blob: 0fad6487e6f4bcb062334ae082126d73ad41cd59 [file] [log] [blame]
David Brownellff4569c2009-03-04 12:01:37 -08001/*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26#include <linux/kernel.h>
27#include <linux/init.h>
28#include <linux/module.h>
29#include <linux/platform_device.h>
30#include <linux/err.h>
31#include <linux/clk.h>
32#include <linux/io.h>
33#include <linux/mtd/nand.h>
34#include <linux/mtd/partitions.h>
35
David Brownellff4569c2009-03-04 12:01:37 -080036#include <mach/nand.h>
37
38#include <asm/mach-types.h>
39
40
David Brownellff4569c2009-03-04 12:01:37 -080041/*
42 * This is a device driver for the NAND flash controller found on the
43 * various DaVinci family chips. It handles up to four SoC chipselects,
44 * and some flavors of secondary chipselect (e.g. based on A12) as used
45 * with multichip packages.
46 *
David Brownell6a4123e2009-04-21 19:58:13 -070047 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
David Brownellff4569c2009-03-04 12:01:37 -080048 * available on chips like the DM355 and OMAP-L137 and needed with the
49 * more error-prone MLC NAND chips.
50 *
51 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
52 * outputs in a "wire-AND" configuration, with no per-chip signals.
53 */
54struct davinci_nand_info {
55 struct mtd_info mtd;
56 struct nand_chip chip;
David Brownell6a4123e2009-04-21 19:58:13 -070057 struct nand_ecclayout ecclayout;
David Brownellff4569c2009-03-04 12:01:37 -080058
59 struct device *dev;
60 struct clk *clk;
61 bool partitioned;
62
David Brownell6a4123e2009-04-21 19:58:13 -070063 bool is_readmode;
64
David Brownellff4569c2009-03-04 12:01:37 -080065 void __iomem *base;
66 void __iomem *vaddr;
67
68 uint32_t ioaddr;
69 uint32_t current_cs;
70
71 uint32_t mask_chipsel;
72 uint32_t mask_ale;
73 uint32_t mask_cle;
74
75 uint32_t core_chipsel;
76};
77
78static DEFINE_SPINLOCK(davinci_nand_lock);
David Brownell6a4123e2009-04-21 19:58:13 -070079static bool ecc4_busy;
David Brownellff4569c2009-03-04 12:01:37 -080080
81#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
82
83
84static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
85 int offset)
86{
87 return __raw_readl(info->base + offset);
88}
89
90static inline void davinci_nand_writel(struct davinci_nand_info *info,
91 int offset, unsigned long value)
92{
93 __raw_writel(value, info->base + offset);
94}
95
96/*----------------------------------------------------------------------*/
97
98/*
99 * Access to hardware control lines: ALE, CLE, secondary chipselect.
100 */
101
102static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
103 unsigned int ctrl)
104{
105 struct davinci_nand_info *info = to_davinci_nand(mtd);
106 uint32_t addr = info->current_cs;
107 struct nand_chip *nand = mtd->priv;
108
109 /* Did the control lines change? */
110 if (ctrl & NAND_CTRL_CHANGE) {
111 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
112 addr |= info->mask_cle;
113 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
114 addr |= info->mask_ale;
115
116 nand->IO_ADDR_W = (void __iomem __force *)addr;
117 }
118
119 if (cmd != NAND_CMD_NONE)
120 iowrite8(cmd, nand->IO_ADDR_W);
121}
122
123static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
124{
125 struct davinci_nand_info *info = to_davinci_nand(mtd);
126 uint32_t addr = info->ioaddr;
127
128 /* maybe kick in a second chipselect */
129 if (chip > 0)
130 addr |= info->mask_chipsel;
131 info->current_cs = addr;
132
133 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
134 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
135}
136
137/*----------------------------------------------------------------------*/
138
139/*
140 * 1-bit hardware ECC ... context maintained for each core chipselect
141 */
142
143static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
144{
145 struct davinci_nand_info *info = to_davinci_nand(mtd);
146
147 return davinci_nand_readl(info, NANDF1ECC_OFFSET
148 + 4 * info->core_chipsel);
149}
150
151static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
152{
153 struct davinci_nand_info *info;
154 uint32_t nandcfr;
155 unsigned long flags;
156
157 info = to_davinci_nand(mtd);
158
159 /* Reset ECC hardware */
160 nand_davinci_readecc_1bit(mtd);
161
162 spin_lock_irqsave(&davinci_nand_lock, flags);
163
164 /* Restart ECC hardware */
165 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
166 nandcfr |= BIT(8 + info->core_chipsel);
167 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
168
169 spin_unlock_irqrestore(&davinci_nand_lock, flags);
170}
171
172/*
173 * Read hardware ECC value and pack into three bytes
174 */
175static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
176 const u_char *dat, u_char *ecc_code)
177{
178 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
179 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
180
181 /* invert so that erased block ecc is correct */
182 ecc24 = ~ecc24;
183 ecc_code[0] = (u_char)(ecc24);
184 ecc_code[1] = (u_char)(ecc24 >> 8);
185 ecc_code[2] = (u_char)(ecc24 >> 16);
186
187 return 0;
188}
189
190static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
191 u_char *read_ecc, u_char *calc_ecc)
192{
193 struct nand_chip *chip = mtd->priv;
194 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
195 (read_ecc[2] << 16);
196 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
197 (calc_ecc[2] << 16);
198 uint32_t diff = eccCalc ^ eccNand;
199
200 if (diff) {
201 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
202 /* Correctable error */
203 if ((diff >> (12 + 3)) < chip->ecc.size) {
204 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
205 return 1;
206 } else {
207 return -1;
208 }
209 } else if (!(diff & (diff - 1))) {
210 /* Single bit ECC error in the ECC itself,
211 * nothing to fix */
212 return 1;
213 } else {
214 /* Uncorrectable error */
215 return -1;
216 }
217
218 }
219 return 0;
220}
221
222/*----------------------------------------------------------------------*/
223
224/*
David Brownell6a4123e2009-04-21 19:58:13 -0700225 * 4-bit hardware ECC ... context maintained over entire AEMIF
226 *
227 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
228 * since that forces use of a problematic "infix OOB" layout.
229 * Among other things, it trashes manufacturer bad block markers.
230 * Also, and specific to this hardware, it ECC-protects the "prepad"
231 * in the OOB ... while having ECC protection for parts of OOB would
232 * seem useful, the current MTD stack sometimes wants to update the
233 * OOB without recomputing ECC.
234 */
235
236static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
237{
238 struct davinci_nand_info *info = to_davinci_nand(mtd);
239 unsigned long flags;
240 u32 val;
241
242 spin_lock_irqsave(&davinci_nand_lock, flags);
243
244 /* Start 4-bit ECC calculation for read/write */
245 val = davinci_nand_readl(info, NANDFCR_OFFSET);
246 val &= ~(0x03 << 4);
247 val |= (info->core_chipsel << 4) | BIT(12);
248 davinci_nand_writel(info, NANDFCR_OFFSET, val);
249
250 info->is_readmode = (mode == NAND_ECC_READ);
251
252 spin_unlock_irqrestore(&davinci_nand_lock, flags);
253}
254
255/* Read raw ECC code after writing to NAND. */
256static void
257nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
258{
259 const u32 mask = 0x03ff03ff;
260
261 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
262 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
263 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
264 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
265}
266
267/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
268static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
269 const u_char *dat, u_char *ecc_code)
270{
271 struct davinci_nand_info *info = to_davinci_nand(mtd);
272 u32 raw_ecc[4], *p;
273 unsigned i;
274
275 /* After a read, terminate ECC calculation by a dummy read
276 * of some 4-bit ECC register. ECC covers everything that
277 * was read; correct() just uses the hardware state, so
278 * ecc_code is not needed.
279 */
280 if (info->is_readmode) {
281 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
282 return 0;
283 }
284
285 /* Pack eight raw 10-bit ecc values into ten bytes, making
286 * two passes which each convert four values (in upper and
287 * lower halves of two 32-bit words) into five bytes. The
288 * ROM boot loader uses this same packing scheme.
289 */
290 nand_davinci_readecc_4bit(info, raw_ecc);
291 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
292 *ecc_code++ = p[0] & 0xff;
293 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
294 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
295 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
296 *ecc_code++ = (p[1] >> 18) & 0xff;
297 }
298
299 return 0;
300}
301
302/* Correct up to 4 bits in data we just read, using state left in the
303 * hardware plus the ecc_code computed when it was first written.
304 */
305static int nand_davinci_correct_4bit(struct mtd_info *mtd,
306 u_char *data, u_char *ecc_code, u_char *null)
307{
308 int i;
309 struct davinci_nand_info *info = to_davinci_nand(mtd);
310 unsigned short ecc10[8];
311 unsigned short *ecc16;
312 u32 syndrome[4];
313 unsigned num_errors, corrected;
314
315 /* All bytes 0xff? It's an erased page; ignore its ECC. */
316 for (i = 0; i < 10; i++) {
317 if (ecc_code[i] != 0xff)
318 goto compare;
319 }
320 return 0;
321
322compare:
323 /* Unpack ten bytes into eight 10 bit values. We know we're
324 * little-endian, and use type punning for less shifting/masking.
325 */
326 if (WARN_ON(0x01 & (unsigned) ecc_code))
327 return -EINVAL;
328 ecc16 = (unsigned short *)ecc_code;
329
330 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
331 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
332 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
333 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
334 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
335 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
336 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
337 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
338
339 /* Tell ECC controller about the expected ECC codes. */
340 for (i = 7; i >= 0; i--)
341 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
342
343 /* Allow time for syndrome calculation ... then read it.
344 * A syndrome of all zeroes 0 means no detected errors.
345 */
346 davinci_nand_readl(info, NANDFSR_OFFSET);
347 nand_davinci_readecc_4bit(info, syndrome);
348 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
349 return 0;
350
351 /* Start address calculation, and wait for it to complete.
352 * We _could_ start reading more data while this is working,
353 * to speed up the overall page read.
354 */
355 davinci_nand_writel(info, NANDFCR_OFFSET,
356 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
357 for (;;) {
358 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
359
360 switch ((fsr >> 8) & 0x0f) {
361 case 0: /* no error, should not happen */
362 return 0;
363 case 1: /* five or more errors detected */
364 return -EIO;
365 case 2: /* error addresses computed */
366 case 3:
367 num_errors = 1 + ((fsr >> 16) & 0x03);
368 goto correct;
369 default: /* still working on it */
370 cpu_relax();
371 continue;
372 }
373 }
374
375correct:
376 /* correct each error */
377 for (i = 0, corrected = 0; i < num_errors; i++) {
378 int error_address, error_value;
379
380 if (i > 1) {
381 error_address = davinci_nand_readl(info,
382 NAND_ERR_ADD2_OFFSET);
383 error_value = davinci_nand_readl(info,
384 NAND_ERR_ERRVAL2_OFFSET);
385 } else {
386 error_address = davinci_nand_readl(info,
387 NAND_ERR_ADD1_OFFSET);
388 error_value = davinci_nand_readl(info,
389 NAND_ERR_ERRVAL1_OFFSET);
390 }
391
392 if (i & 1) {
393 error_address >>= 16;
394 error_value >>= 16;
395 }
396 error_address &= 0x3ff;
397 error_address = (512 + 7) - error_address;
398
399 if (error_address < 512) {
400 data[error_address] ^= error_value;
401 corrected++;
402 }
403 }
404
405 return corrected;
406}
407
408/*----------------------------------------------------------------------*/
409
410/*
David Brownellff4569c2009-03-04 12:01:37 -0800411 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
412 * how these chips are normally wired. This translates to both 8 and 16
413 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
414 *
415 * For now we assume that configuration, or any other one which ignores
416 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
417 * and have that transparently morphed into multiple NAND operations.
418 */
419static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
420{
421 struct nand_chip *chip = mtd->priv;
422
423 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
424 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
425 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
426 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
427 else
428 ioread8_rep(chip->IO_ADDR_R, buf, len);
429}
430
431static void nand_davinci_write_buf(struct mtd_info *mtd,
432 const uint8_t *buf, int len)
433{
434 struct nand_chip *chip = mtd->priv;
435
436 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
437 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
438 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
439 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
440 else
441 iowrite8_rep(chip->IO_ADDR_R, buf, len);
442}
443
444/*
445 * Check hardware register for wait status. Returns 1 if device is ready,
446 * 0 if it is still busy.
447 */
448static int nand_davinci_dev_ready(struct mtd_info *mtd)
449{
450 struct davinci_nand_info *info = to_davinci_nand(mtd);
451
452 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
453}
454
455static void __init nand_dm6446evm_flash_init(struct davinci_nand_info *info)
456{
457 uint32_t regval, a1cr;
458
459 /*
460 * NAND FLASH timings @ PLL1 == 459 MHz
461 * - AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz
462 * - AEMIF.CLK period = 1/76.5 MHz = 13.1 ns
463 */
464 regval = 0
465 | (0 << 31) /* selectStrobe */
466 | (0 << 30) /* extWait (never with NAND) */
467 | (1 << 26) /* writeSetup 10 ns */
468 | (3 << 20) /* writeStrobe 40 ns */
469 | (1 << 17) /* writeHold 10 ns */
470 | (0 << 13) /* readSetup 10 ns */
471 | (3 << 7) /* readStrobe 60 ns */
472 | (0 << 4) /* readHold 10 ns */
473 | (3 << 2) /* turnAround ?? ns */
474 | (0 << 0) /* asyncSize 8-bit bus */
475 ;
476 a1cr = davinci_nand_readl(info, A1CR_OFFSET);
477 if (a1cr != regval) {
478 dev_dbg(info->dev, "Warning: NAND config: Set A1CR " \
479 "reg to 0x%08x, was 0x%08x, should be done by " \
480 "bootloader.\n", regval, a1cr);
481 davinci_nand_writel(info, A1CR_OFFSET, regval);
482 }
483}
484
485/*----------------------------------------------------------------------*/
486
David Brownell6a4123e2009-04-21 19:58:13 -0700487/* An ECC layout for using 4-bit ECC with small-page flash, storing
488 * ten ECC bytes plus the manufacturer's bad block marker byte, and
489 * and not overlapping the default BBT markers.
490 */
491static struct nand_ecclayout hwecc4_small __initconst = {
492 .eccbytes = 10,
493 .eccpos = { 0, 1, 2, 3, 4,
494 /* offset 5 holds the badblock marker */
495 6, 7,
496 13, 14, 15, },
497 .oobfree = {
498 {.offset = 8, .length = 5, },
499 {.offset = 16, },
500 },
501};
502
503
David Brownellff4569c2009-03-04 12:01:37 -0800504static int __init nand_davinci_probe(struct platform_device *pdev)
505{
506 struct davinci_nand_pdata *pdata = pdev->dev.platform_data;
507 struct davinci_nand_info *info;
508 struct resource *res1;
509 struct resource *res2;
510 void __iomem *vaddr;
511 void __iomem *base;
512 int ret;
513 uint32_t val;
514 nand_ecc_modes_t ecc_mode;
515
David Brownell533a0142009-04-21 19:51:31 -0700516 /* insist on board-specific configuration */
517 if (!pdata)
518 return -ENODEV;
519
David Brownellff4569c2009-03-04 12:01:37 -0800520 /* which external chipselect will we be managing? */
521 if (pdev->id < 0 || pdev->id > 3)
522 return -ENODEV;
523
524 info = kzalloc(sizeof(*info), GFP_KERNEL);
525 if (!info) {
526 dev_err(&pdev->dev, "unable to allocate memory\n");
527 ret = -ENOMEM;
528 goto err_nomem;
529 }
530
531 platform_set_drvdata(pdev, info);
532
533 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
534 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
535 if (!res1 || !res2) {
536 dev_err(&pdev->dev, "resource missing\n");
537 ret = -EINVAL;
538 goto err_nomem;
539 }
540
541 vaddr = ioremap(res1->start, res1->end - res1->start);
542 base = ioremap(res2->start, res2->end - res2->start);
543 if (!vaddr || !base) {
544 dev_err(&pdev->dev, "ioremap failed\n");
545 ret = -EINVAL;
546 goto err_ioremap;
547 }
548
549 info->dev = &pdev->dev;
550 info->base = base;
551 info->vaddr = vaddr;
552
553 info->mtd.priv = &info->chip;
554 info->mtd.name = dev_name(&pdev->dev);
555 info->mtd.owner = THIS_MODULE;
556
David Brownell87f39f02009-03-26 00:42:50 -0700557 info->mtd.dev.parent = &pdev->dev;
558
David Brownellff4569c2009-03-04 12:01:37 -0800559 info->chip.IO_ADDR_R = vaddr;
560 info->chip.IO_ADDR_W = vaddr;
561 info->chip.chip_delay = 0;
562 info->chip.select_chip = nand_davinci_select_chip;
563
564 /* options such as NAND_USE_FLASH_BBT or 16-bit widths */
David Brownell533a0142009-04-21 19:51:31 -0700565 info->chip.options = pdata->options;
David Brownellff4569c2009-03-04 12:01:37 -0800566
567 info->ioaddr = (uint32_t __force) vaddr;
568
569 info->current_cs = info->ioaddr;
570 info->core_chipsel = pdev->id;
571 info->mask_chipsel = pdata->mask_chipsel;
572
573 /* use nandboot-capable ALE/CLE masks by default */
David Brownell533a0142009-04-21 19:51:31 -0700574 info->mask_ale = pdata->mask_cle ? : MASK_ALE;
575 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
David Brownellff4569c2009-03-04 12:01:37 -0800576
577 /* Set address of hardware control function */
578 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
579 info->chip.dev_ready = nand_davinci_dev_ready;
580
581 /* Speed up buffer I/O */
582 info->chip.read_buf = nand_davinci_read_buf;
583 info->chip.write_buf = nand_davinci_write_buf;
584
David Brownell533a0142009-04-21 19:51:31 -0700585 /* Use board-specific ECC config */
586 ecc_mode = pdata->ecc_mode;
David Brownellff4569c2009-03-04 12:01:37 -0800587
David Brownell6a4123e2009-04-21 19:58:13 -0700588 ret = -EINVAL;
David Brownellff4569c2009-03-04 12:01:37 -0800589 switch (ecc_mode) {
590 case NAND_ECC_NONE:
591 case NAND_ECC_SOFT:
David Brownell6a4123e2009-04-21 19:58:13 -0700592 pdata->ecc_bits = 0;
David Brownellff4569c2009-03-04 12:01:37 -0800593 break;
594 case NAND_ECC_HW:
David Brownell6a4123e2009-04-21 19:58:13 -0700595 if (pdata->ecc_bits == 4) {
596 /* No sanity checks: CPUs must support this,
597 * and the chips may not use NAND_BUSWIDTH_16.
598 */
David Brownellff4569c2009-03-04 12:01:37 -0800599
David Brownell6a4123e2009-04-21 19:58:13 -0700600 /* No sharing 4-bit hardware between chipselects yet */
601 spin_lock_irq(&davinci_nand_lock);
602 if (ecc4_busy)
603 ret = -EBUSY;
604 else
605 ecc4_busy = true;
606 spin_unlock_irq(&davinci_nand_lock);
607
608 if (ret == -EBUSY)
609 goto err_ecc;
610
611 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
612 info->chip.ecc.correct = nand_davinci_correct_4bit;
613 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
614 info->chip.ecc.bytes = 10;
615 } else {
616 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
617 info->chip.ecc.correct = nand_davinci_correct_1bit;
618 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
619 info->chip.ecc.bytes = 3;
620 }
621 info->chip.ecc.size = 512;
622 break;
David Brownellff4569c2009-03-04 12:01:37 -0800623 default:
624 ret = -EINVAL;
625 goto err_ecc;
626 }
627 info->chip.ecc.mode = ecc_mode;
628
Kevin Hilmancd24f8c2009-06-05 18:48:08 +0100629 info->clk = clk_get(&pdev->dev, "aemif");
David Brownellff4569c2009-03-04 12:01:37 -0800630 if (IS_ERR(info->clk)) {
631 ret = PTR_ERR(info->clk);
Kevin Hilmancd24f8c2009-06-05 18:48:08 +0100632 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
David Brownellff4569c2009-03-04 12:01:37 -0800633 goto err_clk;
634 }
635
636 ret = clk_enable(info->clk);
637 if (ret < 0) {
Kevin Hilmancd24f8c2009-06-05 18:48:08 +0100638 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
639 ret);
David Brownellff4569c2009-03-04 12:01:37 -0800640 goto err_clk_enable;
641 }
642
643 /* EMIF timings should normally be set by the boot loader,
644 * especially after boot-from-NAND. The *only* reason to
645 * have this special casing for the DM6446 EVM is to work
646 * with boot-from-NOR ... with CS0 manually re-jumpered
647 * (after startup) so it addresses the NAND flash, not NOR.
648 * Even for dev boards, that's unusually rude...
649 */
650 if (machine_is_davinci_evm())
651 nand_dm6446evm_flash_init(info);
652
653 spin_lock_irq(&davinci_nand_lock);
654
655 /* put CSxNAND into NAND mode */
656 val = davinci_nand_readl(info, NANDFCR_OFFSET);
657 val |= BIT(info->core_chipsel);
658 davinci_nand_writel(info, NANDFCR_OFFSET, val);
659
660 spin_unlock_irq(&davinci_nand_lock);
661
662 /* Scan to find existence of the device(s) */
David Brownell6a4123e2009-04-21 19:58:13 -0700663 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1);
David Brownellff4569c2009-03-04 12:01:37 -0800664 if (ret < 0) {
665 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
666 goto err_scan;
667 }
668
David Brownell6a4123e2009-04-21 19:58:13 -0700669 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
670 * is OK, but it allocates 6 bytes when only 3 are needed (for
671 * each 512 bytes). For the 4-bit HW ECC, that default is not
672 * usable: 10 bytes are needed, not 6.
673 */
674 if (pdata->ecc_bits == 4) {
675 int chunks = info->mtd.writesize / 512;
676
677 if (!chunks || info->mtd.oobsize < 16) {
678 dev_dbg(&pdev->dev, "too small\n");
679 ret = -EINVAL;
680 goto err_scan;
681 }
682
683 /* For small page chips, preserve the manufacturer's
684 * badblock marking data ... and make sure a flash BBT
685 * table marker fits in the free bytes.
686 */
687 if (chunks == 1) {
688 info->ecclayout = hwecc4_small;
689 info->ecclayout.oobfree[1].length =
690 info->mtd.oobsize - 16;
691 goto syndrome_done;
692 }
693
694 /* For large page chips we'll be wanting to use a
695 * not-yet-implemented mode that reads OOB data
696 * before reading the body of the page, to avoid
697 * the "infix OOB" model of NAND_ECC_HW_SYNDROME
698 * (and preserve manufacturer badblock markings).
699 */
700 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
701 "for large page NAND\n");
702 ret = -EIO;
703 goto err_scan;
704
705syndrome_done:
706 info->chip.ecc.layout = &info->ecclayout;
707 }
708
709 ret = nand_scan_tail(&info->mtd);
710 if (ret < 0)
711 goto err_scan;
712
David Brownellff4569c2009-03-04 12:01:37 -0800713 if (mtd_has_partitions()) {
714 struct mtd_partition *mtd_parts = NULL;
715 int mtd_parts_nb = 0;
716
717 if (mtd_has_cmdlinepart()) {
718 static const char *probes[] __initconst =
719 { "cmdlinepart", NULL };
720
David Brownellff4569c2009-03-04 12:01:37 -0800721 mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes,
722 &mtd_parts, 0);
David Brownellff4569c2009-03-04 12:01:37 -0800723 }
724
David Brownell533a0142009-04-21 19:51:31 -0700725 if (mtd_parts_nb <= 0) {
David Brownellff4569c2009-03-04 12:01:37 -0800726 mtd_parts = pdata->parts;
727 mtd_parts_nb = pdata->nr_parts;
728 }
729
730 /* Register any partitions */
731 if (mtd_parts_nb > 0) {
732 ret = add_mtd_partitions(&info->mtd,
733 mtd_parts, mtd_parts_nb);
734 if (ret == 0)
735 info->partitioned = true;
736 }
737
David Brownell533a0142009-04-21 19:51:31 -0700738 } else if (pdata->nr_parts) {
David Brownellff4569c2009-03-04 12:01:37 -0800739 dev_warn(&pdev->dev, "ignoring %d default partitions on %s\n",
740 pdata->nr_parts, info->mtd.name);
741 }
742
743 /* If there's no partition info, just package the whole chip
744 * as a single MTD device.
745 */
746 if (!info->partitioned)
747 ret = add_mtd_device(&info->mtd) ? -ENODEV : 0;
748
749 if (ret < 0)
750 goto err_scan;
751
752 val = davinci_nand_readl(info, NRCSR_OFFSET);
753 dev_info(&pdev->dev, "controller rev. %d.%d\n",
754 (val >> 8) & 0xff, val & 0xff);
755
756 return 0;
757
758err_scan:
759 clk_disable(info->clk);
760
761err_clk_enable:
762 clk_put(info->clk);
763
David Brownell6a4123e2009-04-21 19:58:13 -0700764 spin_lock_irq(&davinci_nand_lock);
765 if (ecc_mode == NAND_ECC_HW_SYNDROME)
766 ecc4_busy = false;
767 spin_unlock_irq(&davinci_nand_lock);
768
David Brownellff4569c2009-03-04 12:01:37 -0800769err_ecc:
770err_clk:
771err_ioremap:
772 if (base)
773 iounmap(base);
774 if (vaddr)
775 iounmap(vaddr);
776
777err_nomem:
778 kfree(info);
779 return ret;
780}
781
782static int __exit nand_davinci_remove(struct platform_device *pdev)
783{
784 struct davinci_nand_info *info = platform_get_drvdata(pdev);
785 int status;
786
787 if (mtd_has_partitions() && info->partitioned)
788 status = del_mtd_partitions(&info->mtd);
789 else
790 status = del_mtd_device(&info->mtd);
791
David Brownell6a4123e2009-04-21 19:58:13 -0700792 spin_lock_irq(&davinci_nand_lock);
793 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
794 ecc4_busy = false;
795 spin_unlock_irq(&davinci_nand_lock);
796
David Brownellff4569c2009-03-04 12:01:37 -0800797 iounmap(info->base);
798 iounmap(info->vaddr);
799
800 nand_release(&info->mtd);
801
802 clk_disable(info->clk);
803 clk_put(info->clk);
804
805 kfree(info);
806
807 return 0;
808}
809
810static struct platform_driver nand_davinci_driver = {
811 .remove = __exit_p(nand_davinci_remove),
812 .driver = {
813 .name = "davinci_nand",
814 },
815};
816MODULE_ALIAS("platform:davinci_nand");
817
818static int __init nand_davinci_init(void)
819{
820 return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
821}
822module_init(nand_davinci_init);
823
824static void __exit nand_davinci_exit(void)
825{
826 platform_driver_unregister(&nand_davinci_driver);
827}
828module_exit(nand_davinci_exit);
829
830MODULE_LICENSE("GPL");
831MODULE_AUTHOR("Texas Instruments");
832MODULE_DESCRIPTION("Davinci NAND flash driver");
833