threshold);
1373
1374 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1375 }
1376
1377 ath5k_hw_update_nfcal_hist(ah, nf);
1378 nf = ath5k_hw_get_median_noise_floor(ah);
1379
1380 /* load noise floor (in .5 dBm) so the hardware will use it */
1381 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1382 val |= (nf * 2) & AR5K_PHY_NF_M;
1383 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1384
1385 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1386 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1387
1388 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1389 0, false);
1390
1391 /*
1392 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1393 * so that we're not capped by the median we just loaded.
1394 * This will be used as the initial value for the next noise
1395 * floor calibration.
1396 */
1397 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1398 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1399 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1400 AR5K_PHY_AGCCTL_NF_EN |
1401 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1402 AR5K_PHY_AGCCTL_NF);
1403
1404 ah->ah_noise_floor = nf;
1405
1406 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1407 "noise floor calibrated: %d\n", nf);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001408}
1409
1410/*
1411 * Perform a PHY calibration on RF5110
1412 * -Fix BPSK/QAM Constellation (I/Q correction)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001413 */
1414static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1415 struct ieee80211_channel *channel)
1416{
1417 u32 phy_sig, phy_agc, phy_sat, beacon;
1418 int ret;
1419
1420 /*
1421 * Disable beacons and RX/TX queues, wait
1422 */
1423 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001424 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001425 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1426 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1427
Nick Kossifidis84e463f2008-09-17 03:33:19 +03001428 mdelay(2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001429
1430 /*
1431 * Set the channel (with AGC turned off)
1432 */
1433 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1434 udelay(10);
1435 ret = ath5k_hw_channel(ah, channel);
1436
1437 /*
1438 * Activate PHY and wait
1439 */
1440 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1441 mdelay(1);
1442
1443 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1444
1445 if (ret)
1446 return ret;
1447
1448 /*
1449 * Calibrate the radio chip
1450 */
1451
1452 /* Remember normal state */
1453 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1454 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1455 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1456
1457 /* Update radio registers */
1458 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1459 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1460
1461 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1462 AR5K_PHY_AGCCOARSE_LO)) |
1463 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1464 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1465
1466 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1467 AR5K_PHY_ADCSAT_THR)) |
1468 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1469 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1470
1471 udelay(20);
1472
1473 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1474 udelay(10);
1475 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1476 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1477
1478 mdelay(1);
1479
1480 /*
1481 * Enable calibration and wait until completion
1482 */
1483 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1484
1485 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1486 AR5K_PHY_AGCCTL_CAL, 0, false);
1487
1488 /* Reset to normal state */
1489 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1490 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1491 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1492
1493 if (ret) {
1494 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001495 channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001496 return ret;
1497 }
1498
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001499 /*
1500 * Re-enable RX/TX and beacons
1501 */
1502 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001503 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001504 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1505
1506 return 0;
1507}
1508
1509/*
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001510 * Perform I/Q calibration on RF5111/5112 and newer chips
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001511 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001512static int
1513ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001514{
1515 u32 i_pwr, q_pwr;
1516 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001517 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001518
Joe Perchese9010e22008-03-07 14:21:16 -08001519 if (!ah->ah_calibration ||
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001520 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001521 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001522
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001523 /* Calibration has finished, get the results and re-run */
Bruno Randolf86415d42010-03-09 16:56:05 +09001524 /* work around empty results which can apparently happen on 5212 */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001525 for (i = 0; i <= 10; i++) {
1526 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1527 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1528 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
Bruno Randolf86415d42010-03-09 16:56:05 +09001529 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1530 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1531 if (i_pwr && q_pwr)
1532 break;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001533 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001534
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001535 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
Bruno Randolf49a85d22010-03-09 16:56:15 +09001536
1537 if (ah->ah_version == AR5K_AR5211)
1538 q_coffd = q_pwr >> 6;
1539 else
1540 q_coffd = q_pwr >> 7;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001541
Bruno Randolf86415d42010-03-09 16:56:05 +09001542 /* protect against divide by 0 and loss of sign bits */
1543 if (i_coffd == 0 || q_coffd < 2)
Fabio Rossi516c6e12010-09-08 22:37:41 +02001544 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001545
Bruno Randolf86415d42010-03-09 16:56:05 +09001546 i_coff = (-iq_corr) / i_coffd;
1547 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001548
John W. Linvilleace5d5d2010-04-08 16:34:49 -04001549 if (ah->ah_version == AR5K_AR5211)
1550 q_coff = (i_pwr / q_coffd) - 64;
1551 else
1552 q_coff = (i_pwr / q_coffd) - 128;
Bruno Randolf86415d42010-03-09 16:56:05 +09001553 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001554
Bruno Randolf86415d42010-03-09 16:56:05 +09001555 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1556 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1557 i_coff, q_coff, i_coffd, q_coffd);
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001558
Bruno Randolf86415d42010-03-09 16:56:05 +09001559 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1560 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1561 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1562 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001563
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001564 /* Re-enable calibration -if we don't we'll commit
1565 * the same values again and again */
1566 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1567 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1568 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1569
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001570 return 0;
1571}
1572
1573/*
1574 * Perform a PHY calibration
1575 */
1576int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1577 struct ieee80211_channel *channel)
1578{
1579 int ret;
1580
1581 if (ah->ah_radio == AR5K_RF5110)
1582 ret = ath5k_hw_rf5110_calibrate(ah, channel);
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001583 else {
1584 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1585 ath5k_hw_request_rfgain_probe(ah);
1586 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001587
1588 return ret;
1589}
1590
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001591
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001592/***************************\
1593* Spur mitigation functions *
1594\***************************/
1595
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001596static void
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001597ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1598 struct ieee80211_channel *channel)
1599{
1600 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601 u32 mag_mask[4] = {0, 0, 0, 0};
1602 u32 pilot_mask[2] = {0, 0};
1603 /* Note: fbin values are scaled up by 2 */
1604 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1605 s32 spur_delta_phase, spur_freq_sigma_delta;
1606 s32 spur_offset, num_symbols_x16;
1607 u8 num_symbol_offsets, i, freq_band;
1608
1609 /* Convert current frequency to fbin value (the same way channels
1610 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1611 * up by 2 so we can compare it later */
1612 if (channel->hw_value & CHANNEL_2GHZ) {
1613 chan_fbin = (channel->center_freq - 2300) * 10;
1614 freq_band = AR5K_EEPROM_BAND_2GHZ;
1615 } else {
1616 chan_fbin = (channel->center_freq - 4900) * 10;
1617 freq_band = AR5K_EEPROM_BAND_5GHZ;
1618 }
1619
1620 /* Check if any spur_chan_fbin from EEPROM is
1621 * within our current channel's spur detection range */
1622 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1623 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1624 /* XXX: Half/Quarter channels ?*/
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001625 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001626 spur_detection_window *= 2;
1627
1628 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1629 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1630
1631 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1632 * so it's zero if we got nothing from EEPROM */
1633 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1634 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1635 break;
1636 }
1637
1638 if ((chan_fbin - spur_detection_window <=
1639 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1640 (chan_fbin + spur_detection_window >=
1641 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1642 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1643 break;
1644 }
1645 }
1646
1647 /* We need to enable spur filter for this channel */
1648 if (spur_chan_fbin) {
1649 spur_offset = spur_chan_fbin - chan_fbin;
1650 /*
1651 * Calculate deltas:
1652 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1653 * spur_delta_phase -> spur_offset / chip_freq << 11
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001654 * Note: Both values have 100Hz resolution
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001655 */
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001656 switch (ah->ah_bwmode) {
1657 case AR5K_BWMODE_40MHZ:
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001658 /* Both sample_freq and chip_freq are 80MHz */
1659 spur_delta_phase = (spur_offset << 16) / 25;
1660 spur_freq_sigma_delta = (spur_delta_phase >> 10);
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001661 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001662 break;
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001663 case AR5K_BWMODE_10MHZ:
1664 /* Both sample_freq and chip_freq are 20MHz (?) */
1665 spur_delta_phase = (spur_offset << 18) / 25;
1666 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1667 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1668 case AR5K_BWMODE_5MHZ:
1669 /* Both sample_freq and chip_freq are 10MHz (?) */
1670 spur_delta_phase = (spur_offset << 19) / 25;
1671 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1672 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001673 default:
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001674 if (channel->hw_value == CHANNEL_A) {
1675 /* Both sample_freq and chip_freq are 40MHz */
1676 spur_delta_phase = (spur_offset << 17) / 25;
1677 spur_freq_sigma_delta =
1678 (spur_delta_phase >> 10);
1679 symbol_width =
1680 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1681 } else {
1682 /* sample_freq -> 40MHz chip_freq -> 44MHz
1683 * (for b compatibility) */
1684 spur_delta_phase = (spur_offset << 17) / 25;
1685 spur_freq_sigma_delta =
1686 (spur_offset << 8) / 55;
1687 symbol_width =
1688 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1689 }
1690 break;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001691 }
1692
1693 /* Calculate pilot and magnitude masks */
1694
1695 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1696 * and divide by symbol_width to find how many symbols we have
1697 * Note: number of symbols is scaled up by 16 */
1698 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1699
1700 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1701 if (!(num_symbols_x16 & 0xF))
1702 /* _X_ */
1703 num_symbol_offsets = 3;
1704 else
1705 /* _xx_ */
1706 num_symbol_offsets = 4;
1707
1708 for (i = 0; i < num_symbol_offsets; i++) {
1709
1710 /* Calculate pilot mask */
1711 s32 curr_sym_off =
1712 (num_symbols_x16 / 16) + i + 25;
1713
1714 /* Pilot magnitude mask seems to be a way to
1715 * declare the boundaries for our detection
1716 * window or something, it's 2 for the middle
1717 * value(s) where the symbol is expected to be
1718 * and 1 on the boundary values */
1719 u8 plt_mag_map =
1720 (i == 0 || i == (num_symbol_offsets - 1))
1721 ? 1 : 2;
1722
1723 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1724 if (curr_sym_off <= 25)
1725 pilot_mask[0] |= 1 << curr_sym_off;
1726 else if (curr_sym_off >= 27)
1727 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1728 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1729 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1730
1731 /* Calculate magnitude mask (for viterbi decoder) */
1732 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1733 mag_mask[0] |=
1734 plt_mag_map << (curr_sym_off + 1) * 2;
1735 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1736 mag_mask[1] |=
1737 plt_mag_map << (curr_sym_off - 15) * 2;
1738 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1739 mag_mask[2] |=
1740 plt_mag_map << (curr_sym_off - 31) * 2;
Bob Copeland53b1cf82010-08-24 21:37:14 -04001741 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001742 mag_mask[3] |=
1743 plt_mag_map << (curr_sym_off - 47) * 2;
1744
1745 }
1746
1747 /* Write settings on hw to enable spur filter */
1748 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1749 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1750 /* XXX: Self correlator also ? */
1751 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1752 AR5K_PHY_IQ_PILOT_MASK_EN |
1753 AR5K_PHY_IQ_CHAN_MASK_EN |
1754 AR5K_PHY_IQ_SPUR_FILT_EN);
1755
1756 /* Set delta phase and freq sigma delta */
1757 ath5k_hw_reg_write(ah,
1758 AR5K_REG_SM(spur_delta_phase,
1759 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1760 AR5K_REG_SM(spur_freq_sigma_delta,
1761 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1762 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1763 AR5K_PHY_TIMING_11);
1764
1765 /* Write pilot masks */
1766 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1767 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1768 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1769 pilot_mask[1]);
1770
1771 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1772 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1773 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1774 pilot_mask[1]);
1775
1776 /* Write magnitude masks */
1777 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1778 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1779 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1780 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1781 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1782 mag_mask[3]);
1783
1784 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1785 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1786 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1787 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1788 AR5K_PHY_BIN_MASK2_4_MASK_4,
1789 mag_mask[3]);
1790
1791 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1792 AR5K_PHY_IQ_SPUR_FILT_EN) {
1793 /* Clean up spur mitigation settings and disable fliter */
1794 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1795 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1796 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1797 AR5K_PHY_IQ_PILOT_MASK_EN |
1798 AR5K_PHY_IQ_CHAN_MASK_EN |
1799 AR5K_PHY_IQ_SPUR_FILT_EN);
1800 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1801
1802 /* Clear pilot masks */
1803 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1804 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1805 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1806 0);
1807
1808 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1809 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1810 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1811 0);
1812
1813 /* Clear magnitude masks */
1814 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1815 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1816 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1817 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1818 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1819 0);
1820
1821 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1822 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1823 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1824 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1825 AR5K_PHY_BIN_MASK2_4_MASK_4,
1826 0);
1827 }
1828}
1829
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001830
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001831/*****************\
1832* Antenna control *
1833\*****************/
1834
Pavel Roskin626ede62010-02-18 20:28:02 -05001835static void /*TODO:Boundary check*/
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001836ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001837{
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001838 if (ah->ah_version != AR5K_AR5210)
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001839 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001840}
1841
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001842/*
1843 * Enable/disable fast rx antenna diversity
1844 */
1845static void
1846ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1847{
1848 switch (ee_mode) {
1849 case AR5K_EEPROM_MODE_11G:
1850 /* XXX: This is set to
1851 * disabled on initvals !!! */
1852 case AR5K_EEPROM_MODE_11A:
1853 if (enable)
1854 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1855 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1856 else
1857 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1858 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1859 break;
1860 case AR5K_EEPROM_MODE_11B:
1861 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1862 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1863 break;
1864 default:
1865 return;
1866 }
1867
1868 if (enable) {
1869 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf6665b542010-06-28 11:01:48 +09001870 AR5K_PHY_RESTART_DIV_GC, 4);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001871
1872 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1873 AR5K_PHY_FAST_ANT_DIV_EN);
1874 } else {
1875 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf39d5b2c2010-06-07 13:11:25 +09001876 AR5K_PHY_RESTART_DIV_GC, 0);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001877
1878 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1879 AR5K_PHY_FAST_ANT_DIV_EN);
1880 }
1881}
1882
Bruno Randolf0ca74022010-06-07 13:11:30 +09001883void
1884ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1885{
1886 u8 ant0, ant1;
1887
1888 /*
1889 * In case a fixed antenna was set as default
1890 * use the same switch table twice.
1891 */
1892 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1893 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1894 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1895 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1896 else {
1897 ant0 = AR5K_ANT_SWTABLE_A;
1898 ant1 = AR5K_ANT_SWTABLE_B;
1899 }
1900
1901 /* Set antenna idle switch table */
1902 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1903 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1904 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1905 AR5K_PHY_ANT_CTL_TXRX_EN));
1906
1907 /* Set antenna switch tables */
1908 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1909 AR5K_PHY_ANT_SWITCH_TABLE_0);
1910 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1911 AR5K_PHY_ANT_SWITCH_TABLE_1);
1912}
1913
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001914/*
1915 * Set antenna operating mode
1916 */
1917void
1918ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1919{
Bob Copeland46026e82009-06-10 22:22:20 -04001920 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001921 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1922 bool use_def_for_sg;
1923 u8 def_ant, tx_ant, ee_mode;
1924 u32 sta_id1 = 0;
1925
Bruno Randolf436c1092010-06-07 13:11:19 +09001926 /* if channel is not initialized yet we can't set the antennas
1927 * so just store the mode. it will be set on the next reset */
1928 if (channel == NULL) {
1929 ah->ah_ant_mode = ant_mode;
1930 return;
1931 }
1932
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001933 def_ant = ah->ah_def_ant;
1934
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001935 switch (channel->hw_value & CHANNEL_MODES) {
1936 case CHANNEL_A:
1937 case CHANNEL_T:
1938 case CHANNEL_XR:
1939 ee_mode = AR5K_EEPROM_MODE_11A;
1940 break;
1941 case CHANNEL_G:
1942 case CHANNEL_TG:
1943 ee_mode = AR5K_EEPROM_MODE_11G;
1944 break;
1945 case CHANNEL_B:
1946 ee_mode = AR5K_EEPROM_MODE_11B;
1947 break;
1948 default:
1949 ATH5K_ERR(ah->ah_sc,
1950 "invalid channel: %d\n", channel->center_freq);
1951 return;
1952 }
1953
1954 switch (ant_mode) {
1955 case AR5K_ANTMODE_DEFAULT:
1956 tx_ant = 0;
1957 use_def_for_tx = false;
1958 update_def_on_tx = false;
1959 use_def_for_rts = false;
1960 use_def_for_sg = false;
1961 fast_div = true;
1962 break;
1963 case AR5K_ANTMODE_FIXED_A:
1964 def_ant = 1;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001965 tx_ant = 1;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001966 use_def_for_tx = true;
1967 update_def_on_tx = false;
1968 use_def_for_rts = true;
1969 use_def_for_sg = true;
1970 fast_div = false;
1971 break;
1972 case AR5K_ANTMODE_FIXED_B:
1973 def_ant = 2;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001974 tx_ant = 2;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001975 use_def_for_tx = true;
1976 update_def_on_tx = false;
1977 use_def_for_rts = true;
1978 use_def_for_sg = true;
1979 fast_div = false;
1980 break;
1981 case AR5K_ANTMODE_SINGLE_AP:
1982 def_ant = 1; /* updated on tx */
1983 tx_ant = 0;
1984 use_def_for_tx = true;
1985 update_def_on_tx = true;
1986 use_def_for_rts = true;
1987 use_def_for_sg = true;
1988 fast_div = true;
1989 break;
1990 case AR5K_ANTMODE_SECTOR_AP:
1991 tx_ant = 1; /* variable */
1992 use_def_for_tx = false;
1993 update_def_on_tx = false;
1994 use_def_for_rts = true;
1995 use_def_for_sg = false;
1996 fast_div = false;
1997 break;
1998 case AR5K_ANTMODE_SECTOR_STA:
1999 tx_ant = 1; /* variable */
2000 use_def_for_tx = true;
2001 update_def_on_tx = false;
2002 use_def_for_rts = true;
2003 use_def_for_sg = false;
2004 fast_div = true;
2005 break;
2006 case AR5K_ANTMODE_DEBUG:
2007 def_ant = 1;
2008 tx_ant = 2;
2009 use_def_for_tx = false;
2010 update_def_on_tx = false;
2011 use_def_for_rts = false;
2012 use_def_for_sg = false;
2013 fast_div = false;
2014 break;
2015 default:
2016 return;
2017 }
2018
2019 ah->ah_tx_ant = tx_ant;
2020 ah->ah_ant_mode = ant_mode;
Bruno Randolfcaec9112010-03-09 16:55:28 +09002021 ah->ah_def_ant = def_ant;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04002022
2023 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2024 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2025 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2026 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2027
2028 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2029
2030 if (sta_id1)
2031 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2032
Bruno Randolf0ca74022010-06-07 13:11:30 +09002033 ath5k_hw_set_antenna_switch(ah, ee_mode);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04002034 /* Note: set diversity before default antenna
2035 * because it won't work correctly */
2036 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2037 ath5k_hw_set_def_antenna(ah, def_ant);
2038}
2039
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002040
2041/****************\
2042* TX power setup *
2043\****************/
2044
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002045/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002046 * Helper functions
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002047 */
2048
2049/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002050 * Do linear interpolation between two given (x, y) points
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002051 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002052static s16
2053ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2054 s16 y_left, s16 y_right)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002055{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002056 s16 ratio, result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002057
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002058 /* Avoid divide by zero and skip interpolation
2059 * if we have the same point */
2060 if ((x_left == x_right) || (y_left == y_right))
2061 return y_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002062
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002063 /*
2064 * Since we use ints and not fps, we need to scale up in
2065 * order to get a sane ratio value (or else we 'll eg. get
2066 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2067 * to have some accuracy both for 0.5 and 0.25 steps.
2068 */
2069 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002070
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002071 /* Now scale down to be in range */
2072 result = y_left + (ratio * (target - x_left) / 100);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002073
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002074 return result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002075}
2076
2077/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002078 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2079 *
2080 * Since we have the top of the curve and we draw the line below
2081 * until we reach 1 (1 pcdac step) we need to know which point
2082 * (x value) that is so that we don't go below y axis and have negative
2083 * pcdac values when creating the curve, or fill the table with zeroes.
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002084 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002085static s16
2086ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2087 const s16 *pwrL, const s16 *pwrR)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002088{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002089 s8 tmp;
2090 s16 min_pwrL, min_pwrR;
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002091 s16 pwr_i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002092
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +03002093 /* Some vendors write the same pcdac value twice !!! */
2094 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2095 return max(pwrL[0], pwrR[0]);
Bob Copeland9c8b3ed2009-05-19 23:37:31 -04002096
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002097 if (pwrL[0] == pwrL[1])
2098 min_pwrL = pwrL[0];
2099 else {
2100 pwr_i = pwrL[0];
2101 do {
2102 pwr_i--;
2103 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2104 pwrL[0], pwrL[1],
2105 stepL[0], stepL[1]);
2106 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002107
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002108 min_pwrL = pwr_i;
2109 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002110
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002111 if (pwrR[0] == pwrR[1])
2112 min_pwrR = pwrR[0];
2113 else {
2114 pwr_i = pwrR[0];
2115 do {
2116 pwr_i--;
2117 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2118 pwrR[0], pwrR[1],
2119 stepR[0], stepR[1]);
2120 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002121
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002122 min_pwrR = pwr_i;
2123 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002124
2125 /* Keep the right boundary so that it works for both curves */
2126 return max(min_pwrL, min_pwrR);
2127}
2128
2129/*
2130 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2131 * Power to PCDAC curve.
2132 *
2133 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2134 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2135 * PCDAC/PDADC step for each curve is 64 but we can write more than
2136 * one curves on hw so we can go up to 128 (which is the max step we
2137 * can write on the final table).
2138 *
2139 * We write y values (PCDAC/PDADC steps) on hw.
2140 */
2141static void
2142ath5k_create_power_curve(s16 pmin, s16 pmax,
2143 const s16 *pwr, const u8 *vpd,
2144 u8 num_points,
2145 u8 *vpd_table, u8 type)
2146{
2147 u8 idx[2] = { 0, 1 };
2148 s16 pwr_i = 2*pmin;
2149 int i;
2150
2151 if (num_points < 2)
2152 return;
2153
2154 /* We want the whole line, so adjust boundaries
2155 * to cover the entire power range. Note that
2156 * power values are already 0.25dB so no need
2157 * to multiply pwr_i by 2 */
2158 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2159 pwr_i = pmin;
2160 pmin = 0;
2161 pmax = 63;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002162 }
2163
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002164 /* Find surrounding turning points (TPs)
2165 * and interpolate between them */
2166 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2167 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2168
2169 /* We passed the right TP, move to the next set of TPs
2170 * if we pass the last TP, extrapolate above using the last
2171 * two TPs for ratio */
2172 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2173 idx[0]++;
2174 idx[1]++;
2175 }
2176
2177 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2178 pwr[idx[0]], pwr[idx[1]],
2179 vpd[idx[0]], vpd[idx[1]]);
2180
2181 /* Increase by 0.5dB
2182 * (0.25 dB units) */
2183 pwr_i += 2;
2184 }
2185}
2186
2187/*
2188 * Get the surrounding per-channel power calibration piers
2189 * for a given frequency so that we can interpolate between
2190 * them and come up with an apropriate dataset for our current
2191 * channel.
2192 */
2193static void
2194ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2195 struct ieee80211_channel *channel,
2196 struct ath5k_chan_pcal_info **pcinfo_l,
2197 struct ath5k_chan_pcal_info **pcinfo_r)
2198{
2199 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2200 struct ath5k_chan_pcal_info *pcinfo;
2201 u8 idx_l, idx_r;
2202 u8 mode, max, i;
2203 u32 target = channel->center_freq;
2204
2205 idx_l = 0;
2206 idx_r = 0;
2207
2208 if (!(channel->hw_value & CHANNEL_OFDM)) {
2209 pcinfo = ee->ee_pwr_cal_b;
2210 mode = AR5K_EEPROM_MODE_11B;
2211 } else if (channel->hw_value & CHANNEL_2GHZ) {
2212 pcinfo = ee->ee_pwr_cal_g;
2213 mode = AR5K_EEPROM_MODE_11G;
2214 } else {
2215 pcinfo = ee->ee_pwr_cal_a;
2216 mode = AR5K_EEPROM_MODE_11A;
2217 }
2218 max = ee->ee_n_piers[mode] - 1;
2219
2220 /* Frequency is below our calibrated
2221 * range. Use the lowest power curve
2222 * we have */
2223 if (target < pcinfo[0].freq) {
2224 idx_l = idx_r = 0;
2225 goto done;
2226 }
2227
2228 /* Frequency is above our calibrated
2229 * range. Use the highest power curve
2230 * we have */
2231 if (target > pcinfo[max].freq) {
2232 idx_l = idx_r = max;
2233 goto done;
2234 }
2235
2236 /* Frequency is inside our calibrated
2237 * channel range. Pick the surrounding
2238 * calibration piers so that we can
2239 * interpolate */
2240 for (i = 0; i <= max; i++) {
2241
2242 /* Frequency matches one of our calibration
2243 * piers, no need to interpolate, just use
2244 * that calibration pier */
2245 if (pcinfo[i].freq == target) {
2246 idx_l = idx_r = i;
2247 goto done;
2248 }
2249
2250 /* We found a calibration pier that's above
2251 * frequency, use this pier and the previous
2252 * one to interpolate */
2253 if (target < pcinfo[i].freq) {
2254 idx_r = i;
2255 idx_l = idx_r - 1;
2256 goto done;
2257 }
2258 }
2259
2260done:
2261 *pcinfo_l = &pcinfo[idx_l];
2262 *pcinfo_r = &pcinfo[idx_r];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002263}
2264
2265/*
2266 * Get the surrounding per-rate power calibration data
2267 * for a given frequency and interpolate between power
2268 * values to set max target power supported by hw for
2269 * each rate.
2270 */
2271static void
2272ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2273 struct ieee80211_channel *channel,
2274 struct ath5k_rate_pcal_info *rates)
2275{
2276 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2277 struct ath5k_rate_pcal_info *rpinfo;
2278 u8 idx_l, idx_r;
2279 u8 mode, max, i;
2280 u32 target = channel->center_freq;
2281
2282 idx_l = 0;
2283 idx_r = 0;
2284
2285 if (!(channel->hw_value & CHANNEL_OFDM)) {
2286 rpinfo = ee->ee_rate_tpwr_b;
2287 mode = AR5K_EEPROM_MODE_11B;
2288 } else if (channel->hw_value & CHANNEL_2GHZ) {
2289 rpinfo = ee->ee_rate_tpwr_g;
2290 mode = AR5K_EEPROM_MODE_11G;
2291 } else {
2292 rpinfo = ee->ee_rate_tpwr_a;
2293 mode = AR5K_EEPROM_MODE_11A;
2294 }
2295 max = ee->ee_rate_target_pwr_num[mode] - 1;
2296
2297 /* Get the surrounding calibration
2298 * piers - same as above */
2299 if (target < rpinfo[0].freq) {
2300 idx_l = idx_r = 0;
2301 goto done;
2302 }
2303
2304 if (target > rpinfo[max].freq) {
2305 idx_l = idx_r = max;
2306 goto done;
2307 }
2308
2309 for (i = 0; i <= max; i++) {
2310
2311 if (rpinfo[i].freq == target) {
2312 idx_l = idx_r = i;
2313 goto done;
2314 }
2315
2316 if (target < rpinfo[i].freq) {
2317 idx_r = i;
2318 idx_l = idx_r - 1;
2319 goto done;
2320 }
2321 }
2322
2323done:
2324 /* Now interpolate power value, based on the frequency */
2325 rates->freq = target;
2326
2327 rates->target_power_6to24 =
2328 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2329 rpinfo[idx_r].freq,
2330 rpinfo[idx_l].target_power_6to24,
2331 rpinfo[idx_r].target_power_6to24);
2332
2333 rates->target_power_36 =
2334 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2335 rpinfo[idx_r].freq,
2336 rpinfo[idx_l].target_power_36,
2337 rpinfo[idx_r].target_power_36);
2338
2339 rates->target_power_48 =
2340 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2341 rpinfo[idx_r].freq,
2342 rpinfo[idx_l].target_power_48,
2343 rpinfo[idx_r].target_power_48);
2344
2345 rates->target_power_54 =
2346 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2347 rpinfo[idx_r].freq,
2348 rpinfo[idx_l].target_power_54,
2349 rpinfo[idx_r].target_power_54);
2350}
2351
2352/*
2353 * Get the max edge power for this channel if
2354 * we have such data from EEPROM's Conformance Test
2355 * Limits (CTL), and limit max power if needed.
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002356 */
2357static void
2358ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2359 struct ieee80211_channel *channel)
2360{
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002361 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002362 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2363 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2364 u8 *ctl_val = ee->ee_ctl;
2365 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2366 s16 edge_pwr = 0;
2367 u8 rep_idx;
2368 u8 i, ctl_mode;
2369 u8 ctl_idx = 0xFF;
2370 u32 target = channel->center_freq;
2371
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002372 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
Bob Copeland6752ee92009-04-30 15:55:51 -04002373
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002374 switch (channel->hw_value & CHANNEL_MODES) {
2375 case CHANNEL_A:
Bob Copeland6752ee92009-04-30 15:55:51 -04002376 ctl_mode |= AR5K_CTL_11A;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002377 break;
2378 case CHANNEL_G:
Bob Copeland6752ee92009-04-30 15:55:51 -04002379 ctl_mode |= AR5K_CTL_11G;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002380 break;
2381 case CHANNEL_B:
Bob Copeland6752ee92009-04-30 15:55:51 -04002382 ctl_mode |= AR5K_CTL_11B;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002383 break;
2384 case CHANNEL_T:
Bob Copeland6752ee92009-04-30 15:55:51 -04002385 ctl_mode |= AR5K_CTL_TURBO;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002386 break;
2387 case CHANNEL_TG:
Bob Copeland6752ee92009-04-30 15:55:51 -04002388 ctl_mode |= AR5K_CTL_TURBOG;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002389 break;
2390 case CHANNEL_XR:
2391 /* Fall through */
2392 default:
2393 return;
2394 }
Nick Kossifidis903b4742008-02-28 14:50:50 -05002395
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002396 for (i = 0; i < ee->ee_ctls; i++) {
2397 if (ctl_val[i] == ctl_mode) {
2398 ctl_idx = i;
2399 break;
2400 }
2401 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002402
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002403 /* If we have a CTL dataset available grab it and find the
2404 * edge power for our frequency */
2405 if (ctl_idx == 0xFF)
2406 return;
2407
2408 /* Edge powers are sorted by frequency from lower
2409 * to higher. Each CTL corresponds to 8 edge power
2410 * measurements. */
2411 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2412
2413 /* Don't do boundaries check because we
2414 * might have more that one bands defined
2415 * for this mode */
2416
2417 /* Get the edge power that's closer to our
2418 * frequency */
2419 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2420 rep_idx += i;
2421 if (target <= rep[rep_idx].freq)
2422 edge_pwr = (s16) rep[rep_idx].edge;
2423 }
2424
2425 if (edge_pwr)
2426 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2427}
2428
2429
2430/*
2431 * Power to PCDAC table functions
2432 */
2433
2434/*
2435 * Fill Power to PCDAC table on RF5111
2436 *
2437 * No further processing is needed for RF5111, the only thing we have to
2438 * do is fill the values below and above calibration range since eeprom data
2439 * may not cover the entire PCDAC table.
2440 */
2441static void
2442ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2443 s16 *table_max)
2444{
2445 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2446 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2447 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2448 s16 min_pwr, max_pwr;
2449
2450 /* Get table boundaries */
2451 min_pwr = table_min[0];
2452 pcdac_0 = pcdac_tmp[0];
2453
2454 max_pwr = table_max[0];
2455 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2456
2457 /* Extrapolate below minimum using pcdac_0 */
2458 pcdac_i = 0;
2459 for (i = 0; i < min_pwr; i++)
2460 pcdac_out[pcdac_i++] = pcdac_0;
2461
2462 /* Copy values from pcdac_tmp */
2463 pwr_idx = min_pwr;
2464 for (i = 0 ; pwr_idx <= max_pwr &&
2465 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2466 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2467 pwr_idx++;
2468 }
2469
2470 /* Extrapolate above maximum */
2471 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2472 pcdac_out[pcdac_i++] = pcdac_n;
2473
2474}
2475
2476/*
2477 * Combine available XPD Curves and fill Linear Power to PCDAC table
2478 * on RF5112
2479 *
2480 * RFX112 can have up to 2 curves (one for low txpower range and one for
2481 * higher txpower range). We need to put them both on pcdac_out and place
2482 * them in the correct location. In case we only have one curve available
2483 * just fit it on pcdac_out (it's supposed to cover the entire range of
2484 * available pwr levels since it's always the higher power curve). Extrapolate
2485 * below and above final table if needed.
2486 */
2487static void
2488ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2489 s16 *table_max, u8 pdcurves)
2490{
2491 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2492 u8 *pcdac_low_pwr;
2493 u8 *pcdac_high_pwr;
2494 u8 *pcdac_tmp;
2495 u8 pwr;
2496 s16 max_pwr_idx;
2497 s16 min_pwr_idx;
2498 s16 mid_pwr_idx = 0;
2499 /* Edge flag turs on the 7nth bit on the PCDAC
2500 * to delcare the higher power curve (force values
2501 * to be greater than 64). If we only have one curve
2502 * we don't need to set this, if we have 2 curves and
2503 * fill the table backwards this can also be used to
2504 * switch from higher power curve to lower power curve */
2505 u8 edge_flag;
2506 int i;
2507
2508 /* When we have only one curve available
2509 * that's the higher power curve. If we have
2510 * two curves the first is the high power curve
2511 * and the next is the low power curve. */
2512 if (pdcurves > 1) {
2513 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2514 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2515 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2516 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2517
2518 /* If table size goes beyond 31.5dB, keep the
2519 * upper 31.5dB range when setting tx power.
2520 * Note: 126 = 31.5 dB in quarter dB steps */
2521 if (table_max[0] - table_min[1] > 126)
2522 min_pwr_idx = table_max[0] - 126;
2523 else
2524 min_pwr_idx = table_min[1];
2525
2526 /* Since we fill table backwards
2527 * start from high power curve */
2528 pcdac_tmp = pcdac_high_pwr;
2529
2530 edge_flag = 0x40;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002531 } else {
2532 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2533 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2534 min_pwr_idx = table_min[0];
2535 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2536 pcdac_tmp = pcdac_high_pwr;
2537 edge_flag = 0;
2538 }
2539
2540 /* This is used when setting tx power*/
2541 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2542
2543 /* Fill Power to PCDAC table backwards */
2544 pwr = max_pwr_idx;
2545 for (i = 63; i >= 0; i--) {
2546 /* Entering lower power range, reset
2547 * edge flag and set pcdac_tmp to lower
2548 * power curve.*/
2549 if (edge_flag == 0x40 &&
2550 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2551 edge_flag = 0x00;
2552 pcdac_tmp = pcdac_low_pwr;
2553 pwr = mid_pwr_idx/2;
2554 }
2555
2556 /* Don't go below 1, extrapolate below if we have
2557 * already swithced to the lower power curve -or
2558 * we only have one curve and edge_flag is zero
2559 * anyway */
2560 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2561 while (i >= 0) {
2562 pcdac_out[i] = pcdac_out[i + 1];
2563 i--;
2564 }
2565 break;
2566 }
2567
2568 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2569
2570 /* Extrapolate above if pcdac is greater than
2571 * 126 -this can happen because we OR pcdac_out
2572 * value with edge_flag on high power curve */
2573 if (pcdac_out[i] > 126)
2574 pcdac_out[i] = 126;
2575
2576 /* Decrease by a 0.5dB step */
2577 pwr--;
2578 }
2579}
2580
2581/* Write PCDAC values on hw */
2582static void
2583ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2584{
2585 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2586 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002587
2588 /*
2589 * Write TX power values
2590 */
2591 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2592 ath5k_hw_reg_write(ah,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002593 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2594 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002595 AR5K_PHY_PCDAC_TXPOWER(i));
2596 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002597}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002598
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002599
2600/*
2601 * Power to PDADC table functions
2602 */
2603
2604/*
2605 * Set the gain boundaries and create final Power to PDADC table
2606 *
2607 * We can have up to 4 pd curves, we need to do a simmilar process
2608 * as we do for RF5112. This time we don't have an edge_flag but we
2609 * set the gain boundaries on a separate register.
2610 */
2611static void
2612ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2613 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2614{
2615 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2616 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2617 u8 *pdadc_tmp;
2618 s16 pdadc_0;
2619 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2620 u8 pd_gain_overlap;
2621
2622 /* Note: Register value is initialized on initvals
2623 * there is no feedback from hw.
2624 * XXX: What about pd_gain_overlap from EEPROM ? */
2625 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2626 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2627
2628 /* Create final PDADC table */
2629 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2630 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2631
2632 if (pdg == pdcurves - 1)
2633 /* 2 dB boundary stretch for last
2634 * (higher power) curve */
2635 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2636 else
2637 /* Set gain boundary in the middle
2638 * between this curve and the next one */
2639 gain_boundaries[pdg] =
2640 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2641
2642 /* Sanity check in case our 2 db stretch got out of
2643 * range. */
2644 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2645 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2646
2647 /* For the first curve (lower power)
2648 * start from 0 dB */
2649 if (pdg == 0)
2650 pdadc_0 = 0;
2651 else
2652 /* For the other curves use the gain overlap */
2653 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2654 pd_gain_overlap;
2655
2656 /* Force each power step to be at least 0.5 dB */
2657 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2658 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2659 else
2660 pwr_step = 1;
2661
2662 /* If pdadc_0 is negative, we need to extrapolate
2663 * below this pdgain by a number of pwr_steps */
2664 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2665 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2666 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2667 pdadc_0++;
2668 }
2669
2670 /* Set last pwr level, using gain boundaries */
2671 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2672 /* Limit it to be inside pwr range */
2673 table_size = pwr_max[pdg] - pwr_min[pdg];
2674 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2675
2676 /* Fill pdadc_out table */
Bob Copeland4f59fce2010-04-07 23:55:59 -04002677 while (pdadc_0 < max_idx && pdadc_i < 128)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002678 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2679
2680 /* Need to extrapolate above this pdgain? */
2681 if (pdadc_n <= max_idx)
2682 continue;
2683
2684 /* Force each power step to be at least 0.5 dB */
2685 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2686 pwr_step = pdadc_tmp[table_size - 1] -
2687 pdadc_tmp[table_size - 2];
2688 else
2689 pwr_step = 1;
2690
2691 /* Extrapolate above */
2692 while ((pdadc_0 < (s16) pdadc_n) &&
2693 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2694 s16 tmp = pdadc_tmp[table_size - 1] +
2695 (pdadc_0 - max_idx) * pwr_step;
2696 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2697 pdadc_0++;
2698 }
2699 }
2700
2701 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2702 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2703 pdg++;
2704 }
2705
2706 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2707 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2708 pdadc_i++;
2709 }
2710
2711 /* Set gain boundaries */
2712 ath5k_hw_reg_write(ah,
2713 AR5K_REG_SM(pd_gain_overlap,
2714 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2715 AR5K_REG_SM(gain_boundaries[0],
2716 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2717 AR5K_REG_SM(gain_boundaries[1],
2718 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2719 AR5K_REG_SM(gain_boundaries[2],
2720 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2721 AR5K_REG_SM(gain_boundaries[3],
2722 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2723 AR5K_PHY_TPC_RG5);
2724
2725 /* Used for setting rate power table */
2726 ah->ah_txpower.txp_min_idx = pwr_min[0];
2727
2728}
2729
2730/* Write PDADC values on hw */
2731static void
2732ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2733 u8 pdcurves, u8 *pdg_to_idx)
2734{
2735 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2736 u32 reg;
2737 u8 i;
2738
2739 /* Select the right pdgain curves */
2740
2741 /* Clear current settings */
2742 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2743 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2744 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2745 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2746 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2747
2748 /*
2749 * Use pd_gains curve from eeprom
2750 *
2751 * This overrides the default setting from initvals
2752 * in case some vendors (e.g. Zcomax) don't use the default
2753 * curves. If we don't honor their settings we 'll get a
2754 * 5dB (1 * gain overlap ?) drop.
2755 */
2756 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2757
2758 switch (pdcurves) {
2759 case 3:
2760 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2761 /* Fall through */
2762 case 2:
2763 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2764 /* Fall through */
2765 case 1:
2766 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2767 break;
2768 }
2769 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2770
2771 /*
2772 * Write TX power values
2773 */
2774 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2775 ath5k_hw_reg_write(ah,
2776 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2777 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2778 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2779 ((pdadc_out[4*i + 3] & 0xff) << 24),
2780 AR5K_PHY_PDADC_TXPOWER(i));
2781 }
2782}
2783
2784
2785/*
2786 * Common code for PCDAC/PDADC tables
2787 */
2788
2789/*
2790 * This is the main function that uses all of the above
2791 * to set PCDAC/PDADC table on hw for the current channel.
2792 * This table is used for tx power calibration on the basband,
2793 * without it we get weird tx power levels and in some cases
2794 * distorted spectral mask
2795 */
2796static int
2797ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2798 struct ieee80211_channel *channel,
2799 u8 ee_mode, u8 type)
2800{
2801 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2802 struct ath5k_chan_pcal_info *pcinfo_L;
2803 struct ath5k_chan_pcal_info *pcinfo_R;
2804 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2805 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2806 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2807 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2808 u8 *tmpL;
2809 u8 *tmpR;
2810 u32 target = channel->center_freq;
2811 int pdg, i;
2812
2813 /* Get surounding freq piers for this channel */
2814 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2815 &pcinfo_L,
2816 &pcinfo_R);
2817
2818 /* Loop over pd gain curves on
2819 * surounding freq piers by index */
2820 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2821
2822 /* Fill curves in reverse order
2823 * from lower power (max gain)
2824 * to higher power. Use curve -> idx
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002825 * backmapping we did on eeprom init */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002826 u8 idx = pdg_curve_to_idx[pdg];
2827
2828 /* Grab the needed curves by index */
2829 pdg_L = &pcinfo_L->pd_curves[idx];
2830 pdg_R = &pcinfo_R->pd_curves[idx];
2831
2832 /* Initialize the temp tables */
2833 tmpL = ah->ah_txpower.tmpL[pdg];
2834 tmpR = ah->ah_txpower.tmpR[pdg];
2835
2836 /* Set curve's x boundaries and create
2837 * curves so that they cover the same
2838 * range (if we don't do that one table
2839 * will have values on some range and the
2840 * other one won't have any so interpolation
2841 * will fail) */
2842 table_min[pdg] = min(pdg_L->pd_pwr[0],
2843 pdg_R->pd_pwr[0]) / 2;
2844
2845 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2846 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2847
2848 /* Now create the curves on surrounding channels
2849 * and interpolate if needed to get the final
2850 * curve for this gain on this channel */
2851 switch (type) {
2852 case AR5K_PWRTABLE_LINEAR_PCDAC:
2853 /* Override min/max so that we don't loose
2854 * accuracy (don't divide by 2) */
2855 table_min[pdg] = min(pdg_L->pd_pwr[0],
2856 pdg_R->pd_pwr[0]);
2857
2858 table_max[pdg] =
2859 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2860 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2861
2862 /* Override minimum so that we don't get
2863 * out of bounds while extrapolating
2864 * below. Don't do this when we have 2
2865 * curves and we are on the high power curve
2866 * because table_min is ok in this case */
2867 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2868
2869 table_min[pdg] =
2870 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2871 pdg_R->pd_step,
2872 pdg_L->pd_pwr,
2873 pdg_R->pd_pwr);
2874
2875 /* Don't go too low because we will
2876 * miss the upper part of the curve.
2877 * Note: 126 = 31.5dB (max power supported)
2878 * in 0.25dB units */
2879 if (table_max[pdg] - table_min[pdg] > 126)
2880 table_min[pdg] = table_max[pdg] - 126;
2881 }
2882
2883 /* Fall through */
2884 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2885 case AR5K_PWRTABLE_PWR_TO_PDADC:
2886
2887 ath5k_create_power_curve(table_min[pdg],
2888 table_max[pdg],
2889 pdg_L->pd_pwr,
2890 pdg_L->pd_step,
2891 pdg_L->pd_points, tmpL, type);
2892
2893 /* We are in a calibration
2894 * pier, no need to interpolate
2895 * between freq piers */
2896 if (pcinfo_L == pcinfo_R)
2897 continue;
2898
2899 ath5k_create_power_curve(table_min[pdg],
2900 table_max[pdg],
2901 pdg_R->pd_pwr,
2902 pdg_R->pd_step,
2903 pdg_R->pd_points, tmpR, type);
2904 break;
2905 default:
2906 return -EINVAL;
2907 }
2908
2909 /* Interpolate between curves
2910 * of surounding freq piers to
2911 * get the final curve for this
2912 * pd gain. Re-use tmpL for interpolation
2913 * output */
2914 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2915 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2916 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2917 (s16) pcinfo_L->freq,
2918 (s16) pcinfo_R->freq,
2919 (s16) tmpL[i],
2920 (s16) tmpR[i]);
2921 }
2922 }
2923
2924 /* Now we have a set of curves for this
2925 * channel on tmpL (x range is table_max - table_min
2926 * and y values are tmpL[pdg][]) sorted in the same
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002927 * order as EEPROM (because we've used the backmapping).
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002928 * So for RF5112 it's from higher power to lower power
2929 * and for RF2413 it's from lower power to higher power.
2930 * For RF5111 we only have one curve. */
2931
2932 /* Fill min and max power levels for this
2933 * channel by interpolating the values on
2934 * surounding channels to complete the dataset */
2935 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2936 (s16) pcinfo_L->freq,
2937 (s16) pcinfo_R->freq,
2938 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2939
2940 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2941 (s16) pcinfo_L->freq,
2942 (s16) pcinfo_R->freq,
2943 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2944
2945 /* We are ready to go, fill PCDAC/PDADC
2946 * table and write settings on hardware */
2947 switch (type) {
2948 case AR5K_PWRTABLE_LINEAR_PCDAC:
2949 /* For RF5112 we can have one or two curves
2950 * and each curve covers a certain power lvl
2951 * range so we need to do some more processing */
2952 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2953 ee->ee_pd_gains[ee_mode]);
2954
2955 /* Set txp.offset so that we can
2956 * match max power value with max
2957 * table index */
2958 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2959
2960 /* Write settings on hw */
2961 ath5k_setup_pcdac_table(ah);
2962 break;
2963 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2964 /* We are done for RF5111 since it has only
2965 * one curve, just fit the curve on the table */
2966 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2967
2968 /* No rate powertable adjustment for RF5111 */
2969 ah->ah_txpower.txp_min_idx = 0;
2970 ah->ah_txpower.txp_offset = 0;
2971
2972 /* Write settings on hw */
2973 ath5k_setup_pcdac_table(ah);
2974 break;
2975 case AR5K_PWRTABLE_PWR_TO_PDADC:
2976 /* Set PDADC boundaries and fill
2977 * final PDADC table */
2978 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2979 ee->ee_pd_gains[ee_mode]);
2980
2981 /* Write settings on hw */
2982 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2983
2984 /* Set txp.offset, note that table_min
2985 * can be negative */
2986 ah->ah_txpower.txp_offset = table_min[0];
2987 break;
2988 default:
2989 return -EINVAL;
2990 }
2991
2992 return 0;
2993}
2994
2995
2996/*
2997 * Per-rate tx power setting
2998 *
2999 * This is the code that sets the desired tx power (below
3000 * maximum) on hw for each rate (we also have TPC that sets
3001 * power per packet). We do that by providing an index on the
3002 * PCDAC/PDADC table we set up.
3003 */
3004
3005/*
3006 * Set rate power table
3007 *
3008 * For now we only limit txpower based on maximum tx power
3009 * supported by hw (what's inside rate_info). We need to limit
3010 * this even more, based on regulatory domain etc.
3011 *
3012 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3013 * and is indexed as follows:
3014 * rates[0] - rates[7] -> OFDM rates
3015 * rates[8] - rates[14] -> CCK rates
3016 * rates[15] -> XR rates (they all have the same power)
3017 */
3018static void
3019ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3020 struct ath5k_rate_pcal_info *rate_info,
3021 u8 ee_mode)
3022{
3023 unsigned int i;
3024 u16 *rates;
3025
3026 /* max_pwr is power level we got from driver/user in 0.5dB
3027 * units, switch to 0.25dB units so we can compare */
3028 max_pwr *= 2;
3029 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3030
3031 /* apply rate limits */
3032 rates = ah->ah_txpower.txp_rates_power_table;
3033
3034 /* OFDM rates 6 to 24Mb/s */
3035 for (i = 0; i < 5; i++)
3036 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3037
3038 /* Rest OFDM rates */
3039 rates[5] = min(rates[0], rate_info->target_power_36);
3040 rates[6] = min(rates[0], rate_info->target_power_48);
3041 rates[7] = min(rates[0], rate_info->target_power_54);
3042
3043 /* CCK rates */
3044 /* 1L */
3045 rates[8] = min(rates[0], rate_info->target_power_6to24);
3046 /* 2L */
3047 rates[9] = min(rates[0], rate_info->target_power_36);
3048 /* 2S */
3049 rates[10] = min(rates[0], rate_info->target_power_36);
3050 /* 5L */
3051 rates[11] = min(rates[0], rate_info->target_power_48);
3052 /* 5S */
3053 rates[12] = min(rates[0], rate_info->target_power_48);
3054 /* 11L */
3055 rates[13] = min(rates[0], rate_info->target_power_54);
3056 /* 11S */
3057 rates[14] = min(rates[0], rate_info->target_power_54);
3058
3059 /* XR rates */
3060 rates[15] = min(rates[0], rate_info->target_power_6to24);
3061
3062 /* CCK rates have different peak to average ratio
3063 * so we have to tweak their power so that gainf
3064 * correction works ok. For this we use OFDM to
3065 * CCK delta from eeprom */
3066 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3067 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3068 for (i = 8; i <= 15; i++)
3069 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3070
Nick Kossifidisa0823812009-04-30 15:55:44 -04003071 /* Now that we have all rates setup use table offset to
3072 * match the power range set by user with the power indices
3073 * on PCDAC/PDADC table */
3074 for (i = 0; i < 16; i++) {
3075 rates[i] += ah->ah_txpower.txp_offset;
3076 /* Don't get out of bounds */
3077 if (rates[i] > 63)
3078 rates[i] = 63;
3079 }
3080
3081 /* Min/max in 0.25dB units */
3082 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3083 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003084 ah->ah_txpower.txp_ofdm = rates[7];
3085}
3086
3087
3088/*
Bob Copeland8801df82010-08-21 16:39:02 -04003089 * Set transmission power
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003090 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003091static int
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003092ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Nick Kossifidis4c575812010-11-23 21:37:30 +02003093 u8 ee_mode, u8 txpower, bool fast)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003094{
3095 struct ath5k_rate_pcal_info rate_info;
3096 u8 type;
3097 int ret;
3098
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003099 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3100 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3101 return -EINVAL;
3102 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003103
3104 /* Reset TX power values */
3105 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3106 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3107 ah->ah_txpower.txp_min_pwr = 0;
3108 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3109
3110 /* Initialize TX power table */
3111 switch (ah->ah_radio) {
3112 case AR5K_RF5111:
3113 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3114 break;
3115 case AR5K_RF5112:
3116 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3117 break;
3118 case AR5K_RF2413:
3119 case AR5K_RF5413:
3120 case AR5K_RF2316:
3121 case AR5K_RF2317:
3122 case AR5K_RF2425:
3123 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3124 break;
3125 default:
3126 return -EINVAL;
3127 }
3128
Nick Kossifidis4c575812010-11-23 21:37:30 +02003129 /* If fast is set it means we are on the same channel/mode
3130 * so there is no need to recalculate the powertable, we 'll
3131 * just use the cached one */
3132 if (!fast) {
3133 ret = ath5k_setup_channel_powertable(ah, channel,
3134 ee_mode, type);
3135 if (ret)
3136 return ret;
3137 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003138
3139 /* Limit max power if we have a CTL available */
3140 ath5k_get_max_ctl_power(ah, channel);
3141
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003142 /* FIXME: Antenna reduction stuff */
3143
3144 /* FIXME: Limit power on turbo modes */
3145
3146 /* FIXME: TPC scale reduction */
3147
3148 /* Get surounding channels for per-rate power table
3149 * calibration */
3150 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3151
3152 /* Setup rate power table */
3153 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3154
3155 /* Write rate power table on hw */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003156 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3157 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3158 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3159
3160 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3161 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3162 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3163
3164 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3165 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3166 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3167
3168 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3169 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3170 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3171
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003172 /* FIXME: TPC support */
3173 if (ah->ah_txpower.txp_tpc) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003174 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3175 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003176
3177 ath5k_hw_reg_write(ah,
3178 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3179 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3180 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3181 AR5K_TPC);
3182 } else {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003183 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3184 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003185 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003186
3187 return 0;
3188}
3189
Nick Kossifidisa0823812009-04-30 15:55:44 -04003190int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003191{
3192 /*Just a try M.F.*/
Bob Copeland46026e82009-06-10 22:22:20 -04003193 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidisa0823812009-04-30 15:55:44 -04003194 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003195
Nick Kossifidisa0823812009-04-30 15:55:44 -04003196 switch (channel->hw_value & CHANNEL_MODES) {
3197 case CHANNEL_A:
3198 case CHANNEL_T:
3199 case CHANNEL_XR:
3200 ee_mode = AR5K_EEPROM_MODE_11A;
3201 break;
3202 case CHANNEL_G:
3203 case CHANNEL_TG:
3204 ee_mode = AR5K_EEPROM_MODE_11G;
3205 break;
3206 case CHANNEL_B:
3207 ee_mode = AR5K_EEPROM_MODE_11B;
3208 break;
3209 default:
3210 ATH5K_ERR(ah->ah_sc,
3211 "invalid channel: %d\n", channel->center_freq);
3212 return -EINVAL;
3213 }
3214
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003215 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003216 "changing txpower to %d\n", txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003217
Nick Kossifidis4c575812010-11-23 21:37:30 +02003218 return ath5k_hw_txpower(ah, channel, ee_mode, txpower, true);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003219}
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003220
3221/*************\
3222 Init function
3223\*************/
3224
3225int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003226 u8 mode, u8 ee_mode, u8 freq, bool fast)
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003227{
Nick Kossifidis4c575812010-11-23 21:37:30 +02003228 struct ieee80211_channel *curr_channel;
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003229 int ret, i;
3230 u32 phy_tst1;
Nick Kossifidis4c575812010-11-23 21:37:30 +02003231 bool fast_txp;
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003232 ret = 0;
3233
3234 /*
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003235 * Sanity check for fast flag
3236 * Don't try fast channel change when changing modulation
3237 * mode/band. We check for chip compatibility on
3238 * ath5k_hw_reset.
3239 */
3240 curr_channel = ah->ah_current_channel;
3241 if (fast && (channel->hw_value != curr_channel->hw_value))
3242 return -EINVAL;
3243
3244 /*
3245 * On fast channel change we only set the synth parameters
3246 * while PHY is running, enable calibration and skip the rest.
3247 */
3248 if (fast) {
3249 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3250 AR5K_PHY_RFBUS_REQ_REQUEST);
3251 for (i = 0; i < 100; i++) {
3252 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3253 break;
3254 udelay(5);
3255 }
3256 /* Failed */
3257 if (i >= 100)
3258 return -EIO;
3259 }
3260
3261 /*
Nick Kossifidis4c575812010-11-23 21:37:30 +02003262 * If we don't change channel/mode skip
3263 * tx powertable calculation and use the
3264 * cached one.
3265 */
Nick Kossifidis4c575812010-11-23 21:37:30 +02003266 if ((channel->hw_value == curr_channel->hw_value) &&
3267 (channel->center_freq == curr_channel->center_freq))
3268 fast_txp = true;
3269 else
3270 fast_txp = false;
3271
3272 /*
3273 * Set TX power
3274 *
3275 * Note: We need to do that before we set
3276 * RF buffer settings on 5211/5212+ so that we
3277 * properly set curve indices.
3278 */
3279 ret = ath5k_hw_txpower(ah, channel, ee_mode,
3280 ah->ah_txpower.txp_max_pwr / 2,
3281 fast_txp);
3282 if (ret)
3283 return ret;
3284
3285 /*
3286 * For 5210 we do all initialization using
3287 * initvals, so we don't have to modify
3288 * any settings (5210 also only supports
3289 * a/aturbo modes)
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003290 */
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003291 if ((ah->ah_version != AR5K_AR5210) && !fast) {
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003292
3293 /*
3294 * Write initial RF gain settings
3295 * This should work for both 5111/5112
3296 */
3297 ret = ath5k_hw_rfgain_init(ah, freq);
3298 if (ret)
3299 return ret;
3300
3301 mdelay(1);
3302
3303 /*
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003304 * Write RF buffer
3305 */
3306 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3307 if (ret)
3308 return ret;
3309
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003310 /* Write OFDM timings on 5212*/
3311 if (ah->ah_version == AR5K_AR5212 &&
3312 channel->hw_value & CHANNEL_OFDM) {
3313
3314 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3315 if (ret)
3316 return ret;
3317
3318 /* Spur info is available only from EEPROM versions
3319 * greater than 5.3, but the EEPROM routines will use
3320 * static values for older versions */
3321 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3322 ath5k_hw_set_spur_mitigation_filter(ah,
3323 channel);
3324 }
3325
3326 /*Enable/disable 802.11b mode on 5111
3327 (enable 2111 frequency converter + CCK)*/
3328 if (ah->ah_radio == AR5K_RF5111) {
3329 if (mode == AR5K_MODE_11B)
3330 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3331 AR5K_TXCFG_B_MODE);
3332 else
3333 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3334 AR5K_TXCFG_B_MODE);
3335 }
3336
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003337 } else if (ah->ah_version == AR5K_AR5210) {
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003338 mdelay(1);
3339 /* Disable phy and wait */
3340 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3341 mdelay(1);
3342 }
3343
3344 /* Set channel on PHY */
3345 ret = ath5k_hw_channel(ah, channel);
3346 if (ret)
3347 return ret;
3348
3349 /*
3350 * Enable the PHY and wait until completion
3351 * This includes BaseBand and Synthesizer
3352 * activation.
3353 */
3354 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3355
3356 /*
3357 * On 5211+ read activation -> rx delay
3358 * and use it.
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003359 */
3360 if (ah->ah_version != AR5K_AR5210) {
3361 u32 delay;
3362 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
3363 AR5K_PHY_RX_DELAY_M;
3364 delay = (channel->hw_value & CHANNEL_CCK) ?
3365 ((delay << 2) / 22) : (delay / 10);
Nick Kossifidisb02f5d12010-11-23 21:44:02 +02003366 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
3367 delay = delay << 1;
3368 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
3369 delay = delay << 2;
3370 /* XXX: /2 on turbo ? Let's be safe
3371 * for now */
3372 udelay(100 + delay);
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003373 } else {
3374 mdelay(1);
3375 }
3376
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003377 if (fast)
3378 /*
3379 * Release RF Bus grant
3380 */
3381 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3382 AR5K_PHY_RFBUS_REQ_REQUEST);
3383 else {
3384 /*
3385 * Perform ADC test to see if baseband is ready
3386 * Set tx hold and check adc test register
3387 */
3388 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3389 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3390 for (i = 0; i <= 20; i++) {
3391 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3392 break;
3393 udelay(200);
3394 }
3395 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003396 }
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003397
3398 /*
3399 * Start automatic gain control calibration
3400 *
3401 * During AGC calibration RX path is re-routed to
3402 * a power detector so we don't receive anything.
3403 *
3404 * This method is used to calibrate some static offsets
3405 * used together with on-the fly I/Q calibration (the
3406 * one performed via ath5k_hw_phy_calibrate), which doesn't
3407 * interrupt rx path.
3408 *
3409 * While rx path is re-routed to the power detector we also
3410 * start a noise floor calibration to measure the
3411 * card's noise floor (the noise we measure when we are not
3412 * transmitting or receiving anything).
3413 *
3414 * If we are in a noisy environment, AGC calibration may time
3415 * out and/or noise floor calibration might timeout.
3416 */
3417 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3418 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3419
3420 /* At the same time start I/Q calibration for QAM constellation
3421 * -no need for CCK- */
3422 ah->ah_calibration = false;
3423 if (!(mode == AR5K_MODE_11B)) {
3424 ah->ah_calibration = true;
3425 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3426 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3427 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3428 AR5K_PHY_IQ_RUN);
3429 }
3430
3431 /* Wait for gain calibration to finish (we check for I/Q calibration
3432 * during ath5k_phy_calibrate) */
3433 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3434 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3435 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3436 channel->center_freq);
3437 }
3438
3439 /* Restore antenna mode */
3440 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3441
3442 return ret;
3443}