blob: 504991acb052d3cd1f5400a77db523ab1d508670 [file] [log] [blame]
Luciano Coelhof5fc0f82009-08-06 16:25:28 +03001/*
2 * This file is part of wl1271
3 *
4 * Copyright (C) 2008-2009 Nokia Corporation
5 *
6 * Contact: Luciano Coelho <luciano.coelho@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * version 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/platform_device.h>
26#include <linux/crc7.h>
27#include <linux/spi/spi.h>
28
29#include "wl1271.h"
30#include "wl12xx_80211.h"
31#include "wl1271_spi.h"
32
33static int wl1271_translate_reg_addr(struct wl1271 *wl, int addr)
34{
35 return addr - wl->physical_reg_addr + wl->virtual_reg_addr;
36}
37
38static int wl1271_translate_mem_addr(struct wl1271 *wl, int addr)
39{
40 return addr - wl->physical_mem_addr + wl->virtual_mem_addr;
41}
42
43
44void wl1271_spi_reset(struct wl1271 *wl)
45{
46 u8 *cmd;
47 struct spi_transfer t;
48 struct spi_message m;
49
50 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
51 if (!cmd) {
52 wl1271_error("could not allocate cmd for spi reset");
53 return;
54 }
55
56 memset(&t, 0, sizeof(t));
57 spi_message_init(&m);
58
59 memset(cmd, 0xff, WSPI_INIT_CMD_LEN);
60
61 t.tx_buf = cmd;
62 t.len = WSPI_INIT_CMD_LEN;
63 spi_message_add_tail(&t, &m);
64
65 spi_sync(wl->spi, &m);
66
67 wl1271_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN);
68}
69
70void wl1271_spi_init(struct wl1271 *wl)
71{
72 u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd;
73 struct spi_transfer t;
74 struct spi_message m;
75
76 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
77 if (!cmd) {
78 wl1271_error("could not allocate cmd for spi init");
79 return;
80 }
81
82 memset(crc, 0, sizeof(crc));
83 memset(&t, 0, sizeof(t));
84 spi_message_init(&m);
85
86 /*
87 * Set WSPI_INIT_COMMAND
88 * the data is being send from the MSB to LSB
89 */
90 cmd[2] = 0xff;
91 cmd[3] = 0xff;
92 cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX;
93 cmd[0] = 0;
94 cmd[7] = 0;
95 cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3;
96 cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN;
97
98 if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0)
99 cmd[5] |= WSPI_INIT_CMD_DIS_FIXEDBUSY;
100 else
101 cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY;
102
103 cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS
104 | WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS;
105
106 crc[0] = cmd[1];
107 crc[1] = cmd[0];
108 crc[2] = cmd[7];
109 crc[3] = cmd[6];
110 crc[4] = cmd[5];
111
112 cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1;
113 cmd[4] |= WSPI_INIT_CMD_END;
114
115 t.tx_buf = cmd;
116 t.len = WSPI_INIT_CMD_LEN;
117 spi_message_add_tail(&t, &m);
118
119 spi_sync(wl->spi, &m);
120
121 wl1271_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN);
122}
123
124/* Set the SPI partitions to access the chip addresses
125 *
126 * There are two VIRTUAL (SPI) partitions (the memory partition and the
127 * registers partition), which are mapped to two different areas of the
128 * PHYSICAL (hardware) memory. This function also makes other checks to
129 * ensure that the partitions are not overlapping. In the diagram below, the
130 * memory partition comes before the register partition, but the opposite is
131 * also supported.
132 *
133 * PHYSICAL address
134 * space
135 *
136 * | |
137 * ...+----+--> mem_start
138 * VIRTUAL address ... | |
139 * space ... | | [PART_0]
140 * ... | |
141 * 0x00000000 <--+----+... ...+----+--> mem_start + mem_size
142 * | | ... | |
143 * |MEM | ... | |
144 * | | ... | |
145 * part_size <--+----+... | | {unused area)
146 * | | ... | |
147 * |REG | ... | |
148 * part_size | | ... | |
149 * + <--+----+... ...+----+--> reg_start
150 * reg_size ... | |
151 * ... | | [PART_1]
152 * ... | |
153 * ...+----+--> reg_start + reg_size
154 * | |
155 *
156 */
157int wl1271_set_partition(struct wl1271 *wl,
158 u32 mem_start, u32 mem_size,
159 u32 reg_start, u32 reg_size)
160{
161 struct wl1271_partition *partition;
162 struct spi_transfer t;
163 struct spi_message m;
164 size_t len, cmd_len;
165 u32 *cmd;
166 int addr;
167
168 cmd_len = sizeof(u32) + 2 * sizeof(struct wl1271_partition);
169 cmd = kzalloc(cmd_len, GFP_KERNEL);
170 if (!cmd)
171 return -ENOMEM;
172
173 spi_message_init(&m);
174 memset(&t, 0, sizeof(t));
175
176 partition = (struct wl1271_partition *) (cmd + 1);
177 addr = HW_ACCESS_PART0_SIZE_ADDR;
178 len = 2 * sizeof(struct wl1271_partition);
179
180 *cmd |= WSPI_CMD_WRITE;
181 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
182 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
183
184 wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
185 mem_start, mem_size);
186 wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
187 reg_start, reg_size);
188
189 /* Make sure that the two partitions together don't exceed the
190 * address range */
191 if ((mem_size + reg_size) > HW_ACCESS_MEMORY_MAX_RANGE) {
192 wl1271_debug(DEBUG_SPI, "Total size exceeds maximum virtual"
193 " address range. Truncating partition[0].");
194 mem_size = HW_ACCESS_MEMORY_MAX_RANGE - reg_size;
195 wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
196 mem_start, mem_size);
197 wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
198 reg_start, reg_size);
199 }
200
201 if ((mem_start < reg_start) &&
202 ((mem_start + mem_size) > reg_start)) {
203 /* Guarantee that the memory partition doesn't overlap the
204 * registers partition */
205 wl1271_debug(DEBUG_SPI, "End of partition[0] is "
206 "overlapping partition[1]. Adjusted.");
207 mem_size = reg_start - mem_start;
208 wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
209 mem_start, mem_size);
210 wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
211 reg_start, reg_size);
212 } else if ((reg_start < mem_start) &&
213 ((reg_start + reg_size) > mem_start)) {
214 /* Guarantee that the register partition doesn't overlap the
215 * memory partition */
216 wl1271_debug(DEBUG_SPI, "End of partition[1] is"
217 " overlapping partition[0]. Adjusted.");
218 reg_size = mem_start - reg_start;
219 wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
220 mem_start, mem_size);
221 wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
222 reg_start, reg_size);
223 }
224
225 partition[0].start = mem_start;
226 partition[0].size = mem_size;
227 partition[1].start = reg_start;
228 partition[1].size = reg_size;
229
230 wl->physical_mem_addr = mem_start;
231 wl->physical_reg_addr = reg_start;
232
233 wl->virtual_mem_addr = 0;
234 wl->virtual_reg_addr = mem_size;
235
236 t.tx_buf = cmd;
237 t.len = cmd_len;
238 spi_message_add_tail(&t, &m);
239
240 spi_sync(wl->spi, &m);
241
242 kfree(cmd);
243
244 return 0;
245}
246
Juuso Oikarinen545f1da2009-10-08 21:56:23 +0300247#define WL1271_BUSY_WORD_TIMEOUT 1000
248
249void wl1271_spi_read_busy(struct wl1271 *wl, void *buf, size_t len)
250{
251 struct spi_transfer t[1];
252 struct spi_message m;
253 u32 *busy_buf;
254 int num_busy_bytes = 0;
255
256 wl1271_info("spi read BUSY!");
257
258 /*
259 * Look for the non-busy word in the read buffer, and if found,
260 * read in the remaining data into the buffer.
261 */
262 busy_buf = (u32 *)buf;
263 for (; (u32)busy_buf < (u32)buf + len; busy_buf++) {
264 num_busy_bytes += sizeof(u32);
265 if (*busy_buf & 0x1) {
266 spi_message_init(&m);
267 memset(t, 0, sizeof(t));
268 memmove(buf, busy_buf, len - num_busy_bytes);
269 t[0].rx_buf = buf + (len - num_busy_bytes);
270 t[0].len = num_busy_bytes;
271 spi_message_add_tail(&t[0], &m);
272 spi_sync(wl->spi, &m);
273 return;
274 }
275 }
276
277 /*
278 * Read further busy words from SPI until a non-busy word is
279 * encountered, then read the data itself into the buffer.
280 */
281 wl1271_info("spi read BUSY-polling needed!");
282
283 num_busy_bytes = WL1271_BUSY_WORD_TIMEOUT;
284 busy_buf = wl->buffer_busyword;
285 while (num_busy_bytes) {
286 num_busy_bytes--;
287 spi_message_init(&m);
288 memset(t, 0, sizeof(t));
289 t[0].rx_buf = busy_buf;
290 t[0].len = sizeof(u32);
291 spi_message_add_tail(&t[0], &m);
292 spi_sync(wl->spi, &m);
293
294 if (*busy_buf & 0x1) {
295 spi_message_init(&m);
296 memset(t, 0, sizeof(t));
297 t[0].rx_buf = buf;
298 t[0].len = len;
299 spi_message_add_tail(&t[0], &m);
300 spi_sync(wl->spi, &m);
301 return;
302 }
303 }
304
305 /* The SPI bus is unresponsive, the read failed. */
306 memset(buf, 0, len);
307 wl1271_error("SPI read busy-word timeout!\n");
308}
309
Luciano Coelhof5fc0f82009-08-06 16:25:28 +0300310void wl1271_spi_read(struct wl1271 *wl, int addr, void *buf,
311 size_t len, bool fixed)
312{
313 struct spi_transfer t[3];
314 struct spi_message m;
Juuso Oikarinen545f1da2009-10-08 21:56:23 +0300315 u32 *busy_buf;
Luciano Coelhof5fc0f82009-08-06 16:25:28 +0300316 u32 *cmd;
317
318 cmd = &wl->buffer_cmd;
319 busy_buf = wl->buffer_busyword;
320
321 *cmd = 0;
322 *cmd |= WSPI_CMD_READ;
323 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
324 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
325
326 if (fixed)
327 *cmd |= WSPI_CMD_FIXED;
328
329 spi_message_init(&m);
330 memset(t, 0, sizeof(t));
331
332 t[0].tx_buf = cmd;
333 t[0].len = 4;
334 spi_message_add_tail(&t[0], &m);
335
336 /* Busy and non busy words read */
337 t[1].rx_buf = busy_buf;
338 t[1].len = WL1271_BUSY_WORD_LEN;
339 spi_message_add_tail(&t[1], &m);
340
341 t[2].rx_buf = buf;
342 t[2].len = len;
343 spi_message_add_tail(&t[2], &m);
344
345 spi_sync(wl->spi, &m);
346
Juuso Oikarinen545f1da2009-10-08 21:56:23 +0300347 /* Check busy words */
348 if (!(busy_buf[WL1271_BUSY_WORD_CNT - 1] & 0x1))
349 wl1271_spi_read_busy(wl, buf, len);
Luciano Coelhof5fc0f82009-08-06 16:25:28 +0300350
351 wl1271_dump(DEBUG_SPI, "spi_read cmd -> ", cmd, sizeof(*cmd));
352 wl1271_dump(DEBUG_SPI, "spi_read buf <- ", buf, len);
353}
354
355void wl1271_spi_write(struct wl1271 *wl, int addr, void *buf,
356 size_t len, bool fixed)
357{
358 struct spi_transfer t[2];
359 struct spi_message m;
360 u32 *cmd;
361
362 cmd = &wl->buffer_cmd;
363
364 *cmd = 0;
365 *cmd |= WSPI_CMD_WRITE;
366 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
367 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
368
369 if (fixed)
370 *cmd |= WSPI_CMD_FIXED;
371
372 spi_message_init(&m);
373 memset(t, 0, sizeof(t));
374
375 t[0].tx_buf = cmd;
376 t[0].len = sizeof(*cmd);
377 spi_message_add_tail(&t[0], &m);
378
379 t[1].tx_buf = buf;
380 t[1].len = len;
381 spi_message_add_tail(&t[1], &m);
382
383 spi_sync(wl->spi, &m);
384
385 wl1271_dump(DEBUG_SPI, "spi_write cmd -> ", cmd, sizeof(*cmd));
386 wl1271_dump(DEBUG_SPI, "spi_write buf -> ", buf, len);
387}
388
389void wl1271_spi_mem_read(struct wl1271 *wl, int addr, void *buf,
390 size_t len)
391{
392 int physical;
393
394 physical = wl1271_translate_mem_addr(wl, addr);
395
396 wl1271_spi_read(wl, physical, buf, len, false);
397}
398
399void wl1271_spi_mem_write(struct wl1271 *wl, int addr, void *buf,
400 size_t len)
401{
402 int physical;
403
404 physical = wl1271_translate_mem_addr(wl, addr);
405
406 wl1271_spi_write(wl, physical, buf, len, false);
407}
408
409void wl1271_spi_reg_read(struct wl1271 *wl, int addr, void *buf, size_t len,
410 bool fixed)
411{
412 int physical;
413
414 physical = wl1271_translate_reg_addr(wl, addr);
415
416 wl1271_spi_read(wl, physical, buf, len, fixed);
417}
418
419void wl1271_spi_reg_write(struct wl1271 *wl, int addr, void *buf, size_t len,
420 bool fixed)
421{
422 int physical;
423
424 physical = wl1271_translate_reg_addr(wl, addr);
425
426 wl1271_spi_write(wl, physical, buf, len, fixed);
427}
428
429u32 wl1271_mem_read32(struct wl1271 *wl, int addr)
430{
431 return wl1271_read32(wl, wl1271_translate_mem_addr(wl, addr));
432}
433
434void wl1271_mem_write32(struct wl1271 *wl, int addr, u32 val)
435{
436 wl1271_write32(wl, wl1271_translate_mem_addr(wl, addr), val);
437}
438
439u32 wl1271_reg_read32(struct wl1271 *wl, int addr)
440{
441 return wl1271_read32(wl, wl1271_translate_reg_addr(wl, addr));
442}
443
444void wl1271_reg_write32(struct wl1271 *wl, int addr, u32 val)
445{
446 wl1271_write32(wl, wl1271_translate_reg_addr(wl, addr), val);
447}