blob: 6f0cf3a09b2cf02707e3bbccaaf9272f37e7af3a [file] [log] [blame]
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001/*
2 * PHY functions
3 *
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03004 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
Nick Kossifidis33a31822009-02-09 06:00:34 +02005 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03006 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02007 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
Jiri Slabyfa1c1142007-08-12 17:33:16 +02008 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090024#include <linux/slab.h>
Jiri Slabyfa1c1142007-08-12 17:33:16 +020025
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
Nick Kossifidis33a31822009-02-09 06:00:34 +020029#include "rfbuffer.h"
30#include "rfgain.h"
Jiri Slabyfa1c1142007-08-12 17:33:16 +020031
Nick Kossifidis9320b5c2010-11-23 20:36:45 +020032
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42 unsigned int i;
43 u32 srev;
44 u16 ret;
45
46 /*
47 * Set the radio chip access register
48 */
49 switch (chan) {
50 case CHANNEL_2GHZ:
51 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52 break;
53 case CHANNEL_5GHZ:
54 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55 break;
56 default:
57 return 0;
58 }
59
60 mdelay(2);
61
62 /* ...wait until PHY is ready and read the selected radio revision */
63 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65 for (i = 0; i < 8; i++)
66 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68 if (ah->ah_version == AR5K_AR5210) {
69 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71 } else {
72 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74 ((srev & 0x0f) << 4), 8);
75 }
76
77 /* Reset to the 5GHz mode */
78 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80 return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88 /* Check if the channel is in our supported range */
89 if (flags & CHANNEL_2GHZ) {
90 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92 return true;
93 } else if (flags & CHANNEL_5GHZ)
94 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96 return true;
97
98 return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102 struct ieee80211_channel *channel)
103{
104 u8 refclk_freq;
105
106 if ((ah->ah_radio == AR5K_RF5112) ||
107 (ah->ah_radio == AR5K_RF5413) ||
108 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109 refclk_freq = 40;
110 else
111 refclk_freq = 32;
112
113 if ((channel->center_freq % refclk_freq != 0) &&
114 ((channel->center_freq % refclk_freq < 10) ||
115 (channel->center_freq % refclk_freq > 22)))
116 return true;
117 else
118 return false;
119}
120
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125 const struct ath5k_rf_reg *rf_regs,
126 u32 val, u8 reg_id, bool set)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200127{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200128 const struct ath5k_rf_reg *rfreg = NULL;
129 u8 offset, bank, num_bits, col, position;
130 u16 entry;
131 u32 mask, data, last_bit, bits_shifted, first_bit;
132 u32 *rfb;
133 s32 bits_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200134 int i;
135
136 data = 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200137 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200138
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200139 for (i = 0; i < ah->ah_rf_regs_count; i++) {
140 if (rf_regs[i].index == reg_id) {
141 rfreg = &rf_regs[i];
142 break;
143 }
144 }
145
146 if (rfb == NULL || rfreg == NULL) {
147 ATH5K_PRINTF("Rf register not found!\n");
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200148 /* should not happen */
149 return 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200150 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200151
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200152 bank = rfreg->bank;
153 num_bits = rfreg->field.len;
154 first_bit = rfreg->field.pos;
155 col = rfreg->field.col;
156
157 /* first_bit is an offset from bank's
158 * start. Since we have all banks on
159 * the same array, we use this offset
160 * to mark each bank's start */
161 offset = ah->ah_offset[bank];
162
163 /* Boundary check */
164 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200165 ATH5K_PRINTF("invalid values at offset %u\n", offset);
166 return 0;
167 }
168
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200169 entry = ((first_bit - 1) / 8) + offset;
170 position = (first_bit - 1) % 8;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200171
Joe Perchese9010e22008-03-07 14:21:16 -0800172 if (set)
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200173 data = ath5k_hw_bitswap(val, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200174
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200175 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176 position = 0, entry++) {
177
178 last_bit = (position + bits_left > 8) ? 8 :
179 position + bits_left;
180
181 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182 (col * 8);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200183
Joe Perchese9010e22008-03-07 14:21:16 -0800184 if (set) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200185 rfb[entry] &= ~mask;
186 rfb[entry] |= ((data << position) << (col * 8)) & mask;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200187 data >>= (8 - position);
188 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200189 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190 << bits_shifted;
191 bits_shifted += last_bit - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200192 }
193
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200194 bits_left -= 8 - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200195 }
196
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200197 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200198
199 return data;
200}
201
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218 struct ieee80211_channel *channel)
219{
220 /* Get exponent and mantissa and set it */
221 u32 coef_scaled, coef_exp, coef_man,
222 ds_coef_exp, ds_coef_man, clock;
223
224 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225 !(channel->hw_value & CHANNEL_OFDM));
226
227 /* Get coefficient
228 * ALGO: coef = (5 * clock / carrier_freq) / 2
229 * we scale coef by shifting clock value by 24 for
230 * better precision since we use integers */
Nick Kossifidis73a06a62010-11-23 21:48:32 +0200231 switch (ah->ah_bwmode) {
232 case AR5K_BWMODE_40MHZ:
233 clock = 40 * 2;
234 break;
235 case AR5K_BWMODE_10MHZ:
236 clock = 40 / 2;
237 break;
238 case AR5K_BWMODE_5MHZ:
239 clock = 40 / 4;
240 break;
241 default:
242 clock = 40;
243 break;
244 }
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200245 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
246
247 /* Get exponent
248 * ALGO: coef_exp = 14 - highest set bit position */
249 coef_exp = ilog2(coef_scaled);
250
251 /* Doesn't make sense if it's zero*/
252 if (!coef_scaled || !coef_exp)
253 return -EINVAL;
254
255 /* Note: we've shifted coef_scaled by 24 */
256 coef_exp = 14 - (coef_exp - 24);
257
258
259 /* Get mantissa (significant digits)
260 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
261 coef_man = coef_scaled +
262 (1 << (24 - coef_exp - 1));
263
264 /* Calculate delta slope coefficient exponent
265 * and mantissa (remove scaling) and set them on hw */
266 ds_coef_man = coef_man >> (24 - coef_exp);
267 ds_coef_exp = coef_exp - 16;
268
269 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
270 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
271 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
273
274 return 0;
275}
276
277int ath5k_hw_phy_disable(struct ath5k_hw *ah)
278{
279 /*Just a try M.F.*/
280 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
281
282 return 0;
283}
284
285
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200286/**********************\
287* RF Gain optimization *
288\**********************/
289
290/*
Bob Copelanda180a132010-08-15 13:03:12 -0400291 * This code is used to optimize RF gain on different environments
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200292 * (temperature mostly) based on feedback from a power detector.
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200293 *
294 * It's only used on RF5111 and RF5112, later RF chips seem to have
295 * auto adjustment on hw -notice they have a much smaller BANK 7 and
296 * no gain optimization ladder-.
297 *
298 * For more infos check out this patent doc
299 * http://www.freepatentsonline.com/7400691.html
300 *
301 * This paper describes power drops as seen on the receiver due to
302 * probe packets
303 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
304 * %20of%20Power%20Control.pdf
305 *
306 * And this is the MadWiFi bug entry related to the above
307 * http://madwifi-project.org/ticket/1659
308 * with various measurements and diagrams
309 *
310 * TODO: Deal with power drops due to probes by setting an apropriate
311 * tx power on the probe packets ! Make this part of the calibration process.
312 */
313
314/* Initialize ah_gain durring attach */
315int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
316{
317 /* Initialize the gain optimization values */
318 switch (ah->ah_radio) {
319 case AR5K_RF5111:
320 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
321 ah->ah_gain.g_low = 20;
322 ah->ah_gain.g_high = 35;
323 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
324 break;
325 case AR5K_RF5112:
326 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
327 ah->ah_gain.g_low = 20;
328 ah->ah_gain.g_high = 85;
329 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
330 break;
331 default:
332 return -EINVAL;
333 }
334
335 return 0;
336}
337
338/* Schedule a gain probe check on the next transmited packet.
339 * That means our next packet is going to be sent with lower
340 * tx power and a Peak to Average Power Detector (PAPD) will try
341 * to measure the gain.
342 *
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200343 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
344 * just after we enable the probe so that we don't mess with
345 * standard traffic ? Maybe it's time to use sw interrupts and
346 * a probe tasklet !!!
347 */
348static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
349{
350
351 /* Skip if gain calibration is inactive or
352 * we already handle a probe request */
353 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
354 return;
355
Nick Kossifidis8f655dd2009-03-15 22:20:35 +0200356 /* Send the packet with 2dB below max power as
357 * patent doc suggest */
Nick Kossifidisa0823812009-04-30 15:55:44 -0400358 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200359 AR5K_PHY_PAPD_PROBE_TXPOWER) |
360 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
361
362 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
363
364}
365
366/* Calculate gain_F measurement correction
367 * based on the current step for RF5112 rev. 2 */
368static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200369{
370 u32 mix, step;
371 u32 *rf;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200372 const struct ath5k_gain_opt *go;
373 const struct ath5k_gain_opt_step *g_step;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200374 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200375
376 /* Only RF5112 Rev. 2 supports it */
377 if ((ah->ah_radio != AR5K_RF5112) ||
378 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
379 return 0;
380
381 go = &rfgain_opt_5112;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200382 rf_regs = rf_regs_5112a;
383 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200384
385 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200386
387 if (ah->ah_rf_banks == NULL)
388 return 0;
389
390 rf = ah->ah_rf_banks;
391 ah->ah_gain.g_f_corr = 0;
392
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200393 /* No VGA (Variable Gain Amplifier) override, skip */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200394 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200395 return 0;
396
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200397 /* Mix gain stepping */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200398 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200399
400 /* Mix gain override */
401 mix = g_step->gos_param[0];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200402
403 switch (mix) {
404 case 3:
405 ah->ah_gain.g_f_corr = step * 2;
406 break;
407 case 2:
408 ah->ah_gain.g_f_corr = (step - 5) * 2;
409 break;
410 case 1:
411 ah->ah_gain.g_f_corr = step;
412 break;
413 default:
414 ah->ah_gain.g_f_corr = 0;
415 break;
416 }
417
418 return ah->ah_gain.g_f_corr;
419}
420
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200421/* Check if current gain_F measurement is in the range of our
422 * power detector windows. If we get a measurement outside range
423 * we know it's not accurate (detectors can't measure anything outside
424 * their detection window) so we must ignore it */
425static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200426{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200427 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200428 u32 step, mix_ovr, level[4];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200429 u32 *rf;
430
431 if (ah->ah_rf_banks == NULL)
432 return false;
433
434 rf = ah->ah_rf_banks;
435
436 if (ah->ah_radio == AR5K_RF5111) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200437
438 rf_regs = rf_regs_5111;
439 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
440
441 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
442 false);
443
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200444 level[0] = 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200445 level[1] = (step == 63) ? 50 : step + 4;
446 level[2] = (step != 63) ? 64 : level[0];
447 level[3] = level[2] + 50 ;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200448
449 ah->ah_gain.g_high = level[3] -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200450 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200451 ah->ah_gain.g_low = level[0] +
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200452 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200453 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200454
455 rf_regs = rf_regs_5112;
456 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
457
458 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
459 false);
460
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200461 level[0] = level[2] = 0;
462
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200463 if (mix_ovr == 1) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200464 level[1] = level[3] = 83;
465 } else {
466 level[1] = level[3] = 107;
467 ah->ah_gain.g_high = 55;
468 }
469 }
470
471 return (ah->ah_gain.g_current >= level[0] &&
472 ah->ah_gain.g_current <= level[1]) ||
473 (ah->ah_gain.g_current >= level[2] &&
474 ah->ah_gain.g_current <= level[3]);
475}
476
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200477/* Perform gain_F adjustment by choosing the right set
Bob Copelanda180a132010-08-15 13:03:12 -0400478 * of parameters from RF gain optimization ladder */
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200479static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200480{
481 const struct ath5k_gain_opt *go;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200482 const struct ath5k_gain_opt_step *g_step;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200483 int ret = 0;
484
485 switch (ah->ah_radio) {
486 case AR5K_RF5111:
487 go = &rfgain_opt_5111;
488 break;
489 case AR5K_RF5112:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200490 go = &rfgain_opt_5112;
491 break;
492 default:
493 return 0;
494 }
495
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200496 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200497
498 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200499
500 /* Reached maximum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200501 if (ah->ah_gain.g_step_idx == 0)
502 return -1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200503
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200504 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
505 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
506 ah->ah_gain.g_step_idx > 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200507 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200508 ah->ah_gain.g_target -= 2 *
509 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200510 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200511
512 ret = 1;
513 goto done;
514 }
515
516 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200517
518 /* Reached minimum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200519 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
520 return -2;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200521
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200522 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
523 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
524 ah->ah_gain.g_step_idx < go->go_steps_count-1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200525 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200526 ah->ah_gain.g_target -= 2 *
527 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200528 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200529
530 ret = 2;
531 goto done;
532 }
533
534done:
535 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
536 "ret %d, gain step %u, current gain %u, target gain %u\n",
537 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
538 ah->ah_gain.g_target);
539
540 return ret;
541}
542
Bob Copelanda180a132010-08-15 13:03:12 -0400543/* Main callback for thermal RF gain calibration engine
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200544 * Check for a new gain reading and schedule an adjustment
545 * if needed.
546 *
547 * TODO: Use sw interrupt to schedule reset if gain_F needs
548 * adjustment */
549enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
550{
551 u32 data, type;
552 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
553
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200554 if (ah->ah_rf_banks == NULL ||
555 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
556 return AR5K_RFGAIN_INACTIVE;
557
558 /* No check requested, either engine is inactive
559 * or an adjustment is already requested */
560 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
561 goto done;
562
563 /* Read the PAPD (Peak to Average Power Detector)
564 * register */
565 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
566
567 /* No probe is scheduled, read gain_F measurement */
568 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
569 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
570 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
571
572 /* If tx packet is CCK correct the gain_F measurement
573 * by cck ofdm gain delta */
574 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
575 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
576 ah->ah_gain.g_current +=
577 ee->ee_cck_ofdm_gain_delta;
578 else
579 ah->ah_gain.g_current +=
580 AR5K_GAIN_CCK_PROBE_CORR;
581 }
582
583 /* Further correct gain_F measurement for
584 * RF5112A radios */
585 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
586 ath5k_hw_rf_gainf_corr(ah);
587 ah->ah_gain.g_current =
588 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
589 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
590 0;
591 }
592
593 /* Check if measurement is ok and if we need
594 * to adjust gain, schedule a gain adjustment,
595 * else switch back to the acive state */
596 if (ath5k_hw_rf_check_gainf_readback(ah) &&
597 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
598 ath5k_hw_rf_gainf_adjust(ah)) {
599 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
600 } else {
601 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
602 }
603 }
604
605done:
606 return ah->ah_gain.g_state;
607}
608
Bob Copelanda180a132010-08-15 13:03:12 -0400609/* Write initial RF gain table to set the RF sensitivity
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200610 * this one works on all RF chips and has nothing to do
611 * with gain_F calibration */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200612static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200613{
614 const struct ath5k_ini_rfgain *ath5k_rfg;
615 unsigned int i, size;
616
617 switch (ah->ah_radio) {
618 case AR5K_RF5111:
619 ath5k_rfg = rfgain_5111;
620 size = ARRAY_SIZE(rfgain_5111);
621 break;
622 case AR5K_RF5112:
623 ath5k_rfg = rfgain_5112;
624 size = ARRAY_SIZE(rfgain_5112);
625 break;
626 case AR5K_RF2413:
627 ath5k_rfg = rfgain_2413;
628 size = ARRAY_SIZE(rfgain_2413);
629 break;
630 case AR5K_RF2316:
631 ath5k_rfg = rfgain_2316;
632 size = ARRAY_SIZE(rfgain_2316);
633 break;
634 case AR5K_RF5413:
635 ath5k_rfg = rfgain_5413;
636 size = ARRAY_SIZE(rfgain_5413);
637 break;
638 case AR5K_RF2317:
639 case AR5K_RF2425:
640 ath5k_rfg = rfgain_2425;
641 size = ARRAY_SIZE(rfgain_2425);
642 break;
643 default:
644 return -EINVAL;
645 }
646
647 switch (freq) {
648 case AR5K_INI_RFGAIN_2GHZ:
649 case AR5K_INI_RFGAIN_5GHZ:
650 break;
651 default:
652 return -EINVAL;
653 }
654
655 for (i = 0; i < size; i++) {
656 AR5K_REG_WAIT(i);
657 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
658 (u32)ath5k_rfg[i].rfg_register);
659 }
660
661 return 0;
662}
663
664
665
666/********************\
667* RF Registers setup *
668\********************/
669
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200670/*
Bob Copelanda180a132010-08-15 13:03:12 -0400671 * Setup RF registers by writing RF buffer on hw
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200672 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200673static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
674 struct ieee80211_channel *channel, unsigned int mode)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200675{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200676 const struct ath5k_rf_reg *rf_regs;
677 const struct ath5k_ini_rfbuffer *ini_rfb;
678 const struct ath5k_gain_opt *go = NULL;
679 const struct ath5k_gain_opt_step *g_step;
680 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
681 u8 ee_mode = 0;
682 u32 *rfb;
683 int i, obdb = -1, bank = -1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200684
685 switch (ah->ah_radio) {
686 case AR5K_RF5111:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200687 rf_regs = rf_regs_5111;
688 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
689 ini_rfb = rfb_5111;
690 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
691 go = &rfgain_opt_5111;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200692 break;
693 case AR5K_RF5112:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200694 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
695 rf_regs = rf_regs_5112a;
696 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
697 ini_rfb = rfb_5112a;
698 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
699 } else {
700 rf_regs = rf_regs_5112;
701 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
702 ini_rfb = rfb_5112;
703 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
704 }
705 go = &rfgain_opt_5112;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200706 break;
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500707 case AR5K_RF2413:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200708 rf_regs = rf_regs_2413;
709 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
710 ini_rfb = rfb_2413;
711 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
712 break;
713 case AR5K_RF2316:
714 rf_regs = rf_regs_2316;
715 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
716 ini_rfb = rfb_2316;
717 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
718 break;
719 case AR5K_RF5413:
720 rf_regs = rf_regs_5413;
721 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
722 ini_rfb = rfb_5413;
723 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
724 break;
725 case AR5K_RF2317:
726 rf_regs = rf_regs_2425;
727 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
728 ini_rfb = rfb_2317;
729 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500730 break;
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300731 case AR5K_RF2425:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200732 rf_regs = rf_regs_2425;
733 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
734 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
735 ini_rfb = rfb_2425;
736 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
737 } else {
738 ini_rfb = rfb_2417;
739 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
740 }
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300741 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200742 default:
743 return -EINVAL;
744 }
745
Bob Copelanda180a132010-08-15 13:03:12 -0400746 /* If it's the first time we set RF buffer, allocate
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200747 * ah->ah_rf_banks based on ah->ah_rf_banks_size
748 * we set above */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200749 if (ah->ah_rf_banks == NULL) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200750 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
751 GFP_KERNEL);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200752 if (ah->ah_rf_banks == NULL) {
753 ATH5K_ERR(ah->ah_sc, "out of memory\n");
754 return -ENOMEM;
755 }
756 }
757
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200758 /* Copy values to modify them */
759 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200760
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200761 for (i = 0; i < ah->ah_rf_banks_size; i++) {
762 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
763 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
764 return -EINVAL;
765 }
766
767 /* Bank changed, write down the offset */
768 if (bank != ini_rfb[i].rfb_bank) {
769 bank = ini_rfb[i].rfb_bank;
770 ah->ah_offset[bank] = i;
771 }
772
773 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
774 }
775
776 /* Set Output and Driver bias current (OB/DB) */
777 if (channel->hw_value & CHANNEL_2GHZ) {
778
779 if (channel->hw_value & CHANNEL_CCK)
780 ee_mode = AR5K_EEPROM_MODE_11B;
781 else
782 ee_mode = AR5K_EEPROM_MODE_11G;
783
784 /* For RF511X/RF211X combination we
785 * use b_OB and b_DB parameters stored
786 * in eeprom on ee->ee_ob[ee_mode][0]
787 *
788 * For all other chips we use OB/DB for 2Ghz
789 * stored in the b/g modal section just like
790 * 802.11a on ee->ee_ob[ee_mode][1] */
791 if ((ah->ah_radio == AR5K_RF5111) ||
792 (ah->ah_radio == AR5K_RF5112))
793 obdb = 0;
794 else
795 obdb = 1;
796
797 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
798 AR5K_RF_OB_2GHZ, true);
799
800 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
801 AR5K_RF_DB_2GHZ, true);
802
803 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
804 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
805 (ah->ah_radio == AR5K_RF5111)) {
806
807 /* For 11a, Turbo and XR we need to choose
808 * OB/DB based on frequency range */
809 ee_mode = AR5K_EEPROM_MODE_11A;
810 obdb = channel->center_freq >= 5725 ? 3 :
811 (channel->center_freq >= 5500 ? 2 :
812 (channel->center_freq >= 5260 ? 1 :
813 (channel->center_freq > 4000 ? 0 : -1)));
814
815 if (obdb < 0)
816 return -EINVAL;
817
818 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
819 AR5K_RF_OB_5GHZ, true);
820
821 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
822 AR5K_RF_DB_5GHZ, true);
823 }
824
825 g_step = &go->go_step[ah->ah_gain.g_step_idx];
826
Nick Kossifidis4352fab2010-11-23 21:53:28 +0200827 /* Set turbo mode (N/A on RF5413) */
828 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
829 (ah->ah_radio != AR5K_RF5413))
830 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
831
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200832 /* Bank Modifications (chip-specific) */
833 if (ah->ah_radio == AR5K_RF5111) {
834
835 /* Set gain_F settings according to current step */
836 if (channel->hw_value & CHANNEL_OFDM) {
837
838 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
839 AR5K_PHY_FRAME_CTL_TX_CLIP,
840 g_step->gos_param[0]);
841
842 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
843 AR5K_RF_PWD_90, true);
844
845 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
846 AR5K_RF_PWD_84, true);
847
848 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
849 AR5K_RF_RFGAIN_SEL, true);
850
851 /* We programmed gain_F parameters, switch back
852 * to active state */
853 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
854
855 }
856
857 /* Bank 6/7 setup */
858
859 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
860 AR5K_RF_PWD_XPD, true);
861
862 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
863 AR5K_RF_XPD_GAIN, true);
864
865 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
866 AR5K_RF_GAIN_I, true);
867
868 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
869 AR5K_RF_PLO_SEL, true);
870
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200871 /* Tweak power detectors for half/quarter rate support */
872 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
873 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
874 u8 wait_i;
875
876 ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
877 AR5K_RF_WAIT_S, true);
878
879 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
880 0x1f : 0x10;
881
882 ath5k_hw_rfb_op(ah, rf_regs, wait_i,
883 AR5K_RF_WAIT_I, true);
884 ath5k_hw_rfb_op(ah, rf_regs, 3,
885 AR5K_RF_MAX_TIME, true);
886
887 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200888 }
889
890 if (ah->ah_radio == AR5K_RF5112) {
891
892 /* Set gain_F settings according to current step */
893 if (channel->hw_value & CHANNEL_OFDM) {
894
895 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
896 AR5K_RF_MIXGAIN_OVR, true);
897
898 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
899 AR5K_RF_PWD_138, true);
900
901 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
902 AR5K_RF_PWD_137, true);
903
904 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
905 AR5K_RF_PWD_136, true);
906
907 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
908 AR5K_RF_PWD_132, true);
909
910 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
911 AR5K_RF_PWD_131, true);
912
913 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
914 AR5K_RF_PWD_130, true);
915
916 /* We programmed gain_F parameters, switch back
917 * to active state */
918 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
919 }
920
921 /* Bank 6/7 setup */
922
923 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
924 AR5K_RF_XPD_SEL, true);
925
926 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
927 /* Rev. 1 supports only one xpd */
928 ath5k_hw_rfb_op(ah, rf_regs,
929 ee->ee_x_gain[ee_mode],
930 AR5K_RF_XPD_GAIN, true);
931
932 } else {
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300933 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
934 if (ee->ee_pd_gains[ee_mode] > 1) {
935 ath5k_hw_rfb_op(ah, rf_regs,
936 pdg_curve_to_idx[0],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200937 AR5K_RF_PD_GAIN_LO, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300938 ath5k_hw_rfb_op(ah, rf_regs,
939 pdg_curve_to_idx[1],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200940 AR5K_RF_PD_GAIN_HI, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300941 } else {
942 ath5k_hw_rfb_op(ah, rf_regs,
943 pdg_curve_to_idx[0],
944 AR5K_RF_PD_GAIN_LO, true);
945 ath5k_hw_rfb_op(ah, rf_regs,
946 pdg_curve_to_idx[0],
947 AR5K_RF_PD_GAIN_HI, true);
948 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200949
950 /* Lower synth voltage on Rev 2 */
951 ath5k_hw_rfb_op(ah, rf_regs, 2,
952 AR5K_RF_HIGH_VC_CP, true);
953
954 ath5k_hw_rfb_op(ah, rf_regs, 2,
955 AR5K_RF_MID_VC_CP, true);
956
957 ath5k_hw_rfb_op(ah, rf_regs, 2,
958 AR5K_RF_LOW_VC_CP, true);
959
960 ath5k_hw_rfb_op(ah, rf_regs, 2,
961 AR5K_RF_PUSH_UP, true);
962
963 /* Decrease power consumption on 5213+ BaseBand */
964 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
965 ath5k_hw_rfb_op(ah, rf_regs, 1,
966 AR5K_RF_PAD2GND, true);
967
968 ath5k_hw_rfb_op(ah, rf_regs, 1,
969 AR5K_RF_XB2_LVL, true);
970
971 ath5k_hw_rfb_op(ah, rf_regs, 1,
972 AR5K_RF_XB5_LVL, true);
973
974 ath5k_hw_rfb_op(ah, rf_regs, 1,
975 AR5K_RF_PWD_167, true);
976
977 ath5k_hw_rfb_op(ah, rf_regs, 1,
978 AR5K_RF_PWD_166, true);
979 }
980 }
981
982 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
983 AR5K_RF_GAIN_I, true);
984
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200985 /* Tweak power detector for half/quarter rates */
986 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
987 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
988 u8 pd_delay;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200989
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200990 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
991 0xf : 0x8;
992
993 ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
994 AR5K_RF_PD_PERIOD_A, true);
995 ath5k_hw_rfb_op(ah, rf_regs, 0xf,
996 AR5K_RF_PD_DELAY_A, true);
997
998 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200999 }
1000
1001 if (ah->ah_radio == AR5K_RF5413 &&
1002 channel->hw_value & CHANNEL_2GHZ) {
1003
1004 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1005 true);
1006
1007 /* Set optimum value for early revisions (on pci-e chips) */
1008 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1009 ah->ah_mac_srev < AR5K_SREV_AR5413)
1010 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1011 AR5K_RF_PWD_ICLOBUF_2G, true);
1012
1013 }
1014
1015 /* Write RF banks on hw */
1016 for (i = 0; i < ah->ah_rf_banks_size; i++) {
1017 AR5K_REG_WAIT(i);
1018 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1019 }
1020
1021 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001022}
1023
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001024
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001025/**************************\
1026 PHY/RF channel functions
1027\**************************/
1028
1029/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001030 * Convertion needed for RF5110
1031 */
1032static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1033{
1034 u32 athchan;
1035
1036 /*
1037 * Convert IEEE channel/MHz to an internal channel value used
1038 * by the AR5210 chipset. This has not been verified with
1039 * newer chipsets like the AR5212A who have a completely
1040 * different RF/PHY part.
1041 */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001042 athchan = (ath5k_hw_bitswap(
1043 (ieee80211_frequency_to_channel(
1044 channel->center_freq) - 24) / 2, 5)
1045 << 1) | (1 << 6) | 0x1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001046 return athchan;
1047}
1048
1049/*
1050 * Set channel on RF5110
1051 */
1052static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1053 struct ieee80211_channel *channel)
1054{
1055 u32 data;
1056
1057 /*
1058 * Set the channel and wait
1059 */
1060 data = ath5k_hw_rf5110_chan2athchan(channel);
1061 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1062 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1063 mdelay(1);
1064
1065 return 0;
1066}
1067
1068/*
1069 * Convertion needed for 5111
1070 */
1071static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1072 struct ath5k_athchan_2ghz *athchan)
1073{
1074 int channel;
1075
1076 /* Cast this value to catch negative channel numbers (>= -19) */
1077 channel = (int)ieee;
1078
1079 /*
1080 * Map 2GHz IEEE channel to 5GHz Atheros channel
1081 */
1082 if (channel <= 13) {
1083 athchan->a2_athchan = 115 + channel;
1084 athchan->a2_flags = 0x46;
1085 } else if (channel == 14) {
1086 athchan->a2_athchan = 124;
1087 athchan->a2_flags = 0x44;
1088 } else if (channel >= 15 && channel <= 26) {
1089 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1090 athchan->a2_flags = 0x46;
1091 } else
1092 return -EINVAL;
1093
1094 return 0;
1095}
1096
1097/*
1098 * Set channel on 5111
1099 */
1100static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1101 struct ieee80211_channel *channel)
1102{
1103 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001104 unsigned int ath5k_channel =
1105 ieee80211_frequency_to_channel(channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001106 u32 data0, data1, clock;
1107 int ret;
1108
1109 /*
1110 * Set the channel on the RF5111 radio
1111 */
1112 data0 = data1 = 0;
1113
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001114 if (channel->hw_value & CHANNEL_2GHZ) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001115 /* Map 2GHz channel to 5GHz Atheros channel ID */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001116 ret = ath5k_hw_rf5111_chan2athchan(
1117 ieee80211_frequency_to_channel(channel->center_freq),
1118 &ath5k_channel_2ghz);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001119 if (ret)
1120 return ret;
1121
1122 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1123 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1124 << 5) | (1 << 4);
1125 }
1126
1127 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1128 clock = 1;
1129 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1130 (clock << 1) | (1 << 10) | 1;
1131 } else {
1132 clock = 0;
1133 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1134 << 2) | (clock << 1) | (1 << 10) | 1;
1135 }
1136
1137 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1138 AR5K_RF_BUFFER);
1139 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1140 AR5K_RF_BUFFER_CONTROL_3);
1141
1142 return 0;
1143}
1144
1145/*
1146 * Set channel on 5112 and newer
1147 */
1148static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1149 struct ieee80211_channel *channel)
1150{
1151 u32 data, data0, data1, data2;
1152 u16 c;
1153
1154 data = data0 = data1 = data2 = 0;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001155 c = channel->center_freq;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001156
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001157 if (c < 4800) {
1158 if (!((c - 2224) % 5)) {
1159 data0 = ((2 * (c - 704)) - 3040) / 10;
1160 data1 = 1;
1161 } else if (!((c - 2192) % 5)) {
1162 data0 = ((2 * (c - 672)) - 3040) / 10;
1163 data1 = 0;
1164 } else
1165 return -EINVAL;
1166
1167 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
Bob Copeland1968cc72010-04-07 23:55:56 -04001168 } else if ((c % 5) != 2 || c > 5435) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001169 if (!(c % 20) && c >= 5120) {
1170 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1171 data2 = ath5k_hw_bitswap(3, 2);
1172 } else if (!(c % 10)) {
1173 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1174 data2 = ath5k_hw_bitswap(2, 2);
1175 } else if (!(c % 5)) {
1176 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1177 data2 = ath5k_hw_bitswap(1, 2);
1178 } else
1179 return -EINVAL;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001180 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001181 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001182 data2 = ath5k_hw_bitswap(0, 2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001183 }
1184
1185 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1186
1187 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1188 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1189
1190 return 0;
1191}
1192
1193/*
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001194 * Set the channel on the RF2425
1195 */
1196static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1197 struct ieee80211_channel *channel)
1198{
1199 u32 data, data0, data2;
1200 u16 c;
1201
1202 data = data0 = data2 = 0;
1203 c = channel->center_freq;
1204
1205 if (c < 4800) {
1206 data0 = ath5k_hw_bitswap((c - 2272), 8);
1207 data2 = 0;
1208 /* ? 5GHz ? */
Bob Copeland1968cc72010-04-07 23:55:56 -04001209 } else if ((c % 5) != 2 || c > 5435) {
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001210 if (!(c % 20) && c < 5120)
1211 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1212 else if (!(c % 10))
1213 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1214 else if (!(c % 5))
1215 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1216 else
1217 return -EINVAL;
1218 data2 = ath5k_hw_bitswap(1, 2);
1219 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001220 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001221 data2 = ath5k_hw_bitswap(0, 2);
1222 }
1223
1224 data = (data0 << 4) | data2 << 2 | 0x1001;
1225
1226 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1227 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1228
1229 return 0;
1230}
1231
1232/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001233 * Set a channel on the radio chip
1234 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001235static int ath5k_hw_channel(struct ath5k_hw *ah,
1236 struct ieee80211_channel *channel)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001237{
1238 int ret;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001239 /*
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001240 * Check bounds supported by the PHY (we don't care about regultory
1241 * restrictions at this point). Note: hw_value already has the band
1242 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1243 * of the band by that */
1244 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001245 ATH5K_ERR(ah->ah_sc,
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001246 "channel frequency (%u MHz) out of supported "
1247 "band range\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001248 channel->center_freq);
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001249 return -EINVAL;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001250 }
1251
1252 /*
1253 * Set the channel and wait
1254 */
1255 switch (ah->ah_radio) {
1256 case AR5K_RF5110:
1257 ret = ath5k_hw_rf5110_channel(ah, channel);
1258 break;
1259 case AR5K_RF5111:
1260 ret = ath5k_hw_rf5111_channel(ah, channel);
1261 break;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001262 case AR5K_RF2425:
1263 ret = ath5k_hw_rf2425_channel(ah, channel);
1264 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001265 default:
1266 ret = ath5k_hw_rf5112_channel(ah, channel);
1267 break;
1268 }
1269
1270 if (ret)
1271 return ret;
1272
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001273 /* Set JAPAN setting for channel 14 */
1274 if (channel->center_freq == 2484) {
1275 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1276 AR5K_PHY_CCKTXCTL_JAPAN);
1277 } else {
1278 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1279 AR5K_PHY_CCKTXCTL_WORLD);
1280 }
1281
Bob Copeland46026e82009-06-10 22:22:20 -04001282 ah->ah_current_channel = channel;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001283
1284 return 0;
1285}
1286
1287/*****************\
1288 PHY calibration
1289\*****************/
1290
Bob Copelande5e26472009-10-14 14:16:30 -04001291static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1292{
1293 s32 val;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001294
Bob Copelande5e26472009-10-14 14:16:30 -04001295 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
Andreas Herrmann7919a572010-08-30 19:04:01 +00001296 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
Bob Copelande5e26472009-10-14 14:16:30 -04001297}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001298
Bob Copelande5e26472009-10-14 14:16:30 -04001299void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1300{
1301 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001302
Bob Copelande5e26472009-10-14 14:16:30 -04001303 ah->ah_nfcal_hist.index = 0;
1304 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1305 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1306}
1307
1308static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1309{
1310 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1311 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1312 hist->nfval[hist->index] = noise_floor;
1313}
1314
1315static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1316{
1317 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1318 s16 tmp;
1319 int i, j;
1320
1321 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1322 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1323 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1324 if (sort[j] > sort[j-1]) {
1325 tmp = sort[j];
1326 sort[j] = sort[j-1];
1327 sort[j-1] = tmp;
1328 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001329 }
1330 }
Bob Copelande5e26472009-10-14 14:16:30 -04001331 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1332 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1333 "cal %d:%d\n", i, sort[i]);
1334 }
1335 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1336}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001337
Bob Copelande5e26472009-10-14 14:16:30 -04001338/*
1339 * When we tell the hardware to perform a noise floor calibration
1340 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1341 * sample-and-hold the minimum noise level seen at the antennas.
1342 * This value is then stored in a ring buffer of recently measured
1343 * noise floor values so we have a moving window of the last few
1344 * samples.
1345 *
1346 * The median of the values in the history is then loaded into the
1347 * hardware for its own use for RSSI and CCA measurements.
1348 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001349void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
Bob Copelande5e26472009-10-14 14:16:30 -04001350{
1351 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1352 u32 val;
1353 s16 nf, threshold;
1354 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001355
Bob Copelande5e26472009-10-14 14:16:30 -04001356 /* keep last value if calibration hasn't completed */
1357 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1358 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1359 "NF did not complete in calibration window\n");
1360
1361 return;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001362 }
1363
Bob Copelande5e26472009-10-14 14:16:30 -04001364 switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1365 case CHANNEL_A:
Bob Copelande5e26472009-10-14 14:16:30 -04001366 case CHANNEL_XR:
1367 ee_mode = AR5K_EEPROM_MODE_11A;
1368 break;
1369 case CHANNEL_G:
Bob Copelande5e26472009-10-14 14:16:30 -04001370 ee_mode = AR5K_EEPROM_MODE_11G;
1371 break;
1372 default:
1373 case CHANNEL_B:
1374 ee_mode = AR5K_EEPROM_MODE_11B;
1375 break;
1376 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001377
Bob Copelande5e26472009-10-14 14:16:30 -04001378
1379 /* completed NF calibration, test threshold */
1380 nf = ath5k_hw_read_measured_noise_floor(ah);
1381 threshold = ee->ee_noise_floor_thr[ee_mode];
1382
1383 if (nf > threshold) {
1384 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1385 "noise floor failure detected; "
1386 "read %d, threshold %d\n",
1387 nf, threshold);
1388
1389 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1390 }
1391
1392 ath5k_hw_update_nfcal_hist(ah, nf);
1393 nf = ath5k_hw_get_median_noise_floor(ah);
1394
1395 /* load noise floor (in .5 dBm) so the hardware will use it */
1396 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1397 val |= (nf * 2) & AR5K_PHY_NF_M;
1398 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1399
1400 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1401 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1402
1403 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1404 0, false);
1405
1406 /*
1407 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1408 * so that we're not capped by the median we just loaded.
1409 * This will be used as the initial value for the next noise
1410 * floor calibration.
1411 */
1412 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1413 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1414 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1415 AR5K_PHY_AGCCTL_NF_EN |
1416 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1417 AR5K_PHY_AGCCTL_NF);
1418
1419 ah->ah_noise_floor = nf;
1420
1421 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1422 "noise floor calibrated: %d\n", nf);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001423}
1424
1425/*
1426 * Perform a PHY calibration on RF5110
1427 * -Fix BPSK/QAM Constellation (I/Q correction)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001428 */
1429static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1430 struct ieee80211_channel *channel)
1431{
1432 u32 phy_sig, phy_agc, phy_sat, beacon;
1433 int ret;
1434
1435 /*
1436 * Disable beacons and RX/TX queues, wait
1437 */
1438 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001439 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001440 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1441 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1442
Nick Kossifidis84e463f2008-09-17 03:33:19 +03001443 mdelay(2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001444
1445 /*
1446 * Set the channel (with AGC turned off)
1447 */
1448 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1449 udelay(10);
1450 ret = ath5k_hw_channel(ah, channel);
1451
1452 /*
1453 * Activate PHY and wait
1454 */
1455 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1456 mdelay(1);
1457
1458 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1459
1460 if (ret)
1461 return ret;
1462
1463 /*
1464 * Calibrate the radio chip
1465 */
1466
1467 /* Remember normal state */
1468 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1469 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1470 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1471
1472 /* Update radio registers */
1473 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1474 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1475
1476 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1477 AR5K_PHY_AGCCOARSE_LO)) |
1478 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1479 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1480
1481 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1482 AR5K_PHY_ADCSAT_THR)) |
1483 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1484 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1485
1486 udelay(20);
1487
1488 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1489 udelay(10);
1490 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1491 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1492
1493 mdelay(1);
1494
1495 /*
1496 * Enable calibration and wait until completion
1497 */
1498 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1499
1500 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1501 AR5K_PHY_AGCCTL_CAL, 0, false);
1502
1503 /* Reset to normal state */
1504 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1505 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1506 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1507
1508 if (ret) {
1509 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001510 channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001511 return ret;
1512 }
1513
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001514 /*
1515 * Re-enable RX/TX and beacons
1516 */
1517 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001518 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001519 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1520
1521 return 0;
1522}
1523
1524/*
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001525 * Perform I/Q calibration on RF5111/5112 and newer chips
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001526 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001527static int
1528ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001529{
1530 u32 i_pwr, q_pwr;
1531 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001532 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001533
Joe Perchese9010e22008-03-07 14:21:16 -08001534 if (!ah->ah_calibration ||
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001535 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001536 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001537
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001538 /* Calibration has finished, get the results and re-run */
Bruno Randolf86415d42010-03-09 16:56:05 +09001539 /* work around empty results which can apparently happen on 5212 */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001540 for (i = 0; i <= 10; i++) {
1541 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1542 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1543 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
Bruno Randolf86415d42010-03-09 16:56:05 +09001544 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1545 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1546 if (i_pwr && q_pwr)
1547 break;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001548 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001549
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001550 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
Bruno Randolf49a85d22010-03-09 16:56:15 +09001551
1552 if (ah->ah_version == AR5K_AR5211)
1553 q_coffd = q_pwr >> 6;
1554 else
1555 q_coffd = q_pwr >> 7;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001556
Bruno Randolf86415d42010-03-09 16:56:05 +09001557 /* protect against divide by 0 and loss of sign bits */
1558 if (i_coffd == 0 || q_coffd < 2)
Fabio Rossi516c6e12010-09-08 22:37:41 +02001559 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001560
Bruno Randolf86415d42010-03-09 16:56:05 +09001561 i_coff = (-iq_corr) / i_coffd;
1562 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001563
John W. Linvilleace5d5d2010-04-08 16:34:49 -04001564 if (ah->ah_version == AR5K_AR5211)
1565 q_coff = (i_pwr / q_coffd) - 64;
1566 else
1567 q_coff = (i_pwr / q_coffd) - 128;
Bruno Randolf86415d42010-03-09 16:56:05 +09001568 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001569
Bruno Randolf86415d42010-03-09 16:56:05 +09001570 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1571 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1572 i_coff, q_coff, i_coffd, q_coffd);
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001573
Bruno Randolf86415d42010-03-09 16:56:05 +09001574 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1575 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1576 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1577 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001578
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001579 /* Re-enable calibration -if we don't we'll commit
1580 * the same values again and again */
1581 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1582 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1583 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1584
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001585 return 0;
1586}
1587
1588/*
1589 * Perform a PHY calibration
1590 */
1591int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1592 struct ieee80211_channel *channel)
1593{
1594 int ret;
1595
1596 if (ah->ah_radio == AR5K_RF5110)
1597 ret = ath5k_hw_rf5110_calibrate(ah, channel);
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001598 else {
1599 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1600 ath5k_hw_request_rfgain_probe(ah);
1601 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001602
1603 return ret;
1604}
1605
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001606
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001607/***************************\
1608* Spur mitigation functions *
1609\***************************/
1610
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001611static void
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001612ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1613 struct ieee80211_channel *channel)
1614{
1615 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1616 u32 mag_mask[4] = {0, 0, 0, 0};
1617 u32 pilot_mask[2] = {0, 0};
1618 /* Note: fbin values are scaled up by 2 */
1619 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1620 s32 spur_delta_phase, spur_freq_sigma_delta;
1621 s32 spur_offset, num_symbols_x16;
1622 u8 num_symbol_offsets, i, freq_band;
1623
1624 /* Convert current frequency to fbin value (the same way channels
1625 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1626 * up by 2 so we can compare it later */
1627 if (channel->hw_value & CHANNEL_2GHZ) {
1628 chan_fbin = (channel->center_freq - 2300) * 10;
1629 freq_band = AR5K_EEPROM_BAND_2GHZ;
1630 } else {
1631 chan_fbin = (channel->center_freq - 4900) * 10;
1632 freq_band = AR5K_EEPROM_BAND_5GHZ;
1633 }
1634
1635 /* Check if any spur_chan_fbin from EEPROM is
1636 * within our current channel's spur detection range */
1637 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1638 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1639 /* XXX: Half/Quarter channels ?*/
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001640 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001641 spur_detection_window *= 2;
1642
1643 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1644 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1645
1646 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1647 * so it's zero if we got nothing from EEPROM */
1648 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1649 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1650 break;
1651 }
1652
1653 if ((chan_fbin - spur_detection_window <=
1654 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1655 (chan_fbin + spur_detection_window >=
1656 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1657 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1658 break;
1659 }
1660 }
1661
1662 /* We need to enable spur filter for this channel */
1663 if (spur_chan_fbin) {
1664 spur_offset = spur_chan_fbin - chan_fbin;
1665 /*
1666 * Calculate deltas:
1667 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1668 * spur_delta_phase -> spur_offset / chip_freq << 11
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001669 * Note: Both values have 100Hz resolution
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001670 */
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001671 switch (ah->ah_bwmode) {
1672 case AR5K_BWMODE_40MHZ:
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001673 /* Both sample_freq and chip_freq are 80MHz */
1674 spur_delta_phase = (spur_offset << 16) / 25;
1675 spur_freq_sigma_delta = (spur_delta_phase >> 10);
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001676 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001677 break;
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001678 case AR5K_BWMODE_10MHZ:
1679 /* Both sample_freq and chip_freq are 20MHz (?) */
1680 spur_delta_phase = (spur_offset << 18) / 25;
1681 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1682 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1683 case AR5K_BWMODE_5MHZ:
1684 /* Both sample_freq and chip_freq are 10MHz (?) */
1685 spur_delta_phase = (spur_offset << 19) / 25;
1686 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1687 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001688 default:
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001689 if (channel->hw_value == CHANNEL_A) {
1690 /* Both sample_freq and chip_freq are 40MHz */
1691 spur_delta_phase = (spur_offset << 17) / 25;
1692 spur_freq_sigma_delta =
1693 (spur_delta_phase >> 10);
1694 symbol_width =
1695 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1696 } else {
1697 /* sample_freq -> 40MHz chip_freq -> 44MHz
1698 * (for b compatibility) */
1699 spur_delta_phase = (spur_offset << 17) / 25;
1700 spur_freq_sigma_delta =
1701 (spur_offset << 8) / 55;
1702 symbol_width =
1703 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1704 }
1705 break;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001706 }
1707
1708 /* Calculate pilot and magnitude masks */
1709
1710 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1711 * and divide by symbol_width to find how many symbols we have
1712 * Note: number of symbols is scaled up by 16 */
1713 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1714
1715 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1716 if (!(num_symbols_x16 & 0xF))
1717 /* _X_ */
1718 num_symbol_offsets = 3;
1719 else
1720 /* _xx_ */
1721 num_symbol_offsets = 4;
1722
1723 for (i = 0; i < num_symbol_offsets; i++) {
1724
1725 /* Calculate pilot mask */
1726 s32 curr_sym_off =
1727 (num_symbols_x16 / 16) + i + 25;
1728
1729 /* Pilot magnitude mask seems to be a way to
1730 * declare the boundaries for our detection
1731 * window or something, it's 2 for the middle
1732 * value(s) where the symbol is expected to be
1733 * and 1 on the boundary values */
1734 u8 plt_mag_map =
1735 (i == 0 || i == (num_symbol_offsets - 1))
1736 ? 1 : 2;
1737
1738 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1739 if (curr_sym_off <= 25)
1740 pilot_mask[0] |= 1 << curr_sym_off;
1741 else if (curr_sym_off >= 27)
1742 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1743 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1744 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1745
1746 /* Calculate magnitude mask (for viterbi decoder) */
1747 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1748 mag_mask[0] |=
1749 plt_mag_map << (curr_sym_off + 1) * 2;
1750 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1751 mag_mask[1] |=
1752 plt_mag_map << (curr_sym_off - 15) * 2;
1753 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1754 mag_mask[2] |=
1755 plt_mag_map << (curr_sym_off - 31) * 2;
Bob Copeland53b1cf82010-08-24 21:37:14 -04001756 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001757 mag_mask[3] |=
1758 plt_mag_map << (curr_sym_off - 47) * 2;
1759
1760 }
1761
1762 /* Write settings on hw to enable spur filter */
1763 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1764 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1765 /* XXX: Self correlator also ? */
1766 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1767 AR5K_PHY_IQ_PILOT_MASK_EN |
1768 AR5K_PHY_IQ_CHAN_MASK_EN |
1769 AR5K_PHY_IQ_SPUR_FILT_EN);
1770
1771 /* Set delta phase and freq sigma delta */
1772 ath5k_hw_reg_write(ah,
1773 AR5K_REG_SM(spur_delta_phase,
1774 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1775 AR5K_REG_SM(spur_freq_sigma_delta,
1776 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1777 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1778 AR5K_PHY_TIMING_11);
1779
1780 /* Write pilot masks */
1781 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1782 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1783 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1784 pilot_mask[1]);
1785
1786 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1787 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1788 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1789 pilot_mask[1]);
1790
1791 /* Write magnitude masks */
1792 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1793 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1794 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1795 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1796 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1797 mag_mask[3]);
1798
1799 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1800 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1801 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1802 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1803 AR5K_PHY_BIN_MASK2_4_MASK_4,
1804 mag_mask[3]);
1805
1806 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1807 AR5K_PHY_IQ_SPUR_FILT_EN) {
1808 /* Clean up spur mitigation settings and disable fliter */
1809 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1810 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1811 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1812 AR5K_PHY_IQ_PILOT_MASK_EN |
1813 AR5K_PHY_IQ_CHAN_MASK_EN |
1814 AR5K_PHY_IQ_SPUR_FILT_EN);
1815 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1816
1817 /* Clear pilot masks */
1818 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1819 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1820 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1821 0);
1822
1823 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1824 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1825 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1826 0);
1827
1828 /* Clear magnitude masks */
1829 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1830 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1831 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1832 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1833 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1834 0);
1835
1836 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1837 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1838 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1839 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1840 AR5K_PHY_BIN_MASK2_4_MASK_4,
1841 0);
1842 }
1843}
1844
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001845
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001846/*****************\
1847* Antenna control *
1848\*****************/
1849
Pavel Roskin626ede62010-02-18 20:28:02 -05001850static void /*TODO:Boundary check*/
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001851ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001852{
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001853 if (ah->ah_version != AR5K_AR5210)
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001854 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001855}
1856
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001857/*
1858 * Enable/disable fast rx antenna diversity
1859 */
1860static void
1861ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1862{
1863 switch (ee_mode) {
1864 case AR5K_EEPROM_MODE_11G:
1865 /* XXX: This is set to
1866 * disabled on initvals !!! */
1867 case AR5K_EEPROM_MODE_11A:
1868 if (enable)
1869 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1870 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1871 else
1872 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1873 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1874 break;
1875 case AR5K_EEPROM_MODE_11B:
1876 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1877 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1878 break;
1879 default:
1880 return;
1881 }
1882
1883 if (enable) {
1884 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf6665b542010-06-28 11:01:48 +09001885 AR5K_PHY_RESTART_DIV_GC, 4);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001886
1887 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1888 AR5K_PHY_FAST_ANT_DIV_EN);
1889 } else {
1890 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf39d5b2c2010-06-07 13:11:25 +09001891 AR5K_PHY_RESTART_DIV_GC, 0);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001892
1893 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1894 AR5K_PHY_FAST_ANT_DIV_EN);
1895 }
1896}
1897
Bruno Randolf0ca74022010-06-07 13:11:30 +09001898void
1899ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1900{
1901 u8 ant0, ant1;
1902
1903 /*
1904 * In case a fixed antenna was set as default
1905 * use the same switch table twice.
1906 */
1907 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1908 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1909 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1910 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1911 else {
1912 ant0 = AR5K_ANT_SWTABLE_A;
1913 ant1 = AR5K_ANT_SWTABLE_B;
1914 }
1915
1916 /* Set antenna idle switch table */
1917 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1918 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1919 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1920 AR5K_PHY_ANT_CTL_TXRX_EN));
1921
1922 /* Set antenna switch tables */
1923 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1924 AR5K_PHY_ANT_SWITCH_TABLE_0);
1925 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1926 AR5K_PHY_ANT_SWITCH_TABLE_1);
1927}
1928
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001929/*
1930 * Set antenna operating mode
1931 */
1932void
1933ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1934{
Bob Copeland46026e82009-06-10 22:22:20 -04001935 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001936 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1937 bool use_def_for_sg;
1938 u8 def_ant, tx_ant, ee_mode;
1939 u32 sta_id1 = 0;
1940
Bruno Randolf436c1092010-06-07 13:11:19 +09001941 /* if channel is not initialized yet we can't set the antennas
1942 * so just store the mode. it will be set on the next reset */
1943 if (channel == NULL) {
1944 ah->ah_ant_mode = ant_mode;
1945 return;
1946 }
1947
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001948 def_ant = ah->ah_def_ant;
1949
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001950 switch (channel->hw_value & CHANNEL_MODES) {
1951 case CHANNEL_A:
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001952 case CHANNEL_XR:
1953 ee_mode = AR5K_EEPROM_MODE_11A;
1954 break;
1955 case CHANNEL_G:
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001956 ee_mode = AR5K_EEPROM_MODE_11G;
1957 break;
1958 case CHANNEL_B:
1959 ee_mode = AR5K_EEPROM_MODE_11B;
1960 break;
1961 default:
1962 ATH5K_ERR(ah->ah_sc,
1963 "invalid channel: %d\n", channel->center_freq);
1964 return;
1965 }
1966
1967 switch (ant_mode) {
1968 case AR5K_ANTMODE_DEFAULT:
1969 tx_ant = 0;
1970 use_def_for_tx = false;
1971 update_def_on_tx = false;
1972 use_def_for_rts = false;
1973 use_def_for_sg = false;
1974 fast_div = true;
1975 break;
1976 case AR5K_ANTMODE_FIXED_A:
1977 def_ant = 1;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001978 tx_ant = 1;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001979 use_def_for_tx = true;
1980 update_def_on_tx = false;
1981 use_def_for_rts = true;
1982 use_def_for_sg = true;
1983 fast_div = false;
1984 break;
1985 case AR5K_ANTMODE_FIXED_B:
1986 def_ant = 2;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001987 tx_ant = 2;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001988 use_def_for_tx = true;
1989 update_def_on_tx = false;
1990 use_def_for_rts = true;
1991 use_def_for_sg = true;
1992 fast_div = false;
1993 break;
1994 case AR5K_ANTMODE_SINGLE_AP:
1995 def_ant = 1; /* updated on tx */
1996 tx_ant = 0;
1997 use_def_for_tx = true;
1998 update_def_on_tx = true;
1999 use_def_for_rts = true;
2000 use_def_for_sg = true;
2001 fast_div = true;
2002 break;
2003 case AR5K_ANTMODE_SECTOR_AP:
2004 tx_ant = 1; /* variable */
2005 use_def_for_tx = false;
2006 update_def_on_tx = false;
2007 use_def_for_rts = true;
2008 use_def_for_sg = false;
2009 fast_div = false;
2010 break;
2011 case AR5K_ANTMODE_SECTOR_STA:
2012 tx_ant = 1; /* variable */
2013 use_def_for_tx = true;
2014 update_def_on_tx = false;
2015 use_def_for_rts = true;
2016 use_def_for_sg = false;
2017 fast_div = true;
2018 break;
2019 case AR5K_ANTMODE_DEBUG:
2020 def_ant = 1;
2021 tx_ant = 2;
2022 use_def_for_tx = false;
2023 update_def_on_tx = false;
2024 use_def_for_rts = false;
2025 use_def_for_sg = false;
2026 fast_div = false;
2027 break;
2028 default:
2029 return;
2030 }
2031
2032 ah->ah_tx_ant = tx_ant;
2033 ah->ah_ant_mode = ant_mode;
Bruno Randolfcaec9112010-03-09 16:55:28 +09002034 ah->ah_def_ant = def_ant;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04002035
2036 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2037 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2038 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2039 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2040
2041 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2042
2043 if (sta_id1)
2044 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2045
Bruno Randolf0ca74022010-06-07 13:11:30 +09002046 ath5k_hw_set_antenna_switch(ah, ee_mode);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04002047 /* Note: set diversity before default antenna
2048 * because it won't work correctly */
2049 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2050 ath5k_hw_set_def_antenna(ah, def_ant);
2051}
2052
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002053
2054/****************\
2055* TX power setup *
2056\****************/
2057
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002058/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002059 * Helper functions
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002060 */
2061
2062/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002063 * Do linear interpolation between two given (x, y) points
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002064 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002065static s16
2066ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2067 s16 y_left, s16 y_right)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002068{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002069 s16 ratio, result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002070
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002071 /* Avoid divide by zero and skip interpolation
2072 * if we have the same point */
2073 if ((x_left == x_right) || (y_left == y_right))
2074 return y_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002075
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002076 /*
2077 * Since we use ints and not fps, we need to scale up in
2078 * order to get a sane ratio value (or else we 'll eg. get
2079 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2080 * to have some accuracy both for 0.5 and 0.25 steps.
2081 */
2082 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002083
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002084 /* Now scale down to be in range */
2085 result = y_left + (ratio * (target - x_left) / 100);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002086
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002087 return result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002088}
2089
2090/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002091 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2092 *
2093 * Since we have the top of the curve and we draw the line below
2094 * until we reach 1 (1 pcdac step) we need to know which point
2095 * (x value) that is so that we don't go below y axis and have negative
2096 * pcdac values when creating the curve, or fill the table with zeroes.
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002097 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002098static s16
2099ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2100 const s16 *pwrL, const s16 *pwrR)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002101{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002102 s8 tmp;
2103 s16 min_pwrL, min_pwrR;
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002104 s16 pwr_i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002105
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +03002106 /* Some vendors write the same pcdac value twice !!! */
2107 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2108 return max(pwrL[0], pwrR[0]);
Bob Copeland9c8b3ed2009-05-19 23:37:31 -04002109
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002110 if (pwrL[0] == pwrL[1])
2111 min_pwrL = pwrL[0];
2112 else {
2113 pwr_i = pwrL[0];
2114 do {
2115 pwr_i--;
2116 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2117 pwrL[0], pwrL[1],
2118 stepL[0], stepL[1]);
2119 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002120
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002121 min_pwrL = pwr_i;
2122 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002123
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002124 if (pwrR[0] == pwrR[1])
2125 min_pwrR = pwrR[0];
2126 else {
2127 pwr_i = pwrR[0];
2128 do {
2129 pwr_i--;
2130 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2131 pwrR[0], pwrR[1],
2132 stepR[0], stepR[1]);
2133 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002134
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002135 min_pwrR = pwr_i;
2136 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002137
2138 /* Keep the right boundary so that it works for both curves */
2139 return max(min_pwrL, min_pwrR);
2140}
2141
2142/*
2143 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2144 * Power to PCDAC curve.
2145 *
2146 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2147 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2148 * PCDAC/PDADC step for each curve is 64 but we can write more than
2149 * one curves on hw so we can go up to 128 (which is the max step we
2150 * can write on the final table).
2151 *
2152 * We write y values (PCDAC/PDADC steps) on hw.
2153 */
2154static void
2155ath5k_create_power_curve(s16 pmin, s16 pmax,
2156 const s16 *pwr, const u8 *vpd,
2157 u8 num_points,
2158 u8 *vpd_table, u8 type)
2159{
2160 u8 idx[2] = { 0, 1 };
2161 s16 pwr_i = 2*pmin;
2162 int i;
2163
2164 if (num_points < 2)
2165 return;
2166
2167 /* We want the whole line, so adjust boundaries
2168 * to cover the entire power range. Note that
2169 * power values are already 0.25dB so no need
2170 * to multiply pwr_i by 2 */
2171 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2172 pwr_i = pmin;
2173 pmin = 0;
2174 pmax = 63;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002175 }
2176
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002177 /* Find surrounding turning points (TPs)
2178 * and interpolate between them */
2179 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2180 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2181
2182 /* We passed the right TP, move to the next set of TPs
2183 * if we pass the last TP, extrapolate above using the last
2184 * two TPs for ratio */
2185 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2186 idx[0]++;
2187 idx[1]++;
2188 }
2189
2190 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2191 pwr[idx[0]], pwr[idx[1]],
2192 vpd[idx[0]], vpd[idx[1]]);
2193
2194 /* Increase by 0.5dB
2195 * (0.25 dB units) */
2196 pwr_i += 2;
2197 }
2198}
2199
2200/*
2201 * Get the surrounding per-channel power calibration piers
2202 * for a given frequency so that we can interpolate between
2203 * them and come up with an apropriate dataset for our current
2204 * channel.
2205 */
2206static void
2207ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2208 struct ieee80211_channel *channel,
2209 struct ath5k_chan_pcal_info **pcinfo_l,
2210 struct ath5k_chan_pcal_info **pcinfo_r)
2211{
2212 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2213 struct ath5k_chan_pcal_info *pcinfo;
2214 u8 idx_l, idx_r;
2215 u8 mode, max, i;
2216 u32 target = channel->center_freq;
2217
2218 idx_l = 0;
2219 idx_r = 0;
2220
2221 if (!(channel->hw_value & CHANNEL_OFDM)) {
2222 pcinfo = ee->ee_pwr_cal_b;
2223 mode = AR5K_EEPROM_MODE_11B;
2224 } else if (channel->hw_value & CHANNEL_2GHZ) {
2225 pcinfo = ee->ee_pwr_cal_g;
2226 mode = AR5K_EEPROM_MODE_11G;
2227 } else {
2228 pcinfo = ee->ee_pwr_cal_a;
2229 mode = AR5K_EEPROM_MODE_11A;
2230 }
2231 max = ee->ee_n_piers[mode] - 1;
2232
2233 /* Frequency is below our calibrated
2234 * range. Use the lowest power curve
2235 * we have */
2236 if (target < pcinfo[0].freq) {
2237 idx_l = idx_r = 0;
2238 goto done;
2239 }
2240
2241 /* Frequency is above our calibrated
2242 * range. Use the highest power curve
2243 * we have */
2244 if (target > pcinfo[max].freq) {
2245 idx_l = idx_r = max;
2246 goto done;
2247 }
2248
2249 /* Frequency is inside our calibrated
2250 * channel range. Pick the surrounding
2251 * calibration piers so that we can
2252 * interpolate */
2253 for (i = 0; i <= max; i++) {
2254
2255 /* Frequency matches one of our calibration
2256 * piers, no need to interpolate, just use
2257 * that calibration pier */
2258 if (pcinfo[i].freq == target) {
2259 idx_l = idx_r = i;
2260 goto done;
2261 }
2262
2263 /* We found a calibration pier that's above
2264 * frequency, use this pier and the previous
2265 * one to interpolate */
2266 if (target < pcinfo[i].freq) {
2267 idx_r = i;
2268 idx_l = idx_r - 1;
2269 goto done;
2270 }
2271 }
2272
2273done:
2274 *pcinfo_l = &pcinfo[idx_l];
2275 *pcinfo_r = &pcinfo[idx_r];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002276}
2277
2278/*
2279 * Get the surrounding per-rate power calibration data
2280 * for a given frequency and interpolate between power
2281 * values to set max target power supported by hw for
2282 * each rate.
2283 */
2284static void
2285ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2286 struct ieee80211_channel *channel,
2287 struct ath5k_rate_pcal_info *rates)
2288{
2289 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2290 struct ath5k_rate_pcal_info *rpinfo;
2291 u8 idx_l, idx_r;
2292 u8 mode, max, i;
2293 u32 target = channel->center_freq;
2294
2295 idx_l = 0;
2296 idx_r = 0;
2297
2298 if (!(channel->hw_value & CHANNEL_OFDM)) {
2299 rpinfo = ee->ee_rate_tpwr_b;
2300 mode = AR5K_EEPROM_MODE_11B;
2301 } else if (channel->hw_value & CHANNEL_2GHZ) {
2302 rpinfo = ee->ee_rate_tpwr_g;
2303 mode = AR5K_EEPROM_MODE_11G;
2304 } else {
2305 rpinfo = ee->ee_rate_tpwr_a;
2306 mode = AR5K_EEPROM_MODE_11A;
2307 }
2308 max = ee->ee_rate_target_pwr_num[mode] - 1;
2309
2310 /* Get the surrounding calibration
2311 * piers - same as above */
2312 if (target < rpinfo[0].freq) {
2313 idx_l = idx_r = 0;
2314 goto done;
2315 }
2316
2317 if (target > rpinfo[max].freq) {
2318 idx_l = idx_r = max;
2319 goto done;
2320 }
2321
2322 for (i = 0; i <= max; i++) {
2323
2324 if (rpinfo[i].freq == target) {
2325 idx_l = idx_r = i;
2326 goto done;
2327 }
2328
2329 if (target < rpinfo[i].freq) {
2330 idx_r = i;
2331 idx_l = idx_r - 1;
2332 goto done;
2333 }
2334 }
2335
2336done:
2337 /* Now interpolate power value, based on the frequency */
2338 rates->freq = target;
2339
2340 rates->target_power_6to24 =
2341 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2342 rpinfo[idx_r].freq,
2343 rpinfo[idx_l].target_power_6to24,
2344 rpinfo[idx_r].target_power_6to24);
2345
2346 rates->target_power_36 =
2347 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2348 rpinfo[idx_r].freq,
2349 rpinfo[idx_l].target_power_36,
2350 rpinfo[idx_r].target_power_36);
2351
2352 rates->target_power_48 =
2353 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2354 rpinfo[idx_r].freq,
2355 rpinfo[idx_l].target_power_48,
2356 rpinfo[idx_r].target_power_48);
2357
2358 rates->target_power_54 =
2359 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2360 rpinfo[idx_r].freq,
2361 rpinfo[idx_l].target_power_54,
2362 rpinfo[idx_r].target_power_54);
2363}
2364
2365/*
2366 * Get the max edge power for this channel if
2367 * we have such data from EEPROM's Conformance Test
2368 * Limits (CTL), and limit max power if needed.
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002369 */
2370static void
2371ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2372 struct ieee80211_channel *channel)
2373{
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002374 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002375 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2376 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2377 u8 *ctl_val = ee->ee_ctl;
2378 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2379 s16 edge_pwr = 0;
2380 u8 rep_idx;
2381 u8 i, ctl_mode;
2382 u8 ctl_idx = 0xFF;
2383 u32 target = channel->center_freq;
2384
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002385 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
Bob Copeland6752ee92009-04-30 15:55:51 -04002386
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002387 switch (channel->hw_value & CHANNEL_MODES) {
2388 case CHANNEL_A:
Nick Kossifidisacb091d2010-11-23 21:49:53 +02002389 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2390 ctl_mode |= AR5K_CTL_TURBO;
2391 else
2392 ctl_mode |= AR5K_CTL_11A;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002393 break;
2394 case CHANNEL_G:
Nick Kossifidisacb091d2010-11-23 21:49:53 +02002395 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2396 ctl_mode |= AR5K_CTL_TURBOG;
2397 else
2398 ctl_mode |= AR5K_CTL_11G;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002399 break;
2400 case CHANNEL_B:
Bob Copeland6752ee92009-04-30 15:55:51 -04002401 ctl_mode |= AR5K_CTL_11B;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002402 break;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002403 case CHANNEL_XR:
2404 /* Fall through */
2405 default:
2406 return;
2407 }
Nick Kossifidis903b4742008-02-28 14:50:50 -05002408
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002409 for (i = 0; i < ee->ee_ctls; i++) {
2410 if (ctl_val[i] == ctl_mode) {
2411 ctl_idx = i;
2412 break;
2413 }
2414 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002415
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002416 /* If we have a CTL dataset available grab it and find the
2417 * edge power for our frequency */
2418 if (ctl_idx == 0xFF)
2419 return;
2420
2421 /* Edge powers are sorted by frequency from lower
2422 * to higher. Each CTL corresponds to 8 edge power
2423 * measurements. */
2424 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2425
2426 /* Don't do boundaries check because we
2427 * might have more that one bands defined
2428 * for this mode */
2429
2430 /* Get the edge power that's closer to our
2431 * frequency */
2432 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2433 rep_idx += i;
2434 if (target <= rep[rep_idx].freq)
2435 edge_pwr = (s16) rep[rep_idx].edge;
2436 }
2437
2438 if (edge_pwr)
2439 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2440}
2441
2442
2443/*
2444 * Power to PCDAC table functions
2445 */
2446
2447/*
2448 * Fill Power to PCDAC table on RF5111
2449 *
2450 * No further processing is needed for RF5111, the only thing we have to
2451 * do is fill the values below and above calibration range since eeprom data
2452 * may not cover the entire PCDAC table.
2453 */
2454static void
2455ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2456 s16 *table_max)
2457{
2458 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2459 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2460 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2461 s16 min_pwr, max_pwr;
2462
2463 /* Get table boundaries */
2464 min_pwr = table_min[0];
2465 pcdac_0 = pcdac_tmp[0];
2466
2467 max_pwr = table_max[0];
2468 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2469
2470 /* Extrapolate below minimum using pcdac_0 */
2471 pcdac_i = 0;
2472 for (i = 0; i < min_pwr; i++)
2473 pcdac_out[pcdac_i++] = pcdac_0;
2474
2475 /* Copy values from pcdac_tmp */
2476 pwr_idx = min_pwr;
2477 for (i = 0 ; pwr_idx <= max_pwr &&
2478 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2479 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2480 pwr_idx++;
2481 }
2482
2483 /* Extrapolate above maximum */
2484 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2485 pcdac_out[pcdac_i++] = pcdac_n;
2486
2487}
2488
2489/*
2490 * Combine available XPD Curves and fill Linear Power to PCDAC table
2491 * on RF5112
2492 *
2493 * RFX112 can have up to 2 curves (one for low txpower range and one for
2494 * higher txpower range). We need to put them both on pcdac_out and place
2495 * them in the correct location. In case we only have one curve available
2496 * just fit it on pcdac_out (it's supposed to cover the entire range of
2497 * available pwr levels since it's always the higher power curve). Extrapolate
2498 * below and above final table if needed.
2499 */
2500static void
2501ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2502 s16 *table_max, u8 pdcurves)
2503{
2504 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2505 u8 *pcdac_low_pwr;
2506 u8 *pcdac_high_pwr;
2507 u8 *pcdac_tmp;
2508 u8 pwr;
2509 s16 max_pwr_idx;
2510 s16 min_pwr_idx;
2511 s16 mid_pwr_idx = 0;
2512 /* Edge flag turs on the 7nth bit on the PCDAC
2513 * to delcare the higher power curve (force values
2514 * to be greater than 64). If we only have one curve
2515 * we don't need to set this, if we have 2 curves and
2516 * fill the table backwards this can also be used to
2517 * switch from higher power curve to lower power curve */
2518 u8 edge_flag;
2519 int i;
2520
2521 /* When we have only one curve available
2522 * that's the higher power curve. If we have
2523 * two curves the first is the high power curve
2524 * and the next is the low power curve. */
2525 if (pdcurves > 1) {
2526 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2527 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2528 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2529 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2530
2531 /* If table size goes beyond 31.5dB, keep the
2532 * upper 31.5dB range when setting tx power.
2533 * Note: 126 = 31.5 dB in quarter dB steps */
2534 if (table_max[0] - table_min[1] > 126)
2535 min_pwr_idx = table_max[0] - 126;
2536 else
2537 min_pwr_idx = table_min[1];
2538
2539 /* Since we fill table backwards
2540 * start from high power curve */
2541 pcdac_tmp = pcdac_high_pwr;
2542
2543 edge_flag = 0x40;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002544 } else {
2545 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2546 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2547 min_pwr_idx = table_min[0];
2548 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2549 pcdac_tmp = pcdac_high_pwr;
2550 edge_flag = 0;
2551 }
2552
2553 /* This is used when setting tx power*/
2554 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2555
2556 /* Fill Power to PCDAC table backwards */
2557 pwr = max_pwr_idx;
2558 for (i = 63; i >= 0; i--) {
2559 /* Entering lower power range, reset
2560 * edge flag and set pcdac_tmp to lower
2561 * power curve.*/
2562 if (edge_flag == 0x40 &&
2563 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2564 edge_flag = 0x00;
2565 pcdac_tmp = pcdac_low_pwr;
2566 pwr = mid_pwr_idx/2;
2567 }
2568
2569 /* Don't go below 1, extrapolate below if we have
2570 * already swithced to the lower power curve -or
2571 * we only have one curve and edge_flag is zero
2572 * anyway */
2573 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2574 while (i >= 0) {
2575 pcdac_out[i] = pcdac_out[i + 1];
2576 i--;
2577 }
2578 break;
2579 }
2580
2581 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2582
2583 /* Extrapolate above if pcdac is greater than
2584 * 126 -this can happen because we OR pcdac_out
2585 * value with edge_flag on high power curve */
2586 if (pcdac_out[i] > 126)
2587 pcdac_out[i] = 126;
2588
2589 /* Decrease by a 0.5dB step */
2590 pwr--;
2591 }
2592}
2593
2594/* Write PCDAC values on hw */
2595static void
Bruno Randolf56bd29d2010-12-21 17:30:26 +09002596ath5k_write_pcdac_table(struct ath5k_hw *ah)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002597{
2598 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2599 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002600
2601 /*
2602 * Write TX power values
2603 */
2604 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2605 ath5k_hw_reg_write(ah,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002606 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2607 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002608 AR5K_PHY_PCDAC_TXPOWER(i));
2609 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002610}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002611
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002612
2613/*
2614 * Power to PDADC table functions
2615 */
2616
2617/*
2618 * Set the gain boundaries and create final Power to PDADC table
2619 *
2620 * We can have up to 4 pd curves, we need to do a simmilar process
2621 * as we do for RF5112. This time we don't have an edge_flag but we
2622 * set the gain boundaries on a separate register.
2623 */
2624static void
2625ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2626 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2627{
2628 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2629 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2630 u8 *pdadc_tmp;
2631 s16 pdadc_0;
2632 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2633 u8 pd_gain_overlap;
2634
2635 /* Note: Register value is initialized on initvals
2636 * there is no feedback from hw.
2637 * XXX: What about pd_gain_overlap from EEPROM ? */
2638 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2639 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2640
2641 /* Create final PDADC table */
2642 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2643 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2644
2645 if (pdg == pdcurves - 1)
2646 /* 2 dB boundary stretch for last
2647 * (higher power) curve */
2648 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2649 else
2650 /* Set gain boundary in the middle
2651 * between this curve and the next one */
2652 gain_boundaries[pdg] =
2653 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2654
2655 /* Sanity check in case our 2 db stretch got out of
2656 * range. */
2657 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2658 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2659
2660 /* For the first curve (lower power)
2661 * start from 0 dB */
2662 if (pdg == 0)
2663 pdadc_0 = 0;
2664 else
2665 /* For the other curves use the gain overlap */
2666 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2667 pd_gain_overlap;
2668
2669 /* Force each power step to be at least 0.5 dB */
2670 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2671 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2672 else
2673 pwr_step = 1;
2674
2675 /* If pdadc_0 is negative, we need to extrapolate
2676 * below this pdgain by a number of pwr_steps */
2677 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2678 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2679 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2680 pdadc_0++;
2681 }
2682
2683 /* Set last pwr level, using gain boundaries */
2684 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2685 /* Limit it to be inside pwr range */
2686 table_size = pwr_max[pdg] - pwr_min[pdg];
2687 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2688
2689 /* Fill pdadc_out table */
Bob Copeland4f59fce2010-04-07 23:55:59 -04002690 while (pdadc_0 < max_idx && pdadc_i < 128)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002691 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2692
2693 /* Need to extrapolate above this pdgain? */
2694 if (pdadc_n <= max_idx)
2695 continue;
2696
2697 /* Force each power step to be at least 0.5 dB */
2698 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2699 pwr_step = pdadc_tmp[table_size - 1] -
2700 pdadc_tmp[table_size - 2];
2701 else
2702 pwr_step = 1;
2703
2704 /* Extrapolate above */
2705 while ((pdadc_0 < (s16) pdadc_n) &&
2706 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2707 s16 tmp = pdadc_tmp[table_size - 1] +
2708 (pdadc_0 - max_idx) * pwr_step;
2709 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2710 pdadc_0++;
2711 }
2712 }
2713
2714 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2715 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2716 pdg++;
2717 }
2718
2719 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2720 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2721 pdadc_i++;
2722 }
2723
2724 /* Set gain boundaries */
2725 ath5k_hw_reg_write(ah,
2726 AR5K_REG_SM(pd_gain_overlap,
2727 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2728 AR5K_REG_SM(gain_boundaries[0],
2729 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2730 AR5K_REG_SM(gain_boundaries[1],
2731 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2732 AR5K_REG_SM(gain_boundaries[2],
2733 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2734 AR5K_REG_SM(gain_boundaries[3],
2735 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2736 AR5K_PHY_TPC_RG5);
2737
2738 /* Used for setting rate power table */
2739 ah->ah_txpower.txp_min_idx = pwr_min[0];
2740
2741}
2742
2743/* Write PDADC values on hw */
2744static void
Bruno Randolf56bd29d2010-12-21 17:30:26 +09002745ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002746{
Nick Kossifidisd84938c2010-12-03 06:03:00 +02002747 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002748 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
Nick Kossifidisd84938c2010-12-03 06:03:00 +02002749 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2750 u8 pdcurves = ee->ee_pd_gains[ee_mode];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002751 u32 reg;
2752 u8 i;
2753
2754 /* Select the right pdgain curves */
2755
2756 /* Clear current settings */
2757 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2758 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2759 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2760 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2761 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2762
2763 /*
2764 * Use pd_gains curve from eeprom
2765 *
2766 * This overrides the default setting from initvals
2767 * in case some vendors (e.g. Zcomax) don't use the default
2768 * curves. If we don't honor their settings we 'll get a
2769 * 5dB (1 * gain overlap ?) drop.
2770 */
2771 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2772
2773 switch (pdcurves) {
2774 case 3:
2775 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2776 /* Fall through */
2777 case 2:
2778 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2779 /* Fall through */
2780 case 1:
2781 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2782 break;
2783 }
2784 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2785
2786 /*
2787 * Write TX power values
2788 */
2789 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2790 ath5k_hw_reg_write(ah,
2791 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2792 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2793 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2794 ((pdadc_out[4*i + 3] & 0xff) << 24),
2795 AR5K_PHY_PDADC_TXPOWER(i));
2796 }
2797}
2798
2799
2800/*
2801 * Common code for PCDAC/PDADC tables
2802 */
2803
2804/*
2805 * This is the main function that uses all of the above
2806 * to set PCDAC/PDADC table on hw for the current channel.
2807 * This table is used for tx power calibration on the basband,
2808 * without it we get weird tx power levels and in some cases
2809 * distorted spectral mask
2810 */
2811static int
2812ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2813 struct ieee80211_channel *channel,
2814 u8 ee_mode, u8 type)
2815{
2816 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2817 struct ath5k_chan_pcal_info *pcinfo_L;
2818 struct ath5k_chan_pcal_info *pcinfo_R;
2819 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2820 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2821 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2822 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2823 u8 *tmpL;
2824 u8 *tmpR;
2825 u32 target = channel->center_freq;
2826 int pdg, i;
2827
2828 /* Get surounding freq piers for this channel */
2829 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2830 &pcinfo_L,
2831 &pcinfo_R);
2832
2833 /* Loop over pd gain curves on
2834 * surounding freq piers by index */
2835 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2836
2837 /* Fill curves in reverse order
2838 * from lower power (max gain)
2839 * to higher power. Use curve -> idx
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002840 * backmapping we did on eeprom init */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002841 u8 idx = pdg_curve_to_idx[pdg];
2842
2843 /* Grab the needed curves by index */
2844 pdg_L = &pcinfo_L->pd_curves[idx];
2845 pdg_R = &pcinfo_R->pd_curves[idx];
2846
2847 /* Initialize the temp tables */
2848 tmpL = ah->ah_txpower.tmpL[pdg];
2849 tmpR = ah->ah_txpower.tmpR[pdg];
2850
2851 /* Set curve's x boundaries and create
2852 * curves so that they cover the same
2853 * range (if we don't do that one table
2854 * will have values on some range and the
2855 * other one won't have any so interpolation
2856 * will fail) */
2857 table_min[pdg] = min(pdg_L->pd_pwr[0],
2858 pdg_R->pd_pwr[0]) / 2;
2859
2860 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2861 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2862
2863 /* Now create the curves on surrounding channels
2864 * and interpolate if needed to get the final
2865 * curve for this gain on this channel */
2866 switch (type) {
2867 case AR5K_PWRTABLE_LINEAR_PCDAC:
2868 /* Override min/max so that we don't loose
2869 * accuracy (don't divide by 2) */
2870 table_min[pdg] = min(pdg_L->pd_pwr[0],
2871 pdg_R->pd_pwr[0]);
2872
2873 table_max[pdg] =
2874 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2875 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2876
2877 /* Override minimum so that we don't get
2878 * out of bounds while extrapolating
2879 * below. Don't do this when we have 2
2880 * curves and we are on the high power curve
2881 * because table_min is ok in this case */
2882 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2883
2884 table_min[pdg] =
2885 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2886 pdg_R->pd_step,
2887 pdg_L->pd_pwr,
2888 pdg_R->pd_pwr);
2889
2890 /* Don't go too low because we will
2891 * miss the upper part of the curve.
2892 * Note: 126 = 31.5dB (max power supported)
2893 * in 0.25dB units */
2894 if (table_max[pdg] - table_min[pdg] > 126)
2895 table_min[pdg] = table_max[pdg] - 126;
2896 }
2897
2898 /* Fall through */
2899 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2900 case AR5K_PWRTABLE_PWR_TO_PDADC:
2901
2902 ath5k_create_power_curve(table_min[pdg],
2903 table_max[pdg],
2904 pdg_L->pd_pwr,
2905 pdg_L->pd_step,
2906 pdg_L->pd_points, tmpL, type);
2907
2908 /* We are in a calibration
2909 * pier, no need to interpolate
2910 * between freq piers */
2911 if (pcinfo_L == pcinfo_R)
2912 continue;
2913
2914 ath5k_create_power_curve(table_min[pdg],
2915 table_max[pdg],
2916 pdg_R->pd_pwr,
2917 pdg_R->pd_step,
2918 pdg_R->pd_points, tmpR, type);
2919 break;
2920 default:
2921 return -EINVAL;
2922 }
2923
2924 /* Interpolate between curves
2925 * of surounding freq piers to
2926 * get the final curve for this
2927 * pd gain. Re-use tmpL for interpolation
2928 * output */
2929 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2930 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2931 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2932 (s16) pcinfo_L->freq,
2933 (s16) pcinfo_R->freq,
2934 (s16) tmpL[i],
2935 (s16) tmpR[i]);
2936 }
2937 }
2938
2939 /* Now we have a set of curves for this
2940 * channel on tmpL (x range is table_max - table_min
2941 * and y values are tmpL[pdg][]) sorted in the same
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002942 * order as EEPROM (because we've used the backmapping).
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002943 * So for RF5112 it's from higher power to lower power
2944 * and for RF2413 it's from lower power to higher power.
2945 * For RF5111 we only have one curve. */
2946
2947 /* Fill min and max power levels for this
2948 * channel by interpolating the values on
2949 * surounding channels to complete the dataset */
2950 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2951 (s16) pcinfo_L->freq,
2952 (s16) pcinfo_R->freq,
2953 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2954
2955 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2956 (s16) pcinfo_L->freq,
2957 (s16) pcinfo_R->freq,
2958 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2959
Bruno Randolf56bd29d2010-12-21 17:30:26 +09002960 /* Fill PCDAC/PDADC table */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002961 switch (type) {
2962 case AR5K_PWRTABLE_LINEAR_PCDAC:
2963 /* For RF5112 we can have one or two curves
2964 * and each curve covers a certain power lvl
2965 * range so we need to do some more processing */
2966 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2967 ee->ee_pd_gains[ee_mode]);
2968
2969 /* Set txp.offset so that we can
2970 * match max power value with max
2971 * table index */
2972 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002973 break;
2974 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2975 /* We are done for RF5111 since it has only
2976 * one curve, just fit the curve on the table */
2977 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2978
2979 /* No rate powertable adjustment for RF5111 */
2980 ah->ah_txpower.txp_min_idx = 0;
2981 ah->ah_txpower.txp_offset = 0;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002982 break;
2983 case AR5K_PWRTABLE_PWR_TO_PDADC:
2984 /* Set PDADC boundaries and fill
2985 * final PDADC table */
2986 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2987 ee->ee_pd_gains[ee_mode]);
2988
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002989 /* Set txp.offset, note that table_min
2990 * can be negative */
2991 ah->ah_txpower.txp_offset = table_min[0];
2992 break;
2993 default:
2994 return -EINVAL;
2995 }
2996
Bruno Randolf26c7fc42010-12-21 17:30:20 +09002997 ah->ah_txpower.txp_setup = true;
2998
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002999 return 0;
3000}
3001
Bruno Randolf56bd29d2010-12-21 17:30:26 +09003002/* Write power table for current channel to hw */
3003static void
3004ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3005{
3006 if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3007 ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3008 else
3009 ath5k_write_pcdac_table(ah);
3010}
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003011
3012/*
3013 * Per-rate tx power setting
3014 *
3015 * This is the code that sets the desired tx power (below
3016 * maximum) on hw for each rate (we also have TPC that sets
3017 * power per packet). We do that by providing an index on the
3018 * PCDAC/PDADC table we set up.
3019 */
3020
3021/*
3022 * Set rate power table
3023 *
3024 * For now we only limit txpower based on maximum tx power
3025 * supported by hw (what's inside rate_info). We need to limit
3026 * this even more, based on regulatory domain etc.
3027 *
3028 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3029 * and is indexed as follows:
3030 * rates[0] - rates[7] -> OFDM rates
3031 * rates[8] - rates[14] -> CCK rates
3032 * rates[15] -> XR rates (they all have the same power)
3033 */
3034static void
3035ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3036 struct ath5k_rate_pcal_info *rate_info,
3037 u8 ee_mode)
3038{
3039 unsigned int i;
3040 u16 *rates;
3041
3042 /* max_pwr is power level we got from driver/user in 0.5dB
3043 * units, switch to 0.25dB units so we can compare */
3044 max_pwr *= 2;
3045 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3046
3047 /* apply rate limits */
3048 rates = ah->ah_txpower.txp_rates_power_table;
3049
3050 /* OFDM rates 6 to 24Mb/s */
3051 for (i = 0; i < 5; i++)
3052 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3053
3054 /* Rest OFDM rates */
3055 rates[5] = min(rates[0], rate_info->target_power_36);
3056 rates[6] = min(rates[0], rate_info->target_power_48);
3057 rates[7] = min(rates[0], rate_info->target_power_54);
3058
3059 /* CCK rates */
3060 /* 1L */
3061 rates[8] = min(rates[0], rate_info->target_power_6to24);
3062 /* 2L */
3063 rates[9] = min(rates[0], rate_info->target_power_36);
3064 /* 2S */
3065 rates[10] = min(rates[0], rate_info->target_power_36);
3066 /* 5L */
3067 rates[11] = min(rates[0], rate_info->target_power_48);
3068 /* 5S */
3069 rates[12] = min(rates[0], rate_info->target_power_48);
3070 /* 11L */
3071 rates[13] = min(rates[0], rate_info->target_power_54);
3072 /* 11S */
3073 rates[14] = min(rates[0], rate_info->target_power_54);
3074
3075 /* XR rates */
3076 rates[15] = min(rates[0], rate_info->target_power_6to24);
3077
3078 /* CCK rates have different peak to average ratio
3079 * so we have to tweak their power so that gainf
3080 * correction works ok. For this we use OFDM to
3081 * CCK delta from eeprom */
3082 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3083 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3084 for (i = 8; i <= 15; i++)
3085 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3086
Nick Kossifidisa0823812009-04-30 15:55:44 -04003087 /* Now that we have all rates setup use table offset to
3088 * match the power range set by user with the power indices
3089 * on PCDAC/PDADC table */
3090 for (i = 0; i < 16; i++) {
3091 rates[i] += ah->ah_txpower.txp_offset;
3092 /* Don't get out of bounds */
3093 if (rates[i] > 63)
3094 rates[i] = 63;
3095 }
3096
3097 /* Min/max in 0.25dB units */
3098 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3099 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003100 ah->ah_txpower.txp_ofdm = rates[7];
3101}
3102
3103
3104/*
Bob Copeland8801df82010-08-21 16:39:02 -04003105 * Set transmission power
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003106 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003107static int
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003108ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Bruno Randolf26c7fc42010-12-21 17:30:20 +09003109 u8 ee_mode, u8 txpower)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003110{
3111 struct ath5k_rate_pcal_info rate_info;
Bruno Randolf26c7fc42010-12-21 17:30:20 +09003112 struct ieee80211_channel *curr_channel = ah->ah_current_channel;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003113 u8 type;
3114 int ret;
3115
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003116 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3117 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3118 return -EINVAL;
3119 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003120
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003121 /* Initialize TX power table */
3122 switch (ah->ah_radio) {
Nick Kossifidis3bb17652010-11-23 21:45:21 +02003123 case AR5K_RF5110:
3124 /* TODO */
3125 return 0;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003126 case AR5K_RF5111:
3127 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3128 break;
3129 case AR5K_RF5112:
3130 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3131 break;
3132 case AR5K_RF2413:
3133 case AR5K_RF5413:
3134 case AR5K_RF2316:
3135 case AR5K_RF2317:
3136 case AR5K_RF2425:
3137 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3138 break;
3139 default:
3140 return -EINVAL;
3141 }
3142
Bruno Randolf26c7fc42010-12-21 17:30:20 +09003143 /*
3144 * If we don't change channel/mode skip tx powertable calculation
3145 * and use the cached one.
3146 */
3147 if (!ah->ah_txpower.txp_setup ||
3148 (channel->hw_value != curr_channel->hw_value) ||
3149 (channel->center_freq != curr_channel->center_freq)) {
Nick Kossifidisd84938c2010-12-03 06:03:00 +02003150 /* Reset TX power values */
3151 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3152 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3153 ah->ah_txpower.txp_min_pwr = 0;
3154 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3155
3156 /* Calculate the powertable */
Nick Kossifidis4c575812010-11-23 21:37:30 +02003157 ret = ath5k_setup_channel_powertable(ah, channel,
3158 ee_mode, type);
Nick Kossifidisd84938c2010-12-03 06:03:00 +02003159 if (ret)
3160 return ret;
Bruno Randolf56bd29d2010-12-21 17:30:26 +09003161 }
3162
3163 /* Write table on hw */
3164 ath5k_write_channel_powertable(ah, ee_mode, type);
Nick Kossifidisd84938c2010-12-03 06:03:00 +02003165
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003166 /* Limit max power if we have a CTL available */
3167 ath5k_get_max_ctl_power(ah, channel);
3168
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003169 /* FIXME: Antenna reduction stuff */
3170
3171 /* FIXME: Limit power on turbo modes */
3172
3173 /* FIXME: TPC scale reduction */
3174
3175 /* Get surounding channels for per-rate power table
3176 * calibration */
3177 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3178
3179 /* Setup rate power table */
3180 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3181
3182 /* Write rate power table on hw */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003183 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3184 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3185 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3186
3187 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3188 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3189 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3190
3191 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3192 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3193 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3194
3195 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3196 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3197 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3198
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003199 /* FIXME: TPC support */
3200 if (ah->ah_txpower.txp_tpc) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003201 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3202 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003203
3204 ath5k_hw_reg_write(ah,
3205 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3206 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3207 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3208 AR5K_TPC);
3209 } else {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003210 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3211 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003212 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003213
3214 return 0;
3215}
3216
Nick Kossifidisa0823812009-04-30 15:55:44 -04003217int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003218{
3219 /*Just a try M.F.*/
Bob Copeland46026e82009-06-10 22:22:20 -04003220 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidisa0823812009-04-30 15:55:44 -04003221 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003222
Nick Kossifidisa0823812009-04-30 15:55:44 -04003223 switch (channel->hw_value & CHANNEL_MODES) {
3224 case CHANNEL_A:
Nick Kossifidisa0823812009-04-30 15:55:44 -04003225 case CHANNEL_XR:
3226 ee_mode = AR5K_EEPROM_MODE_11A;
3227 break;
3228 case CHANNEL_G:
Nick Kossifidisa0823812009-04-30 15:55:44 -04003229 ee_mode = AR5K_EEPROM_MODE_11G;
3230 break;
3231 case CHANNEL_B:
3232 ee_mode = AR5K_EEPROM_MODE_11B;
3233 break;
3234 default:
3235 ATH5K_ERR(ah->ah_sc,
3236 "invalid channel: %d\n", channel->center_freq);
3237 return -EINVAL;
3238 }
3239
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003240 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003241 "changing txpower to %d\n", txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003242
Bruno Randolf26c7fc42010-12-21 17:30:20 +09003243 return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003244}
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003245
3246/*************\
3247 Init function
3248\*************/
3249
3250int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003251 u8 mode, u8 ee_mode, u8 freq, bool fast)
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003252{
Nick Kossifidis4c575812010-11-23 21:37:30 +02003253 struct ieee80211_channel *curr_channel;
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003254 int ret, i;
3255 u32 phy_tst1;
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003256 ret = 0;
3257
3258 /*
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003259 * Sanity check for fast flag
3260 * Don't try fast channel change when changing modulation
3261 * mode/band. We check for chip compatibility on
3262 * ath5k_hw_reset.
3263 */
3264 curr_channel = ah->ah_current_channel;
3265 if (fast && (channel->hw_value != curr_channel->hw_value))
3266 return -EINVAL;
3267
3268 /*
3269 * On fast channel change we only set the synth parameters
3270 * while PHY is running, enable calibration and skip the rest.
3271 */
3272 if (fast) {
3273 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3274 AR5K_PHY_RFBUS_REQ_REQUEST);
3275 for (i = 0; i < 100; i++) {
3276 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3277 break;
3278 udelay(5);
3279 }
3280 /* Failed */
3281 if (i >= 100)
3282 return -EIO;
3283 }
3284
3285 /*
Nick Kossifidis4c575812010-11-23 21:37:30 +02003286 * Set TX power
3287 *
3288 * Note: We need to do that before we set
3289 * RF buffer settings on 5211/5212+ so that we
3290 * properly set curve indices.
3291 */
3292 ret = ath5k_hw_txpower(ah, channel, ee_mode,
Bruno Randolf26c7fc42010-12-21 17:30:20 +09003293 ah->ah_txpower.txp_max_pwr / 2);
Nick Kossifidis4c575812010-11-23 21:37:30 +02003294 if (ret)
3295 return ret;
3296
3297 /*
3298 * For 5210 we do all initialization using
3299 * initvals, so we don't have to modify
3300 * any settings (5210 also only supports
3301 * a/aturbo modes)
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003302 */
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003303 if ((ah->ah_version != AR5K_AR5210) && !fast) {
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003304
3305 /*
3306 * Write initial RF gain settings
3307 * This should work for both 5111/5112
3308 */
3309 ret = ath5k_hw_rfgain_init(ah, freq);
3310 if (ret)
3311 return ret;
3312
3313 mdelay(1);
3314
3315 /*
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003316 * Write RF buffer
3317 */
3318 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3319 if (ret)
3320 return ret;
3321
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003322 /* Write OFDM timings on 5212*/
3323 if (ah->ah_version == AR5K_AR5212 &&
3324 channel->hw_value & CHANNEL_OFDM) {
3325
3326 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3327 if (ret)
3328 return ret;
3329
3330 /* Spur info is available only from EEPROM versions
3331 * greater than 5.3, but the EEPROM routines will use
3332 * static values for older versions */
3333 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3334 ath5k_hw_set_spur_mitigation_filter(ah,
3335 channel);
3336 }
3337
3338 /*Enable/disable 802.11b mode on 5111
3339 (enable 2111 frequency converter + CCK)*/
3340 if (ah->ah_radio == AR5K_RF5111) {
3341 if (mode == AR5K_MODE_11B)
3342 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3343 AR5K_TXCFG_B_MODE);
3344 else
3345 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3346 AR5K_TXCFG_B_MODE);
3347 }
3348
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003349 } else if (ah->ah_version == AR5K_AR5210) {
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003350 mdelay(1);
3351 /* Disable phy and wait */
3352 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3353 mdelay(1);
3354 }
3355
3356 /* Set channel on PHY */
3357 ret = ath5k_hw_channel(ah, channel);
3358 if (ret)
3359 return ret;
3360
3361 /*
3362 * Enable the PHY and wait until completion
3363 * This includes BaseBand and Synthesizer
3364 * activation.
3365 */
3366 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3367
3368 /*
3369 * On 5211+ read activation -> rx delay
3370 * and use it.
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003371 */
3372 if (ah->ah_version != AR5K_AR5210) {
3373 u32 delay;
3374 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
3375 AR5K_PHY_RX_DELAY_M;
3376 delay = (channel->hw_value & CHANNEL_CCK) ?
3377 ((delay << 2) / 22) : (delay / 10);
Nick Kossifidisb02f5d12010-11-23 21:44:02 +02003378 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
3379 delay = delay << 1;
3380 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
3381 delay = delay << 2;
3382 /* XXX: /2 on turbo ? Let's be safe
3383 * for now */
3384 udelay(100 + delay);
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003385 } else {
3386 mdelay(1);
3387 }
3388
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003389 if (fast)
3390 /*
3391 * Release RF Bus grant
3392 */
3393 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3394 AR5K_PHY_RFBUS_REQ_REQUEST);
3395 else {
3396 /*
3397 * Perform ADC test to see if baseband is ready
3398 * Set tx hold and check adc test register
3399 */
3400 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3401 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3402 for (i = 0; i <= 20; i++) {
3403 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3404 break;
3405 udelay(200);
3406 }
3407 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003408 }
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003409
3410 /*
3411 * Start automatic gain control calibration
3412 *
3413 * During AGC calibration RX path is re-routed to
3414 * a power detector so we don't receive anything.
3415 *
3416 * This method is used to calibrate some static offsets
3417 * used together with on-the fly I/Q calibration (the
3418 * one performed via ath5k_hw_phy_calibrate), which doesn't
3419 * interrupt rx path.
3420 *
3421 * While rx path is re-routed to the power detector we also
3422 * start a noise floor calibration to measure the
3423 * card's noise floor (the noise we measure when we are not
3424 * transmitting or receiving anything).
3425 *
3426 * If we are in a noisy environment, AGC calibration may time
3427 * out and/or noise floor calibration might timeout.
3428 */
3429 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3430 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3431
3432 /* At the same time start I/Q calibration for QAM constellation
3433 * -no need for CCK- */
3434 ah->ah_calibration = false;
3435 if (!(mode == AR5K_MODE_11B)) {
3436 ah->ah_calibration = true;
3437 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3438 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3439 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3440 AR5K_PHY_IQ_RUN);
3441 }
3442
3443 /* Wait for gain calibration to finish (we check for I/Q calibration
3444 * during ath5k_phy_calibrate) */
3445 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3446 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3447 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3448 channel->center_freq);
3449 }
3450
3451 /* Restore antenna mode */
3452 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3453
3454 return ret;
3455}