blob: 630406e142e5c7aa799695a7006a0511f07f6098 [file] [log] [blame]
Ben Hutchings8ceee662008-04-27 12:55:59 +01001/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/pci.h>
14#include <linux/module.h>
15#include <linux/seq_file.h>
Ben Hutchings37b5a602008-05-30 22:27:04 +010016#include <linux/i2c.h>
17#include <linux/i2c-algo-bit.h>
Ben Hutchings8ceee662008-04-27 12:55:59 +010018#include "net_driver.h"
19#include "bitfield.h"
20#include "efx.h"
21#include "mac.h"
22#include "gmii.h"
23#include "spi.h"
24#include "falcon.h"
25#include "falcon_hwdefs.h"
26#include "falcon_io.h"
27#include "mdio_10g.h"
28#include "phy.h"
29#include "boards.h"
30#include "workarounds.h"
31
32/* Falcon hardware control.
33 * Falcon is the internal codename for the SFC4000 controller that is
34 * present in SFE400X evaluation boards
35 */
36
37/**
38 * struct falcon_nic_data - Falcon NIC state
39 * @next_buffer_table: First available buffer table id
40 * @pci_dev2: The secondary PCI device if present
Ben Hutchings37b5a602008-05-30 22:27:04 +010041 * @i2c_data: Operations and state for I2C bit-bashing algorithm
Ben Hutchings8ceee662008-04-27 12:55:59 +010042 */
43struct falcon_nic_data {
44 unsigned next_buffer_table;
45 struct pci_dev *pci_dev2;
Ben Hutchings37b5a602008-05-30 22:27:04 +010046 struct i2c_algo_bit_data i2c_data;
Ben Hutchings8ceee662008-04-27 12:55:59 +010047};
48
49/**************************************************************************
50 *
51 * Configurable values
52 *
53 **************************************************************************
54 */
55
56static int disable_dma_stats;
57
58/* This is set to 16 for a good reason. In summary, if larger than
59 * 16, the descriptor cache holds more than a default socket
60 * buffer's worth of packets (for UDP we can only have at most one
61 * socket buffer's worth outstanding). This combined with the fact
62 * that we only get 1 TX event per descriptor cache means the NIC
63 * goes idle.
64 */
65#define TX_DC_ENTRIES 16
66#define TX_DC_ENTRIES_ORDER 0
67#define TX_DC_BASE 0x130000
68
69#define RX_DC_ENTRIES 64
70#define RX_DC_ENTRIES_ORDER 2
71#define RX_DC_BASE 0x100000
72
73/* RX FIFO XOFF watermark
74 *
75 * When the amount of the RX FIFO increases used increases past this
76 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
77 * This also has an effect on RX/TX arbitration
78 */
79static int rx_xoff_thresh_bytes = -1;
80module_param(rx_xoff_thresh_bytes, int, 0644);
81MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
82
83/* RX FIFO XON watermark
84 *
85 * When the amount of the RX FIFO used decreases below this
86 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
87 * This also has an effect on RX/TX arbitration
88 */
89static int rx_xon_thresh_bytes = -1;
90module_param(rx_xon_thresh_bytes, int, 0644);
91MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
92
93/* TX descriptor ring size - min 512 max 4k */
94#define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
95#define FALCON_TXD_RING_SIZE 1024
96#define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
97
98/* RX descriptor ring size - min 512 max 4k */
99#define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
100#define FALCON_RXD_RING_SIZE 1024
101#define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
102
103/* Event queue size - max 32k */
104#define FALCON_EVQ_ORDER EVQ_SIZE_4K
105#define FALCON_EVQ_SIZE 4096
106#define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
107
108/* Max number of internal errors. After this resets will not be performed */
109#define FALCON_MAX_INT_ERRORS 4
110
111/* Maximum period that we wait for flush events. If the flush event
112 * doesn't arrive in this period of time then we check if the queue
113 * was disabled anyway. */
114#define FALCON_FLUSH_TIMEOUT 10 /* 10ms */
115
116/**************************************************************************
117 *
118 * Falcon constants
119 *
120 **************************************************************************
121 */
122
Ben Hutchings9bbd7d92008-05-16 21:18:48 +0100123/* DMA address mask */
124#define FALCON_DMA_MASK DMA_BIT_MASK(46)
Ben Hutchings8ceee662008-04-27 12:55:59 +0100125
126/* TX DMA length mask (13-bit) */
127#define FALCON_TX_DMA_MASK (4096 - 1)
128
129/* Size and alignment of special buffers (4KB) */
130#define FALCON_BUF_SIZE 4096
131
132/* Dummy SRAM size code */
133#define SRM_NB_BSZ_ONCHIP_ONLY (-1)
134
135/* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
136#define PCI_EXP_DEVCAP_PWR_VAL_LBN 18
137#define PCI_EXP_DEVCAP_PWR_SCL_LBN 26
138#define PCI_EXP_DEVCTL_PAYLOAD_LBN 5
139#define PCI_EXP_LNKSTA_LNK_WID 0x3f0
140#define PCI_EXP_LNKSTA_LNK_WID_LBN 4
141
142#define FALCON_IS_DUAL_FUNC(efx) \
Ben Hutchings55668612008-05-16 21:16:10 +0100143 (falcon_rev(efx) < FALCON_REV_B0)
Ben Hutchings8ceee662008-04-27 12:55:59 +0100144
145/**************************************************************************
146 *
147 * Falcon hardware access
148 *
149 **************************************************************************/
150
151/* Read the current event from the event queue */
152static inline efx_qword_t *falcon_event(struct efx_channel *channel,
153 unsigned int index)
154{
155 return (((efx_qword_t *) (channel->eventq.addr)) + index);
156}
157
158/* See if an event is present
159 *
160 * We check both the high and low dword of the event for all ones. We
161 * wrote all ones when we cleared the event, and no valid event can
162 * have all ones in either its high or low dwords. This approach is
163 * robust against reordering.
164 *
165 * Note that using a single 64-bit comparison is incorrect; even
166 * though the CPU read will be atomic, the DMA write may not be.
167 */
168static inline int falcon_event_present(efx_qword_t *event)
169{
170 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
171 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
172}
173
174/**************************************************************************
175 *
176 * I2C bus - this is a bit-bashing interface using GPIO pins
177 * Note that it uses the output enables to tristate the outputs
178 * SDA is the data pin and SCL is the clock
179 *
180 **************************************************************************
181 */
Ben Hutchings37b5a602008-05-30 22:27:04 +0100182static void falcon_setsda(void *data, int state)
Ben Hutchings8ceee662008-04-27 12:55:59 +0100183{
Ben Hutchings37b5a602008-05-30 22:27:04 +0100184 struct efx_nic *efx = (struct efx_nic *)data;
Ben Hutchings8ceee662008-04-27 12:55:59 +0100185 efx_oword_t reg;
186
Ben Hutchings37b5a602008-05-30 22:27:04 +0100187 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
188 EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
189 falcon_write(efx, &reg, GPIO_CTL_REG_KER);
Ben Hutchings8ceee662008-04-27 12:55:59 +0100190}
191
Ben Hutchings37b5a602008-05-30 22:27:04 +0100192static void falcon_setscl(void *data, int state)
Ben Hutchings8ceee662008-04-27 12:55:59 +0100193{
Ben Hutchings37b5a602008-05-30 22:27:04 +0100194 struct efx_nic *efx = (struct efx_nic *)data;
Ben Hutchings8ceee662008-04-27 12:55:59 +0100195 efx_oword_t reg;
196
Ben Hutchings37b5a602008-05-30 22:27:04 +0100197 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
198 EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
199 falcon_write(efx, &reg, GPIO_CTL_REG_KER);
200}
201
202static int falcon_getsda(void *data)
203{
204 struct efx_nic *efx = (struct efx_nic *)data;
205 efx_oword_t reg;
206
207 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
Ben Hutchings8ceee662008-04-27 12:55:59 +0100208 return EFX_OWORD_FIELD(reg, GPIO3_IN);
209}
210
Ben Hutchings37b5a602008-05-30 22:27:04 +0100211static int falcon_getscl(void *data)
Ben Hutchings8ceee662008-04-27 12:55:59 +0100212{
Ben Hutchings37b5a602008-05-30 22:27:04 +0100213 struct efx_nic *efx = (struct efx_nic *)data;
Ben Hutchings8ceee662008-04-27 12:55:59 +0100214 efx_oword_t reg;
215
Ben Hutchings37b5a602008-05-30 22:27:04 +0100216 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
217 return EFX_OWORD_FIELD(reg, GPIO0_IN);
Ben Hutchings8ceee662008-04-27 12:55:59 +0100218}
219
Ben Hutchings37b5a602008-05-30 22:27:04 +0100220static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
221 .setsda = falcon_setsda,
222 .setscl = falcon_setscl,
Ben Hutchings8ceee662008-04-27 12:55:59 +0100223 .getsda = falcon_getsda,
224 .getscl = falcon_getscl,
Ben Hutchings62c78322008-05-30 22:27:46 +0100225 .udelay = 5,
Ben Hutchings37b5a602008-05-30 22:27:04 +0100226 /*
227 * This is the number of system clock ticks after which
228 * i2c-algo-bit gives up waiting for SCL to become high.
229 * It must be at least 2 since the first tick can happen
230 * immediately after it starts waiting.
231 */
232 .timeout = 2,
Ben Hutchings8ceee662008-04-27 12:55:59 +0100233};
234
235/**************************************************************************
236 *
237 * Falcon special buffer handling
238 * Special buffers are used for event queues and the TX and RX
239 * descriptor rings.
240 *
241 *************************************************************************/
242
243/*
244 * Initialise a Falcon special buffer
245 *
246 * This will define a buffer (previously allocated via
247 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
248 * it to be used for event queues, descriptor rings etc.
249 */
250static int
251falcon_init_special_buffer(struct efx_nic *efx,
252 struct efx_special_buffer *buffer)
253{
254 efx_qword_t buf_desc;
255 int index;
256 dma_addr_t dma_addr;
257 int i;
258
259 EFX_BUG_ON_PARANOID(!buffer->addr);
260
261 /* Write buffer descriptors to NIC */
262 for (i = 0; i < buffer->entries; i++) {
263 index = buffer->index + i;
264 dma_addr = buffer->dma_addr + (i * 4096);
265 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
266 index, (unsigned long long)dma_addr);
267 EFX_POPULATE_QWORD_4(buf_desc,
268 IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
269 BUF_ADR_REGION, 0,
270 BUF_ADR_FBUF, (dma_addr >> 12),
271 BUF_OWNER_ID_FBUF, 0);
272 falcon_write_sram(efx, &buf_desc, index);
273 }
274
275 return 0;
276}
277
278/* Unmaps a buffer from Falcon and clears the buffer table entries */
279static void
280falcon_fini_special_buffer(struct efx_nic *efx,
281 struct efx_special_buffer *buffer)
282{
283 efx_oword_t buf_tbl_upd;
284 unsigned int start = buffer->index;
285 unsigned int end = (buffer->index + buffer->entries - 1);
286
287 if (!buffer->entries)
288 return;
289
290 EFX_LOG(efx, "unmapping special buffers %d-%d\n",
291 buffer->index, buffer->index + buffer->entries - 1);
292
293 EFX_POPULATE_OWORD_4(buf_tbl_upd,
294 BUF_UPD_CMD, 0,
295 BUF_CLR_CMD, 1,
296 BUF_CLR_END_ID, end,
297 BUF_CLR_START_ID, start);
298 falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
299}
300
301/*
302 * Allocate a new Falcon special buffer
303 *
304 * This allocates memory for a new buffer, clears it and allocates a
305 * new buffer ID range. It does not write into Falcon's buffer table.
306 *
307 * This call will allocate 4KB buffers, since Falcon can't use 8KB
308 * buffers for event queues and descriptor rings.
309 */
310static int falcon_alloc_special_buffer(struct efx_nic *efx,
311 struct efx_special_buffer *buffer,
312 unsigned int len)
313{
314 struct falcon_nic_data *nic_data = efx->nic_data;
315
316 len = ALIGN(len, FALCON_BUF_SIZE);
317
318 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
319 &buffer->dma_addr);
320 if (!buffer->addr)
321 return -ENOMEM;
322 buffer->len = len;
323 buffer->entries = len / FALCON_BUF_SIZE;
324 BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
325
326 /* All zeros is a potentially valid event so memset to 0xff */
327 memset(buffer->addr, 0xff, len);
328
329 /* Select new buffer ID */
330 buffer->index = nic_data->next_buffer_table;
331 nic_data->next_buffer_table += buffer->entries;
332
333 EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
334 "(virt %p phys %lx)\n", buffer->index,
335 buffer->index + buffer->entries - 1,
336 (unsigned long long)buffer->dma_addr, len,
337 buffer->addr, virt_to_phys(buffer->addr));
338
339 return 0;
340}
341
342static void falcon_free_special_buffer(struct efx_nic *efx,
343 struct efx_special_buffer *buffer)
344{
345 if (!buffer->addr)
346 return;
347
348 EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
349 "(virt %p phys %lx)\n", buffer->index,
350 buffer->index + buffer->entries - 1,
351 (unsigned long long)buffer->dma_addr, buffer->len,
352 buffer->addr, virt_to_phys(buffer->addr));
353
354 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
355 buffer->dma_addr);
356 buffer->addr = NULL;
357 buffer->entries = 0;
358}
359
360/**************************************************************************
361 *
362 * Falcon generic buffer handling
363 * These buffers are used for interrupt status and MAC stats
364 *
365 **************************************************************************/
366
367static int falcon_alloc_buffer(struct efx_nic *efx,
368 struct efx_buffer *buffer, unsigned int len)
369{
370 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
371 &buffer->dma_addr);
372 if (!buffer->addr)
373 return -ENOMEM;
374 buffer->len = len;
375 memset(buffer->addr, 0, len);
376 return 0;
377}
378
379static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
380{
381 if (buffer->addr) {
382 pci_free_consistent(efx->pci_dev, buffer->len,
383 buffer->addr, buffer->dma_addr);
384 buffer->addr = NULL;
385 }
386}
387
388/**************************************************************************
389 *
390 * Falcon TX path
391 *
392 **************************************************************************/
393
394/* Returns a pointer to the specified transmit descriptor in the TX
395 * descriptor queue belonging to the specified channel.
396 */
397static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
398 unsigned int index)
399{
400 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
401}
402
403/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
404static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
405{
406 unsigned write_ptr;
407 efx_dword_t reg;
408
409 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
410 EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
411 falcon_writel_page(tx_queue->efx, &reg,
412 TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
413}
414
415
416/* For each entry inserted into the software descriptor ring, create a
417 * descriptor in the hardware TX descriptor ring (in host memory), and
418 * write a doorbell.
419 */
420void falcon_push_buffers(struct efx_tx_queue *tx_queue)
421{
422
423 struct efx_tx_buffer *buffer;
424 efx_qword_t *txd;
425 unsigned write_ptr;
426
427 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
428
429 do {
430 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
431 buffer = &tx_queue->buffer[write_ptr];
432 txd = falcon_tx_desc(tx_queue, write_ptr);
433 ++tx_queue->write_count;
434
435 /* Create TX descriptor ring entry */
436 EFX_POPULATE_QWORD_5(*txd,
437 TX_KER_PORT, 0,
438 TX_KER_CONT, buffer->continuation,
439 TX_KER_BYTE_CNT, buffer->len,
440 TX_KER_BUF_REGION, 0,
441 TX_KER_BUF_ADR, buffer->dma_addr);
442 } while (tx_queue->write_count != tx_queue->insert_count);
443
444 wmb(); /* Ensure descriptors are written before they are fetched */
445 falcon_notify_tx_desc(tx_queue);
446}
447
448/* Allocate hardware resources for a TX queue */
449int falcon_probe_tx(struct efx_tx_queue *tx_queue)
450{
451 struct efx_nic *efx = tx_queue->efx;
452 return falcon_alloc_special_buffer(efx, &tx_queue->txd,
453 FALCON_TXD_RING_SIZE *
454 sizeof(efx_qword_t));
455}
456
457int falcon_init_tx(struct efx_tx_queue *tx_queue)
458{
459 efx_oword_t tx_desc_ptr;
460 struct efx_nic *efx = tx_queue->efx;
461 int rc;
462
463 /* Pin TX descriptor ring */
464 rc = falcon_init_special_buffer(efx, &tx_queue->txd);
465 if (rc)
466 return rc;
467
468 /* Push TX descriptor ring to card */
469 EFX_POPULATE_OWORD_10(tx_desc_ptr,
470 TX_DESCQ_EN, 1,
471 TX_ISCSI_DDIG_EN, 0,
472 TX_ISCSI_HDIG_EN, 0,
473 TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
474 TX_DESCQ_EVQ_ID, tx_queue->channel->evqnum,
475 TX_DESCQ_OWNER_ID, 0,
476 TX_DESCQ_LABEL, tx_queue->queue,
477 TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
478 TX_DESCQ_TYPE, 0,
479 TX_NON_IP_DROP_DIS_B0, 1);
480
Ben Hutchings55668612008-05-16 21:16:10 +0100481 if (falcon_rev(efx) >= FALCON_REV_B0) {
Ben Hutchings8ceee662008-04-27 12:55:59 +0100482 int csum = !(efx->net_dev->features & NETIF_F_IP_CSUM);
483 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, csum);
484 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, csum);
485 }
486
487 falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
488 tx_queue->queue);
489
Ben Hutchings55668612008-05-16 21:16:10 +0100490 if (falcon_rev(efx) < FALCON_REV_B0) {
Ben Hutchings8ceee662008-04-27 12:55:59 +0100491 efx_oword_t reg;
492
493 BUG_ON(tx_queue->queue >= 128); /* HW limit */
494
495 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
496 if (efx->net_dev->features & NETIF_F_IP_CSUM)
497 clear_bit_le(tx_queue->queue, (void *)&reg);
498 else
499 set_bit_le(tx_queue->queue, (void *)&reg);
500 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
501 }
502
503 return 0;
504}
505
506static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
507{
508 struct efx_nic *efx = tx_queue->efx;
509 struct efx_channel *channel = &efx->channel[0];
510 efx_oword_t tx_flush_descq;
511 unsigned int read_ptr, i;
512
513 /* Post a flush command */
514 EFX_POPULATE_OWORD_2(tx_flush_descq,
515 TX_FLUSH_DESCQ_CMD, 1,
516 TX_FLUSH_DESCQ, tx_queue->queue);
517 falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
518 msleep(FALCON_FLUSH_TIMEOUT);
519
520 if (EFX_WORKAROUND_7803(efx))
521 return 0;
522
523 /* Look for a flush completed event */
524 read_ptr = channel->eventq_read_ptr;
525 for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
526 efx_qword_t *event = falcon_event(channel, read_ptr);
527 int ev_code, ev_sub_code, ev_queue;
528 if (!falcon_event_present(event))
529 break;
530
531 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
532 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
533 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID);
534 if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) &&
535 (ev_queue == tx_queue->queue)) {
536 EFX_LOG(efx, "tx queue %d flush command succesful\n",
537 tx_queue->queue);
538 return 0;
539 }
540
541 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
542 }
543
544 if (EFX_WORKAROUND_11557(efx)) {
545 efx_oword_t reg;
546 int enabled;
547
548 falcon_read_table(efx, &reg, efx->type->txd_ptr_tbl_base,
549 tx_queue->queue);
550 enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN);
551 if (!enabled) {
552 EFX_LOG(efx, "tx queue %d disabled without a "
553 "flush event seen\n", tx_queue->queue);
554 return 0;
555 }
556 }
557
558 EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue);
559 return -ETIMEDOUT;
560}
561
562void falcon_fini_tx(struct efx_tx_queue *tx_queue)
563{
564 struct efx_nic *efx = tx_queue->efx;
565 efx_oword_t tx_desc_ptr;
566
567 /* Stop the hardware using the queue */
568 if (falcon_flush_tx_queue(tx_queue))
569 EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue);
570
571 /* Remove TX descriptor ring from card */
572 EFX_ZERO_OWORD(tx_desc_ptr);
573 falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
574 tx_queue->queue);
575
576 /* Unpin TX descriptor ring */
577 falcon_fini_special_buffer(efx, &tx_queue->txd);
578}
579
580/* Free buffers backing TX queue */
581void falcon_remove_tx(struct efx_tx_queue *tx_queue)
582{
583 falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
584}
585
586/**************************************************************************
587 *
588 * Falcon RX path
589 *
590 **************************************************************************/
591
592/* Returns a pointer to the specified descriptor in the RX descriptor queue */
593static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
594 unsigned int index)
595{
596 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
597}
598
599/* This creates an entry in the RX descriptor queue */
600static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
601 unsigned index)
602{
603 struct efx_rx_buffer *rx_buf;
604 efx_qword_t *rxd;
605
606 rxd = falcon_rx_desc(rx_queue, index);
607 rx_buf = efx_rx_buffer(rx_queue, index);
608 EFX_POPULATE_QWORD_3(*rxd,
609 RX_KER_BUF_SIZE,
610 rx_buf->len -
611 rx_queue->efx->type->rx_buffer_padding,
612 RX_KER_BUF_REGION, 0,
613 RX_KER_BUF_ADR, rx_buf->dma_addr);
614}
615
616/* This writes to the RX_DESC_WPTR register for the specified receive
617 * descriptor ring.
618 */
619void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
620{
621 efx_dword_t reg;
622 unsigned write_ptr;
623
624 while (rx_queue->notified_count != rx_queue->added_count) {
625 falcon_build_rx_desc(rx_queue,
626 rx_queue->notified_count &
627 FALCON_RXD_RING_MASK);
628 ++rx_queue->notified_count;
629 }
630
631 wmb();
632 write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
633 EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
634 falcon_writel_page(rx_queue->efx, &reg,
635 RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
636}
637
638int falcon_probe_rx(struct efx_rx_queue *rx_queue)
639{
640 struct efx_nic *efx = rx_queue->efx;
641 return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
642 FALCON_RXD_RING_SIZE *
643 sizeof(efx_qword_t));
644}
645
646int falcon_init_rx(struct efx_rx_queue *rx_queue)
647{
648 efx_oword_t rx_desc_ptr;
649 struct efx_nic *efx = rx_queue->efx;
650 int rc;
Ben Hutchings55668612008-05-16 21:16:10 +0100651 int is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
Ben Hutchings8ceee662008-04-27 12:55:59 +0100652 int iscsi_digest_en = is_b0;
653
654 EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
655 rx_queue->queue, rx_queue->rxd.index,
656 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
657
658 /* Pin RX descriptor ring */
659 rc = falcon_init_special_buffer(efx, &rx_queue->rxd);
660 if (rc)
661 return rc;
662
663 /* Push RX descriptor ring to card */
664 EFX_POPULATE_OWORD_10(rx_desc_ptr,
665 RX_ISCSI_DDIG_EN, iscsi_digest_en,
666 RX_ISCSI_HDIG_EN, iscsi_digest_en,
667 RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
668 RX_DESCQ_EVQ_ID, rx_queue->channel->evqnum,
669 RX_DESCQ_OWNER_ID, 0,
670 RX_DESCQ_LABEL, rx_queue->queue,
671 RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
672 RX_DESCQ_TYPE, 0 /* kernel queue */ ,
673 /* For >=B0 this is scatter so disable */
674 RX_DESCQ_JUMBO, !is_b0,
675 RX_DESCQ_EN, 1);
676 falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
677 rx_queue->queue);
678 return 0;
679}
680
681static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
682{
683 struct efx_nic *efx = rx_queue->efx;
684 struct efx_channel *channel = &efx->channel[0];
685 unsigned int read_ptr, i;
686 efx_oword_t rx_flush_descq;
687
688 /* Post a flush command */
689 EFX_POPULATE_OWORD_2(rx_flush_descq,
690 RX_FLUSH_DESCQ_CMD, 1,
691 RX_FLUSH_DESCQ, rx_queue->queue);
692 falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
693 msleep(FALCON_FLUSH_TIMEOUT);
694
695 if (EFX_WORKAROUND_7803(efx))
696 return 0;
697
698 /* Look for a flush completed event */
699 read_ptr = channel->eventq_read_ptr;
700 for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
701 efx_qword_t *event = falcon_event(channel, read_ptr);
702 int ev_code, ev_sub_code, ev_queue, ev_failed;
703 if (!falcon_event_present(event))
704 break;
705
706 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
707 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
708 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID);
709 ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL);
710
711 if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) &&
712 (ev_queue == rx_queue->queue)) {
713 if (ev_failed) {
714 EFX_INFO(efx, "rx queue %d flush command "
715 "failed\n", rx_queue->queue);
716 return -EAGAIN;
717 } else {
718 EFX_LOG(efx, "rx queue %d flush command "
719 "succesful\n", rx_queue->queue);
720 return 0;
721 }
722 }
723
724 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
725 }
726
727 if (EFX_WORKAROUND_11557(efx)) {
728 efx_oword_t reg;
729 int enabled;
730
731 falcon_read_table(efx, &reg, efx->type->rxd_ptr_tbl_base,
732 rx_queue->queue);
733 enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN);
734 if (!enabled) {
735 EFX_LOG(efx, "rx queue %d disabled without a "
736 "flush event seen\n", rx_queue->queue);
737 return 0;
738 }
739 }
740
741 EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue);
742 return -ETIMEDOUT;
743}
744
745void falcon_fini_rx(struct efx_rx_queue *rx_queue)
746{
747 efx_oword_t rx_desc_ptr;
748 struct efx_nic *efx = rx_queue->efx;
749 int i, rc;
750
751 /* Try and flush the rx queue. This may need to be repeated */
752 for (i = 0; i < 5; i++) {
753 rc = falcon_flush_rx_queue(rx_queue);
754 if (rc == -EAGAIN)
755 continue;
756 break;
757 }
Steve Hodgson23bdfdd2008-06-09 19:34:32 +0100758 if (rc) {
Ben Hutchings8ceee662008-04-27 12:55:59 +0100759 EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue);
Steve Hodgson23bdfdd2008-06-09 19:34:32 +0100760 efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
761 }
Ben Hutchings8ceee662008-04-27 12:55:59 +0100762
763 /* Remove RX descriptor ring from card */
764 EFX_ZERO_OWORD(rx_desc_ptr);
765 falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
766 rx_queue->queue);
767
768 /* Unpin RX descriptor ring */
769 falcon_fini_special_buffer(efx, &rx_queue->rxd);
770}
771
772/* Free buffers backing RX queue */
773void falcon_remove_rx(struct efx_rx_queue *rx_queue)
774{
775 falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
776}
777
778/**************************************************************************
779 *
780 * Falcon event queue processing
781 * Event queues are processed by per-channel tasklets.
782 *
783 **************************************************************************/
784
785/* Update a channel's event queue's read pointer (RPTR) register
786 *
787 * This writes the EVQ_RPTR_REG register for the specified channel's
788 * event queue.
789 *
790 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
791 * whereas channel->eventq_read_ptr contains the index of the "next to
792 * read" event.
793 */
794void falcon_eventq_read_ack(struct efx_channel *channel)
795{
796 efx_dword_t reg;
797 struct efx_nic *efx = channel->efx;
798
799 EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
800 falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
801 channel->evqnum);
802}
803
804/* Use HW to insert a SW defined event */
805void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
806{
807 efx_oword_t drv_ev_reg;
808
809 EFX_POPULATE_OWORD_2(drv_ev_reg,
810 DRV_EV_QID, channel->evqnum,
811 DRV_EV_DATA,
812 EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
813 falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
814}
815
816/* Handle a transmit completion event
817 *
818 * Falcon batches TX completion events; the message we receive is of
819 * the form "complete all TX events up to this index".
820 */
821static inline void falcon_handle_tx_event(struct efx_channel *channel,
822 efx_qword_t *event)
823{
824 unsigned int tx_ev_desc_ptr;
825 unsigned int tx_ev_q_label;
826 struct efx_tx_queue *tx_queue;
827 struct efx_nic *efx = channel->efx;
828
829 if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
830 /* Transmit completion */
831 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
832 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
833 tx_queue = &efx->tx_queue[tx_ev_q_label];
834 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
835 } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
836 /* Rewrite the FIFO write pointer */
837 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
838 tx_queue = &efx->tx_queue[tx_ev_q_label];
839
Ben Hutchings55668612008-05-16 21:16:10 +0100840 if (efx_dev_registered(efx))
Ben Hutchings8ceee662008-04-27 12:55:59 +0100841 netif_tx_lock(efx->net_dev);
842 falcon_notify_tx_desc(tx_queue);
Ben Hutchings55668612008-05-16 21:16:10 +0100843 if (efx_dev_registered(efx))
Ben Hutchings8ceee662008-04-27 12:55:59 +0100844 netif_tx_unlock(efx->net_dev);
845 } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
846 EFX_WORKAROUND_10727(efx)) {
847 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
848 } else {
849 EFX_ERR(efx, "channel %d unexpected TX event "
850 EFX_QWORD_FMT"\n", channel->channel,
851 EFX_QWORD_VAL(*event));
852 }
853}
854
855/* Check received packet's destination MAC address. */
856static int check_dest_mac(struct efx_rx_queue *rx_queue,
857 const efx_qword_t *event)
858{
859 struct efx_rx_buffer *rx_buf;
860 struct efx_nic *efx = rx_queue->efx;
861 int rx_ev_desc_ptr;
862 struct ethhdr *eh;
863
864 if (efx->promiscuous)
865 return 1;
866
867 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
868 rx_buf = efx_rx_buffer(rx_queue, rx_ev_desc_ptr);
869 eh = (struct ethhdr *)rx_buf->data;
870 if (memcmp(eh->h_dest, efx->net_dev->dev_addr, ETH_ALEN))
871 return 0;
872 return 1;
873}
874
875/* Detect errors included in the rx_evt_pkt_ok bit. */
876static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
877 const efx_qword_t *event,
878 unsigned *rx_ev_pkt_ok,
879 int *discard, int byte_count)
880{
881 struct efx_nic *efx = rx_queue->efx;
882 unsigned rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
883 unsigned rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
884 unsigned rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
885 unsigned rx_ev_pkt_type, rx_ev_other_err, rx_ev_pause_frm;
886 unsigned rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
887 int snap, non_ip;
888
889 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
890 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
891 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
892 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
893 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
894 RX_EV_BUF_OWNER_ID_ERR);
895 rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
896 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
897 RX_EV_IP_HDR_CHKSUM_ERR);
898 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
899 RX_EV_TCP_UDP_CHKSUM_ERR);
900 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
901 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
Ben Hutchings55668612008-05-16 21:16:10 +0100902 rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
Ben Hutchings8ceee662008-04-27 12:55:59 +0100903 0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
904 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
905
906 /* Every error apart from tobe_disc and pause_frm */
907 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
908 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
909 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
910
911 snap = (rx_ev_pkt_type == RX_EV_PKT_TYPE_LLC_DECODE) ||
912 (rx_ev_pkt_type == RX_EV_PKT_TYPE_VLAN_LLC_DECODE);
913 non_ip = (rx_ev_hdr_type == RX_EV_HDR_TYPE_NON_IP_DECODE);
914
915 /* SFC bug 5475/8970: The Falcon XMAC incorrectly calculates the
916 * length field of an LLC frame, which sets TOBE_DISC. We could set
917 * PASS_LEN_ERR, but we want the MAC to filter out short frames (to
918 * protect the RX block).
919 *
920 * bug5475 - LLC/SNAP: Falcon identifies SNAP packets.
921 * bug8970 - LLC/noSNAP: Falcon does not provide an LLC flag.
922 * LLC can't encapsulate IP, so by definition
923 * these packets are NON_IP.
924 *
925 * Unicast mismatch will also cause TOBE_DISC, so the driver needs
926 * to check this.
927 */
928 if (EFX_WORKAROUND_5475(efx) && rx_ev_tobe_disc && (snap || non_ip)) {
929 /* If all the other flags are zero then we can state the
930 * entire packet is ok, which will flag to the kernel not
931 * to recalculate checksums.
932 */
933 if (!(non_ip | rx_ev_other_err | rx_ev_pause_frm))
934 *rx_ev_pkt_ok = 1;
935
936 rx_ev_tobe_disc = 0;
937
938 /* TOBE_DISC is set for unicast mismatch. But given that
939 * we can't trust TOBE_DISC here, we must validate the dest
940 * MAC address ourselves.
941 */
942 if (!rx_ev_mcast_pkt && !check_dest_mac(rx_queue, event))
943 rx_ev_tobe_disc = 1;
944 }
945
946 /* Count errors that are not in MAC stats. */
947 if (rx_ev_frm_trunc)
948 ++rx_queue->channel->n_rx_frm_trunc;
949 else if (rx_ev_tobe_disc)
950 ++rx_queue->channel->n_rx_tobe_disc;
951 else if (rx_ev_ip_hdr_chksum_err)
952 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
953 else if (rx_ev_tcp_udp_chksum_err)
954 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
955 if (rx_ev_ip_frag_err)
956 ++rx_queue->channel->n_rx_ip_frag_err;
957
958 /* The frame must be discarded if any of these are true. */
959 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
960 rx_ev_tobe_disc | rx_ev_pause_frm);
961
962 /* TOBE_DISC is expected on unicast mismatches; don't print out an
963 * error message. FRM_TRUNC indicates RXDP dropped the packet due
964 * to a FIFO overflow.
965 */
966#ifdef EFX_ENABLE_DEBUG
967 if (rx_ev_other_err) {
968 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
969 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s%s\n",
970 rx_queue->queue, EFX_QWORD_VAL(*event),
971 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
972 rx_ev_ip_hdr_chksum_err ?
973 " [IP_HDR_CHKSUM_ERR]" : "",
974 rx_ev_tcp_udp_chksum_err ?
975 " [TCP_UDP_CHKSUM_ERR]" : "",
976 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
977 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
978 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
979 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
980 rx_ev_pause_frm ? " [PAUSE]" : "",
981 snap ? " [SNAP/LLC]" : "");
982 }
983#endif
984
985 if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
986 efx->phy_type == PHY_TYPE_10XPRESS))
987 tenxpress_crc_err(efx);
988}
989
990/* Handle receive events that are not in-order. */
991static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
992 unsigned index)
993{
994 struct efx_nic *efx = rx_queue->efx;
995 unsigned expected, dropped;
996
997 expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
998 dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
999 FALCON_RXD_RING_MASK);
1000 EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
1001 dropped, index, expected);
1002
1003 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
1004 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1005}
1006
1007/* Handle a packet received event
1008 *
1009 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
1010 * wrong destination address
1011 * Also "is multicast" and "matches multicast filter" flags can be used to
1012 * discard non-matching multicast packets.
1013 */
1014static inline int falcon_handle_rx_event(struct efx_channel *channel,
1015 const efx_qword_t *event)
1016{
1017 unsigned int rx_ev_q_label, rx_ev_desc_ptr, rx_ev_byte_cnt;
1018 unsigned int rx_ev_pkt_ok, rx_ev_hdr_type, rx_ev_mcast_pkt;
1019 unsigned expected_ptr;
1020 int discard = 0, checksummed;
1021 struct efx_rx_queue *rx_queue;
1022 struct efx_nic *efx = channel->efx;
1023
1024 /* Basic packet information */
1025 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
1026 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
1027 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
1028 WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
1029 WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
1030
1031 rx_ev_q_label = EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL);
1032 rx_queue = &efx->rx_queue[rx_ev_q_label];
1033
1034 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
1035 expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
1036 if (unlikely(rx_ev_desc_ptr != expected_ptr)) {
1037 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
1038 return rx_ev_q_label;
1039 }
1040
1041 if (likely(rx_ev_pkt_ok)) {
1042 /* If packet is marked as OK and packet type is TCP/IPv4 or
1043 * UDP/IPv4, then we can rely on the hardware checksum.
1044 */
1045 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
1046 } else {
1047 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
1048 &discard, rx_ev_byte_cnt);
1049 checksummed = 0;
1050 }
1051
1052 /* Detect multicast packets that didn't match the filter */
1053 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
1054 if (rx_ev_mcast_pkt) {
1055 unsigned int rx_ev_mcast_hash_match =
1056 EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
1057
1058 if (unlikely(!rx_ev_mcast_hash_match))
1059 discard = 1;
1060 }
1061
1062 /* Handle received packet */
1063 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
1064 checksummed, discard);
1065
1066 return rx_ev_q_label;
1067}
1068
1069/* Global events are basically PHY events */
1070static void falcon_handle_global_event(struct efx_channel *channel,
1071 efx_qword_t *event)
1072{
1073 struct efx_nic *efx = channel->efx;
1074 int is_phy_event = 0, handled = 0;
1075
1076 /* Check for interrupt on either port. Some boards have a
1077 * single PHY wired to the interrupt line for port 1. */
1078 if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
1079 EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
1080 EFX_QWORD_FIELD(*event, XG_PHY_INTR))
1081 is_phy_event = 1;
1082
Ben Hutchings55668612008-05-16 21:16:10 +01001083 if ((falcon_rev(efx) >= FALCON_REV_B0) &&
Ben Hutchings8ceee662008-04-27 12:55:59 +01001084 EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0))
1085 is_phy_event = 1;
1086
1087 if (is_phy_event) {
1088 efx->phy_op->clear_interrupt(efx);
1089 queue_work(efx->workqueue, &efx->reconfigure_work);
1090 handled = 1;
1091 }
1092
1093 if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
1094 EFX_ERR(efx, "channel %d seen global RX_RESET "
1095 "event. Resetting.\n", channel->channel);
1096
1097 atomic_inc(&efx->rx_reset);
1098 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1099 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1100 handled = 1;
1101 }
1102
1103 if (!handled)
1104 EFX_ERR(efx, "channel %d unknown global event "
1105 EFX_QWORD_FMT "\n", channel->channel,
1106 EFX_QWORD_VAL(*event));
1107}
1108
1109static void falcon_handle_driver_event(struct efx_channel *channel,
1110 efx_qword_t *event)
1111{
1112 struct efx_nic *efx = channel->efx;
1113 unsigned int ev_sub_code;
1114 unsigned int ev_sub_data;
1115
1116 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1117 ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
1118
1119 switch (ev_sub_code) {
1120 case TX_DESCQ_FLS_DONE_EV_DECODE:
1121 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
1122 channel->channel, ev_sub_data);
1123 break;
1124 case RX_DESCQ_FLS_DONE_EV_DECODE:
1125 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
1126 channel->channel, ev_sub_data);
1127 break;
1128 case EVQ_INIT_DONE_EV_DECODE:
1129 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
1130 channel->channel, ev_sub_data);
1131 break;
1132 case SRM_UPD_DONE_EV_DECODE:
1133 EFX_TRACE(efx, "channel %d SRAM update done\n",
1134 channel->channel);
1135 break;
1136 case WAKE_UP_EV_DECODE:
1137 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
1138 channel->channel, ev_sub_data);
1139 break;
1140 case TIMER_EV_DECODE:
1141 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
1142 channel->channel, ev_sub_data);
1143 break;
1144 case RX_RECOVERY_EV_DECODE:
1145 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
1146 "Resetting.\n", channel->channel);
Ben Hutchings05e3ec02008-05-07 13:00:39 +01001147 atomic_inc(&efx->rx_reset);
Ben Hutchings8ceee662008-04-27 12:55:59 +01001148 efx_schedule_reset(efx,
1149 EFX_WORKAROUND_6555(efx) ?
1150 RESET_TYPE_RX_RECOVERY :
1151 RESET_TYPE_DISABLE);
1152 break;
1153 case RX_DSC_ERROR_EV_DECODE:
1154 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
1155 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1156 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1157 break;
1158 case TX_DSC_ERROR_EV_DECODE:
1159 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
1160 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1161 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1162 break;
1163 default:
1164 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1165 "data %04x\n", channel->channel, ev_sub_code,
1166 ev_sub_data);
1167 break;
1168 }
1169}
1170
1171int falcon_process_eventq(struct efx_channel *channel, int *rx_quota)
1172{
1173 unsigned int read_ptr;
1174 efx_qword_t event, *p_event;
1175 int ev_code;
1176 int rxq;
1177 int rxdmaqs = 0;
1178
1179 read_ptr = channel->eventq_read_ptr;
1180
1181 do {
1182 p_event = falcon_event(channel, read_ptr);
1183 event = *p_event;
1184
1185 if (!falcon_event_present(&event))
1186 /* End of events */
1187 break;
1188
1189 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1190 channel->channel, EFX_QWORD_VAL(event));
1191
1192 /* Clear this event by marking it all ones */
1193 EFX_SET_QWORD(*p_event);
1194
1195 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1196
1197 switch (ev_code) {
1198 case RX_IP_EV_DECODE:
1199 rxq = falcon_handle_rx_event(channel, &event);
1200 rxdmaqs |= (1 << rxq);
1201 (*rx_quota)--;
1202 break;
1203 case TX_IP_EV_DECODE:
1204 falcon_handle_tx_event(channel, &event);
1205 break;
1206 case DRV_GEN_EV_DECODE:
1207 channel->eventq_magic
1208 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1209 EFX_LOG(channel->efx, "channel %d received generated "
1210 "event "EFX_QWORD_FMT"\n", channel->channel,
1211 EFX_QWORD_VAL(event));
1212 break;
1213 case GLOBAL_EV_DECODE:
1214 falcon_handle_global_event(channel, &event);
1215 break;
1216 case DRIVER_EV_DECODE:
1217 falcon_handle_driver_event(channel, &event);
1218 break;
1219 default:
1220 EFX_ERR(channel->efx, "channel %d unknown event type %d"
1221 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1222 ev_code, EFX_QWORD_VAL(event));
1223 }
1224
1225 /* Increment read pointer */
1226 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1227
1228 } while (*rx_quota);
1229
1230 channel->eventq_read_ptr = read_ptr;
1231 return rxdmaqs;
1232}
1233
1234void falcon_set_int_moderation(struct efx_channel *channel)
1235{
1236 efx_dword_t timer_cmd;
1237 struct efx_nic *efx = channel->efx;
1238
1239 /* Set timer register */
1240 if (channel->irq_moderation) {
1241 /* Round to resolution supported by hardware. The value we
1242 * program is based at 0. So actual interrupt moderation
1243 * achieved is ((x + 1) * res).
1244 */
1245 unsigned int res = 5;
1246 channel->irq_moderation -= (channel->irq_moderation % res);
1247 if (channel->irq_moderation < res)
1248 channel->irq_moderation = res;
1249 EFX_POPULATE_DWORD_2(timer_cmd,
1250 TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1251 TIMER_VAL,
1252 (channel->irq_moderation / res) - 1);
1253 } else {
1254 EFX_POPULATE_DWORD_2(timer_cmd,
1255 TIMER_MODE, TIMER_MODE_DIS,
1256 TIMER_VAL, 0);
1257 }
1258 falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1259 channel->evqnum);
1260
1261}
1262
1263/* Allocate buffer table entries for event queue */
1264int falcon_probe_eventq(struct efx_channel *channel)
1265{
1266 struct efx_nic *efx = channel->efx;
1267 unsigned int evq_size;
1268
1269 evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1270 return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1271}
1272
1273int falcon_init_eventq(struct efx_channel *channel)
1274{
1275 efx_oword_t evq_ptr;
1276 struct efx_nic *efx = channel->efx;
1277 int rc;
1278
1279 EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1280 channel->channel, channel->eventq.index,
1281 channel->eventq.index + channel->eventq.entries - 1);
1282
1283 /* Pin event queue buffer */
1284 rc = falcon_init_special_buffer(efx, &channel->eventq);
1285 if (rc)
1286 return rc;
1287
1288 /* Fill event queue with all ones (i.e. empty events) */
1289 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1290
1291 /* Push event queue to card */
1292 EFX_POPULATE_OWORD_3(evq_ptr,
1293 EVQ_EN, 1,
1294 EVQ_SIZE, FALCON_EVQ_ORDER,
1295 EVQ_BUF_BASE_ID, channel->eventq.index);
1296 falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1297 channel->evqnum);
1298
1299 falcon_set_int_moderation(channel);
1300
1301 return 0;
1302}
1303
1304void falcon_fini_eventq(struct efx_channel *channel)
1305{
1306 efx_oword_t eventq_ptr;
1307 struct efx_nic *efx = channel->efx;
1308
1309 /* Remove event queue from card */
1310 EFX_ZERO_OWORD(eventq_ptr);
1311 falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1312 channel->evqnum);
1313
1314 /* Unpin event queue */
1315 falcon_fini_special_buffer(efx, &channel->eventq);
1316}
1317
1318/* Free buffers backing event queue */
1319void falcon_remove_eventq(struct efx_channel *channel)
1320{
1321 falcon_free_special_buffer(channel->efx, &channel->eventq);
1322}
1323
1324
1325/* Generates a test event on the event queue. A subsequent call to
1326 * process_eventq() should pick up the event and place the value of
1327 * "magic" into channel->eventq_magic;
1328 */
1329void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1330{
1331 efx_qword_t test_event;
1332
1333 EFX_POPULATE_QWORD_2(test_event,
1334 EV_CODE, DRV_GEN_EV_DECODE,
1335 EVQ_MAGIC, magic);
1336 falcon_generate_event(channel, &test_event);
1337}
1338
1339
1340/**************************************************************************
1341 *
1342 * Falcon hardware interrupts
1343 * The hardware interrupt handler does very little work; all the event
1344 * queue processing is carried out by per-channel tasklets.
1345 *
1346 **************************************************************************/
1347
1348/* Enable/disable/generate Falcon interrupts */
1349static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1350 int force)
1351{
1352 efx_oword_t int_en_reg_ker;
1353
1354 EFX_POPULATE_OWORD_2(int_en_reg_ker,
1355 KER_INT_KER, force,
1356 DRV_INT_EN_KER, enabled);
1357 falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1358}
1359
1360void falcon_enable_interrupts(struct efx_nic *efx)
1361{
1362 efx_oword_t int_adr_reg_ker;
1363 struct efx_channel *channel;
1364
1365 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1366 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1367
1368 /* Program address */
1369 EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1370 NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1371 INT_ADR_KER, efx->irq_status.dma_addr);
1372 falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1373
1374 /* Enable interrupts */
1375 falcon_interrupts(efx, 1, 0);
1376
1377 /* Force processing of all the channels to get the EVQ RPTRs up to
1378 date */
1379 efx_for_each_channel_with_interrupt(channel, efx)
1380 efx_schedule_channel(channel);
1381}
1382
1383void falcon_disable_interrupts(struct efx_nic *efx)
1384{
1385 /* Disable interrupts */
1386 falcon_interrupts(efx, 0, 0);
1387}
1388
1389/* Generate a Falcon test interrupt
1390 * Interrupt must already have been enabled, otherwise nasty things
1391 * may happen.
1392 */
1393void falcon_generate_interrupt(struct efx_nic *efx)
1394{
1395 falcon_interrupts(efx, 1, 1);
1396}
1397
1398/* Acknowledge a legacy interrupt from Falcon
1399 *
1400 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1401 *
1402 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1403 * BIU. Interrupt acknowledge is read sensitive so must write instead
1404 * (then read to ensure the BIU collector is flushed)
1405 *
1406 * NB most hardware supports MSI interrupts
1407 */
1408static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1409{
1410 efx_dword_t reg;
1411
1412 EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1413 falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1414 falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1415}
1416
1417/* Process a fatal interrupt
1418 * Disable bus mastering ASAP and schedule a reset
1419 */
1420static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1421{
1422 struct falcon_nic_data *nic_data = efx->nic_data;
Ben Hutchingsd3208b52008-05-16 21:20:00 +01001423 efx_oword_t *int_ker = efx->irq_status.addr;
Ben Hutchings8ceee662008-04-27 12:55:59 +01001424 efx_oword_t fatal_intr;
1425 int error, mem_perr;
1426 static int n_int_errors;
1427
1428 falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1429 error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1430
1431 EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1432 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1433 EFX_OWORD_VAL(fatal_intr),
1434 error ? "disabling bus mastering" : "no recognised error");
1435 if (error == 0)
1436 goto out;
1437
1438 /* If this is a memory parity error dump which blocks are offending */
1439 mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1440 if (mem_perr) {
1441 efx_oword_t reg;
1442 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1443 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1444 EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1445 }
1446
1447 /* Disable DMA bus mastering on both devices */
1448 pci_disable_device(efx->pci_dev);
1449 if (FALCON_IS_DUAL_FUNC(efx))
1450 pci_disable_device(nic_data->pci_dev2);
1451
1452 if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1453 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1454 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1455 } else {
1456 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1457 "NIC will be disabled\n");
1458 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1459 }
1460out:
1461 return IRQ_HANDLED;
1462}
1463
1464/* Handle a legacy interrupt from Falcon
1465 * Acknowledges the interrupt and schedule event queue processing.
1466 */
1467static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1468{
Ben Hutchingsd3208b52008-05-16 21:20:00 +01001469 struct efx_nic *efx = dev_id;
1470 efx_oword_t *int_ker = efx->irq_status.addr;
Ben Hutchings8ceee662008-04-27 12:55:59 +01001471 struct efx_channel *channel;
1472 efx_dword_t reg;
1473 u32 queues;
1474 int syserr;
1475
1476 /* Read the ISR which also ACKs the interrupts */
1477 falcon_readl(efx, &reg, INT_ISR0_B0);
1478 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1479
1480 /* Check to see if we have a serious error condition */
1481 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1482 if (unlikely(syserr))
1483 return falcon_fatal_interrupt(efx);
1484
1485 if (queues == 0)
1486 return IRQ_NONE;
1487
1488 efx->last_irq_cpu = raw_smp_processor_id();
1489 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1490 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1491
1492 /* Schedule processing of any interrupting queues */
1493 channel = &efx->channel[0];
1494 while (queues) {
1495 if (queues & 0x01)
1496 efx_schedule_channel(channel);
1497 channel++;
1498 queues >>= 1;
1499 }
1500
1501 return IRQ_HANDLED;
1502}
1503
1504
1505static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1506{
Ben Hutchingsd3208b52008-05-16 21:20:00 +01001507 struct efx_nic *efx = dev_id;
1508 efx_oword_t *int_ker = efx->irq_status.addr;
Ben Hutchings8ceee662008-04-27 12:55:59 +01001509 struct efx_channel *channel;
1510 int syserr;
1511 int queues;
1512
1513 /* Check to see if this is our interrupt. If it isn't, we
1514 * exit without having touched the hardware.
1515 */
1516 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1517 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1518 raw_smp_processor_id());
1519 return IRQ_NONE;
1520 }
1521 efx->last_irq_cpu = raw_smp_processor_id();
1522 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1523 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1524
1525 /* Check to see if we have a serious error condition */
1526 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1527 if (unlikely(syserr))
1528 return falcon_fatal_interrupt(efx);
1529
1530 /* Determine interrupting queues, clear interrupt status
1531 * register and acknowledge the device interrupt.
1532 */
1533 BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1534 queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1535 EFX_ZERO_OWORD(*int_ker);
1536 wmb(); /* Ensure the vector is cleared before interrupt ack */
1537 falcon_irq_ack_a1(efx);
1538
1539 /* Schedule processing of any interrupting queues */
1540 channel = &efx->channel[0];
1541 while (queues) {
1542 if (queues & 0x01)
1543 efx_schedule_channel(channel);
1544 channel++;
1545 queues >>= 1;
1546 }
1547
1548 return IRQ_HANDLED;
1549}
1550
1551/* Handle an MSI interrupt from Falcon
1552 *
1553 * Handle an MSI hardware interrupt. This routine schedules event
1554 * queue processing. No interrupt acknowledgement cycle is necessary.
1555 * Also, we never need to check that the interrupt is for us, since
1556 * MSI interrupts cannot be shared.
1557 */
1558static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1559{
Ben Hutchingsd3208b52008-05-16 21:20:00 +01001560 struct efx_channel *channel = dev_id;
Ben Hutchings8ceee662008-04-27 12:55:59 +01001561 struct efx_nic *efx = channel->efx;
Ben Hutchingsd3208b52008-05-16 21:20:00 +01001562 efx_oword_t *int_ker = efx->irq_status.addr;
Ben Hutchings8ceee662008-04-27 12:55:59 +01001563 int syserr;
1564
1565 efx->last_irq_cpu = raw_smp_processor_id();
1566 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1567 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1568
1569 /* Check to see if we have a serious error condition */
1570 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1571 if (unlikely(syserr))
1572 return falcon_fatal_interrupt(efx);
1573
1574 /* Schedule processing of the channel */
1575 efx_schedule_channel(channel);
1576
1577 return IRQ_HANDLED;
1578}
1579
1580
1581/* Setup RSS indirection table.
1582 * This maps from the hash value of the packet to RXQ
1583 */
1584static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1585{
1586 int i = 0;
1587 unsigned long offset;
1588 efx_dword_t dword;
1589
Ben Hutchings55668612008-05-16 21:16:10 +01001590 if (falcon_rev(efx) < FALCON_REV_B0)
Ben Hutchings8ceee662008-04-27 12:55:59 +01001591 return;
1592
1593 for (offset = RX_RSS_INDIR_TBL_B0;
1594 offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1595 offset += 0x10) {
1596 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1597 i % efx->rss_queues);
1598 falcon_writel(efx, &dword, offset);
1599 i++;
1600 }
1601}
1602
1603/* Hook interrupt handler(s)
1604 * Try MSI and then legacy interrupts.
1605 */
1606int falcon_init_interrupt(struct efx_nic *efx)
1607{
1608 struct efx_channel *channel;
1609 int rc;
1610
1611 if (!EFX_INT_MODE_USE_MSI(efx)) {
1612 irq_handler_t handler;
Ben Hutchings55668612008-05-16 21:16:10 +01001613 if (falcon_rev(efx) >= FALCON_REV_B0)
Ben Hutchings8ceee662008-04-27 12:55:59 +01001614 handler = falcon_legacy_interrupt_b0;
1615 else
1616 handler = falcon_legacy_interrupt_a1;
1617
1618 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1619 efx->name, efx);
1620 if (rc) {
1621 EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1622 efx->pci_dev->irq);
1623 goto fail1;
1624 }
1625 return 0;
1626 }
1627
1628 /* Hook MSI or MSI-X interrupt */
1629 efx_for_each_channel_with_interrupt(channel, efx) {
1630 rc = request_irq(channel->irq, falcon_msi_interrupt,
1631 IRQF_PROBE_SHARED, /* Not shared */
1632 efx->name, channel);
1633 if (rc) {
1634 EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1635 goto fail2;
1636 }
1637 }
1638
1639 return 0;
1640
1641 fail2:
1642 efx_for_each_channel_with_interrupt(channel, efx)
1643 free_irq(channel->irq, channel);
1644 fail1:
1645 return rc;
1646}
1647
1648void falcon_fini_interrupt(struct efx_nic *efx)
1649{
1650 struct efx_channel *channel;
1651 efx_oword_t reg;
1652
1653 /* Disable MSI/MSI-X interrupts */
Ben Hutchingsb3475642008-05-16 21:15:49 +01001654 efx_for_each_channel_with_interrupt(channel, efx) {
Ben Hutchings8ceee662008-04-27 12:55:59 +01001655 if (channel->irq)
1656 free_irq(channel->irq, channel);
Ben Hutchingsb3475642008-05-16 21:15:49 +01001657 }
Ben Hutchings8ceee662008-04-27 12:55:59 +01001658
1659 /* ACK legacy interrupt */
Ben Hutchings55668612008-05-16 21:16:10 +01001660 if (falcon_rev(efx) >= FALCON_REV_B0)
Ben Hutchings8ceee662008-04-27 12:55:59 +01001661 falcon_read(efx, &reg, INT_ISR0_B0);
1662 else
1663 falcon_irq_ack_a1(efx);
1664
1665 /* Disable legacy interrupt */
1666 if (efx->legacy_irq)
1667 free_irq(efx->legacy_irq, efx);
1668}
1669
1670/**************************************************************************
1671 *
1672 * EEPROM/flash
1673 *
1674 **************************************************************************
1675 */
1676
1677#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1678
1679/* Wait for SPI command completion */
1680static int falcon_spi_wait(struct efx_nic *efx)
1681{
1682 efx_oword_t reg;
1683 int cmd_en, timer_active;
1684 int count;
1685
1686 count = 0;
1687 do {
1688 falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1689 cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN);
1690 timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE);
1691 if (!cmd_en && !timer_active)
1692 return 0;
1693 udelay(10);
1694 } while (++count < 10000); /* wait upto 100msec */
1695 EFX_ERR(efx, "timed out waiting for SPI\n");
1696 return -ETIMEDOUT;
1697}
1698
1699static int
1700falcon_spi_read(struct efx_nic *efx, int device_id, unsigned int command,
1701 unsigned int address, unsigned int addr_len,
1702 void *data, unsigned int len)
1703{
1704 efx_oword_t reg;
1705 int rc;
1706
1707 BUG_ON(len > FALCON_SPI_MAX_LEN);
1708
1709 /* Check SPI not currently being accessed */
1710 rc = falcon_spi_wait(efx);
1711 if (rc)
1712 return rc;
1713
1714 /* Program address register */
1715 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1716 falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1717
1718 /* Issue read command */
1719 EFX_POPULATE_OWORD_7(reg,
1720 EE_SPI_HCMD_CMD_EN, 1,
1721 EE_SPI_HCMD_SF_SEL, device_id,
1722 EE_SPI_HCMD_DABCNT, len,
1723 EE_SPI_HCMD_READ, EE_SPI_READ,
1724 EE_SPI_HCMD_DUBCNT, 0,
1725 EE_SPI_HCMD_ADBCNT, addr_len,
1726 EE_SPI_HCMD_ENC, command);
1727 falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1728
1729 /* Wait for read to complete */
1730 rc = falcon_spi_wait(efx);
1731 if (rc)
1732 return rc;
1733
1734 /* Read data */
1735 falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1736 memcpy(data, &reg, len);
1737 return 0;
1738}
1739
1740/**************************************************************************
1741 *
1742 * MAC wrapper
1743 *
1744 **************************************************************************
1745 */
1746void falcon_drain_tx_fifo(struct efx_nic *efx)
1747{
1748 efx_oword_t temp;
1749 int count;
1750
Ben Hutchings55668612008-05-16 21:16:10 +01001751 if ((falcon_rev(efx) < FALCON_REV_B0) ||
Ben Hutchings3273c2e2008-05-07 13:36:19 +01001752 (efx->loopback_mode != LOOPBACK_NONE))
Ben Hutchings8ceee662008-04-27 12:55:59 +01001753 return;
1754
1755 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1756 /* There is no point in draining more than once */
1757 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1758 return;
1759
1760 /* MAC stats will fail whilst the TX fifo is draining. Serialise
1761 * the drain sequence with the statistics fetch */
1762 spin_lock(&efx->stats_lock);
1763
1764 EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
1765 falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
1766
1767 /* Reset the MAC and EM block. */
1768 falcon_read(efx, &temp, GLB_CTL_REG_KER);
1769 EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
1770 EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
1771 EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
1772 falcon_write(efx, &temp, GLB_CTL_REG_KER);
1773
1774 count = 0;
1775 while (1) {
1776 falcon_read(efx, &temp, GLB_CTL_REG_KER);
1777 if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
1778 !EFX_OWORD_FIELD(temp, RST_XGRX) &&
1779 !EFX_OWORD_FIELD(temp, RST_EM)) {
1780 EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1781 count);
1782 break;
1783 }
1784 if (count > 20) {
1785 EFX_ERR(efx, "MAC reset failed\n");
1786 break;
1787 }
1788 count++;
1789 udelay(10);
1790 }
1791
1792 spin_unlock(&efx->stats_lock);
1793
1794 /* If we've reset the EM block and the link is up, then
1795 * we'll have to kick the XAUI link so the PHY can recover */
1796 if (efx->link_up && EFX_WORKAROUND_5147(efx))
1797 falcon_reset_xaui(efx);
1798}
1799
1800void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1801{
1802 efx_oword_t temp;
1803
Ben Hutchings55668612008-05-16 21:16:10 +01001804 if (falcon_rev(efx) < FALCON_REV_B0)
Ben Hutchings8ceee662008-04-27 12:55:59 +01001805 return;
1806
1807 /* Isolate the MAC -> RX */
1808 falcon_read(efx, &temp, RX_CFG_REG_KER);
1809 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
1810 falcon_write(efx, &temp, RX_CFG_REG_KER);
1811
1812 if (!efx->link_up)
1813 falcon_drain_tx_fifo(efx);
1814}
1815
1816void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1817{
1818 efx_oword_t reg;
1819 int link_speed;
1820 unsigned int tx_fc;
1821
1822 if (efx->link_options & GM_LPA_10000)
1823 link_speed = 0x3;
1824 else if (efx->link_options & GM_LPA_1000)
1825 link_speed = 0x2;
1826 else if (efx->link_options & GM_LPA_100)
1827 link_speed = 0x1;
1828 else
1829 link_speed = 0x0;
1830 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1831 * as advertised. Disable to ensure packets are not
1832 * indefinitely held and TX queue can be flushed at any point
1833 * while the link is down. */
1834 EFX_POPULATE_OWORD_5(reg,
1835 MAC_XOFF_VAL, 0xffff /* max pause time */,
1836 MAC_BCAD_ACPT, 1,
1837 MAC_UC_PROM, efx->promiscuous,
1838 MAC_LINK_STATUS, 1, /* always set */
1839 MAC_SPEED, link_speed);
1840 /* On B0, MAC backpressure can be disabled and packets get
1841 * discarded. */
Ben Hutchings55668612008-05-16 21:16:10 +01001842 if (falcon_rev(efx) >= FALCON_REV_B0) {
Ben Hutchings8ceee662008-04-27 12:55:59 +01001843 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1844 !efx->link_up);
1845 }
1846
1847 falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1848
1849 /* Restore the multicast hash registers. */
1850 falcon_set_multicast_hash(efx);
1851
1852 /* Transmission of pause frames when RX crosses the threshold is
1853 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1854 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1855 tx_fc = (efx->flow_control & EFX_FC_TX) ? 1 : 0;
1856 falcon_read(efx, &reg, RX_CFG_REG_KER);
1857 EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1858
1859 /* Unisolate the MAC -> RX */
Ben Hutchings55668612008-05-16 21:16:10 +01001860 if (falcon_rev(efx) >= FALCON_REV_B0)
Ben Hutchings8ceee662008-04-27 12:55:59 +01001861 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
1862 falcon_write(efx, &reg, RX_CFG_REG_KER);
1863}
1864
1865int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
1866{
1867 efx_oword_t reg;
1868 u32 *dma_done;
1869 int i;
1870
1871 if (disable_dma_stats)
1872 return 0;
1873
1874 /* Statistics fetch will fail if the MAC is in TX drain */
Ben Hutchings55668612008-05-16 21:16:10 +01001875 if (falcon_rev(efx) >= FALCON_REV_B0) {
Ben Hutchings8ceee662008-04-27 12:55:59 +01001876 efx_oword_t temp;
1877 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1878 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1879 return 0;
1880 }
1881
1882 dma_done = (efx->stats_buffer.addr + done_offset);
1883 *dma_done = FALCON_STATS_NOT_DONE;
1884 wmb(); /* ensure done flag is clear */
1885
1886 /* Initiate DMA transfer of stats */
1887 EFX_POPULATE_OWORD_2(reg,
1888 MAC_STAT_DMA_CMD, 1,
1889 MAC_STAT_DMA_ADR,
1890 efx->stats_buffer.dma_addr);
1891 falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
1892
1893 /* Wait for transfer to complete */
1894 for (i = 0; i < 400; i++) {
1895 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE)
1896 return 0;
1897 udelay(10);
1898 }
1899
1900 EFX_ERR(efx, "timed out waiting for statistics\n");
1901 return -ETIMEDOUT;
1902}
1903
1904/**************************************************************************
1905 *
1906 * PHY access via GMII
1907 *
1908 **************************************************************************
1909 */
1910
1911/* Use the top bit of the MII PHY id to indicate the PHY type
1912 * (1G/10G), with the remaining bits as the actual PHY id.
1913 *
1914 * This allows us to avoid leaking information from the mii_if_info
1915 * structure into other data structures.
1916 */
1917#define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR)
1918#define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
1919#define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1)
1920#define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1)
1921#define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1))
1922
1923
1924/* Packing the clause 45 port and device fields into a single value */
1925#define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
1926#define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH
1927#define MD_DEV_ADR_COMP_LBN 0
1928#define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH
1929
1930
1931/* Wait for GMII access to complete */
1932static int falcon_gmii_wait(struct efx_nic *efx)
1933{
1934 efx_dword_t md_stat;
1935 int count;
1936
1937 for (count = 0; count < 1000; count++) { /* wait upto 10ms */
1938 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
1939 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
1940 if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
1941 EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
1942 EFX_ERR(efx, "error from GMII access "
1943 EFX_DWORD_FMT"\n",
1944 EFX_DWORD_VAL(md_stat));
1945 return -EIO;
1946 }
1947 return 0;
1948 }
1949 udelay(10);
1950 }
1951 EFX_ERR(efx, "timed out waiting for GMII\n");
1952 return -ETIMEDOUT;
1953}
1954
1955/* Writes a GMII register of a PHY connected to Falcon using MDIO. */
1956static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
1957 int addr, int value)
1958{
Ben Hutchingsd3208b52008-05-16 21:20:00 +01001959 struct efx_nic *efx = net_dev->priv;
Ben Hutchings8ceee662008-04-27 12:55:59 +01001960 unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
1961 efx_oword_t reg;
1962
1963 /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
1964 * chosen so that the only current user, Falcon, can take the
1965 * packed value and use them directly.
1966 * Fail to build if this assumption is broken.
1967 */
1968 BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
1969 BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
1970 BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
1971 BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
1972
1973 if (phy_id2 == PHY_ADDR_INVALID)
1974 return;
1975
1976 /* See falcon_mdio_read for an explanation. */
1977 if (!(phy_id & FALCON_PHY_ID_10G)) {
1978 int mmd = ffs(efx->phy_op->mmds) - 1;
1979 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
1980 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
1981 & FALCON_PHY_ID_ID_MASK;
1982 }
1983
1984 EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
1985 addr, value);
1986
1987 spin_lock_bh(&efx->phy_lock);
1988
1989 /* Check MII not currently being accessed */
1990 if (falcon_gmii_wait(efx) != 0)
1991 goto out;
1992
1993 /* Write the address/ID register */
1994 EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
1995 falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
1996
1997 EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
1998 falcon_write(efx, &reg, MD_ID_REG_KER);
1999
2000 /* Write data */
2001 EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2002 falcon_write(efx, &reg, MD_TXD_REG_KER);
2003
2004 EFX_POPULATE_OWORD_2(reg,
2005 MD_WRC, 1,
2006 MD_GC, 0);
2007 falcon_write(efx, &reg, MD_CS_REG_KER);
2008
2009 /* Wait for data to be written */
2010 if (falcon_gmii_wait(efx) != 0) {
2011 /* Abort the write operation */
2012 EFX_POPULATE_OWORD_2(reg,
2013 MD_WRC, 0,
2014 MD_GC, 1);
2015 falcon_write(efx, &reg, MD_CS_REG_KER);
2016 udelay(10);
2017 }
2018
2019 out:
2020 spin_unlock_bh(&efx->phy_lock);
2021}
2022
2023/* Reads a GMII register from a PHY connected to Falcon. If no value
2024 * could be read, -1 will be returned. */
2025static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2026{
Ben Hutchingsd3208b52008-05-16 21:20:00 +01002027 struct efx_nic *efx = net_dev->priv;
Ben Hutchings8ceee662008-04-27 12:55:59 +01002028 unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2029 efx_oword_t reg;
2030 int value = -1;
2031
2032 if (phy_addr == PHY_ADDR_INVALID)
2033 return -1;
2034
2035 /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2036 * but the generic Linux code does not make any distinction or have
2037 * any state for this.
2038 * We spot the case where someone tried to talk 22 to a 45 PHY and
2039 * redirect the request to the lowest numbered MMD as a clause45
2040 * request. This is enough to allow simple queries like id and link
2041 * state to succeed. TODO: We may need to do more in future.
2042 */
2043 if (!(phy_id & FALCON_PHY_ID_10G)) {
2044 int mmd = ffs(efx->phy_op->mmds) - 1;
2045 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2046 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2047 & FALCON_PHY_ID_ID_MASK;
2048 }
2049
2050 spin_lock_bh(&efx->phy_lock);
2051
2052 /* Check MII not currently being accessed */
2053 if (falcon_gmii_wait(efx) != 0)
2054 goto out;
2055
2056 EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2057 falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2058
2059 EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2060 falcon_write(efx, &reg, MD_ID_REG_KER);
2061
2062 /* Request data to be read */
2063 EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2064 falcon_write(efx, &reg, MD_CS_REG_KER);
2065
2066 /* Wait for data to become available */
2067 value = falcon_gmii_wait(efx);
2068 if (value == 0) {
2069 falcon_read(efx, &reg, MD_RXD_REG_KER);
2070 value = EFX_OWORD_FIELD(reg, MD_RXD);
2071 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2072 phy_id, addr, value);
2073 } else {
2074 /* Abort the read operation */
2075 EFX_POPULATE_OWORD_2(reg,
2076 MD_RIC, 0,
2077 MD_GC, 1);
2078 falcon_write(efx, &reg, MD_CS_REG_KER);
2079
2080 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2081 "error %d\n", phy_id, addr, value);
2082 }
2083
2084 out:
2085 spin_unlock_bh(&efx->phy_lock);
2086
2087 return value;
2088}
2089
2090static void falcon_init_mdio(struct mii_if_info *gmii)
2091{
2092 gmii->mdio_read = falcon_mdio_read;
2093 gmii->mdio_write = falcon_mdio_write;
2094 gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2095 gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2096}
2097
2098static int falcon_probe_phy(struct efx_nic *efx)
2099{
2100 switch (efx->phy_type) {
2101 case PHY_TYPE_10XPRESS:
2102 efx->phy_op = &falcon_tenxpress_phy_ops;
2103 break;
2104 case PHY_TYPE_XFP:
2105 efx->phy_op = &falcon_xfp_phy_ops;
2106 break;
2107 default:
2108 EFX_ERR(efx, "Unknown PHY type %d\n",
2109 efx->phy_type);
2110 return -1;
2111 }
Ben Hutchings3273c2e2008-05-07 13:36:19 +01002112
2113 efx->loopback_modes = LOOPBACKS_10G_INTERNAL | efx->phy_op->loopbacks;
Ben Hutchings8ceee662008-04-27 12:55:59 +01002114 return 0;
2115}
2116
2117/* This call is responsible for hooking in the MAC and PHY operations */
2118int falcon_probe_port(struct efx_nic *efx)
2119{
2120 int rc;
2121
2122 /* Hook in PHY operations table */
2123 rc = falcon_probe_phy(efx);
2124 if (rc)
2125 return rc;
2126
2127 /* Set up GMII structure for PHY */
2128 efx->mii.supports_gmii = 1;
2129 falcon_init_mdio(&efx->mii);
2130
2131 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
Ben Hutchings55668612008-05-16 21:16:10 +01002132 if (falcon_rev(efx) >= FALCON_REV_B0)
Ben Hutchings8ceee662008-04-27 12:55:59 +01002133 efx->flow_control = EFX_FC_RX | EFX_FC_TX;
2134 else
2135 efx->flow_control = EFX_FC_RX;
2136
2137 /* Allocate buffer for stats */
2138 rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2139 FALCON_MAC_STATS_SIZE);
2140 if (rc)
2141 return rc;
2142 EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2143 (unsigned long long)efx->stats_buffer.dma_addr,
2144 efx->stats_buffer.addr,
2145 virt_to_phys(efx->stats_buffer.addr));
2146
2147 return 0;
2148}
2149
2150void falcon_remove_port(struct efx_nic *efx)
2151{
2152 falcon_free_buffer(efx, &efx->stats_buffer);
2153}
2154
2155/**************************************************************************
2156 *
2157 * Multicast filtering
2158 *
2159 **************************************************************************
2160 */
2161
2162void falcon_set_multicast_hash(struct efx_nic *efx)
2163{
2164 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2165
2166 /* Broadcast packets go through the multicast hash filter.
2167 * ether_crc_le() of the broadcast address is 0xbe2612ff
2168 * so we always add bit 0xff to the mask.
2169 */
2170 set_bit_le(0xff, mc_hash->byte);
2171
2172 falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2173 falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2174}
2175
2176/**************************************************************************
2177 *
2178 * Device reset
2179 *
2180 **************************************************************************
2181 */
2182
2183/* Resets NIC to known state. This routine must be called in process
2184 * context and is allowed to sleep. */
2185int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2186{
2187 struct falcon_nic_data *nic_data = efx->nic_data;
2188 efx_oword_t glb_ctl_reg_ker;
2189 int rc;
2190
2191 EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2192
2193 /* Initiate device reset */
2194 if (method == RESET_TYPE_WORLD) {
2195 rc = pci_save_state(efx->pci_dev);
2196 if (rc) {
2197 EFX_ERR(efx, "failed to backup PCI state of primary "
2198 "function prior to hardware reset\n");
2199 goto fail1;
2200 }
2201 if (FALCON_IS_DUAL_FUNC(efx)) {
2202 rc = pci_save_state(nic_data->pci_dev2);
2203 if (rc) {
2204 EFX_ERR(efx, "failed to backup PCI state of "
2205 "secondary function prior to "
2206 "hardware reset\n");
2207 goto fail2;
2208 }
2209 }
2210
2211 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2212 EXT_PHY_RST_DUR, 0x7,
2213 SWRST, 1);
2214 } else {
2215 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2216 EXCLUDE_FROM_RESET : 0);
2217
2218 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2219 EXT_PHY_RST_CTL, reset_phy,
2220 PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2221 PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2222 PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2223 EE_RST_CTL, EXCLUDE_FROM_RESET,
2224 EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2225 SWRST, 1);
2226 }
2227 falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2228
2229 EFX_LOG(efx, "waiting for hardware reset\n");
2230 schedule_timeout_uninterruptible(HZ / 20);
2231
2232 /* Restore PCI configuration if needed */
2233 if (method == RESET_TYPE_WORLD) {
2234 if (FALCON_IS_DUAL_FUNC(efx)) {
2235 rc = pci_restore_state(nic_data->pci_dev2);
2236 if (rc) {
2237 EFX_ERR(efx, "failed to restore PCI config for "
2238 "the secondary function\n");
2239 goto fail3;
2240 }
2241 }
2242 rc = pci_restore_state(efx->pci_dev);
2243 if (rc) {
2244 EFX_ERR(efx, "failed to restore PCI config for the "
2245 "primary function\n");
2246 goto fail4;
2247 }
2248 EFX_LOG(efx, "successfully restored PCI config\n");
2249 }
2250
2251 /* Assert that reset complete */
2252 falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2253 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2254 rc = -ETIMEDOUT;
2255 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2256 goto fail5;
2257 }
2258 EFX_LOG(efx, "hardware reset complete\n");
2259
2260 return 0;
2261
2262 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2263fail2:
2264fail3:
2265 pci_restore_state(efx->pci_dev);
2266fail1:
2267fail4:
2268fail5:
2269 return rc;
2270}
2271
2272/* Zeroes out the SRAM contents. This routine must be called in
2273 * process context and is allowed to sleep.
2274 */
2275static int falcon_reset_sram(struct efx_nic *efx)
2276{
2277 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2278 int count;
2279
2280 /* Set the SRAM wake/sleep GPIO appropriately. */
2281 falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2282 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2283 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2284 falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2285
2286 /* Initiate SRAM reset */
2287 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2288 SRAM_OOB_BT_INIT_EN, 1,
2289 SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2290 falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2291
2292 /* Wait for SRAM reset to complete */
2293 count = 0;
2294 do {
2295 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2296
2297 /* SRAM reset is slow; expect around 16ms */
2298 schedule_timeout_uninterruptible(HZ / 50);
2299
2300 /* Check for reset complete */
2301 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2302 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2303 EFX_LOG(efx, "SRAM reset complete\n");
2304
2305 return 0;
2306 }
2307 } while (++count < 20); /* wait upto 0.4 sec */
2308
2309 EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2310 return -ETIMEDOUT;
2311}
2312
2313/* Extract non-volatile configuration */
2314static int falcon_probe_nvconfig(struct efx_nic *efx)
2315{
2316 struct falcon_nvconfig *nvconfig;
2317 efx_oword_t nic_stat;
2318 int device_id;
2319 unsigned addr_len;
2320 size_t offset, len;
2321 int magic_num, struct_ver, board_rev;
2322 int rc;
2323
2324 /* Find the boot device. */
2325 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2326 if (EFX_OWORD_FIELD(nic_stat, SF_PRST)) {
2327 device_id = EE_SPI_FLASH;
2328 addr_len = 3;
2329 } else if (EFX_OWORD_FIELD(nic_stat, EE_PRST)) {
2330 device_id = EE_SPI_EEPROM;
2331 addr_len = 2;
2332 } else {
2333 return -ENODEV;
2334 }
2335
2336 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2337
2338 /* Read the whole configuration structure into memory. */
2339 for (offset = 0; offset < sizeof(*nvconfig); offset += len) {
2340 len = min(sizeof(*nvconfig) - offset,
2341 (size_t) FALCON_SPI_MAX_LEN);
2342 rc = falcon_spi_read(efx, device_id, SPI_READ,
2343 NVCONFIG_BASE + offset, addr_len,
2344 (char *)nvconfig + offset, len);
2345 if (rc)
2346 goto out;
2347 }
2348
2349 /* Read the MAC addresses */
2350 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2351
2352 /* Read the board configuration. */
2353 magic_num = le16_to_cpu(nvconfig->board_magic_num);
2354 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2355
2356 if (magic_num != NVCONFIG_BOARD_MAGIC_NUM || struct_ver < 2) {
2357 EFX_ERR(efx, "Non volatile memory bad magic=%x ver=%x "
2358 "therefore using defaults\n", magic_num, struct_ver);
2359 efx->phy_type = PHY_TYPE_NONE;
2360 efx->mii.phy_id = PHY_ADDR_INVALID;
2361 board_rev = 0;
2362 } else {
2363 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2364
2365 efx->phy_type = v2->port0_phy_type;
2366 efx->mii.phy_id = v2->port0_phy_addr;
2367 board_rev = le16_to_cpu(v2->board_revision);
2368 }
2369
2370 EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2371
2372 efx_set_board_info(efx, board_rev);
2373
2374 out:
2375 kfree(nvconfig);
2376 return rc;
2377}
2378
2379/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2380 * count, port speed). Set workaround and feature flags accordingly.
2381 */
2382static int falcon_probe_nic_variant(struct efx_nic *efx)
2383{
2384 efx_oword_t altera_build;
2385
2386 falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2387 if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2388 EFX_ERR(efx, "Falcon FPGA not supported\n");
2389 return -ENODEV;
2390 }
2391
Ben Hutchings55668612008-05-16 21:16:10 +01002392 switch (falcon_rev(efx)) {
Ben Hutchings8ceee662008-04-27 12:55:59 +01002393 case FALCON_REV_A0:
2394 case 0xff:
2395 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2396 return -ENODEV;
2397
2398 case FALCON_REV_A1:{
2399 efx_oword_t nic_stat;
2400
2401 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2402
2403 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2404 EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2405 return -ENODEV;
2406 }
2407 if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
2408 EFX_ERR(efx, "1G mode not supported\n");
2409 return -ENODEV;
2410 }
2411 break;
2412 }
2413
2414 case FALCON_REV_B0:
2415 break;
2416
2417 default:
Ben Hutchings55668612008-05-16 21:16:10 +01002418 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
Ben Hutchings8ceee662008-04-27 12:55:59 +01002419 return -ENODEV;
2420 }
2421
2422 return 0;
2423}
2424
2425int falcon_probe_nic(struct efx_nic *efx)
2426{
2427 struct falcon_nic_data *nic_data;
2428 int rc;
2429
Ben Hutchings8ceee662008-04-27 12:55:59 +01002430 /* Allocate storage for hardware specific data */
2431 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
Ben Hutchings5daab962008-05-16 21:19:43 +01002432 efx->nic_data = nic_data;
Ben Hutchings8ceee662008-04-27 12:55:59 +01002433
2434 /* Determine number of ports etc. */
2435 rc = falcon_probe_nic_variant(efx);
2436 if (rc)
2437 goto fail1;
2438
2439 /* Probe secondary function if expected */
2440 if (FALCON_IS_DUAL_FUNC(efx)) {
2441 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2442
2443 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2444 dev))) {
2445 if (dev->bus == efx->pci_dev->bus &&
2446 dev->devfn == efx->pci_dev->devfn + 1) {
2447 nic_data->pci_dev2 = dev;
2448 break;
2449 }
2450 }
2451 if (!nic_data->pci_dev2) {
2452 EFX_ERR(efx, "failed to find secondary function\n");
2453 rc = -ENODEV;
2454 goto fail2;
2455 }
2456 }
2457
2458 /* Now we can reset the NIC */
2459 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2460 if (rc) {
2461 EFX_ERR(efx, "failed to reset NIC\n");
2462 goto fail3;
2463 }
2464
2465 /* Allocate memory for INT_KER */
2466 rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2467 if (rc)
2468 goto fail4;
2469 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2470
2471 EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2472 (unsigned long long)efx->irq_status.dma_addr,
2473 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2474
2475 /* Read in the non-volatile configuration */
2476 rc = falcon_probe_nvconfig(efx);
2477 if (rc)
2478 goto fail5;
2479
Ben Hutchings37b5a602008-05-30 22:27:04 +01002480 /* Initialise I2C adapter */
2481 efx->i2c_adap.owner = THIS_MODULE;
2482 efx->i2c_adap.class = I2C_CLASS_HWMON;
2483 nic_data->i2c_data = falcon_i2c_bit_operations;
2484 nic_data->i2c_data.data = efx;
2485 efx->i2c_adap.algo_data = &nic_data->i2c_data;
2486 efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2487 strcpy(efx->i2c_adap.name, "SFC4000 GPIO");
2488 rc = i2c_bit_add_bus(&efx->i2c_adap);
2489 if (rc)
2490 goto fail5;
2491
Ben Hutchings8ceee662008-04-27 12:55:59 +01002492 return 0;
2493
2494 fail5:
2495 falcon_free_buffer(efx, &efx->irq_status);
2496 fail4:
Ben Hutchings8ceee662008-04-27 12:55:59 +01002497 fail3:
2498 if (nic_data->pci_dev2) {
2499 pci_dev_put(nic_data->pci_dev2);
2500 nic_data->pci_dev2 = NULL;
2501 }
2502 fail2:
Ben Hutchings8ceee662008-04-27 12:55:59 +01002503 fail1:
2504 kfree(efx->nic_data);
2505 return rc;
2506}
2507
2508/* This call performs hardware-specific global initialisation, such as
2509 * defining the descriptor cache sizes and number of RSS channels.
2510 * It does not set up any buffers, descriptor rings or event queues.
2511 */
2512int falcon_init_nic(struct efx_nic *efx)
2513{
Ben Hutchings8ceee662008-04-27 12:55:59 +01002514 efx_oword_t temp;
2515 unsigned thresh;
2516 int rc;
2517
Ben Hutchings8ceee662008-04-27 12:55:59 +01002518 /* Set up the address region register. This is only needed
2519 * for the B0 FPGA, but since we are just pushing in the
2520 * reset defaults this may as well be unconditional. */
2521 EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0,
2522 ADR_REGION1, (1 << 16),
2523 ADR_REGION2, (2 << 16),
2524 ADR_REGION3, (3 << 16));
2525 falcon_write(efx, &temp, ADR_REGION_REG_KER);
2526
2527 /* Use on-chip SRAM */
2528 falcon_read(efx, &temp, NIC_STAT_REG);
2529 EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2530 falcon_write(efx, &temp, NIC_STAT_REG);
2531
2532 /* Set buffer table mode */
2533 EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2534 falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2535
2536 rc = falcon_reset_sram(efx);
2537 if (rc)
2538 return rc;
2539
2540 /* Set positions of descriptor caches in SRAM. */
2541 EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2542 falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2543 EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2544 falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2545
2546 /* Set TX descriptor cache size. */
2547 BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2548 EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2549 falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
2550
2551 /* Set RX descriptor cache size. Set low watermark to size-8, as
2552 * this allows most efficient prefetching.
2553 */
2554 BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2555 EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2556 falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
2557 EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2558 falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
2559
2560 /* Clear the parity enables on the TX data fifos as
2561 * they produce false parity errors because of timing issues
2562 */
2563 if (EFX_WORKAROUND_5129(efx)) {
2564 falcon_read(efx, &temp, SPARE_REG_KER);
2565 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
2566 falcon_write(efx, &temp, SPARE_REG_KER);
2567 }
2568
2569 /* Enable all the genuinely fatal interrupts. (They are still
2570 * masked by the overall interrupt mask, controlled by
2571 * falcon_interrupts()).
2572 *
2573 * Note: All other fatal interrupts are enabled
2574 */
2575 EFX_POPULATE_OWORD_3(temp,
2576 ILL_ADR_INT_KER_EN, 1,
2577 RBUF_OWN_INT_KER_EN, 1,
2578 TBUF_OWN_INT_KER_EN, 1);
2579 EFX_INVERT_OWORD(temp);
2580 falcon_write(efx, &temp, FATAL_INTR_REG_KER);
2581
2582 /* Set number of RSS queues for receive path. */
2583 falcon_read(efx, &temp, RX_FILTER_CTL_REG);
Ben Hutchings55668612008-05-16 21:16:10 +01002584 if (falcon_rev(efx) >= FALCON_REV_B0)
Ben Hutchings8ceee662008-04-27 12:55:59 +01002585 EFX_SET_OWORD_FIELD(temp, NUM_KER, 0);
2586 else
2587 EFX_SET_OWORD_FIELD(temp, NUM_KER, efx->rss_queues - 1);
2588 if (EFX_WORKAROUND_7244(efx)) {
2589 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
2590 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
2591 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
2592 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
2593 }
2594 falcon_write(efx, &temp, RX_FILTER_CTL_REG);
2595
2596 falcon_setup_rss_indir_table(efx);
2597
2598 /* Setup RX. Wait for descriptor is broken and must
2599 * be disabled. RXDP recovery shouldn't be needed, but is.
2600 */
2601 falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
2602 EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
2603 EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
2604 if (EFX_WORKAROUND_5583(efx))
2605 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
2606 falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
2607
2608 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
2609 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
2610 */
2611 falcon_read(efx, &temp, TX_CFG2_REG_KER);
2612 EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
2613 EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
2614 EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
2615 EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
2616 EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
2617 /* Enable SW_EV to inherit in char driver - assume harmless here */
2618 EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
2619 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
2620 EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
2621 /* Squash TX of packets of 16 bytes or less */
Ben Hutchings55668612008-05-16 21:16:10 +01002622 if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
Ben Hutchings8ceee662008-04-27 12:55:59 +01002623 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
2624 falcon_write(efx, &temp, TX_CFG2_REG_KER);
2625
2626 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2627 * descriptors (which is bad).
2628 */
2629 falcon_read(efx, &temp, TX_CFG_REG_KER);
2630 EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
2631 falcon_write(efx, &temp, TX_CFG_REG_KER);
2632
2633 /* RX config */
2634 falcon_read(efx, &temp, RX_CFG_REG_KER);
2635 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
2636 if (EFX_WORKAROUND_7575(efx))
2637 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
2638 (3 * 4096) / 32);
Ben Hutchings55668612008-05-16 21:16:10 +01002639 if (falcon_rev(efx) >= FALCON_REV_B0)
Ben Hutchings8ceee662008-04-27 12:55:59 +01002640 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
2641
2642 /* RX FIFO flow control thresholds */
2643 thresh = ((rx_xon_thresh_bytes >= 0) ?
2644 rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
2645 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
2646 thresh = ((rx_xoff_thresh_bytes >= 0) ?
2647 rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
2648 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
2649 /* RX control FIFO thresholds [32 entries] */
2650 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 25);
2651 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 20);
2652 falcon_write(efx, &temp, RX_CFG_REG_KER);
2653
2654 /* Set destination of both TX and RX Flush events */
Ben Hutchings55668612008-05-16 21:16:10 +01002655 if (falcon_rev(efx) >= FALCON_REV_B0) {
Ben Hutchings8ceee662008-04-27 12:55:59 +01002656 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
2657 falcon_write(efx, &temp, DP_CTRL_REG);
2658 }
2659
2660 return 0;
2661}
2662
2663void falcon_remove_nic(struct efx_nic *efx)
2664{
2665 struct falcon_nic_data *nic_data = efx->nic_data;
Ben Hutchings37b5a602008-05-30 22:27:04 +01002666 int rc;
2667
2668 rc = i2c_del_adapter(&efx->i2c_adap);
2669 BUG_ON(rc);
Ben Hutchings8ceee662008-04-27 12:55:59 +01002670
2671 falcon_free_buffer(efx, &efx->irq_status);
2672
Ben Hutchings91ad7572008-05-16 21:14:27 +01002673 falcon_reset_hw(efx, RESET_TYPE_ALL);
Ben Hutchings8ceee662008-04-27 12:55:59 +01002674
2675 /* Release the second function after the reset */
2676 if (nic_data->pci_dev2) {
2677 pci_dev_put(nic_data->pci_dev2);
2678 nic_data->pci_dev2 = NULL;
2679 }
2680
2681 /* Tear down the private nic state */
2682 kfree(efx->nic_data);
2683 efx->nic_data = NULL;
2684}
2685
2686void falcon_update_nic_stats(struct efx_nic *efx)
2687{
2688 efx_oword_t cnt;
2689
2690 falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
2691 efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
2692}
2693
2694/**************************************************************************
2695 *
2696 * Revision-dependent attributes used by efx.c
2697 *
2698 **************************************************************************
2699 */
2700
2701struct efx_nic_type falcon_a_nic_type = {
2702 .mem_bar = 2,
2703 .mem_map_size = 0x20000,
2704 .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
2705 .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
2706 .buf_tbl_base = BUF_TBL_KER_A1,
2707 .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
2708 .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
2709 .txd_ring_mask = FALCON_TXD_RING_MASK,
2710 .rxd_ring_mask = FALCON_RXD_RING_MASK,
2711 .evq_size = FALCON_EVQ_SIZE,
2712 .max_dma_mask = FALCON_DMA_MASK,
2713 .tx_dma_mask = FALCON_TX_DMA_MASK,
2714 .bug5391_mask = 0xf,
2715 .rx_xoff_thresh = 2048,
2716 .rx_xon_thresh = 512,
2717 .rx_buffer_padding = 0x24,
2718 .max_interrupt_mode = EFX_INT_MODE_MSI,
2719 .phys_addr_channels = 4,
2720};
2721
2722struct efx_nic_type falcon_b_nic_type = {
2723 .mem_bar = 2,
2724 /* Map everything up to and including the RSS indirection
2725 * table. Don't map MSI-X table, MSI-X PBA since Linux
2726 * requires that they not be mapped. */
2727 .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
2728 .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
2729 .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
2730 .buf_tbl_base = BUF_TBL_KER_B0,
2731 .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
2732 .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
2733 .txd_ring_mask = FALCON_TXD_RING_MASK,
2734 .rxd_ring_mask = FALCON_RXD_RING_MASK,
2735 .evq_size = FALCON_EVQ_SIZE,
2736 .max_dma_mask = FALCON_DMA_MASK,
2737 .tx_dma_mask = FALCON_TX_DMA_MASK,
2738 .bug5391_mask = 0,
2739 .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
2740 .rx_xon_thresh = 27648, /* ~3*max MTU */
2741 .rx_buffer_padding = 0,
2742 .max_interrupt_mode = EFX_INT_MODE_MSIX,
2743 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
2744 * interrupt handler only supports 32
2745 * channels */
2746};
2747