Vitaly Bordug | f2a0bd3 | 2007-01-24 22:41:24 +0300 | [diff] [blame] | 1 | /* |
| 2 | * General Purpose functions for the global management of the |
| 3 | * Communication Processor Module. |
| 4 | * Copyright (c) 1997 Dan error_act (dmalek@jlc.net) |
| 5 | * |
| 6 | * In addition to the individual control of the communication |
| 7 | * channels, there are a few functions that globally affect the |
| 8 | * communication processor. |
| 9 | * |
| 10 | * Buffer descriptors must be allocated from the dual ported memory |
| 11 | * space. The allocator for that is here. When the communication |
| 12 | * process is reset, we reclaim the memory available. There is |
| 13 | * currently no deallocator for this memory. |
| 14 | * The amount of space available is platform dependent. On the |
| 15 | * MBX, the EPPC software loads additional microcode into the |
| 16 | * communication processor, and uses some of the DP ram for this |
| 17 | * purpose. Current, the first 512 bytes and the last 256 bytes of |
| 18 | * memory are used. Right now I am conservative and only use the |
| 19 | * memory that can never be used for microcode. If there are |
| 20 | * applications that require more DP ram, we can expand the boundaries |
| 21 | * but then we have to be careful of any downloaded microcode. |
| 22 | */ |
| 23 | #include <linux/errno.h> |
| 24 | #include <linux/sched.h> |
| 25 | #include <linux/kernel.h> |
| 26 | #include <linux/dma-mapping.h> |
| 27 | #include <linux/param.h> |
| 28 | #include <linux/string.h> |
| 29 | #include <linux/mm.h> |
| 30 | #include <linux/interrupt.h> |
| 31 | #include <linux/irq.h> |
| 32 | #include <linux/module.h> |
| 33 | #include <asm/mpc8xx.h> |
| 34 | #include <asm/page.h> |
| 35 | #include <asm/pgtable.h> |
| 36 | #include <asm/8xx_immap.h> |
| 37 | #include <asm/commproc.h> |
| 38 | #include <asm/io.h> |
| 39 | #include <asm/tlbflush.h> |
| 40 | #include <asm/rheap.h> |
| 41 | #include <asm/prom.h> |
| 42 | |
| 43 | #include <asm/fs_pd.h> |
| 44 | |
| 45 | #define CPM_MAP_SIZE (0x4000) |
| 46 | |
| 47 | static void m8xx_cpm_dpinit(void); |
| 48 | static uint host_buffer; /* One page of host buffer */ |
| 49 | static uint host_end; /* end + 1 */ |
| 50 | cpm8xx_t *cpmp; /* Pointer to comm processor space */ |
| 51 | cpic8xx_t *cpic_reg; |
| 52 | |
| 53 | static struct device_node *cpm_pic_node; |
| 54 | static struct irq_host *cpm_pic_host; |
| 55 | |
| 56 | static void cpm_mask_irq(unsigned int irq) |
| 57 | { |
| 58 | unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; |
| 59 | |
| 60 | clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); |
| 61 | } |
| 62 | |
| 63 | static void cpm_unmask_irq(unsigned int irq) |
| 64 | { |
| 65 | unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; |
| 66 | |
| 67 | setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); |
| 68 | } |
| 69 | |
| 70 | static void cpm_end_irq(unsigned int irq) |
| 71 | { |
| 72 | unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; |
| 73 | |
| 74 | out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec)); |
| 75 | } |
| 76 | |
| 77 | static struct irq_chip cpm_pic = { |
| 78 | .typename = " CPM PIC ", |
| 79 | .mask = cpm_mask_irq, |
| 80 | .unmask = cpm_unmask_irq, |
| 81 | .eoi = cpm_end_irq, |
| 82 | }; |
| 83 | |
| 84 | int cpm_get_irq(void) |
| 85 | { |
| 86 | int cpm_vec; |
| 87 | |
| 88 | /* Get the vector by setting the ACK bit and then reading |
| 89 | * the register. |
| 90 | */ |
| 91 | out_be16(&cpic_reg->cpic_civr, 1); |
| 92 | cpm_vec = in_be16(&cpic_reg->cpic_civr); |
| 93 | cpm_vec >>= 11; |
| 94 | |
| 95 | return irq_linear_revmap(cpm_pic_host, cpm_vec); |
| 96 | } |
| 97 | |
| 98 | static int cpm_pic_host_match(struct irq_host *h, struct device_node *node) |
| 99 | { |
| 100 | return cpm_pic_node == node; |
| 101 | } |
| 102 | |
| 103 | static int cpm_pic_host_map(struct irq_host *h, unsigned int virq, |
| 104 | irq_hw_number_t hw) |
| 105 | { |
| 106 | pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw); |
| 107 | |
| 108 | get_irq_desc(virq)->status |= IRQ_LEVEL; |
| 109 | set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq); |
| 110 | return 0; |
| 111 | } |
| 112 | |
| 113 | /* The CPM can generate the error interrupt when there is a race condition |
| 114 | * between generating and masking interrupts. All we have to do is ACK it |
| 115 | * and return. This is a no-op function so we don't need any special |
| 116 | * tests in the interrupt handler. |
| 117 | */ |
| 118 | static irqreturn_t cpm_error_interrupt(int irq, void *dev) |
| 119 | { |
| 120 | return IRQ_HANDLED; |
| 121 | } |
| 122 | |
| 123 | static struct irqaction cpm_error_irqaction = { |
| 124 | .handler = cpm_error_interrupt, |
| 125 | .mask = CPU_MASK_NONE, |
| 126 | .name = "error", |
| 127 | }; |
| 128 | |
| 129 | static struct irq_host_ops cpm_pic_host_ops = { |
| 130 | .match = cpm_pic_host_match, |
| 131 | .map = cpm_pic_host_map, |
| 132 | }; |
| 133 | |
| 134 | unsigned int cpm_pic_init(void) |
| 135 | { |
| 136 | struct device_node *np = NULL; |
| 137 | struct resource res; |
| 138 | unsigned int sirq = NO_IRQ, hwirq, eirq; |
| 139 | int ret; |
| 140 | |
| 141 | pr_debug("cpm_pic_init\n"); |
| 142 | |
| 143 | np = of_find_compatible_node(NULL, "cpm-pic", "CPM"); |
| 144 | if (np == NULL) { |
| 145 | printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n"); |
| 146 | return sirq; |
| 147 | } |
| 148 | ret = of_address_to_resource(np, 0, &res); |
| 149 | if (ret) |
| 150 | goto end; |
| 151 | |
| 152 | cpic_reg = (void *)ioremap(res.start, res.end - res.start + 1); |
| 153 | if (cpic_reg == NULL) |
| 154 | goto end; |
| 155 | |
| 156 | sirq = irq_of_parse_and_map(np, 0); |
| 157 | if (sirq == NO_IRQ) |
| 158 | goto end; |
| 159 | |
| 160 | /* Initialize the CPM interrupt controller. */ |
| 161 | hwirq = (unsigned int)irq_map[sirq].hwirq; |
| 162 | out_be32(&cpic_reg->cpic_cicr, |
| 163 | (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | |
| 164 | ((hwirq/2) << 13) | CICR_HP_MASK); |
| 165 | |
| 166 | out_be32(&cpic_reg->cpic_cimr, 0); |
| 167 | |
| 168 | cpm_pic_node = of_node_get(np); |
| 169 | |
| 170 | cpm_pic_host = irq_alloc_host(IRQ_HOST_MAP_LINEAR, 64, &cpm_pic_host_ops, 64); |
| 171 | if (cpm_pic_host == NULL) { |
| 172 | printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n"); |
| 173 | sirq = NO_IRQ; |
| 174 | goto end; |
| 175 | } |
| 176 | of_node_put(np); |
| 177 | |
| 178 | /* Install our own error handler. */ |
| 179 | np = of_find_node_by_type(NULL, "cpm"); |
| 180 | if (np == NULL) { |
| 181 | printk(KERN_ERR "CPM PIC init: can not find cpm node\n"); |
| 182 | goto end; |
| 183 | } |
| 184 | eirq= irq_of_parse_and_map(np, 0); |
| 185 | if (eirq == NO_IRQ) |
| 186 | goto end; |
| 187 | |
| 188 | if (setup_irq(eirq, &cpm_error_irqaction)) |
| 189 | printk(KERN_ERR "Could not allocate CPM error IRQ!"); |
| 190 | |
| 191 | setbits32(&cpic_reg->cpic_cicr, CICR_IEN); |
| 192 | |
| 193 | end: |
| 194 | of_node_put(np); |
| 195 | return sirq; |
| 196 | } |
| 197 | |
| 198 | void cpm_reset(void) |
| 199 | { |
| 200 | cpm8xx_t *commproc; |
| 201 | sysconf8xx_t *siu_conf; |
| 202 | |
| 203 | commproc = (cpm8xx_t *)ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE); |
| 204 | |
| 205 | #ifdef CONFIG_UCODE_PATCH |
| 206 | /* Perform a reset. |
| 207 | */ |
| 208 | out_be16(&commproc->cp_cpcr, CPM_CR_RST | CPM_CR_FLG); |
| 209 | |
| 210 | /* Wait for it. |
| 211 | */ |
| 212 | while (in_be16(&commproc->cp_cpcr) & CPM_CR_FLG); |
| 213 | |
| 214 | cpm_load_patch(commproc); |
| 215 | #endif |
| 216 | |
| 217 | /* Set SDMA Bus Request priority 5. |
| 218 | * On 860T, this also enables FEC priority 6. I am not sure |
| 219 | * this is what we realy want for some applications, but the |
| 220 | * manual recommends it. |
| 221 | * Bit 25, FAM can also be set to use FEC aggressive mode (860T). |
| 222 | */ |
| 223 | siu_conf = (sysconf8xx_t*)immr_map(im_siu_conf); |
| 224 | out_be32(&siu_conf->sc_sdcr, 1); |
| 225 | immr_unmap(siu_conf); |
| 226 | |
| 227 | /* Reclaim the DP memory for our use. */ |
| 228 | m8xx_cpm_dpinit(); |
| 229 | |
| 230 | /* Tell everyone where the comm processor resides. |
| 231 | */ |
| 232 | cpmp = commproc; |
| 233 | } |
| 234 | |
| 235 | /* We used to do this earlier, but have to postpone as long as possible |
| 236 | * to ensure the kernel VM is now running. |
| 237 | */ |
| 238 | static void |
| 239 | alloc_host_memory(void) |
| 240 | { |
| 241 | dma_addr_t physaddr; |
| 242 | |
| 243 | /* Set the host page for allocation. |
| 244 | */ |
| 245 | host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr, |
| 246 | GFP_KERNEL); |
| 247 | host_end = host_buffer + PAGE_SIZE; |
| 248 | } |
| 249 | |
| 250 | /* We also own one page of host buffer space for the allocation of |
| 251 | * UART "fifos" and the like. |
| 252 | */ |
| 253 | uint |
| 254 | m8xx_cpm_hostalloc(uint size) |
| 255 | { |
| 256 | uint retloc; |
| 257 | |
| 258 | if (host_buffer == 0) |
| 259 | alloc_host_memory(); |
| 260 | |
| 261 | if ((host_buffer + size) >= host_end) |
| 262 | return(0); |
| 263 | |
| 264 | retloc = host_buffer; |
| 265 | host_buffer += size; |
| 266 | |
| 267 | return(retloc); |
| 268 | } |
| 269 | |
| 270 | /* Set a baud rate generator. This needs lots of work. There are |
| 271 | * four BRGs, any of which can be wired to any channel. |
| 272 | * The internal baud rate clock is the system clock divided by 16. |
| 273 | * This assumes the baudrate is 16x oversampled by the uart. |
| 274 | */ |
| 275 | #define BRG_INT_CLK (get_brgfreq()) |
| 276 | #define BRG_UART_CLK (BRG_INT_CLK/16) |
| 277 | #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) |
| 278 | |
| 279 | void |
| 280 | cpm_setbrg(uint brg, uint rate) |
| 281 | { |
| 282 | volatile uint *bp; |
| 283 | |
| 284 | /* This is good enough to get SMCs running..... |
| 285 | */ |
| 286 | bp = (uint *)&cpmp->cp_brgc1; |
| 287 | bp += brg; |
| 288 | /* The BRG has a 12-bit counter. For really slow baud rates (or |
| 289 | * really fast processors), we may have to further divide by 16. |
| 290 | */ |
| 291 | if (((BRG_UART_CLK / rate) - 1) < 4096) |
| 292 | *bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN; |
| 293 | else |
| 294 | *bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | |
| 295 | CPM_BRG_EN | CPM_BRG_DIV16; |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * dpalloc / dpfree bits. |
| 300 | */ |
| 301 | static spinlock_t cpm_dpmem_lock; |
| 302 | /* |
| 303 | * 16 blocks should be enough to satisfy all requests |
| 304 | * until the memory subsystem goes up... |
| 305 | */ |
| 306 | static rh_block_t cpm_boot_dpmem_rh_block[16]; |
| 307 | static rh_info_t cpm_dpmem_info; |
| 308 | |
| 309 | #define CPM_DPMEM_ALIGNMENT 8 |
| 310 | static u8* dpram_vbase; |
| 311 | static uint dpram_pbase; |
| 312 | |
| 313 | void m8xx_cpm_dpinit(void) |
| 314 | { |
| 315 | spin_lock_init(&cpm_dpmem_lock); |
| 316 | |
| 317 | dpram_vbase = immr_map_size(im_cpm.cp_dpmem, CPM_DATAONLY_BASE + CPM_DATAONLY_SIZE); |
| 318 | dpram_pbase = (uint)&((immap_t *)IMAP_ADDR)->im_cpm.cp_dpmem; |
| 319 | |
| 320 | /* Initialize the info header */ |
| 321 | rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT, |
| 322 | sizeof(cpm_boot_dpmem_rh_block) / |
| 323 | sizeof(cpm_boot_dpmem_rh_block[0]), |
| 324 | cpm_boot_dpmem_rh_block); |
| 325 | |
| 326 | /* |
| 327 | * Attach the usable dpmem area. |
| 328 | * XXX: This is actually crap. CPM_DATAONLY_BASE and |
| 329 | * CPM_DATAONLY_SIZE are a subset of the available dparm. It varies |
| 330 | * with the processor and the microcode patches applied / activated. |
| 331 | * But the following should be at least safe. |
| 332 | */ |
| 333 | rh_attach_region(&cpm_dpmem_info, (void *)CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE); |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | * Allocate the requested size worth of DP memory. |
| 338 | * This function returns an offset into the DPRAM area. |
| 339 | * Use cpm_dpram_addr() to get the virtual address of the area. |
| 340 | */ |
| 341 | uint cpm_dpalloc(uint size, uint align) |
| 342 | { |
| 343 | void *start; |
| 344 | unsigned long flags; |
| 345 | |
| 346 | spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| 347 | cpm_dpmem_info.alignment = align; |
| 348 | start = rh_alloc(&cpm_dpmem_info, size, "commproc"); |
| 349 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| 350 | |
| 351 | return (uint)start; |
| 352 | } |
| 353 | EXPORT_SYMBOL(cpm_dpalloc); |
| 354 | |
| 355 | int cpm_dpfree(uint offset) |
| 356 | { |
| 357 | int ret; |
| 358 | unsigned long flags; |
| 359 | |
| 360 | spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| 361 | ret = rh_free(&cpm_dpmem_info, (void *)offset); |
| 362 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| 363 | |
| 364 | return ret; |
| 365 | } |
| 366 | EXPORT_SYMBOL(cpm_dpfree); |
| 367 | |
| 368 | uint cpm_dpalloc_fixed(uint offset, uint size, uint align) |
| 369 | { |
| 370 | void *start; |
| 371 | unsigned long flags; |
| 372 | |
| 373 | spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| 374 | cpm_dpmem_info.alignment = align; |
| 375 | start = rh_alloc_fixed(&cpm_dpmem_info, (void *)offset, size, "commproc"); |
| 376 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| 377 | |
| 378 | return (uint)start; |
| 379 | } |
| 380 | EXPORT_SYMBOL(cpm_dpalloc_fixed); |
| 381 | |
| 382 | void cpm_dpdump(void) |
| 383 | { |
| 384 | rh_dump(&cpm_dpmem_info); |
| 385 | } |
| 386 | EXPORT_SYMBOL(cpm_dpdump); |
| 387 | |
| 388 | void *cpm_dpram_addr(uint offset) |
| 389 | { |
| 390 | return (void *)(dpram_vbase + offset); |
| 391 | } |
| 392 | EXPORT_SYMBOL(cpm_dpram_addr); |
| 393 | |
| 394 | uint cpm_dpram_phys(u8* addr) |
| 395 | { |
| 396 | return (dpram_pbase + (uint)(addr - dpram_vbase)); |
| 397 | } |
| 398 | EXPORT_SYMBOL(cpm_dpram_addr); |