blob: 60873a4f6171e8a6faaf8b6f201ffa0dc6451ae4 [file] [log] [blame]
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001/*
2 * PHY functions
3 *
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03004 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
Nick Kossifidis33a31822009-02-09 06:00:34 +02005 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03006 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02007 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
Jiri Slabyfa1c1142007-08-12 17:33:16 +02008 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24
25#include "ath5k.h"
26#include "reg.h"
27#include "base.h"
Nick Kossifidis33a31822009-02-09 06:00:34 +020028#include "rfbuffer.h"
29#include "rfgain.h"
Jiri Slabyfa1c1142007-08-12 17:33:16 +020030
31/*
32 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
33 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020034static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
35 const struct ath5k_rf_reg *rf_regs,
36 u32 val, u8 reg_id, bool set)
Jiri Slabyfa1c1142007-08-12 17:33:16 +020037{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020038 const struct ath5k_rf_reg *rfreg = NULL;
39 u8 offset, bank, num_bits, col, position;
40 u16 entry;
41 u32 mask, data, last_bit, bits_shifted, first_bit;
42 u32 *rfb;
43 s32 bits_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020044 int i;
45
46 data = 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020047 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020048
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020049 for (i = 0; i < ah->ah_rf_regs_count; i++) {
50 if (rf_regs[i].index == reg_id) {
51 rfreg = &rf_regs[i];
52 break;
53 }
54 }
55
56 if (rfb == NULL || rfreg == NULL) {
57 ATH5K_PRINTF("Rf register not found!\n");
Jiri Slabyfa1c1142007-08-12 17:33:16 +020058 /* should not happen */
59 return 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020060 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +020061
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020062 bank = rfreg->bank;
63 num_bits = rfreg->field.len;
64 first_bit = rfreg->field.pos;
65 col = rfreg->field.col;
66
67 /* first_bit is an offset from bank's
68 * start. Since we have all banks on
69 * the same array, we use this offset
70 * to mark each bank's start */
71 offset = ah->ah_offset[bank];
72
73 /* Boundary check */
74 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +020075 ATH5K_PRINTF("invalid values at offset %u\n", offset);
76 return 0;
77 }
78
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020079 entry = ((first_bit - 1) / 8) + offset;
80 position = (first_bit - 1) % 8;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020081
Joe Perchese9010e22008-03-07 14:21:16 -080082 if (set)
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020083 data = ath5k_hw_bitswap(val, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020084
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020085 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
86 position = 0, entry++) {
87
88 last_bit = (position + bits_left > 8) ? 8 :
89 position + bits_left;
90
91 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
92 (col * 8);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020093
Joe Perchese9010e22008-03-07 14:21:16 -080094 if (set) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020095 rfb[entry] &= ~mask;
96 rfb[entry] |= ((data << position) << (col * 8)) & mask;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020097 data >>= (8 - position);
98 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020099 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
100 << bits_shifted;
101 bits_shifted += last_bit - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200102 }
103
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200104 bits_left -= 8 - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200105 }
106
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200107 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200108
109 return data;
110}
111
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200112/**********************\
113* RF Gain optimization *
114\**********************/
115
116/*
117 * This code is used to optimize rf gain on different environments
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200118 * (temperature mostly) based on feedback from a power detector.
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200119 *
120 * It's only used on RF5111 and RF5112, later RF chips seem to have
121 * auto adjustment on hw -notice they have a much smaller BANK 7 and
122 * no gain optimization ladder-.
123 *
124 * For more infos check out this patent doc
125 * http://www.freepatentsonline.com/7400691.html
126 *
127 * This paper describes power drops as seen on the receiver due to
128 * probe packets
129 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
130 * %20of%20Power%20Control.pdf
131 *
132 * And this is the MadWiFi bug entry related to the above
133 * http://madwifi-project.org/ticket/1659
134 * with various measurements and diagrams
135 *
136 * TODO: Deal with power drops due to probes by setting an apropriate
137 * tx power on the probe packets ! Make this part of the calibration process.
138 */
139
140/* Initialize ah_gain durring attach */
141int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
142{
143 /* Initialize the gain optimization values */
144 switch (ah->ah_radio) {
145 case AR5K_RF5111:
146 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
147 ah->ah_gain.g_low = 20;
148 ah->ah_gain.g_high = 35;
149 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
150 break;
151 case AR5K_RF5112:
152 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
153 ah->ah_gain.g_low = 20;
154 ah->ah_gain.g_high = 85;
155 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
156 break;
157 default:
158 return -EINVAL;
159 }
160
161 return 0;
162}
163
164/* Schedule a gain probe check on the next transmited packet.
165 * That means our next packet is going to be sent with lower
166 * tx power and a Peak to Average Power Detector (PAPD) will try
167 * to measure the gain.
168 *
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200169 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
170 * just after we enable the probe so that we don't mess with
171 * standard traffic ? Maybe it's time to use sw interrupts and
172 * a probe tasklet !!!
173 */
174static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
175{
176
177 /* Skip if gain calibration is inactive or
178 * we already handle a probe request */
179 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
180 return;
181
Nick Kossifidis8f655dd2009-03-15 22:20:35 +0200182 /* Send the packet with 2dB below max power as
183 * patent doc suggest */
Nick Kossifidisa0823812009-04-30 15:55:44 -0400184 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200185 AR5K_PHY_PAPD_PROBE_TXPOWER) |
186 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
187
188 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
189
190}
191
192/* Calculate gain_F measurement correction
193 * based on the current step for RF5112 rev. 2 */
194static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200195{
196 u32 mix, step;
197 u32 *rf;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200198 const struct ath5k_gain_opt *go;
199 const struct ath5k_gain_opt_step *g_step;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200200 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200201
202 /* Only RF5112 Rev. 2 supports it */
203 if ((ah->ah_radio != AR5K_RF5112) ||
204 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
205 return 0;
206
207 go = &rfgain_opt_5112;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200208 rf_regs = rf_regs_5112a;
209 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200210
211 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200212
213 if (ah->ah_rf_banks == NULL)
214 return 0;
215
216 rf = ah->ah_rf_banks;
217 ah->ah_gain.g_f_corr = 0;
218
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200219 /* No VGA (Variable Gain Amplifier) override, skip */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200220 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200221 return 0;
222
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200223 /* Mix gain stepping */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200224 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200225
226 /* Mix gain override */
227 mix = g_step->gos_param[0];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200228
229 switch (mix) {
230 case 3:
231 ah->ah_gain.g_f_corr = step * 2;
232 break;
233 case 2:
234 ah->ah_gain.g_f_corr = (step - 5) * 2;
235 break;
236 case 1:
237 ah->ah_gain.g_f_corr = step;
238 break;
239 default:
240 ah->ah_gain.g_f_corr = 0;
241 break;
242 }
243
244 return ah->ah_gain.g_f_corr;
245}
246
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200247/* Check if current gain_F measurement is in the range of our
248 * power detector windows. If we get a measurement outside range
249 * we know it's not accurate (detectors can't measure anything outside
250 * their detection window) so we must ignore it */
251static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200252{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200253 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200254 u32 step, mix_ovr, level[4];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200255 u32 *rf;
256
257 if (ah->ah_rf_banks == NULL)
258 return false;
259
260 rf = ah->ah_rf_banks;
261
262 if (ah->ah_radio == AR5K_RF5111) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200263
264 rf_regs = rf_regs_5111;
265 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
266
267 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
268 false);
269
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200270 level[0] = 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200271 level[1] = (step == 63) ? 50 : step + 4;
272 level[2] = (step != 63) ? 64 : level[0];
273 level[3] = level[2] + 50 ;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200274
275 ah->ah_gain.g_high = level[3] -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200276 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200277 ah->ah_gain.g_low = level[0] +
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200278 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200279 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200280
281 rf_regs = rf_regs_5112;
282 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
283
284 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
285 false);
286
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200287 level[0] = level[2] = 0;
288
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200289 if (mix_ovr == 1) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200290 level[1] = level[3] = 83;
291 } else {
292 level[1] = level[3] = 107;
293 ah->ah_gain.g_high = 55;
294 }
295 }
296
297 return (ah->ah_gain.g_current >= level[0] &&
298 ah->ah_gain.g_current <= level[1]) ||
299 (ah->ah_gain.g_current >= level[2] &&
300 ah->ah_gain.g_current <= level[3]);
301}
302
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200303/* Perform gain_F adjustment by choosing the right set
304 * of parameters from rf gain optimization ladder */
305static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200306{
307 const struct ath5k_gain_opt *go;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200308 const struct ath5k_gain_opt_step *g_step;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200309 int ret = 0;
310
311 switch (ah->ah_radio) {
312 case AR5K_RF5111:
313 go = &rfgain_opt_5111;
314 break;
315 case AR5K_RF5112:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200316 go = &rfgain_opt_5112;
317 break;
318 default:
319 return 0;
320 }
321
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200322 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200323
324 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200325
326 /* Reached maximum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200327 if (ah->ah_gain.g_step_idx == 0)
328 return -1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200329
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200330 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
331 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
332 ah->ah_gain.g_step_idx > 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200333 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200334 ah->ah_gain.g_target -= 2 *
335 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200336 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200337
338 ret = 1;
339 goto done;
340 }
341
342 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200343
344 /* Reached minimum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200345 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
346 return -2;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200347
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200348 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
349 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
350 ah->ah_gain.g_step_idx < go->go_steps_count-1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200351 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200352 ah->ah_gain.g_target -= 2 *
353 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200354 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200355
356 ret = 2;
357 goto done;
358 }
359
360done:
361 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
362 "ret %d, gain step %u, current gain %u, target gain %u\n",
363 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
364 ah->ah_gain.g_target);
365
366 return ret;
367}
368
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200369/* Main callback for thermal rf gain calibration engine
370 * Check for a new gain reading and schedule an adjustment
371 * if needed.
372 *
373 * TODO: Use sw interrupt to schedule reset if gain_F needs
374 * adjustment */
375enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
376{
377 u32 data, type;
378 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
379
380 ATH5K_TRACE(ah->ah_sc);
381
382 if (ah->ah_rf_banks == NULL ||
383 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
384 return AR5K_RFGAIN_INACTIVE;
385
386 /* No check requested, either engine is inactive
387 * or an adjustment is already requested */
388 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
389 goto done;
390
391 /* Read the PAPD (Peak to Average Power Detector)
392 * register */
393 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
394
395 /* No probe is scheduled, read gain_F measurement */
396 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
397 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
398 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
399
400 /* If tx packet is CCK correct the gain_F measurement
401 * by cck ofdm gain delta */
402 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
403 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
404 ah->ah_gain.g_current +=
405 ee->ee_cck_ofdm_gain_delta;
406 else
407 ah->ah_gain.g_current +=
408 AR5K_GAIN_CCK_PROBE_CORR;
409 }
410
411 /* Further correct gain_F measurement for
412 * RF5112A radios */
413 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
414 ath5k_hw_rf_gainf_corr(ah);
415 ah->ah_gain.g_current =
416 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
417 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
418 0;
419 }
420
421 /* Check if measurement is ok and if we need
422 * to adjust gain, schedule a gain adjustment,
423 * else switch back to the acive state */
424 if (ath5k_hw_rf_check_gainf_readback(ah) &&
425 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
426 ath5k_hw_rf_gainf_adjust(ah)) {
427 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
428 } else {
429 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
430 }
431 }
432
433done:
434 return ah->ah_gain.g_state;
435}
436
437/* Write initial rf gain table to set the RF sensitivity
438 * this one works on all RF chips and has nothing to do
439 * with gain_F calibration */
440int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
441{
442 const struct ath5k_ini_rfgain *ath5k_rfg;
443 unsigned int i, size;
444
445 switch (ah->ah_radio) {
446 case AR5K_RF5111:
447 ath5k_rfg = rfgain_5111;
448 size = ARRAY_SIZE(rfgain_5111);
449 break;
450 case AR5K_RF5112:
451 ath5k_rfg = rfgain_5112;
452 size = ARRAY_SIZE(rfgain_5112);
453 break;
454 case AR5K_RF2413:
455 ath5k_rfg = rfgain_2413;
456 size = ARRAY_SIZE(rfgain_2413);
457 break;
458 case AR5K_RF2316:
459 ath5k_rfg = rfgain_2316;
460 size = ARRAY_SIZE(rfgain_2316);
461 break;
462 case AR5K_RF5413:
463 ath5k_rfg = rfgain_5413;
464 size = ARRAY_SIZE(rfgain_5413);
465 break;
466 case AR5K_RF2317:
467 case AR5K_RF2425:
468 ath5k_rfg = rfgain_2425;
469 size = ARRAY_SIZE(rfgain_2425);
470 break;
471 default:
472 return -EINVAL;
473 }
474
475 switch (freq) {
476 case AR5K_INI_RFGAIN_2GHZ:
477 case AR5K_INI_RFGAIN_5GHZ:
478 break;
479 default:
480 return -EINVAL;
481 }
482
483 for (i = 0; i < size; i++) {
484 AR5K_REG_WAIT(i);
485 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
486 (u32)ath5k_rfg[i].rfg_register);
487 }
488
489 return 0;
490}
491
492
493
494/********************\
495* RF Registers setup *
496\********************/
497
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200498
499/*
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200500 * Setup RF registers by writing rf buffer on hw
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200501 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200502int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200503 unsigned int mode)
504{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200505 const struct ath5k_rf_reg *rf_regs;
506 const struct ath5k_ini_rfbuffer *ini_rfb;
507 const struct ath5k_gain_opt *go = NULL;
508 const struct ath5k_gain_opt_step *g_step;
509 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
510 u8 ee_mode = 0;
511 u32 *rfb;
512 int i, obdb = -1, bank = -1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200513
514 switch (ah->ah_radio) {
515 case AR5K_RF5111:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200516 rf_regs = rf_regs_5111;
517 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
518 ini_rfb = rfb_5111;
519 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
520 go = &rfgain_opt_5111;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200521 break;
522 case AR5K_RF5112:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200523 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
524 rf_regs = rf_regs_5112a;
525 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
526 ini_rfb = rfb_5112a;
527 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
528 } else {
529 rf_regs = rf_regs_5112;
530 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
531 ini_rfb = rfb_5112;
532 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
533 }
534 go = &rfgain_opt_5112;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200535 break;
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500536 case AR5K_RF2413:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200537 rf_regs = rf_regs_2413;
538 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
539 ini_rfb = rfb_2413;
540 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
541 break;
542 case AR5K_RF2316:
543 rf_regs = rf_regs_2316;
544 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
545 ini_rfb = rfb_2316;
546 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
547 break;
548 case AR5K_RF5413:
549 rf_regs = rf_regs_5413;
550 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
551 ini_rfb = rfb_5413;
552 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
553 break;
554 case AR5K_RF2317:
555 rf_regs = rf_regs_2425;
556 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
557 ini_rfb = rfb_2317;
558 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500559 break;
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300560 case AR5K_RF2425:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200561 rf_regs = rf_regs_2425;
562 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
563 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
564 ini_rfb = rfb_2425;
565 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
566 } else {
567 ini_rfb = rfb_2417;
568 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
569 }
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300570 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200571 default:
572 return -EINVAL;
573 }
574
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200575 /* If it's the first time we set rf buffer, allocate
576 * ah->ah_rf_banks based on ah->ah_rf_banks_size
577 * we set above */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200578 if (ah->ah_rf_banks == NULL) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200579 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
580 GFP_KERNEL);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200581 if (ah->ah_rf_banks == NULL) {
582 ATH5K_ERR(ah->ah_sc, "out of memory\n");
583 return -ENOMEM;
584 }
585 }
586
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200587 /* Copy values to modify them */
588 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200589
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200590 for (i = 0; i < ah->ah_rf_banks_size; i++) {
591 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
592 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
593 return -EINVAL;
594 }
595
596 /* Bank changed, write down the offset */
597 if (bank != ini_rfb[i].rfb_bank) {
598 bank = ini_rfb[i].rfb_bank;
599 ah->ah_offset[bank] = i;
600 }
601
602 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
603 }
604
605 /* Set Output and Driver bias current (OB/DB) */
606 if (channel->hw_value & CHANNEL_2GHZ) {
607
608 if (channel->hw_value & CHANNEL_CCK)
609 ee_mode = AR5K_EEPROM_MODE_11B;
610 else
611 ee_mode = AR5K_EEPROM_MODE_11G;
612
613 /* For RF511X/RF211X combination we
614 * use b_OB and b_DB parameters stored
615 * in eeprom on ee->ee_ob[ee_mode][0]
616 *
617 * For all other chips we use OB/DB for 2Ghz
618 * stored in the b/g modal section just like
619 * 802.11a on ee->ee_ob[ee_mode][1] */
620 if ((ah->ah_radio == AR5K_RF5111) ||
621 (ah->ah_radio == AR5K_RF5112))
622 obdb = 0;
623 else
624 obdb = 1;
625
626 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
627 AR5K_RF_OB_2GHZ, true);
628
629 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
630 AR5K_RF_DB_2GHZ, true);
631
632 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
633 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
634 (ah->ah_radio == AR5K_RF5111)) {
635
636 /* For 11a, Turbo and XR we need to choose
637 * OB/DB based on frequency range */
638 ee_mode = AR5K_EEPROM_MODE_11A;
639 obdb = channel->center_freq >= 5725 ? 3 :
640 (channel->center_freq >= 5500 ? 2 :
641 (channel->center_freq >= 5260 ? 1 :
642 (channel->center_freq > 4000 ? 0 : -1)));
643
644 if (obdb < 0)
645 return -EINVAL;
646
647 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
648 AR5K_RF_OB_5GHZ, true);
649
650 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
651 AR5K_RF_DB_5GHZ, true);
652 }
653
654 g_step = &go->go_step[ah->ah_gain.g_step_idx];
655
656 /* Bank Modifications (chip-specific) */
657 if (ah->ah_radio == AR5K_RF5111) {
658
659 /* Set gain_F settings according to current step */
660 if (channel->hw_value & CHANNEL_OFDM) {
661
662 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
663 AR5K_PHY_FRAME_CTL_TX_CLIP,
664 g_step->gos_param[0]);
665
666 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
667 AR5K_RF_PWD_90, true);
668
669 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
670 AR5K_RF_PWD_84, true);
671
672 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
673 AR5K_RF_RFGAIN_SEL, true);
674
675 /* We programmed gain_F parameters, switch back
676 * to active state */
677 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
678
679 }
680
681 /* Bank 6/7 setup */
682
683 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
684 AR5K_RF_PWD_XPD, true);
685
686 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
687 AR5K_RF_XPD_GAIN, true);
688
689 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
690 AR5K_RF_GAIN_I, true);
691
692 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
693 AR5K_RF_PLO_SEL, true);
694
695 /* TODO: Half/quarter channel support */
696 }
697
698 if (ah->ah_radio == AR5K_RF5112) {
699
700 /* Set gain_F settings according to current step */
701 if (channel->hw_value & CHANNEL_OFDM) {
702
703 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
704 AR5K_RF_MIXGAIN_OVR, true);
705
706 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
707 AR5K_RF_PWD_138, true);
708
709 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
710 AR5K_RF_PWD_137, true);
711
712 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
713 AR5K_RF_PWD_136, true);
714
715 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
716 AR5K_RF_PWD_132, true);
717
718 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
719 AR5K_RF_PWD_131, true);
720
721 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
722 AR5K_RF_PWD_130, true);
723
724 /* We programmed gain_F parameters, switch back
725 * to active state */
726 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
727 }
728
729 /* Bank 6/7 setup */
730
731 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
732 AR5K_RF_XPD_SEL, true);
733
734 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
735 /* Rev. 1 supports only one xpd */
736 ath5k_hw_rfb_op(ah, rf_regs,
737 ee->ee_x_gain[ee_mode],
738 AR5K_RF_XPD_GAIN, true);
739
740 } else {
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300741 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
742 if (ee->ee_pd_gains[ee_mode] > 1) {
743 ath5k_hw_rfb_op(ah, rf_regs,
744 pdg_curve_to_idx[0],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200745 AR5K_RF_PD_GAIN_LO, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300746 ath5k_hw_rfb_op(ah, rf_regs,
747 pdg_curve_to_idx[1],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200748 AR5K_RF_PD_GAIN_HI, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300749 } else {
750 ath5k_hw_rfb_op(ah, rf_regs,
751 pdg_curve_to_idx[0],
752 AR5K_RF_PD_GAIN_LO, true);
753 ath5k_hw_rfb_op(ah, rf_regs,
754 pdg_curve_to_idx[0],
755 AR5K_RF_PD_GAIN_HI, true);
756 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200757
758 /* Lower synth voltage on Rev 2 */
759 ath5k_hw_rfb_op(ah, rf_regs, 2,
760 AR5K_RF_HIGH_VC_CP, true);
761
762 ath5k_hw_rfb_op(ah, rf_regs, 2,
763 AR5K_RF_MID_VC_CP, true);
764
765 ath5k_hw_rfb_op(ah, rf_regs, 2,
766 AR5K_RF_LOW_VC_CP, true);
767
768 ath5k_hw_rfb_op(ah, rf_regs, 2,
769 AR5K_RF_PUSH_UP, true);
770
771 /* Decrease power consumption on 5213+ BaseBand */
772 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
773 ath5k_hw_rfb_op(ah, rf_regs, 1,
774 AR5K_RF_PAD2GND, true);
775
776 ath5k_hw_rfb_op(ah, rf_regs, 1,
777 AR5K_RF_XB2_LVL, true);
778
779 ath5k_hw_rfb_op(ah, rf_regs, 1,
780 AR5K_RF_XB5_LVL, true);
781
782 ath5k_hw_rfb_op(ah, rf_regs, 1,
783 AR5K_RF_PWD_167, true);
784
785 ath5k_hw_rfb_op(ah, rf_regs, 1,
786 AR5K_RF_PWD_166, true);
787 }
788 }
789
790 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
791 AR5K_RF_GAIN_I, true);
792
793 /* TODO: Half/quarter channel support */
794
795 }
796
797 if (ah->ah_radio == AR5K_RF5413 &&
798 channel->hw_value & CHANNEL_2GHZ) {
799
800 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
801 true);
802
803 /* Set optimum value for early revisions (on pci-e chips) */
804 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
805 ah->ah_mac_srev < AR5K_SREV_AR5413)
806 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
807 AR5K_RF_PWD_ICLOBUF_2G, true);
808
809 }
810
811 /* Write RF banks on hw */
812 for (i = 0; i < ah->ah_rf_banks_size; i++) {
813 AR5K_REG_WAIT(i);
814 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
815 }
816
817 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200818}
819
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200820
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200821/**************************\
822 PHY/RF channel functions
823\**************************/
824
825/*
826 * Check if a channel is supported
827 */
828bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
829{
830 /* Check if the channel is in our supported range */
831 if (flags & CHANNEL_2GHZ) {
832 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
833 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
834 return true;
835 } else if (flags & CHANNEL_5GHZ)
836 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
837 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
838 return true;
839
840 return false;
841}
842
843/*
844 * Convertion needed for RF5110
845 */
846static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
847{
848 u32 athchan;
849
850 /*
851 * Convert IEEE channel/MHz to an internal channel value used
852 * by the AR5210 chipset. This has not been verified with
853 * newer chipsets like the AR5212A who have a completely
854 * different RF/PHY part.
855 */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500856 athchan = (ath5k_hw_bitswap(
857 (ieee80211_frequency_to_channel(
858 channel->center_freq) - 24) / 2, 5)
859 << 1) | (1 << 6) | 0x1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200860 return athchan;
861}
862
863/*
864 * Set channel on RF5110
865 */
866static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
867 struct ieee80211_channel *channel)
868{
869 u32 data;
870
871 /*
872 * Set the channel and wait
873 */
874 data = ath5k_hw_rf5110_chan2athchan(channel);
875 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
876 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
877 mdelay(1);
878
879 return 0;
880}
881
882/*
883 * Convertion needed for 5111
884 */
885static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
886 struct ath5k_athchan_2ghz *athchan)
887{
888 int channel;
889
890 /* Cast this value to catch negative channel numbers (>= -19) */
891 channel = (int)ieee;
892
893 /*
894 * Map 2GHz IEEE channel to 5GHz Atheros channel
895 */
896 if (channel <= 13) {
897 athchan->a2_athchan = 115 + channel;
898 athchan->a2_flags = 0x46;
899 } else if (channel == 14) {
900 athchan->a2_athchan = 124;
901 athchan->a2_flags = 0x44;
902 } else if (channel >= 15 && channel <= 26) {
903 athchan->a2_athchan = ((channel - 14) * 4) + 132;
904 athchan->a2_flags = 0x46;
905 } else
906 return -EINVAL;
907
908 return 0;
909}
910
911/*
912 * Set channel on 5111
913 */
914static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
915 struct ieee80211_channel *channel)
916{
917 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500918 unsigned int ath5k_channel =
919 ieee80211_frequency_to_channel(channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200920 u32 data0, data1, clock;
921 int ret;
922
923 /*
924 * Set the channel on the RF5111 radio
925 */
926 data0 = data1 = 0;
927
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500928 if (channel->hw_value & CHANNEL_2GHZ) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200929 /* Map 2GHz channel to 5GHz Atheros channel ID */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500930 ret = ath5k_hw_rf5111_chan2athchan(
931 ieee80211_frequency_to_channel(channel->center_freq),
932 &ath5k_channel_2ghz);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200933 if (ret)
934 return ret;
935
936 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
937 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
938 << 5) | (1 << 4);
939 }
940
941 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
942 clock = 1;
943 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
944 (clock << 1) | (1 << 10) | 1;
945 } else {
946 clock = 0;
947 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
948 << 2) | (clock << 1) | (1 << 10) | 1;
949 }
950
951 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
952 AR5K_RF_BUFFER);
953 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
954 AR5K_RF_BUFFER_CONTROL_3);
955
956 return 0;
957}
958
959/*
960 * Set channel on 5112 and newer
961 */
962static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
963 struct ieee80211_channel *channel)
964{
965 u32 data, data0, data1, data2;
966 u16 c;
967
968 data = data0 = data1 = data2 = 0;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500969 c = channel->center_freq;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200970
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200971 if (c < 4800) {
972 if (!((c - 2224) % 5)) {
973 data0 = ((2 * (c - 704)) - 3040) / 10;
974 data1 = 1;
975 } else if (!((c - 2192) % 5)) {
976 data0 = ((2 * (c - 672)) - 3040) / 10;
977 data1 = 0;
978 } else
979 return -EINVAL;
980
981 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
Bob Copeland1968cc72010-04-07 23:55:56 -0400982 } else if ((c % 5) != 2 || c > 5435) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200983 if (!(c % 20) && c >= 5120) {
984 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
985 data2 = ath5k_hw_bitswap(3, 2);
986 } else if (!(c % 10)) {
987 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
988 data2 = ath5k_hw_bitswap(2, 2);
989 } else if (!(c % 5)) {
990 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
991 data2 = ath5k_hw_bitswap(1, 2);
992 } else
993 return -EINVAL;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +0300994 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -0400995 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +0300996 data2 = ath5k_hw_bitswap(0, 2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200997 }
998
999 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1000
1001 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1002 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1003
1004 return 0;
1005}
1006
1007/*
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001008 * Set the channel on the RF2425
1009 */
1010static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1011 struct ieee80211_channel *channel)
1012{
1013 u32 data, data0, data2;
1014 u16 c;
1015
1016 data = data0 = data2 = 0;
1017 c = channel->center_freq;
1018
1019 if (c < 4800) {
1020 data0 = ath5k_hw_bitswap((c - 2272), 8);
1021 data2 = 0;
1022 /* ? 5GHz ? */
Bob Copeland1968cc72010-04-07 23:55:56 -04001023 } else if ((c % 5) != 2 || c > 5435) {
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001024 if (!(c % 20) && c < 5120)
1025 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1026 else if (!(c % 10))
1027 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1028 else if (!(c % 5))
1029 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1030 else
1031 return -EINVAL;
1032 data2 = ath5k_hw_bitswap(1, 2);
1033 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001034 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001035 data2 = ath5k_hw_bitswap(0, 2);
1036 }
1037
1038 data = (data0 << 4) | data2 << 2 | 0x1001;
1039
1040 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1041 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1042
1043 return 0;
1044}
1045
1046/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001047 * Set a channel on the radio chip
1048 */
1049int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1050{
1051 int ret;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001052 /*
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001053 * Check bounds supported by the PHY (we don't care about regultory
1054 * restrictions at this point). Note: hw_value already has the band
1055 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1056 * of the band by that */
1057 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001058 ATH5K_ERR(ah->ah_sc,
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001059 "channel frequency (%u MHz) out of supported "
1060 "band range\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001061 channel->center_freq);
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001062 return -EINVAL;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001063 }
1064
1065 /*
1066 * Set the channel and wait
1067 */
1068 switch (ah->ah_radio) {
1069 case AR5K_RF5110:
1070 ret = ath5k_hw_rf5110_channel(ah, channel);
1071 break;
1072 case AR5K_RF5111:
1073 ret = ath5k_hw_rf5111_channel(ah, channel);
1074 break;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001075 case AR5K_RF2425:
1076 ret = ath5k_hw_rf2425_channel(ah, channel);
1077 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001078 default:
1079 ret = ath5k_hw_rf5112_channel(ah, channel);
1080 break;
1081 }
1082
1083 if (ret)
1084 return ret;
1085
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001086 /* Set JAPAN setting for channel 14 */
1087 if (channel->center_freq == 2484) {
1088 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1089 AR5K_PHY_CCKTXCTL_JAPAN);
1090 } else {
1091 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1092 AR5K_PHY_CCKTXCTL_WORLD);
1093 }
1094
Bob Copeland46026e82009-06-10 22:22:20 -04001095 ah->ah_current_channel = channel;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001096 ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001097
1098 return 0;
1099}
1100
1101/*****************\
1102 PHY calibration
1103\*****************/
1104
Bob Copelande5e26472009-10-14 14:16:30 -04001105static int sign_extend(int val, const int nbits)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001106{
Bob Copelande5e26472009-10-14 14:16:30 -04001107 int order = BIT(nbits-1);
1108 return (val ^ order) - order;
1109}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001110
Bob Copelande5e26472009-10-14 14:16:30 -04001111static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1112{
1113 s32 val;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001114
Bob Copelande5e26472009-10-14 14:16:30 -04001115 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1116 return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1117}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001118
Bob Copelande5e26472009-10-14 14:16:30 -04001119void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1120{
1121 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001122
Bob Copelande5e26472009-10-14 14:16:30 -04001123 ah->ah_nfcal_hist.index = 0;
1124 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1125 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1126}
1127
1128static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1129{
1130 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1131 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1132 hist->nfval[hist->index] = noise_floor;
1133}
1134
1135static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1136{
1137 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1138 s16 tmp;
1139 int i, j;
1140
1141 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1142 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1143 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1144 if (sort[j] > sort[j-1]) {
1145 tmp = sort[j];
1146 sort[j] = sort[j-1];
1147 sort[j-1] = tmp;
1148 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001149 }
1150 }
Bob Copelande5e26472009-10-14 14:16:30 -04001151 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1152 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1153 "cal %d:%d\n", i, sort[i]);
1154 }
1155 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1156}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001157
Bob Copelande5e26472009-10-14 14:16:30 -04001158/*
1159 * When we tell the hardware to perform a noise floor calibration
1160 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1161 * sample-and-hold the minimum noise level seen at the antennas.
1162 * This value is then stored in a ring buffer of recently measured
1163 * noise floor values so we have a moving window of the last few
1164 * samples.
1165 *
1166 * The median of the values in the history is then loaded into the
1167 * hardware for its own use for RSSI and CCA measurements.
1168 */
Pavel Roskin626ede62010-02-18 20:28:02 -05001169static void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
Bob Copelande5e26472009-10-14 14:16:30 -04001170{
1171 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1172 u32 val;
1173 s16 nf, threshold;
1174 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001175
Bob Copelande5e26472009-10-14 14:16:30 -04001176 /* keep last value if calibration hasn't completed */
1177 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1178 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1179 "NF did not complete in calibration window\n");
1180
1181 return;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001182 }
1183
Bob Copelande5e26472009-10-14 14:16:30 -04001184 switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1185 case CHANNEL_A:
1186 case CHANNEL_T:
1187 case CHANNEL_XR:
1188 ee_mode = AR5K_EEPROM_MODE_11A;
1189 break;
1190 case CHANNEL_G:
1191 case CHANNEL_TG:
1192 ee_mode = AR5K_EEPROM_MODE_11G;
1193 break;
1194 default:
1195 case CHANNEL_B:
1196 ee_mode = AR5K_EEPROM_MODE_11B;
1197 break;
1198 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001199
Bob Copelande5e26472009-10-14 14:16:30 -04001200
1201 /* completed NF calibration, test threshold */
1202 nf = ath5k_hw_read_measured_noise_floor(ah);
1203 threshold = ee->ee_noise_floor_thr[ee_mode];
1204
1205 if (nf > threshold) {
1206 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1207 "noise floor failure detected; "
1208 "read %d, threshold %d\n",
1209 nf, threshold);
1210
1211 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1212 }
1213
1214 ath5k_hw_update_nfcal_hist(ah, nf);
1215 nf = ath5k_hw_get_median_noise_floor(ah);
1216
1217 /* load noise floor (in .5 dBm) so the hardware will use it */
1218 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1219 val |= (nf * 2) & AR5K_PHY_NF_M;
1220 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1221
1222 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1223 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1224
1225 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1226 0, false);
1227
1228 /*
1229 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1230 * so that we're not capped by the median we just loaded.
1231 * This will be used as the initial value for the next noise
1232 * floor calibration.
1233 */
1234 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1235 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1236 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1237 AR5K_PHY_AGCCTL_NF_EN |
1238 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1239 AR5K_PHY_AGCCTL_NF);
1240
1241 ah->ah_noise_floor = nf;
1242
1243 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1244 "noise floor calibrated: %d\n", nf);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001245}
1246
1247/*
1248 * Perform a PHY calibration on RF5110
1249 * -Fix BPSK/QAM Constellation (I/Q correction)
1250 * -Calculate Noise Floor
1251 */
1252static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1253 struct ieee80211_channel *channel)
1254{
1255 u32 phy_sig, phy_agc, phy_sat, beacon;
1256 int ret;
1257
1258 /*
1259 * Disable beacons and RX/TX queues, wait
1260 */
1261 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1262 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1263 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1264 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1265
Nick Kossifidis84e463f2008-09-17 03:33:19 +03001266 mdelay(2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001267
1268 /*
1269 * Set the channel (with AGC turned off)
1270 */
1271 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1272 udelay(10);
1273 ret = ath5k_hw_channel(ah, channel);
1274
1275 /*
1276 * Activate PHY and wait
1277 */
1278 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1279 mdelay(1);
1280
1281 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1282
1283 if (ret)
1284 return ret;
1285
1286 /*
1287 * Calibrate the radio chip
1288 */
1289
1290 /* Remember normal state */
1291 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1292 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1293 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1294
1295 /* Update radio registers */
1296 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1297 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1298
1299 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1300 AR5K_PHY_AGCCOARSE_LO)) |
1301 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1302 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1303
1304 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1305 AR5K_PHY_ADCSAT_THR)) |
1306 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1307 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1308
1309 udelay(20);
1310
1311 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1312 udelay(10);
1313 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1314 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1315
1316 mdelay(1);
1317
1318 /*
1319 * Enable calibration and wait until completion
1320 */
1321 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1322
1323 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1324 AR5K_PHY_AGCCTL_CAL, 0, false);
1325
1326 /* Reset to normal state */
1327 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1328 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1329 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1330
1331 if (ret) {
1332 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001333 channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001334 return ret;
1335 }
1336
Bob Copelande5e26472009-10-14 14:16:30 -04001337 ath5k_hw_update_noise_floor(ah);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001338
1339 /*
1340 * Re-enable RX/TX and beacons
1341 */
1342 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1343 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1344 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1345
1346 return 0;
1347}
1348
1349/*
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001350 * Perform a PHY calibration on RF5111/5112 and newer chips
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001351 */
1352static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1353 struct ieee80211_channel *channel)
1354{
1355 u32 i_pwr, q_pwr;
1356 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001357 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001358 ATH5K_TRACE(ah->ah_sc);
1359
Joe Perchese9010e22008-03-07 14:21:16 -08001360 if (!ah->ah_calibration ||
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001361 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001362 goto done;
1363
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001364 /* Calibration has finished, get the results and re-run */
Bruno Randolf86415d42010-03-09 16:56:05 +09001365
1366 /* work around empty results which can apparently happen on 5212 */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001367 for (i = 0; i <= 10; i++) {
1368 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1369 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1370 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
Bruno Randolf86415d42010-03-09 16:56:05 +09001371 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1372 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1373 if (i_pwr && q_pwr)
1374 break;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001375 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001376
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001377 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
Bruno Randolf49a85d22010-03-09 16:56:15 +09001378
1379 if (ah->ah_version == AR5K_AR5211)
1380 q_coffd = q_pwr >> 6;
1381 else
1382 q_coffd = q_pwr >> 7;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001383
Bruno Randolf86415d42010-03-09 16:56:05 +09001384 /* protect against divide by 0 and loss of sign bits */
1385 if (i_coffd == 0 || q_coffd < 2)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001386 goto done;
1387
Bruno Randolf86415d42010-03-09 16:56:05 +09001388 i_coff = (-iq_corr) / i_coffd;
1389 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001390
John W. Linvilleace5d5d2010-04-08 16:34:49 -04001391 if (ah->ah_version == AR5K_AR5211)
1392 q_coff = (i_pwr / q_coffd) - 64;
1393 else
1394 q_coff = (i_pwr / q_coffd) - 128;
Bruno Randolf86415d42010-03-09 16:56:05 +09001395 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001396
Bruno Randolf86415d42010-03-09 16:56:05 +09001397 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1398 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1399 i_coff, q_coff, i_coffd, q_coffd);
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001400
Bruno Randolf86415d42010-03-09 16:56:05 +09001401 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1402 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1403 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1404 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001405
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001406 /* Re-enable calibration -if we don't we'll commit
1407 * the same values again and again */
1408 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1409 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1410 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1411
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001412done:
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001413
1414 /* TODO: Separate noise floor calibration from I/Q calibration
1415 * since noise floor calibration interrupts rx path while I/Q
1416 * calibration doesn't. We don't need to run noise floor calibration
1417 * as often as I/Q calibration.*/
Bob Copelande5e26472009-10-14 14:16:30 -04001418 ath5k_hw_update_noise_floor(ah);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001419
Nick Kossifidis6f3b4142009-02-09 06:03:41 +02001420 /* Initiate a gain_F calibration */
1421 ath5k_hw_request_rfgain_probe(ah);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001422
1423 return 0;
1424}
1425
1426/*
1427 * Perform a PHY calibration
1428 */
1429int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1430 struct ieee80211_channel *channel)
1431{
1432 int ret;
1433
1434 if (ah->ah_radio == AR5K_RF5110)
1435 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1436 else
1437 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1438
1439 return ret;
1440}
1441
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001442/***************************\
1443* Spur mitigation functions *
1444\***************************/
1445
1446bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1447 struct ieee80211_channel *channel)
1448{
1449 u8 refclk_freq;
1450
1451 if ((ah->ah_radio == AR5K_RF5112) ||
1452 (ah->ah_radio == AR5K_RF5413) ||
1453 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1454 refclk_freq = 40;
1455 else
1456 refclk_freq = 32;
1457
1458 if ((channel->center_freq % refclk_freq != 0) &&
1459 ((channel->center_freq % refclk_freq < 10) ||
1460 (channel->center_freq % refclk_freq > 22)))
1461 return true;
1462 else
1463 return false;
1464}
1465
1466void
1467ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1468 struct ieee80211_channel *channel)
1469{
1470 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1471 u32 mag_mask[4] = {0, 0, 0, 0};
1472 u32 pilot_mask[2] = {0, 0};
1473 /* Note: fbin values are scaled up by 2 */
1474 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1475 s32 spur_delta_phase, spur_freq_sigma_delta;
1476 s32 spur_offset, num_symbols_x16;
1477 u8 num_symbol_offsets, i, freq_band;
1478
1479 /* Convert current frequency to fbin value (the same way channels
1480 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1481 * up by 2 so we can compare it later */
1482 if (channel->hw_value & CHANNEL_2GHZ) {
1483 chan_fbin = (channel->center_freq - 2300) * 10;
1484 freq_band = AR5K_EEPROM_BAND_2GHZ;
1485 } else {
1486 chan_fbin = (channel->center_freq - 4900) * 10;
1487 freq_band = AR5K_EEPROM_BAND_5GHZ;
1488 }
1489
1490 /* Check if any spur_chan_fbin from EEPROM is
1491 * within our current channel's spur detection range */
1492 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1493 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1494 /* XXX: Half/Quarter channels ?*/
1495 if (channel->hw_value & CHANNEL_TURBO)
1496 spur_detection_window *= 2;
1497
1498 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1499 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1500
1501 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1502 * so it's zero if we got nothing from EEPROM */
1503 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1504 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1505 break;
1506 }
1507
1508 if ((chan_fbin - spur_detection_window <=
1509 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1510 (chan_fbin + spur_detection_window >=
1511 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1512 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1513 break;
1514 }
1515 }
1516
1517 /* We need to enable spur filter for this channel */
1518 if (spur_chan_fbin) {
1519 spur_offset = spur_chan_fbin - chan_fbin;
1520 /*
1521 * Calculate deltas:
1522 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1523 * spur_delta_phase -> spur_offset / chip_freq << 11
1524 * Note: Both values have 100KHz resolution
1525 */
1526 /* XXX: Half/Quarter rate channels ? */
1527 switch (channel->hw_value) {
1528 case CHANNEL_A:
1529 /* Both sample_freq and chip_freq are 40MHz */
1530 spur_delta_phase = (spur_offset << 17) / 25;
1531 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1532 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1533 break;
1534 case CHANNEL_G:
1535 /* sample_freq -> 40MHz chip_freq -> 44MHz
1536 * (for b compatibility) */
1537 spur_freq_sigma_delta = (spur_offset << 8) / 55;
1538 spur_delta_phase = (spur_offset << 17) / 25;
1539 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1540 break;
1541 case CHANNEL_T:
1542 case CHANNEL_TG:
1543 /* Both sample_freq and chip_freq are 80MHz */
1544 spur_delta_phase = (spur_offset << 16) / 25;
1545 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1546 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1547 break;
1548 default:
1549 return;
1550 }
1551
1552 /* Calculate pilot and magnitude masks */
1553
1554 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1555 * and divide by symbol_width to find how many symbols we have
1556 * Note: number of symbols is scaled up by 16 */
1557 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1558
1559 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1560 if (!(num_symbols_x16 & 0xF))
1561 /* _X_ */
1562 num_symbol_offsets = 3;
1563 else
1564 /* _xx_ */
1565 num_symbol_offsets = 4;
1566
1567 for (i = 0; i < num_symbol_offsets; i++) {
1568
1569 /* Calculate pilot mask */
1570 s32 curr_sym_off =
1571 (num_symbols_x16 / 16) + i + 25;
1572
1573 /* Pilot magnitude mask seems to be a way to
1574 * declare the boundaries for our detection
1575 * window or something, it's 2 for the middle
1576 * value(s) where the symbol is expected to be
1577 * and 1 on the boundary values */
1578 u8 plt_mag_map =
1579 (i == 0 || i == (num_symbol_offsets - 1))
1580 ? 1 : 2;
1581
1582 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1583 if (curr_sym_off <= 25)
1584 pilot_mask[0] |= 1 << curr_sym_off;
1585 else if (curr_sym_off >= 27)
1586 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1587 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1588 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1589
1590 /* Calculate magnitude mask (for viterbi decoder) */
1591 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1592 mag_mask[0] |=
1593 plt_mag_map << (curr_sym_off + 1) * 2;
1594 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1595 mag_mask[1] |=
1596 plt_mag_map << (curr_sym_off - 15) * 2;
1597 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1598 mag_mask[2] |=
1599 plt_mag_map << (curr_sym_off - 31) * 2;
1600 else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1601 mag_mask[3] |=
1602 plt_mag_map << (curr_sym_off - 47) * 2;
1603
1604 }
1605
1606 /* Write settings on hw to enable spur filter */
1607 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1608 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1609 /* XXX: Self correlator also ? */
1610 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1611 AR5K_PHY_IQ_PILOT_MASK_EN |
1612 AR5K_PHY_IQ_CHAN_MASK_EN |
1613 AR5K_PHY_IQ_SPUR_FILT_EN);
1614
1615 /* Set delta phase and freq sigma delta */
1616 ath5k_hw_reg_write(ah,
1617 AR5K_REG_SM(spur_delta_phase,
1618 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1619 AR5K_REG_SM(spur_freq_sigma_delta,
1620 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1621 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1622 AR5K_PHY_TIMING_11);
1623
1624 /* Write pilot masks */
1625 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1626 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1627 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1628 pilot_mask[1]);
1629
1630 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1631 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1632 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1633 pilot_mask[1]);
1634
1635 /* Write magnitude masks */
1636 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1637 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1638 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1639 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1640 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1641 mag_mask[3]);
1642
1643 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1644 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1645 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1646 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1647 AR5K_PHY_BIN_MASK2_4_MASK_4,
1648 mag_mask[3]);
1649
1650 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1651 AR5K_PHY_IQ_SPUR_FILT_EN) {
1652 /* Clean up spur mitigation settings and disable fliter */
1653 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1654 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1655 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1656 AR5K_PHY_IQ_PILOT_MASK_EN |
1657 AR5K_PHY_IQ_CHAN_MASK_EN |
1658 AR5K_PHY_IQ_SPUR_FILT_EN);
1659 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1660
1661 /* Clear pilot masks */
1662 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1663 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1664 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1665 0);
1666
1667 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1668 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1669 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1670 0);
1671
1672 /* Clear magnitude masks */
1673 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1674 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1675 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1676 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1677 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1678 0);
1679
1680 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1681 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1682 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1683 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1684 AR5K_PHY_BIN_MASK2_4_MASK_4,
1685 0);
1686 }
1687}
1688
1689/********************\
1690 Misc PHY functions
1691\********************/
1692
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001693int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1694{
1695 ATH5K_TRACE(ah->ah_sc);
1696 /*Just a try M.F.*/
1697 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1698
1699 return 0;
1700}
1701
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001702/*
1703 * Get the PHY Chip revision
1704 */
1705u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1706{
1707 unsigned int i;
1708 u32 srev;
1709 u16 ret;
1710
1711 ATH5K_TRACE(ah->ah_sc);
1712
1713 /*
1714 * Set the radio chip access register
1715 */
1716 switch (chan) {
1717 case CHANNEL_2GHZ:
1718 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1719 break;
1720 case CHANNEL_5GHZ:
1721 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1722 break;
1723 default:
1724 return 0;
1725 }
1726
1727 mdelay(2);
1728
1729 /* ...wait until PHY is ready and read the selected radio revision */
1730 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1731
1732 for (i = 0; i < 8; i++)
1733 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1734
1735 if (ah->ah_version == AR5K_AR5210) {
1736 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1737 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1738 } else {
1739 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1740 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1741 ((srev & 0x0f) << 4), 8);
1742 }
1743
1744 /* Reset to the 5GHz mode */
1745 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1746
1747 return ret;
1748}
1749
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001750/*****************\
1751* Antenna control *
1752\*****************/
1753
Pavel Roskin626ede62010-02-18 20:28:02 -05001754static void /*TODO:Boundary check*/
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001755ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001756{
1757 ATH5K_TRACE(ah->ah_sc);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001758
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001759 if (ah->ah_version != AR5K_AR5210)
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001760 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001761}
1762
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001763/*
1764 * Enable/disable fast rx antenna diversity
1765 */
1766static void
1767ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1768{
1769 switch (ee_mode) {
1770 case AR5K_EEPROM_MODE_11G:
1771 /* XXX: This is set to
1772 * disabled on initvals !!! */
1773 case AR5K_EEPROM_MODE_11A:
1774 if (enable)
1775 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1776 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1777 else
1778 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1779 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1780 break;
1781 case AR5K_EEPROM_MODE_11B:
1782 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1783 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1784 break;
1785 default:
1786 return;
1787 }
1788
1789 if (enable) {
1790 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1791 AR5K_PHY_RESTART_DIV_GC, 0xc);
1792
1793 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1794 AR5K_PHY_FAST_ANT_DIV_EN);
1795 } else {
1796 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1797 AR5K_PHY_RESTART_DIV_GC, 0x8);
1798
1799 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1800 AR5K_PHY_FAST_ANT_DIV_EN);
1801 }
1802}
1803
1804/*
1805 * Set antenna operating mode
1806 */
1807void
1808ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1809{
Bob Copeland46026e82009-06-10 22:22:20 -04001810 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001811 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1812 bool use_def_for_sg;
1813 u8 def_ant, tx_ant, ee_mode;
1814 u32 sta_id1 = 0;
1815
1816 def_ant = ah->ah_def_ant;
1817
1818 ATH5K_TRACE(ah->ah_sc);
1819
1820 switch (channel->hw_value & CHANNEL_MODES) {
1821 case CHANNEL_A:
1822 case CHANNEL_T:
1823 case CHANNEL_XR:
1824 ee_mode = AR5K_EEPROM_MODE_11A;
1825 break;
1826 case CHANNEL_G:
1827 case CHANNEL_TG:
1828 ee_mode = AR5K_EEPROM_MODE_11G;
1829 break;
1830 case CHANNEL_B:
1831 ee_mode = AR5K_EEPROM_MODE_11B;
1832 break;
1833 default:
1834 ATH5K_ERR(ah->ah_sc,
1835 "invalid channel: %d\n", channel->center_freq);
1836 return;
1837 }
1838
1839 switch (ant_mode) {
1840 case AR5K_ANTMODE_DEFAULT:
1841 tx_ant = 0;
1842 use_def_for_tx = false;
1843 update_def_on_tx = false;
1844 use_def_for_rts = false;
1845 use_def_for_sg = false;
1846 fast_div = true;
1847 break;
1848 case AR5K_ANTMODE_FIXED_A:
1849 def_ant = 1;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001850 tx_ant = 1;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001851 use_def_for_tx = true;
1852 update_def_on_tx = false;
1853 use_def_for_rts = true;
1854 use_def_for_sg = true;
1855 fast_div = false;
1856 break;
1857 case AR5K_ANTMODE_FIXED_B:
1858 def_ant = 2;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001859 tx_ant = 2;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001860 use_def_for_tx = true;
1861 update_def_on_tx = false;
1862 use_def_for_rts = true;
1863 use_def_for_sg = true;
1864 fast_div = false;
1865 break;
1866 case AR5K_ANTMODE_SINGLE_AP:
1867 def_ant = 1; /* updated on tx */
1868 tx_ant = 0;
1869 use_def_for_tx = true;
1870 update_def_on_tx = true;
1871 use_def_for_rts = true;
1872 use_def_for_sg = true;
1873 fast_div = true;
1874 break;
1875 case AR5K_ANTMODE_SECTOR_AP:
1876 tx_ant = 1; /* variable */
1877 use_def_for_tx = false;
1878 update_def_on_tx = false;
1879 use_def_for_rts = true;
1880 use_def_for_sg = false;
1881 fast_div = false;
1882 break;
1883 case AR5K_ANTMODE_SECTOR_STA:
1884 tx_ant = 1; /* variable */
1885 use_def_for_tx = true;
1886 update_def_on_tx = false;
1887 use_def_for_rts = true;
1888 use_def_for_sg = false;
1889 fast_div = true;
1890 break;
1891 case AR5K_ANTMODE_DEBUG:
1892 def_ant = 1;
1893 tx_ant = 2;
1894 use_def_for_tx = false;
1895 update_def_on_tx = false;
1896 use_def_for_rts = false;
1897 use_def_for_sg = false;
1898 fast_div = false;
1899 break;
1900 default:
1901 return;
1902 }
1903
1904 ah->ah_tx_ant = tx_ant;
1905 ah->ah_ant_mode = ant_mode;
Bruno Randolfcaec9112010-03-09 16:55:28 +09001906 ah->ah_def_ant = def_ant;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001907
1908 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1909 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1910 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1911 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1912
1913 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1914
1915 if (sta_id1)
1916 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1917
1918 /* Note: set diversity before default antenna
1919 * because it won't work correctly */
1920 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1921 ath5k_hw_set_def_antenna(ah, def_ant);
1922}
1923
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001924
1925/****************\
1926* TX power setup *
1927\****************/
1928
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001929/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001930 * Helper functions
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001931 */
1932
1933/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001934 * Do linear interpolation between two given (x, y) points
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001935 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001936static s16
1937ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1938 s16 y_left, s16 y_right)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001939{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001940 s16 ratio, result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001941
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001942 /* Avoid divide by zero and skip interpolation
1943 * if we have the same point */
1944 if ((x_left == x_right) || (y_left == y_right))
1945 return y_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001946
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001947 /*
1948 * Since we use ints and not fps, we need to scale up in
1949 * order to get a sane ratio value (or else we 'll eg. get
1950 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1951 * to have some accuracy both for 0.5 and 0.25 steps.
1952 */
1953 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001954
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001955 /* Now scale down to be in range */
1956 result = y_left + (ratio * (target - x_left) / 100);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001957
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001958 return result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001959}
1960
1961/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001962 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1963 *
1964 * Since we have the top of the curve and we draw the line below
1965 * until we reach 1 (1 pcdac step) we need to know which point
1966 * (x value) that is so that we don't go below y axis and have negative
1967 * pcdac values when creating the curve, or fill the table with zeroes.
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001968 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001969static s16
1970ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1971 const s16 *pwrL, const s16 *pwrR)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001972{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001973 s8 tmp;
1974 s16 min_pwrL, min_pwrR;
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02001975 s16 pwr_i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001976
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +03001977 /* Some vendors write the same pcdac value twice !!! */
1978 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1979 return max(pwrL[0], pwrR[0]);
Bob Copeland9c8b3ed2009-05-19 23:37:31 -04001980
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02001981 if (pwrL[0] == pwrL[1])
1982 min_pwrL = pwrL[0];
1983 else {
1984 pwr_i = pwrL[0];
1985 do {
1986 pwr_i--;
1987 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1988 pwrL[0], pwrL[1],
1989 stepL[0], stepL[1]);
1990 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001991
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02001992 min_pwrL = pwr_i;
1993 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001994
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02001995 if (pwrR[0] == pwrR[1])
1996 min_pwrR = pwrR[0];
1997 else {
1998 pwr_i = pwrR[0];
1999 do {
2000 pwr_i--;
2001 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2002 pwrR[0], pwrR[1],
2003 stepR[0], stepR[1]);
2004 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002005
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002006 min_pwrR = pwr_i;
2007 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002008
2009 /* Keep the right boundary so that it works for both curves */
2010 return max(min_pwrL, min_pwrR);
2011}
2012
2013/*
2014 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2015 * Power to PCDAC curve.
2016 *
2017 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2018 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2019 * PCDAC/PDADC step for each curve is 64 but we can write more than
2020 * one curves on hw so we can go up to 128 (which is the max step we
2021 * can write on the final table).
2022 *
2023 * We write y values (PCDAC/PDADC steps) on hw.
2024 */
2025static void
2026ath5k_create_power_curve(s16 pmin, s16 pmax,
2027 const s16 *pwr, const u8 *vpd,
2028 u8 num_points,
2029 u8 *vpd_table, u8 type)
2030{
2031 u8 idx[2] = { 0, 1 };
2032 s16 pwr_i = 2*pmin;
2033 int i;
2034
2035 if (num_points < 2)
2036 return;
2037
2038 /* We want the whole line, so adjust boundaries
2039 * to cover the entire power range. Note that
2040 * power values are already 0.25dB so no need
2041 * to multiply pwr_i by 2 */
2042 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2043 pwr_i = pmin;
2044 pmin = 0;
2045 pmax = 63;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002046 }
2047
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002048 /* Find surrounding turning points (TPs)
2049 * and interpolate between them */
2050 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2051 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2052
2053 /* We passed the right TP, move to the next set of TPs
2054 * if we pass the last TP, extrapolate above using the last
2055 * two TPs for ratio */
2056 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2057 idx[0]++;
2058 idx[1]++;
2059 }
2060
2061 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2062 pwr[idx[0]], pwr[idx[1]],
2063 vpd[idx[0]], vpd[idx[1]]);
2064
2065 /* Increase by 0.5dB
2066 * (0.25 dB units) */
2067 pwr_i += 2;
2068 }
2069}
2070
2071/*
2072 * Get the surrounding per-channel power calibration piers
2073 * for a given frequency so that we can interpolate between
2074 * them and come up with an apropriate dataset for our current
2075 * channel.
2076 */
2077static void
2078ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2079 struct ieee80211_channel *channel,
2080 struct ath5k_chan_pcal_info **pcinfo_l,
2081 struct ath5k_chan_pcal_info **pcinfo_r)
2082{
2083 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2084 struct ath5k_chan_pcal_info *pcinfo;
2085 u8 idx_l, idx_r;
2086 u8 mode, max, i;
2087 u32 target = channel->center_freq;
2088
2089 idx_l = 0;
2090 idx_r = 0;
2091
2092 if (!(channel->hw_value & CHANNEL_OFDM)) {
2093 pcinfo = ee->ee_pwr_cal_b;
2094 mode = AR5K_EEPROM_MODE_11B;
2095 } else if (channel->hw_value & CHANNEL_2GHZ) {
2096 pcinfo = ee->ee_pwr_cal_g;
2097 mode = AR5K_EEPROM_MODE_11G;
2098 } else {
2099 pcinfo = ee->ee_pwr_cal_a;
2100 mode = AR5K_EEPROM_MODE_11A;
2101 }
2102 max = ee->ee_n_piers[mode] - 1;
2103
2104 /* Frequency is below our calibrated
2105 * range. Use the lowest power curve
2106 * we have */
2107 if (target < pcinfo[0].freq) {
2108 idx_l = idx_r = 0;
2109 goto done;
2110 }
2111
2112 /* Frequency is above our calibrated
2113 * range. Use the highest power curve
2114 * we have */
2115 if (target > pcinfo[max].freq) {
2116 idx_l = idx_r = max;
2117 goto done;
2118 }
2119
2120 /* Frequency is inside our calibrated
2121 * channel range. Pick the surrounding
2122 * calibration piers so that we can
2123 * interpolate */
2124 for (i = 0; i <= max; i++) {
2125
2126 /* Frequency matches one of our calibration
2127 * piers, no need to interpolate, just use
2128 * that calibration pier */
2129 if (pcinfo[i].freq == target) {
2130 idx_l = idx_r = i;
2131 goto done;
2132 }
2133
2134 /* We found a calibration pier that's above
2135 * frequency, use this pier and the previous
2136 * one to interpolate */
2137 if (target < pcinfo[i].freq) {
2138 idx_r = i;
2139 idx_l = idx_r - 1;
2140 goto done;
2141 }
2142 }
2143
2144done:
2145 *pcinfo_l = &pcinfo[idx_l];
2146 *pcinfo_r = &pcinfo[idx_r];
2147
2148 return;
2149}
2150
2151/*
2152 * Get the surrounding per-rate power calibration data
2153 * for a given frequency and interpolate between power
2154 * values to set max target power supported by hw for
2155 * each rate.
2156 */
2157static void
2158ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2159 struct ieee80211_channel *channel,
2160 struct ath5k_rate_pcal_info *rates)
2161{
2162 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2163 struct ath5k_rate_pcal_info *rpinfo;
2164 u8 idx_l, idx_r;
2165 u8 mode, max, i;
2166 u32 target = channel->center_freq;
2167
2168 idx_l = 0;
2169 idx_r = 0;
2170
2171 if (!(channel->hw_value & CHANNEL_OFDM)) {
2172 rpinfo = ee->ee_rate_tpwr_b;
2173 mode = AR5K_EEPROM_MODE_11B;
2174 } else if (channel->hw_value & CHANNEL_2GHZ) {
2175 rpinfo = ee->ee_rate_tpwr_g;
2176 mode = AR5K_EEPROM_MODE_11G;
2177 } else {
2178 rpinfo = ee->ee_rate_tpwr_a;
2179 mode = AR5K_EEPROM_MODE_11A;
2180 }
2181 max = ee->ee_rate_target_pwr_num[mode] - 1;
2182
2183 /* Get the surrounding calibration
2184 * piers - same as above */
2185 if (target < rpinfo[0].freq) {
2186 idx_l = idx_r = 0;
2187 goto done;
2188 }
2189
2190 if (target > rpinfo[max].freq) {
2191 idx_l = idx_r = max;
2192 goto done;
2193 }
2194
2195 for (i = 0; i <= max; i++) {
2196
2197 if (rpinfo[i].freq == target) {
2198 idx_l = idx_r = i;
2199 goto done;
2200 }
2201
2202 if (target < rpinfo[i].freq) {
2203 idx_r = i;
2204 idx_l = idx_r - 1;
2205 goto done;
2206 }
2207 }
2208
2209done:
2210 /* Now interpolate power value, based on the frequency */
2211 rates->freq = target;
2212
2213 rates->target_power_6to24 =
2214 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2215 rpinfo[idx_r].freq,
2216 rpinfo[idx_l].target_power_6to24,
2217 rpinfo[idx_r].target_power_6to24);
2218
2219 rates->target_power_36 =
2220 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2221 rpinfo[idx_r].freq,
2222 rpinfo[idx_l].target_power_36,
2223 rpinfo[idx_r].target_power_36);
2224
2225 rates->target_power_48 =
2226 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2227 rpinfo[idx_r].freq,
2228 rpinfo[idx_l].target_power_48,
2229 rpinfo[idx_r].target_power_48);
2230
2231 rates->target_power_54 =
2232 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2233 rpinfo[idx_r].freq,
2234 rpinfo[idx_l].target_power_54,
2235 rpinfo[idx_r].target_power_54);
2236}
2237
2238/*
2239 * Get the max edge power for this channel if
2240 * we have such data from EEPROM's Conformance Test
2241 * Limits (CTL), and limit max power if needed.
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002242 */
2243static void
2244ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2245 struct ieee80211_channel *channel)
2246{
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002247 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002248 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2249 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2250 u8 *ctl_val = ee->ee_ctl;
2251 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2252 s16 edge_pwr = 0;
2253 u8 rep_idx;
2254 u8 i, ctl_mode;
2255 u8 ctl_idx = 0xFF;
2256 u32 target = channel->center_freq;
2257
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002258 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
Bob Copeland6752ee92009-04-30 15:55:51 -04002259
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002260 switch (channel->hw_value & CHANNEL_MODES) {
2261 case CHANNEL_A:
Bob Copeland6752ee92009-04-30 15:55:51 -04002262 ctl_mode |= AR5K_CTL_11A;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002263 break;
2264 case CHANNEL_G:
Bob Copeland6752ee92009-04-30 15:55:51 -04002265 ctl_mode |= AR5K_CTL_11G;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002266 break;
2267 case CHANNEL_B:
Bob Copeland6752ee92009-04-30 15:55:51 -04002268 ctl_mode |= AR5K_CTL_11B;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002269 break;
2270 case CHANNEL_T:
Bob Copeland6752ee92009-04-30 15:55:51 -04002271 ctl_mode |= AR5K_CTL_TURBO;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002272 break;
2273 case CHANNEL_TG:
Bob Copeland6752ee92009-04-30 15:55:51 -04002274 ctl_mode |= AR5K_CTL_TURBOG;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002275 break;
2276 case CHANNEL_XR:
2277 /* Fall through */
2278 default:
2279 return;
2280 }
Nick Kossifidis903b4742008-02-28 14:50:50 -05002281
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002282 for (i = 0; i < ee->ee_ctls; i++) {
2283 if (ctl_val[i] == ctl_mode) {
2284 ctl_idx = i;
2285 break;
2286 }
2287 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002288
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002289 /* If we have a CTL dataset available grab it and find the
2290 * edge power for our frequency */
2291 if (ctl_idx == 0xFF)
2292 return;
2293
2294 /* Edge powers are sorted by frequency from lower
2295 * to higher. Each CTL corresponds to 8 edge power
2296 * measurements. */
2297 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2298
2299 /* Don't do boundaries check because we
2300 * might have more that one bands defined
2301 * for this mode */
2302
2303 /* Get the edge power that's closer to our
2304 * frequency */
2305 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2306 rep_idx += i;
2307 if (target <= rep[rep_idx].freq)
2308 edge_pwr = (s16) rep[rep_idx].edge;
2309 }
2310
2311 if (edge_pwr)
2312 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2313}
2314
2315
2316/*
2317 * Power to PCDAC table functions
2318 */
2319
2320/*
2321 * Fill Power to PCDAC table on RF5111
2322 *
2323 * No further processing is needed for RF5111, the only thing we have to
2324 * do is fill the values below and above calibration range since eeprom data
2325 * may not cover the entire PCDAC table.
2326 */
2327static void
2328ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2329 s16 *table_max)
2330{
2331 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2332 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2333 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2334 s16 min_pwr, max_pwr;
2335
2336 /* Get table boundaries */
2337 min_pwr = table_min[0];
2338 pcdac_0 = pcdac_tmp[0];
2339
2340 max_pwr = table_max[0];
2341 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2342
2343 /* Extrapolate below minimum using pcdac_0 */
2344 pcdac_i = 0;
2345 for (i = 0; i < min_pwr; i++)
2346 pcdac_out[pcdac_i++] = pcdac_0;
2347
2348 /* Copy values from pcdac_tmp */
2349 pwr_idx = min_pwr;
2350 for (i = 0 ; pwr_idx <= max_pwr &&
2351 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2352 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2353 pwr_idx++;
2354 }
2355
2356 /* Extrapolate above maximum */
2357 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2358 pcdac_out[pcdac_i++] = pcdac_n;
2359
2360}
2361
2362/*
2363 * Combine available XPD Curves and fill Linear Power to PCDAC table
2364 * on RF5112
2365 *
2366 * RFX112 can have up to 2 curves (one for low txpower range and one for
2367 * higher txpower range). We need to put them both on pcdac_out and place
2368 * them in the correct location. In case we only have one curve available
2369 * just fit it on pcdac_out (it's supposed to cover the entire range of
2370 * available pwr levels since it's always the higher power curve). Extrapolate
2371 * below and above final table if needed.
2372 */
2373static void
2374ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2375 s16 *table_max, u8 pdcurves)
2376{
2377 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2378 u8 *pcdac_low_pwr;
2379 u8 *pcdac_high_pwr;
2380 u8 *pcdac_tmp;
2381 u8 pwr;
2382 s16 max_pwr_idx;
2383 s16 min_pwr_idx;
2384 s16 mid_pwr_idx = 0;
2385 /* Edge flag turs on the 7nth bit on the PCDAC
2386 * to delcare the higher power curve (force values
2387 * to be greater than 64). If we only have one curve
2388 * we don't need to set this, if we have 2 curves and
2389 * fill the table backwards this can also be used to
2390 * switch from higher power curve to lower power curve */
2391 u8 edge_flag;
2392 int i;
2393
2394 /* When we have only one curve available
2395 * that's the higher power curve. If we have
2396 * two curves the first is the high power curve
2397 * and the next is the low power curve. */
2398 if (pdcurves > 1) {
2399 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2400 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2401 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2402 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2403
2404 /* If table size goes beyond 31.5dB, keep the
2405 * upper 31.5dB range when setting tx power.
2406 * Note: 126 = 31.5 dB in quarter dB steps */
2407 if (table_max[0] - table_min[1] > 126)
2408 min_pwr_idx = table_max[0] - 126;
2409 else
2410 min_pwr_idx = table_min[1];
2411
2412 /* Since we fill table backwards
2413 * start from high power curve */
2414 pcdac_tmp = pcdac_high_pwr;
2415
2416 edge_flag = 0x40;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002417 } else {
2418 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2419 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2420 min_pwr_idx = table_min[0];
2421 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2422 pcdac_tmp = pcdac_high_pwr;
2423 edge_flag = 0;
2424 }
2425
2426 /* This is used when setting tx power*/
2427 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2428
2429 /* Fill Power to PCDAC table backwards */
2430 pwr = max_pwr_idx;
2431 for (i = 63; i >= 0; i--) {
2432 /* Entering lower power range, reset
2433 * edge flag and set pcdac_tmp to lower
2434 * power curve.*/
2435 if (edge_flag == 0x40 &&
2436 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2437 edge_flag = 0x00;
2438 pcdac_tmp = pcdac_low_pwr;
2439 pwr = mid_pwr_idx/2;
2440 }
2441
2442 /* Don't go below 1, extrapolate below if we have
2443 * already swithced to the lower power curve -or
2444 * we only have one curve and edge_flag is zero
2445 * anyway */
2446 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2447 while (i >= 0) {
2448 pcdac_out[i] = pcdac_out[i + 1];
2449 i--;
2450 }
2451 break;
2452 }
2453
2454 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2455
2456 /* Extrapolate above if pcdac is greater than
2457 * 126 -this can happen because we OR pcdac_out
2458 * value with edge_flag on high power curve */
2459 if (pcdac_out[i] > 126)
2460 pcdac_out[i] = 126;
2461
2462 /* Decrease by a 0.5dB step */
2463 pwr--;
2464 }
2465}
2466
2467/* Write PCDAC values on hw */
2468static void
2469ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2470{
2471 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2472 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002473
2474 /*
2475 * Write TX power values
2476 */
2477 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2478 ath5k_hw_reg_write(ah,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002479 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2480 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002481 AR5K_PHY_PCDAC_TXPOWER(i));
2482 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002483}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002484
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002485
2486/*
2487 * Power to PDADC table functions
2488 */
2489
2490/*
2491 * Set the gain boundaries and create final Power to PDADC table
2492 *
2493 * We can have up to 4 pd curves, we need to do a simmilar process
2494 * as we do for RF5112. This time we don't have an edge_flag but we
2495 * set the gain boundaries on a separate register.
2496 */
2497static void
2498ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2499 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2500{
2501 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2502 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2503 u8 *pdadc_tmp;
2504 s16 pdadc_0;
2505 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2506 u8 pd_gain_overlap;
2507
2508 /* Note: Register value is initialized on initvals
2509 * there is no feedback from hw.
2510 * XXX: What about pd_gain_overlap from EEPROM ? */
2511 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2512 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2513
2514 /* Create final PDADC table */
2515 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2516 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2517
2518 if (pdg == pdcurves - 1)
2519 /* 2 dB boundary stretch for last
2520 * (higher power) curve */
2521 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2522 else
2523 /* Set gain boundary in the middle
2524 * between this curve and the next one */
2525 gain_boundaries[pdg] =
2526 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2527
2528 /* Sanity check in case our 2 db stretch got out of
2529 * range. */
2530 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2531 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2532
2533 /* For the first curve (lower power)
2534 * start from 0 dB */
2535 if (pdg == 0)
2536 pdadc_0 = 0;
2537 else
2538 /* For the other curves use the gain overlap */
2539 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2540 pd_gain_overlap;
2541
2542 /* Force each power step to be at least 0.5 dB */
2543 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2544 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2545 else
2546 pwr_step = 1;
2547
2548 /* If pdadc_0 is negative, we need to extrapolate
2549 * below this pdgain by a number of pwr_steps */
2550 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2551 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2552 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2553 pdadc_0++;
2554 }
2555
2556 /* Set last pwr level, using gain boundaries */
2557 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2558 /* Limit it to be inside pwr range */
2559 table_size = pwr_max[pdg] - pwr_min[pdg];
2560 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2561
2562 /* Fill pdadc_out table */
Bob Copeland4f59fce2010-04-07 23:55:59 -04002563 while (pdadc_0 < max_idx && pdadc_i < 128)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002564 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2565
2566 /* Need to extrapolate above this pdgain? */
2567 if (pdadc_n <= max_idx)
2568 continue;
2569
2570 /* Force each power step to be at least 0.5 dB */
2571 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2572 pwr_step = pdadc_tmp[table_size - 1] -
2573 pdadc_tmp[table_size - 2];
2574 else
2575 pwr_step = 1;
2576
2577 /* Extrapolate above */
2578 while ((pdadc_0 < (s16) pdadc_n) &&
2579 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2580 s16 tmp = pdadc_tmp[table_size - 1] +
2581 (pdadc_0 - max_idx) * pwr_step;
2582 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2583 pdadc_0++;
2584 }
2585 }
2586
2587 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2588 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2589 pdg++;
2590 }
2591
2592 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2593 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2594 pdadc_i++;
2595 }
2596
2597 /* Set gain boundaries */
2598 ath5k_hw_reg_write(ah,
2599 AR5K_REG_SM(pd_gain_overlap,
2600 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2601 AR5K_REG_SM(gain_boundaries[0],
2602 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2603 AR5K_REG_SM(gain_boundaries[1],
2604 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2605 AR5K_REG_SM(gain_boundaries[2],
2606 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2607 AR5K_REG_SM(gain_boundaries[3],
2608 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2609 AR5K_PHY_TPC_RG5);
2610
2611 /* Used for setting rate power table */
2612 ah->ah_txpower.txp_min_idx = pwr_min[0];
2613
2614}
2615
2616/* Write PDADC values on hw */
2617static void
2618ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2619 u8 pdcurves, u8 *pdg_to_idx)
2620{
2621 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2622 u32 reg;
2623 u8 i;
2624
2625 /* Select the right pdgain curves */
2626
2627 /* Clear current settings */
2628 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2629 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2630 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2631 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2632 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2633
2634 /*
2635 * Use pd_gains curve from eeprom
2636 *
2637 * This overrides the default setting from initvals
2638 * in case some vendors (e.g. Zcomax) don't use the default
2639 * curves. If we don't honor their settings we 'll get a
2640 * 5dB (1 * gain overlap ?) drop.
2641 */
2642 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2643
2644 switch (pdcurves) {
2645 case 3:
2646 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2647 /* Fall through */
2648 case 2:
2649 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2650 /* Fall through */
2651 case 1:
2652 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2653 break;
2654 }
2655 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2656
2657 /*
2658 * Write TX power values
2659 */
2660 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2661 ath5k_hw_reg_write(ah,
2662 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2663 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2664 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2665 ((pdadc_out[4*i + 3] & 0xff) << 24),
2666 AR5K_PHY_PDADC_TXPOWER(i));
2667 }
2668}
2669
2670
2671/*
2672 * Common code for PCDAC/PDADC tables
2673 */
2674
2675/*
2676 * This is the main function that uses all of the above
2677 * to set PCDAC/PDADC table on hw for the current channel.
2678 * This table is used for tx power calibration on the basband,
2679 * without it we get weird tx power levels and in some cases
2680 * distorted spectral mask
2681 */
2682static int
2683ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2684 struct ieee80211_channel *channel,
2685 u8 ee_mode, u8 type)
2686{
2687 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2688 struct ath5k_chan_pcal_info *pcinfo_L;
2689 struct ath5k_chan_pcal_info *pcinfo_R;
2690 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2691 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2692 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2693 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2694 u8 *tmpL;
2695 u8 *tmpR;
2696 u32 target = channel->center_freq;
2697 int pdg, i;
2698
2699 /* Get surounding freq piers for this channel */
2700 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2701 &pcinfo_L,
2702 &pcinfo_R);
2703
2704 /* Loop over pd gain curves on
2705 * surounding freq piers by index */
2706 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2707
2708 /* Fill curves in reverse order
2709 * from lower power (max gain)
2710 * to higher power. Use curve -> idx
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002711 * backmapping we did on eeprom init */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002712 u8 idx = pdg_curve_to_idx[pdg];
2713
2714 /* Grab the needed curves by index */
2715 pdg_L = &pcinfo_L->pd_curves[idx];
2716 pdg_R = &pcinfo_R->pd_curves[idx];
2717
2718 /* Initialize the temp tables */
2719 tmpL = ah->ah_txpower.tmpL[pdg];
2720 tmpR = ah->ah_txpower.tmpR[pdg];
2721
2722 /* Set curve's x boundaries and create
2723 * curves so that they cover the same
2724 * range (if we don't do that one table
2725 * will have values on some range and the
2726 * other one won't have any so interpolation
2727 * will fail) */
2728 table_min[pdg] = min(pdg_L->pd_pwr[0],
2729 pdg_R->pd_pwr[0]) / 2;
2730
2731 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2732 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2733
2734 /* Now create the curves on surrounding channels
2735 * and interpolate if needed to get the final
2736 * curve for this gain on this channel */
2737 switch (type) {
2738 case AR5K_PWRTABLE_LINEAR_PCDAC:
2739 /* Override min/max so that we don't loose
2740 * accuracy (don't divide by 2) */
2741 table_min[pdg] = min(pdg_L->pd_pwr[0],
2742 pdg_R->pd_pwr[0]);
2743
2744 table_max[pdg] =
2745 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2746 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2747
2748 /* Override minimum so that we don't get
2749 * out of bounds while extrapolating
2750 * below. Don't do this when we have 2
2751 * curves and we are on the high power curve
2752 * because table_min is ok in this case */
2753 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2754
2755 table_min[pdg] =
2756 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2757 pdg_R->pd_step,
2758 pdg_L->pd_pwr,
2759 pdg_R->pd_pwr);
2760
2761 /* Don't go too low because we will
2762 * miss the upper part of the curve.
2763 * Note: 126 = 31.5dB (max power supported)
2764 * in 0.25dB units */
2765 if (table_max[pdg] - table_min[pdg] > 126)
2766 table_min[pdg] = table_max[pdg] - 126;
2767 }
2768
2769 /* Fall through */
2770 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2771 case AR5K_PWRTABLE_PWR_TO_PDADC:
2772
2773 ath5k_create_power_curve(table_min[pdg],
2774 table_max[pdg],
2775 pdg_L->pd_pwr,
2776 pdg_L->pd_step,
2777 pdg_L->pd_points, tmpL, type);
2778
2779 /* We are in a calibration
2780 * pier, no need to interpolate
2781 * between freq piers */
2782 if (pcinfo_L == pcinfo_R)
2783 continue;
2784
2785 ath5k_create_power_curve(table_min[pdg],
2786 table_max[pdg],
2787 pdg_R->pd_pwr,
2788 pdg_R->pd_step,
2789 pdg_R->pd_points, tmpR, type);
2790 break;
2791 default:
2792 return -EINVAL;
2793 }
2794
2795 /* Interpolate between curves
2796 * of surounding freq piers to
2797 * get the final curve for this
2798 * pd gain. Re-use tmpL for interpolation
2799 * output */
2800 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2801 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2802 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2803 (s16) pcinfo_L->freq,
2804 (s16) pcinfo_R->freq,
2805 (s16) tmpL[i],
2806 (s16) tmpR[i]);
2807 }
2808 }
2809
2810 /* Now we have a set of curves for this
2811 * channel on tmpL (x range is table_max - table_min
2812 * and y values are tmpL[pdg][]) sorted in the same
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002813 * order as EEPROM (because we've used the backmapping).
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002814 * So for RF5112 it's from higher power to lower power
2815 * and for RF2413 it's from lower power to higher power.
2816 * For RF5111 we only have one curve. */
2817
2818 /* Fill min and max power levels for this
2819 * channel by interpolating the values on
2820 * surounding channels to complete the dataset */
2821 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2822 (s16) pcinfo_L->freq,
2823 (s16) pcinfo_R->freq,
2824 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2825
2826 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2827 (s16) pcinfo_L->freq,
2828 (s16) pcinfo_R->freq,
2829 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2830
2831 /* We are ready to go, fill PCDAC/PDADC
2832 * table and write settings on hardware */
2833 switch (type) {
2834 case AR5K_PWRTABLE_LINEAR_PCDAC:
2835 /* For RF5112 we can have one or two curves
2836 * and each curve covers a certain power lvl
2837 * range so we need to do some more processing */
2838 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2839 ee->ee_pd_gains[ee_mode]);
2840
2841 /* Set txp.offset so that we can
2842 * match max power value with max
2843 * table index */
2844 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2845
2846 /* Write settings on hw */
2847 ath5k_setup_pcdac_table(ah);
2848 break;
2849 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2850 /* We are done for RF5111 since it has only
2851 * one curve, just fit the curve on the table */
2852 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2853
2854 /* No rate powertable adjustment for RF5111 */
2855 ah->ah_txpower.txp_min_idx = 0;
2856 ah->ah_txpower.txp_offset = 0;
2857
2858 /* Write settings on hw */
2859 ath5k_setup_pcdac_table(ah);
2860 break;
2861 case AR5K_PWRTABLE_PWR_TO_PDADC:
2862 /* Set PDADC boundaries and fill
2863 * final PDADC table */
2864 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2865 ee->ee_pd_gains[ee_mode]);
2866
2867 /* Write settings on hw */
2868 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2869
2870 /* Set txp.offset, note that table_min
2871 * can be negative */
2872 ah->ah_txpower.txp_offset = table_min[0];
2873 break;
2874 default:
2875 return -EINVAL;
2876 }
2877
2878 return 0;
2879}
2880
2881
2882/*
2883 * Per-rate tx power setting
2884 *
2885 * This is the code that sets the desired tx power (below
2886 * maximum) on hw for each rate (we also have TPC that sets
2887 * power per packet). We do that by providing an index on the
2888 * PCDAC/PDADC table we set up.
2889 */
2890
2891/*
2892 * Set rate power table
2893 *
2894 * For now we only limit txpower based on maximum tx power
2895 * supported by hw (what's inside rate_info). We need to limit
2896 * this even more, based on regulatory domain etc.
2897 *
2898 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2899 * and is indexed as follows:
2900 * rates[0] - rates[7] -> OFDM rates
2901 * rates[8] - rates[14] -> CCK rates
2902 * rates[15] -> XR rates (they all have the same power)
2903 */
2904static void
2905ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2906 struct ath5k_rate_pcal_info *rate_info,
2907 u8 ee_mode)
2908{
2909 unsigned int i;
2910 u16 *rates;
2911
2912 /* max_pwr is power level we got from driver/user in 0.5dB
2913 * units, switch to 0.25dB units so we can compare */
2914 max_pwr *= 2;
2915 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2916
2917 /* apply rate limits */
2918 rates = ah->ah_txpower.txp_rates_power_table;
2919
2920 /* OFDM rates 6 to 24Mb/s */
2921 for (i = 0; i < 5; i++)
2922 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2923
2924 /* Rest OFDM rates */
2925 rates[5] = min(rates[0], rate_info->target_power_36);
2926 rates[6] = min(rates[0], rate_info->target_power_48);
2927 rates[7] = min(rates[0], rate_info->target_power_54);
2928
2929 /* CCK rates */
2930 /* 1L */
2931 rates[8] = min(rates[0], rate_info->target_power_6to24);
2932 /* 2L */
2933 rates[9] = min(rates[0], rate_info->target_power_36);
2934 /* 2S */
2935 rates[10] = min(rates[0], rate_info->target_power_36);
2936 /* 5L */
2937 rates[11] = min(rates[0], rate_info->target_power_48);
2938 /* 5S */
2939 rates[12] = min(rates[0], rate_info->target_power_48);
2940 /* 11L */
2941 rates[13] = min(rates[0], rate_info->target_power_54);
2942 /* 11S */
2943 rates[14] = min(rates[0], rate_info->target_power_54);
2944
2945 /* XR rates */
2946 rates[15] = min(rates[0], rate_info->target_power_6to24);
2947
2948 /* CCK rates have different peak to average ratio
2949 * so we have to tweak their power so that gainf
2950 * correction works ok. For this we use OFDM to
2951 * CCK delta from eeprom */
2952 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2953 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2954 for (i = 8; i <= 15; i++)
2955 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2956
Nick Kossifidisa0823812009-04-30 15:55:44 -04002957 /* Now that we have all rates setup use table offset to
2958 * match the power range set by user with the power indices
2959 * on PCDAC/PDADC table */
2960 for (i = 0; i < 16; i++) {
2961 rates[i] += ah->ah_txpower.txp_offset;
2962 /* Don't get out of bounds */
2963 if (rates[i] > 63)
2964 rates[i] = 63;
2965 }
2966
2967 /* Min/max in 0.25dB units */
2968 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2969 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002970 ah->ah_txpower.txp_ofdm = rates[7];
2971}
2972
2973
2974/*
2975 * Set transmition power
2976 */
2977int
2978ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2979 u8 ee_mode, u8 txpower)
2980{
2981 struct ath5k_rate_pcal_info rate_info;
2982 u8 type;
2983 int ret;
2984
2985 ATH5K_TRACE(ah->ah_sc);
2986 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2987 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2988 return -EINVAL;
2989 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002990
2991 /* Reset TX power values */
2992 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2993 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2994 ah->ah_txpower.txp_min_pwr = 0;
2995 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2996
2997 /* Initialize TX power table */
2998 switch (ah->ah_radio) {
2999 case AR5K_RF5111:
3000 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3001 break;
3002 case AR5K_RF5112:
3003 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3004 break;
3005 case AR5K_RF2413:
3006 case AR5K_RF5413:
3007 case AR5K_RF2316:
3008 case AR5K_RF2317:
3009 case AR5K_RF2425:
3010 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3011 break;
3012 default:
3013 return -EINVAL;
3014 }
3015
3016 /* FIXME: Only on channel/mode change */
3017 ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3018 if (ret)
3019 return ret;
3020
3021 /* Limit max power if we have a CTL available */
3022 ath5k_get_max_ctl_power(ah, channel);
3023
3024 /* FIXME: Tx power limit for this regdomain
3025 * XXX: Mac80211/CRDA will do that anyway ? */
3026
3027 /* FIXME: Antenna reduction stuff */
3028
3029 /* FIXME: Limit power on turbo modes */
3030
3031 /* FIXME: TPC scale reduction */
3032
3033 /* Get surounding channels for per-rate power table
3034 * calibration */
3035 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3036
3037 /* Setup rate power table */
3038 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3039
3040 /* Write rate power table on hw */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003041 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3042 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3043 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3044
3045 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3046 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3047 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3048
3049 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3050 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3051 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3052
3053 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3054 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3055 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3056
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003057 /* FIXME: TPC support */
3058 if (ah->ah_txpower.txp_tpc) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003059 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3060 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003061
3062 ath5k_hw_reg_write(ah,
3063 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3064 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3065 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3066 AR5K_TPC);
3067 } else {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003068 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3069 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003070 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003071
3072 return 0;
3073}
3074
Nick Kossifidisa0823812009-04-30 15:55:44 -04003075int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003076{
3077 /*Just a try M.F.*/
Bob Copeland46026e82009-06-10 22:22:20 -04003078 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidisa0823812009-04-30 15:55:44 -04003079 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003080
3081 ATH5K_TRACE(ah->ah_sc);
Nick Kossifidisa0823812009-04-30 15:55:44 -04003082
3083 switch (channel->hw_value & CHANNEL_MODES) {
3084 case CHANNEL_A:
3085 case CHANNEL_T:
3086 case CHANNEL_XR:
3087 ee_mode = AR5K_EEPROM_MODE_11A;
3088 break;
3089 case CHANNEL_G:
3090 case CHANNEL_TG:
3091 ee_mode = AR5K_EEPROM_MODE_11G;
3092 break;
3093 case CHANNEL_B:
3094 ee_mode = AR5K_EEPROM_MODE_11B;
3095 break;
3096 default:
3097 ATH5K_ERR(ah->ah_sc,
3098 "invalid channel: %d\n", channel->center_freq);
3099 return -EINVAL;
3100 }
3101
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003102 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003103 "changing txpower to %d\n", txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003104
Nick Kossifidisa0823812009-04-30 15:55:44 -04003105 return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003106}