blob: 6367cee0d66a2b502b2579a1ea23e7985251d6a5 [file] [log] [blame]
Divy Le Ray4d22de32007-01-18 22:04:14 -05001/*
Divy Le Ray1d68e932007-01-30 19:44:35 -08002 * Copyright (c) 2005-2007 Chelsio, Inc. All rights reserved.
Divy Le Ray4d22de32007-01-18 22:04:14 -05003 *
Divy Le Ray1d68e932007-01-30 19:44:35 -08004 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
Divy Le Ray4d22de32007-01-18 22:04:14 -05009 *
Divy Le Ray1d68e932007-01-30 19:44:35 -080010 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
Divy Le Ray4d22de32007-01-18 22:04:14 -050031 */
Divy Le Ray4d22de32007-01-18 22:04:14 -050032#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/dma-mapping.h>
39#include "common.h"
40#include "regs.h"
41#include "sge_defs.h"
42#include "t3_cpl.h"
43#include "firmware_exports.h"
44
45#define USE_GTS 0
46
47#define SGE_RX_SM_BUF_SIZE 1536
Divy Le Raye0994eb2007-02-24 16:44:17 -080048
Divy Le Ray4d22de32007-01-18 22:04:14 -050049#define SGE_RX_COPY_THRES 256
Divy Le Raycf992af2007-05-30 21:10:47 -070050#define SGE_RX_PULL_LEN 128
Divy Le Ray4d22de32007-01-18 22:04:14 -050051
Divy Le Raye0994eb2007-02-24 16:44:17 -080052/*
Divy Le Raycf992af2007-05-30 21:10:47 -070053 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
54 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
55 * directly.
Divy Le Raye0994eb2007-02-24 16:44:17 -080056 */
Divy Le Raycf992af2007-05-30 21:10:47 -070057#define FL0_PG_CHUNK_SIZE 2048
58
Divy Le Raye0994eb2007-02-24 16:44:17 -080059#define SGE_RX_DROP_THRES 16
Divy Le Ray4d22de32007-01-18 22:04:14 -050060
61/*
62 * Period of the Tx buffer reclaim timer. This timer does not need to run
63 * frequently as Tx buffers are usually reclaimed by new Tx packets.
64 */
65#define TX_RECLAIM_PERIOD (HZ / 4)
66
67/* WR size in bytes */
68#define WR_LEN (WR_FLITS * 8)
69
70/*
71 * Types of Tx queues in each queue set. Order here matters, do not change.
72 */
73enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
74
75/* Values for sge_txq.flags */
76enum {
77 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
78 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
79};
80
81struct tx_desc {
Al Virofb8e4442007-08-23 03:04:12 -040082 __be64 flit[TX_DESC_FLITS];
Divy Le Ray4d22de32007-01-18 22:04:14 -050083};
84
85struct rx_desc {
86 __be32 addr_lo;
87 __be32 len_gen;
88 __be32 gen2;
89 __be32 addr_hi;
90};
91
92struct tx_sw_desc { /* SW state per Tx descriptor */
93 struct sk_buff *skb;
Divy Le Ray23561c92007-11-16 11:22:05 -080094 u8 eop; /* set if last descriptor for packet */
95 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
96 u8 fragidx; /* first page fragment associated with descriptor */
97 s8 sflit; /* start flit of first SGL entry in descriptor */
Divy Le Ray4d22de32007-01-18 22:04:14 -050098};
99
Divy Le Raycf992af2007-05-30 21:10:47 -0700100struct rx_sw_desc { /* SW state per Rx descriptor */
Divy Le Raye0994eb2007-02-24 16:44:17 -0800101 union {
102 struct sk_buff *skb;
Divy Le Raycf992af2007-05-30 21:10:47 -0700103 struct fl_pg_chunk pg_chunk;
104 };
105 DECLARE_PCI_UNMAP_ADDR(dma_addr);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500106};
107
108struct rsp_desc { /* response queue descriptor */
109 struct rss_header rss_hdr;
110 __be32 flags;
111 __be32 len_cq;
112 u8 imm_data[47];
113 u8 intr_gen;
114};
115
Divy Le Ray4d22de32007-01-18 22:04:14 -0500116/*
Divy Le Ray99d7cf32007-02-24 16:44:06 -0800117 * Holds unmapping information for Tx packets that need deferred unmapping.
118 * This structure lives at skb->head and must be allocated by callers.
119 */
120struct deferred_unmap_info {
121 struct pci_dev *pdev;
122 dma_addr_t addr[MAX_SKB_FRAGS + 1];
123};
124
125/*
Divy Le Ray4d22de32007-01-18 22:04:14 -0500126 * Maps a number of flits to the number of Tx descriptors that can hold them.
127 * The formula is
128 *
129 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
130 *
131 * HW allows up to 4 descriptors to be combined into a WR.
132 */
133static u8 flit_desc_map[] = {
134 0,
135#if SGE_NUM_GENBITS == 1
136 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
137 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
138 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
139 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
140#elif SGE_NUM_GENBITS == 2
141 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
142 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
143 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
144 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
145#else
146# error "SGE_NUM_GENBITS must be 1 or 2"
147#endif
148};
149
150static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
151{
152 return container_of(q, struct sge_qset, fl[qidx]);
153}
154
155static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
156{
157 return container_of(q, struct sge_qset, rspq);
158}
159
160static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
161{
162 return container_of(q, struct sge_qset, txq[qidx]);
163}
164
165/**
166 * refill_rspq - replenish an SGE response queue
167 * @adapter: the adapter
168 * @q: the response queue to replenish
169 * @credits: how many new responses to make available
170 *
171 * Replenishes a response queue by making the supplied number of responses
172 * available to HW.
173 */
174static inline void refill_rspq(struct adapter *adapter,
175 const struct sge_rspq *q, unsigned int credits)
176{
Divy Le Rayafefce62007-11-16 11:22:21 -0800177 rmb();
Divy Le Ray4d22de32007-01-18 22:04:14 -0500178 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
179 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
180}
181
182/**
183 * need_skb_unmap - does the platform need unmapping of sk_buffs?
184 *
185 * Returns true if the platfrom needs sk_buff unmapping. The compiler
186 * optimizes away unecessary code if this returns true.
187 */
188static inline int need_skb_unmap(void)
189{
190 /*
191 * This structure is used to tell if the platfrom needs buffer
192 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
193 */
194 struct dummy {
195 DECLARE_PCI_UNMAP_ADDR(addr);
196 };
197
198 return sizeof(struct dummy) != 0;
199}
200
201/**
202 * unmap_skb - unmap a packet main body and its page fragments
203 * @skb: the packet
204 * @q: the Tx queue containing Tx descriptors for the packet
205 * @cidx: index of Tx descriptor
206 * @pdev: the PCI device
207 *
208 * Unmap the main body of an sk_buff and its page fragments, if any.
209 * Because of the fairly complicated structure of our SGLs and the desire
Divy Le Ray23561c92007-11-16 11:22:05 -0800210 * to conserve space for metadata, the information necessary to unmap an
211 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
212 * descriptors (the physical addresses of the various data buffers), and
213 * the SW descriptor state (assorted indices). The send functions
214 * initialize the indices for the first packet descriptor so we can unmap
215 * the buffers held in the first Tx descriptor here, and we have enough
216 * information at this point to set the state for the next Tx descriptor.
217 *
218 * Note that it is possible to clean up the first descriptor of a packet
219 * before the send routines have written the next descriptors, but this
220 * race does not cause any problem. We just end up writing the unmapping
221 * info for the descriptor first.
Divy Le Ray4d22de32007-01-18 22:04:14 -0500222 */
223static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
224 unsigned int cidx, struct pci_dev *pdev)
225{
226 const struct sg_ent *sgp;
Divy Le Ray23561c92007-11-16 11:22:05 -0800227 struct tx_sw_desc *d = &q->sdesc[cidx];
228 int nfrags, frag_idx, curflit, j = d->addr_idx;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500229
Divy Le Ray23561c92007-11-16 11:22:05 -0800230 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
231 frag_idx = d->fragidx;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500232
Divy Le Ray23561c92007-11-16 11:22:05 -0800233 if (frag_idx == 0 && skb_headlen(skb)) {
234 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
235 skb_headlen(skb), PCI_DMA_TODEVICE);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500236 j = 1;
237 }
238
Divy Le Ray23561c92007-11-16 11:22:05 -0800239 curflit = d->sflit + 1 + j;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500240 nfrags = skb_shinfo(skb)->nr_frags;
241
242 while (frag_idx < nfrags && curflit < WR_FLITS) {
243 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
244 skb_shinfo(skb)->frags[frag_idx].size,
245 PCI_DMA_TODEVICE);
246 j ^= 1;
247 if (j == 0) {
248 sgp++;
249 curflit++;
250 }
251 curflit++;
252 frag_idx++;
253 }
254
Divy Le Ray23561c92007-11-16 11:22:05 -0800255 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
256 d = cidx + 1 == q->size ? q->sdesc : d + 1;
257 d->fragidx = frag_idx;
258 d->addr_idx = j;
259 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
Divy Le Ray4d22de32007-01-18 22:04:14 -0500260 }
261}
262
263/**
264 * free_tx_desc - reclaims Tx descriptors and their buffers
265 * @adapter: the adapter
266 * @q: the Tx queue to reclaim descriptors from
267 * @n: the number of descriptors to reclaim
268 *
269 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
270 * Tx buffers. Called with the Tx queue lock held.
271 */
272static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
273 unsigned int n)
274{
275 struct tx_sw_desc *d;
276 struct pci_dev *pdev = adapter->pdev;
277 unsigned int cidx = q->cidx;
278
Divy Le Ray99d7cf32007-02-24 16:44:06 -0800279 const int need_unmap = need_skb_unmap() &&
280 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
281
Divy Le Ray4d22de32007-01-18 22:04:14 -0500282 d = &q->sdesc[cidx];
283 while (n--) {
284 if (d->skb) { /* an SGL is present */
Divy Le Ray99d7cf32007-02-24 16:44:06 -0800285 if (need_unmap)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500286 unmap_skb(d->skb, q, cidx, pdev);
Divy Le Ray23561c92007-11-16 11:22:05 -0800287 if (d->eop)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500288 kfree_skb(d->skb);
289 }
290 ++d;
291 if (++cidx == q->size) {
292 cidx = 0;
293 d = q->sdesc;
294 }
295 }
296 q->cidx = cidx;
297}
298
299/**
300 * reclaim_completed_tx - reclaims completed Tx descriptors
301 * @adapter: the adapter
302 * @q: the Tx queue to reclaim completed descriptors from
303 *
304 * Reclaims Tx descriptors that the SGE has indicated it has processed,
305 * and frees the associated buffers if possible. Called with the Tx
306 * queue's lock held.
307 */
308static inline void reclaim_completed_tx(struct adapter *adapter,
309 struct sge_txq *q)
310{
311 unsigned int reclaim = q->processed - q->cleaned;
312
313 if (reclaim) {
314 free_tx_desc(adapter, q, reclaim);
315 q->cleaned += reclaim;
316 q->in_use -= reclaim;
317 }
318}
319
320/**
321 * should_restart_tx - are there enough resources to restart a Tx queue?
322 * @q: the Tx queue
323 *
324 * Checks if there are enough descriptors to restart a suspended Tx queue.
325 */
326static inline int should_restart_tx(const struct sge_txq *q)
327{
328 unsigned int r = q->processed - q->cleaned;
329
330 return q->in_use - r < (q->size >> 1);
331}
332
333/**
334 * free_rx_bufs - free the Rx buffers on an SGE free list
335 * @pdev: the PCI device associated with the adapter
336 * @rxq: the SGE free list to clean up
337 *
338 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
339 * this queue should be stopped before calling this function.
340 */
341static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
342{
343 unsigned int cidx = q->cidx;
344
345 while (q->credits--) {
346 struct rx_sw_desc *d = &q->sdesc[cidx];
347
348 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
349 q->buf_size, PCI_DMA_FROMDEVICE);
Divy Le Raycf992af2007-05-30 21:10:47 -0700350 if (q->use_pages) {
351 put_page(d->pg_chunk.page);
352 d->pg_chunk.page = NULL;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800353 } else {
Divy Le Raycf992af2007-05-30 21:10:47 -0700354 kfree_skb(d->skb);
355 d->skb = NULL;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800356 }
Divy Le Ray4d22de32007-01-18 22:04:14 -0500357 if (++cidx == q->size)
358 cidx = 0;
359 }
Divy Le Raye0994eb2007-02-24 16:44:17 -0800360
Divy Le Raycf992af2007-05-30 21:10:47 -0700361 if (q->pg_chunk.page) {
362 __free_page(q->pg_chunk.page);
363 q->pg_chunk.page = NULL;
364 }
Divy Le Ray4d22de32007-01-18 22:04:14 -0500365}
366
367/**
368 * add_one_rx_buf - add a packet buffer to a free-buffer list
Divy Le Raycf992af2007-05-30 21:10:47 -0700369 * @va: buffer start VA
Divy Le Ray4d22de32007-01-18 22:04:14 -0500370 * @len: the buffer length
371 * @d: the HW Rx descriptor to write
372 * @sd: the SW Rx descriptor to write
373 * @gen: the generation bit value
374 * @pdev: the PCI device associated with the adapter
375 *
376 * Add a buffer of the given length to the supplied HW and SW Rx
377 * descriptors.
378 */
Divy Le Raycf992af2007-05-30 21:10:47 -0700379static inline void add_one_rx_buf(void *va, unsigned int len,
Divy Le Ray4d22de32007-01-18 22:04:14 -0500380 struct rx_desc *d, struct rx_sw_desc *sd,
381 unsigned int gen, struct pci_dev *pdev)
382{
383 dma_addr_t mapping;
384
Divy Le Raye0994eb2007-02-24 16:44:17 -0800385 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500386 pci_unmap_addr_set(sd, dma_addr, mapping);
387
388 d->addr_lo = cpu_to_be32(mapping);
389 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
390 wmb();
391 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
392 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
393}
394
Divy Le Raycf992af2007-05-30 21:10:47 -0700395static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp)
396{
397 if (!q->pg_chunk.page) {
398 q->pg_chunk.page = alloc_page(gfp);
399 if (unlikely(!q->pg_chunk.page))
400 return -ENOMEM;
401 q->pg_chunk.va = page_address(q->pg_chunk.page);
402 q->pg_chunk.offset = 0;
403 }
404 sd->pg_chunk = q->pg_chunk;
405
406 q->pg_chunk.offset += q->buf_size;
407 if (q->pg_chunk.offset == PAGE_SIZE)
408 q->pg_chunk.page = NULL;
409 else {
410 q->pg_chunk.va += q->buf_size;
411 get_page(q->pg_chunk.page);
412 }
413 return 0;
414}
415
Divy Le Ray4d22de32007-01-18 22:04:14 -0500416/**
417 * refill_fl - refill an SGE free-buffer list
418 * @adapter: the adapter
419 * @q: the free-list to refill
420 * @n: the number of new buffers to allocate
421 * @gfp: the gfp flags for allocating new buffers
422 *
423 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
424 * allocated with the supplied gfp flags. The caller must assure that
425 * @n does not exceed the queue's capacity.
426 */
427static void refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
428{
Divy Le Raycf992af2007-05-30 21:10:47 -0700429 void *buf_start;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500430 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
431 struct rx_desc *d = &q->desc[q->pidx];
432
433 while (n--) {
Divy Le Raycf992af2007-05-30 21:10:47 -0700434 if (q->use_pages) {
435 if (unlikely(alloc_pg_chunk(q, sd, gfp))) {
436nomem: q->alloc_failed++;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800437 break;
438 }
Divy Le Raycf992af2007-05-30 21:10:47 -0700439 buf_start = sd->pg_chunk.va;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800440 } else {
Divy Le Raycf992af2007-05-30 21:10:47 -0700441 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
Divy Le Raye0994eb2007-02-24 16:44:17 -0800442
Divy Le Raycf992af2007-05-30 21:10:47 -0700443 if (!skb)
444 goto nomem;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800445
Divy Le Raycf992af2007-05-30 21:10:47 -0700446 sd->skb = skb;
447 buf_start = skb->data;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800448 }
449
Divy Le Raycf992af2007-05-30 21:10:47 -0700450 add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
451 adap->pdev);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500452 d++;
453 sd++;
454 if (++q->pidx == q->size) {
455 q->pidx = 0;
456 q->gen ^= 1;
457 sd = q->sdesc;
458 d = q->desc;
459 }
460 q->credits++;
461 }
Divy Le Rayafefce62007-11-16 11:22:21 -0800462 wmb();
Divy Le Ray4d22de32007-01-18 22:04:14 -0500463 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
464}
465
466static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
467{
468 refill_fl(adap, fl, min(16U, fl->size - fl->credits), GFP_ATOMIC);
469}
470
471/**
472 * recycle_rx_buf - recycle a receive buffer
473 * @adapter: the adapter
474 * @q: the SGE free list
475 * @idx: index of buffer to recycle
476 *
477 * Recycles the specified buffer on the given free list by adding it at
478 * the next available slot on the list.
479 */
480static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
481 unsigned int idx)
482{
483 struct rx_desc *from = &q->desc[idx];
484 struct rx_desc *to = &q->desc[q->pidx];
485
Divy Le Raycf992af2007-05-30 21:10:47 -0700486 q->sdesc[q->pidx] = q->sdesc[idx];
Divy Le Ray4d22de32007-01-18 22:04:14 -0500487 to->addr_lo = from->addr_lo; /* already big endian */
488 to->addr_hi = from->addr_hi; /* likewise */
489 wmb();
490 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
491 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
492 q->credits++;
493
494 if (++q->pidx == q->size) {
495 q->pidx = 0;
496 q->gen ^= 1;
497 }
498 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
499}
500
501/**
502 * alloc_ring - allocate resources for an SGE descriptor ring
503 * @pdev: the PCI device
504 * @nelem: the number of descriptors
505 * @elem_size: the size of each descriptor
506 * @sw_size: the size of the SW state associated with each ring element
507 * @phys: the physical address of the allocated ring
508 * @metadata: address of the array holding the SW state for the ring
509 *
510 * Allocates resources for an SGE descriptor ring, such as Tx queues,
511 * free buffer lists, or response queues. Each SGE ring requires
512 * space for its HW descriptors plus, optionally, space for the SW state
513 * associated with each HW entry (the metadata). The function returns
514 * three values: the virtual address for the HW ring (the return value
515 * of the function), the physical address of the HW ring, and the address
516 * of the SW ring.
517 */
518static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
Divy Le Raye0994eb2007-02-24 16:44:17 -0800519 size_t sw_size, dma_addr_t * phys, void *metadata)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500520{
521 size_t len = nelem * elem_size;
522 void *s = NULL;
523 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
524
525 if (!p)
526 return NULL;
527 if (sw_size) {
528 s = kcalloc(nelem, sw_size, GFP_KERNEL);
529
530 if (!s) {
531 dma_free_coherent(&pdev->dev, len, p, *phys);
532 return NULL;
533 }
534 }
535 if (metadata)
536 *(void **)metadata = s;
537 memset(p, 0, len);
538 return p;
539}
540
541/**
542 * free_qset - free the resources of an SGE queue set
543 * @adapter: the adapter owning the queue set
544 * @q: the queue set
545 *
546 * Release the HW and SW resources associated with an SGE queue set, such
547 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
548 * queue set must be quiesced prior to calling this.
549 */
Stephen Hemminger9265fab2007-10-08 16:22:29 -0700550static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500551{
552 int i;
553 struct pci_dev *pdev = adapter->pdev;
554
555 if (q->tx_reclaim_timer.function)
556 del_timer_sync(&q->tx_reclaim_timer);
557
558 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
559 if (q->fl[i].desc) {
560 spin_lock(&adapter->sge.reg_lock);
561 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
562 spin_unlock(&adapter->sge.reg_lock);
563 free_rx_bufs(pdev, &q->fl[i]);
564 kfree(q->fl[i].sdesc);
565 dma_free_coherent(&pdev->dev,
566 q->fl[i].size *
567 sizeof(struct rx_desc), q->fl[i].desc,
568 q->fl[i].phys_addr);
569 }
570
571 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
572 if (q->txq[i].desc) {
573 spin_lock(&adapter->sge.reg_lock);
574 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
575 spin_unlock(&adapter->sge.reg_lock);
576 if (q->txq[i].sdesc) {
577 free_tx_desc(adapter, &q->txq[i],
578 q->txq[i].in_use);
579 kfree(q->txq[i].sdesc);
580 }
581 dma_free_coherent(&pdev->dev,
582 q->txq[i].size *
583 sizeof(struct tx_desc),
584 q->txq[i].desc, q->txq[i].phys_addr);
585 __skb_queue_purge(&q->txq[i].sendq);
586 }
587
588 if (q->rspq.desc) {
589 spin_lock(&adapter->sge.reg_lock);
590 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
591 spin_unlock(&adapter->sge.reg_lock);
592 dma_free_coherent(&pdev->dev,
593 q->rspq.size * sizeof(struct rsp_desc),
594 q->rspq.desc, q->rspq.phys_addr);
595 }
596
Divy Le Ray4d22de32007-01-18 22:04:14 -0500597 memset(q, 0, sizeof(*q));
598}
599
600/**
601 * init_qset_cntxt - initialize an SGE queue set context info
602 * @qs: the queue set
603 * @id: the queue set id
604 *
605 * Initializes the TIDs and context ids for the queues of a queue set.
606 */
607static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
608{
609 qs->rspq.cntxt_id = id;
610 qs->fl[0].cntxt_id = 2 * id;
611 qs->fl[1].cntxt_id = 2 * id + 1;
612 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
613 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
614 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
615 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
616 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
617}
618
619/**
620 * sgl_len - calculates the size of an SGL of the given capacity
621 * @n: the number of SGL entries
622 *
623 * Calculates the number of flits needed for a scatter/gather list that
624 * can hold the given number of entries.
625 */
626static inline unsigned int sgl_len(unsigned int n)
627{
628 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
629 return (3 * n) / 2 + (n & 1);
630}
631
632/**
633 * flits_to_desc - returns the num of Tx descriptors for the given flits
634 * @n: the number of flits
635 *
636 * Calculates the number of Tx descriptors needed for the supplied number
637 * of flits.
638 */
639static inline unsigned int flits_to_desc(unsigned int n)
640{
641 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
642 return flit_desc_map[n];
643}
644
645/**
Divy Le Raycf992af2007-05-30 21:10:47 -0700646 * get_packet - return the next ingress packet buffer from a free list
647 * @adap: the adapter that received the packet
648 * @fl: the SGE free list holding the packet
649 * @len: the packet length including any SGE padding
650 * @drop_thres: # of remaining buffers before we start dropping packets
651 *
652 * Get the next packet from a free list and complete setup of the
653 * sk_buff. If the packet is small we make a copy and recycle the
654 * original buffer, otherwise we use the original buffer itself. If a
655 * positive drop threshold is supplied packets are dropped and their
656 * buffers recycled if (a) the number of remaining buffers is under the
657 * threshold and the packet is too big to copy, or (b) the packet should
658 * be copied but there is no memory for the copy.
659 */
660static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
661 unsigned int len, unsigned int drop_thres)
662{
663 struct sk_buff *skb = NULL;
664 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
665
666 prefetch(sd->skb->data);
667 fl->credits--;
668
669 if (len <= SGE_RX_COPY_THRES) {
670 skb = alloc_skb(len, GFP_ATOMIC);
671 if (likely(skb != NULL)) {
672 __skb_put(skb, len);
673 pci_dma_sync_single_for_cpu(adap->pdev,
674 pci_unmap_addr(sd, dma_addr), len,
675 PCI_DMA_FROMDEVICE);
676 memcpy(skb->data, sd->skb->data, len);
677 pci_dma_sync_single_for_device(adap->pdev,
678 pci_unmap_addr(sd, dma_addr), len,
679 PCI_DMA_FROMDEVICE);
680 } else if (!drop_thres)
681 goto use_orig_buf;
682recycle:
683 recycle_rx_buf(adap, fl, fl->cidx);
684 return skb;
685 }
686
687 if (unlikely(fl->credits < drop_thres))
688 goto recycle;
689
690use_orig_buf:
691 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
692 fl->buf_size, PCI_DMA_FROMDEVICE);
693 skb = sd->skb;
694 skb_put(skb, len);
695 __refill_fl(adap, fl);
696 return skb;
697}
698
699/**
700 * get_packet_pg - return the next ingress packet buffer from a free list
701 * @adap: the adapter that received the packet
702 * @fl: the SGE free list holding the packet
703 * @len: the packet length including any SGE padding
704 * @drop_thres: # of remaining buffers before we start dropping packets
705 *
706 * Get the next packet from a free list populated with page chunks.
707 * If the packet is small we make a copy and recycle the original buffer,
708 * otherwise we attach the original buffer as a page fragment to a fresh
709 * sk_buff. If a positive drop threshold is supplied packets are dropped
710 * and their buffers recycled if (a) the number of remaining buffers is
711 * under the threshold and the packet is too big to copy, or (b) there's
712 * no system memory.
713 *
714 * Note: this function is similar to @get_packet but deals with Rx buffers
715 * that are page chunks rather than sk_buffs.
716 */
717static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
718 unsigned int len, unsigned int drop_thres)
719{
720 struct sk_buff *skb = NULL;
721 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
722
723 if (len <= SGE_RX_COPY_THRES) {
724 skb = alloc_skb(len, GFP_ATOMIC);
725 if (likely(skb != NULL)) {
726 __skb_put(skb, len);
727 pci_dma_sync_single_for_cpu(adap->pdev,
728 pci_unmap_addr(sd, dma_addr), len,
729 PCI_DMA_FROMDEVICE);
730 memcpy(skb->data, sd->pg_chunk.va, len);
731 pci_dma_sync_single_for_device(adap->pdev,
732 pci_unmap_addr(sd, dma_addr), len,
733 PCI_DMA_FROMDEVICE);
734 } else if (!drop_thres)
735 return NULL;
736recycle:
737 fl->credits--;
738 recycle_rx_buf(adap, fl, fl->cidx);
739 return skb;
740 }
741
742 if (unlikely(fl->credits <= drop_thres))
743 goto recycle;
744
745 skb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
746 if (unlikely(!skb)) {
747 if (!drop_thres)
748 return NULL;
749 goto recycle;
750 }
751
752 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
753 fl->buf_size, PCI_DMA_FROMDEVICE);
754 __skb_put(skb, SGE_RX_PULL_LEN);
755 memcpy(skb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
756 skb_fill_page_desc(skb, 0, sd->pg_chunk.page,
757 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
758 len - SGE_RX_PULL_LEN);
759 skb->len = len;
760 skb->data_len = len - SGE_RX_PULL_LEN;
761 skb->truesize += skb->data_len;
762
763 fl->credits--;
764 /*
765 * We do not refill FLs here, we let the caller do it to overlap a
766 * prefetch.
767 */
768 return skb;
769}
770
771/**
Divy Le Ray4d22de32007-01-18 22:04:14 -0500772 * get_imm_packet - return the next ingress packet buffer from a response
773 * @resp: the response descriptor containing the packet data
774 *
775 * Return a packet containing the immediate data of the given response.
776 */
777static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
778{
779 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
780
781 if (skb) {
782 __skb_put(skb, IMMED_PKT_SIZE);
Arnaldo Carvalho de Melo27d7ff42007-03-31 11:55:19 -0300783 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500784 }
785 return skb;
786}
787
788/**
789 * calc_tx_descs - calculate the number of Tx descriptors for a packet
790 * @skb: the packet
791 *
792 * Returns the number of Tx descriptors needed for the given Ethernet
793 * packet. Ethernet packets require addition of WR and CPL headers.
794 */
795static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
796{
797 unsigned int flits;
798
799 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
800 return 1;
801
802 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
803 if (skb_shinfo(skb)->gso_size)
804 flits++;
805 return flits_to_desc(flits);
806}
807
808/**
809 * make_sgl - populate a scatter/gather list for a packet
810 * @skb: the packet
811 * @sgp: the SGL to populate
812 * @start: start address of skb main body data to include in the SGL
813 * @len: length of skb main body data to include in the SGL
814 * @pdev: the PCI device
815 *
816 * Generates a scatter/gather list for the buffers that make up a packet
817 * and returns the SGL size in 8-byte words. The caller must size the SGL
818 * appropriately.
819 */
820static inline unsigned int make_sgl(const struct sk_buff *skb,
821 struct sg_ent *sgp, unsigned char *start,
822 unsigned int len, struct pci_dev *pdev)
823{
824 dma_addr_t mapping;
825 unsigned int i, j = 0, nfrags;
826
827 if (len) {
828 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
829 sgp->len[0] = cpu_to_be32(len);
830 sgp->addr[0] = cpu_to_be64(mapping);
831 j = 1;
832 }
833
834 nfrags = skb_shinfo(skb)->nr_frags;
835 for (i = 0; i < nfrags; i++) {
836 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
837
838 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
839 frag->size, PCI_DMA_TODEVICE);
840 sgp->len[j] = cpu_to_be32(frag->size);
841 sgp->addr[j] = cpu_to_be64(mapping);
842 j ^= 1;
843 if (j == 0)
844 ++sgp;
845 }
846 if (j)
847 sgp->len[j] = 0;
848 return ((nfrags + (len != 0)) * 3) / 2 + j;
849}
850
851/**
852 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
853 * @adap: the adapter
854 * @q: the Tx queue
855 *
856 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
857 * where the HW is going to sleep just after we checked, however,
858 * then the interrupt handler will detect the outstanding TX packet
859 * and ring the doorbell for us.
860 *
861 * When GTS is disabled we unconditionally ring the doorbell.
862 */
863static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
864{
865#if USE_GTS
866 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
867 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
868 set_bit(TXQ_LAST_PKT_DB, &q->flags);
869 t3_write_reg(adap, A_SG_KDOORBELL,
870 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
871 }
872#else
873 wmb(); /* write descriptors before telling HW */
874 t3_write_reg(adap, A_SG_KDOORBELL,
875 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
876#endif
877}
878
879static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
880{
881#if SGE_NUM_GENBITS == 2
882 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
883#endif
884}
885
886/**
887 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
888 * @ndesc: number of Tx descriptors spanned by the SGL
889 * @skb: the packet corresponding to the WR
890 * @d: first Tx descriptor to be written
891 * @pidx: index of above descriptors
892 * @q: the SGE Tx queue
893 * @sgl: the SGL
894 * @flits: number of flits to the start of the SGL in the first descriptor
895 * @sgl_flits: the SGL size in flits
896 * @gen: the Tx descriptor generation
897 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
898 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
899 *
900 * Write a work request header and an associated SGL. If the SGL is
901 * small enough to fit into one Tx descriptor it has already been written
902 * and we just need to write the WR header. Otherwise we distribute the
903 * SGL across the number of descriptors it spans.
904 */
905static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
906 struct tx_desc *d, unsigned int pidx,
907 const struct sge_txq *q,
908 const struct sg_ent *sgl,
909 unsigned int flits, unsigned int sgl_flits,
Al Virofb8e4442007-08-23 03:04:12 -0400910 unsigned int gen, __be32 wr_hi,
911 __be32 wr_lo)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500912{
913 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
914 struct tx_sw_desc *sd = &q->sdesc[pidx];
915
916 sd->skb = skb;
917 if (need_skb_unmap()) {
Divy Le Ray23561c92007-11-16 11:22:05 -0800918 sd->fragidx = 0;
919 sd->addr_idx = 0;
920 sd->sflit = flits;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500921 }
922
923 if (likely(ndesc == 1)) {
Divy Le Ray23561c92007-11-16 11:22:05 -0800924 sd->eop = 1;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500925 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
926 V_WR_SGLSFLT(flits)) | wr_hi;
927 wmb();
928 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
929 V_WR_GEN(gen)) | wr_lo;
930 wr_gen2(d, gen);
931 } else {
932 unsigned int ogen = gen;
933 const u64 *fp = (const u64 *)sgl;
934 struct work_request_hdr *wp = wrp;
935
936 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
937 V_WR_SGLSFLT(flits)) | wr_hi;
938
939 while (sgl_flits) {
940 unsigned int avail = WR_FLITS - flits;
941
942 if (avail > sgl_flits)
943 avail = sgl_flits;
944 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
945 sgl_flits -= avail;
946 ndesc--;
947 if (!sgl_flits)
948 break;
949
950 fp += avail;
951 d++;
Divy Le Ray23561c92007-11-16 11:22:05 -0800952 sd->eop = 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500953 sd++;
954 if (++pidx == q->size) {
955 pidx = 0;
956 gen ^= 1;
957 d = q->desc;
958 sd = q->sdesc;
959 }
960
961 sd->skb = skb;
962 wrp = (struct work_request_hdr *)d;
963 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
964 V_WR_SGLSFLT(1)) | wr_hi;
965 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
966 sgl_flits + 1)) |
967 V_WR_GEN(gen)) | wr_lo;
968 wr_gen2(d, gen);
969 flits = 1;
970 }
Divy Le Ray23561c92007-11-16 11:22:05 -0800971 sd->eop = 1;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500972 wrp->wr_hi |= htonl(F_WR_EOP);
973 wmb();
974 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
975 wr_gen2((struct tx_desc *)wp, ogen);
976 WARN_ON(ndesc != 0);
977 }
978}
979
980/**
981 * write_tx_pkt_wr - write a TX_PKT work request
982 * @adap: the adapter
983 * @skb: the packet to send
984 * @pi: the egress interface
985 * @pidx: index of the first Tx descriptor to write
986 * @gen: the generation value to use
987 * @q: the Tx queue
988 * @ndesc: number of descriptors the packet will occupy
989 * @compl: the value of the COMPL bit to use
990 *
991 * Generate a TX_PKT work request to send the supplied packet.
992 */
993static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
994 const struct port_info *pi,
995 unsigned int pidx, unsigned int gen,
996 struct sge_txq *q, unsigned int ndesc,
997 unsigned int compl)
998{
999 unsigned int flits, sgl_flits, cntrl, tso_info;
1000 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1001 struct tx_desc *d = &q->desc[pidx];
1002 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1003
1004 cpl->len = htonl(skb->len | 0x80000000);
1005 cntrl = V_TXPKT_INTF(pi->port_id);
1006
1007 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1008 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1009
1010 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1011 if (tso_info) {
1012 int eth_type;
1013 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1014
1015 d->flit[2] = 0;
1016 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1017 hdr->cntrl = htonl(cntrl);
Arnaldo Carvalho de Melobbe735e2007-03-10 22:16:10 -03001018 eth_type = skb_network_offset(skb) == ETH_HLEN ?
Divy Le Ray4d22de32007-01-18 22:04:14 -05001019 CPL_ETH_II : CPL_ETH_II_VLAN;
1020 tso_info |= V_LSO_ETH_TYPE(eth_type) |
Arnaldo Carvalho de Meloeddc9ec2007-04-20 22:47:35 -07001021 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
Arnaldo Carvalho de Meloaa8223c2007-04-10 21:04:22 -07001022 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001023 hdr->lso_info = htonl(tso_info);
1024 flits = 3;
1025 } else {
1026 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1027 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1028 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1029 cpl->cntrl = htonl(cntrl);
1030
1031 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1032 q->sdesc[pidx].skb = NULL;
1033 if (!skb->data_len)
Arnaldo Carvalho de Melod626f622007-03-27 18:55:52 -03001034 skb_copy_from_linear_data(skb, &d->flit[2],
1035 skb->len);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001036 else
1037 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1038
1039 flits = (skb->len + 7) / 8 + 2;
1040 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1041 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1042 | F_WR_SOP | F_WR_EOP | compl);
1043 wmb();
1044 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1045 V_WR_TID(q->token));
1046 wr_gen2(d, gen);
1047 kfree_skb(skb);
1048 return;
1049 }
1050
1051 flits = 2;
1052 }
1053
1054 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1055 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001056
1057 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1058 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1059 htonl(V_WR_TID(q->token)));
1060}
1061
1062/**
1063 * eth_xmit - add a packet to the Ethernet Tx queue
1064 * @skb: the packet
1065 * @dev: the egress net device
1066 *
1067 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1068 */
1069int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1070{
1071 unsigned int ndesc, pidx, credits, gen, compl;
1072 const struct port_info *pi = netdev_priv(dev);
Divy Le Ray5fbf8162007-08-29 19:15:47 -07001073 struct adapter *adap = pi->adapter;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001074 struct sge_qset *qs = pi->qs;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001075 struct sge_txq *q = &qs->txq[TXQ_ETH];
1076
1077 /*
1078 * The chip min packet length is 9 octets but play safe and reject
1079 * anything shorter than an Ethernet header.
1080 */
1081 if (unlikely(skb->len < ETH_HLEN)) {
1082 dev_kfree_skb(skb);
1083 return NETDEV_TX_OK;
1084 }
1085
1086 spin_lock(&q->lock);
1087 reclaim_completed_tx(adap, q);
1088
1089 credits = q->size - q->in_use;
1090 ndesc = calc_tx_descs(skb);
1091
1092 if (unlikely(credits < ndesc)) {
1093 if (!netif_queue_stopped(dev)) {
1094 netif_stop_queue(dev);
1095 set_bit(TXQ_ETH, &qs->txq_stopped);
1096 q->stops++;
1097 dev_err(&adap->pdev->dev,
1098 "%s: Tx ring %u full while queue awake!\n",
1099 dev->name, q->cntxt_id & 7);
1100 }
1101 spin_unlock(&q->lock);
1102 return NETDEV_TX_BUSY;
1103 }
1104
1105 q->in_use += ndesc;
1106 if (unlikely(credits - ndesc < q->stop_thres)) {
1107 q->stops++;
1108 netif_stop_queue(dev);
1109 set_bit(TXQ_ETH, &qs->txq_stopped);
1110#if !USE_GTS
1111 if (should_restart_tx(q) &&
1112 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1113 q->restarts++;
1114 netif_wake_queue(dev);
1115 }
1116#endif
1117 }
1118
1119 gen = q->gen;
1120 q->unacked += ndesc;
1121 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1122 q->unacked &= 7;
1123 pidx = q->pidx;
1124 q->pidx += ndesc;
1125 if (q->pidx >= q->size) {
1126 q->pidx -= q->size;
1127 q->gen ^= 1;
1128 }
1129
1130 /* update port statistics */
1131 if (skb->ip_summed == CHECKSUM_COMPLETE)
1132 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1133 if (skb_shinfo(skb)->gso_size)
1134 qs->port_stats[SGE_PSTAT_TSO]++;
1135 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1136 qs->port_stats[SGE_PSTAT_VLANINS]++;
1137
1138 dev->trans_start = jiffies;
1139 spin_unlock(&q->lock);
1140
1141 /*
1142 * We do not use Tx completion interrupts to free DMAd Tx packets.
1143 * This is good for performamce but means that we rely on new Tx
1144 * packets arriving to run the destructors of completed packets,
1145 * which open up space in their sockets' send queues. Sometimes
1146 * we do not get such new packets causing Tx to stall. A single
1147 * UDP transmitter is a good example of this situation. We have
1148 * a clean up timer that periodically reclaims completed packets
1149 * but it doesn't run often enough (nor do we want it to) to prevent
1150 * lengthy stalls. A solution to this problem is to run the
1151 * destructor early, after the packet is queued but before it's DMAd.
1152 * A cons is that we lie to socket memory accounting, but the amount
1153 * of extra memory is reasonable (limited by the number of Tx
1154 * descriptors), the packets do actually get freed quickly by new
1155 * packets almost always, and for protocols like TCP that wait for
1156 * acks to really free up the data the extra memory is even less.
1157 * On the positive side we run the destructors on the sending CPU
1158 * rather than on a potentially different completing CPU, usually a
1159 * good thing. We also run them without holding our Tx queue lock,
1160 * unlike what reclaim_completed_tx() would otherwise do.
1161 *
1162 * Run the destructor before telling the DMA engine about the packet
1163 * to make sure it doesn't complete and get freed prematurely.
1164 */
1165 if (likely(!skb_shared(skb)))
1166 skb_orphan(skb);
1167
1168 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1169 check_ring_tx_db(adap, q);
1170 return NETDEV_TX_OK;
1171}
1172
1173/**
1174 * write_imm - write a packet into a Tx descriptor as immediate data
1175 * @d: the Tx descriptor to write
1176 * @skb: the packet
1177 * @len: the length of packet data to write as immediate data
1178 * @gen: the generation bit value to write
1179 *
1180 * Writes a packet as immediate data into a Tx descriptor. The packet
1181 * contains a work request at its beginning. We must write the packet
Divy Le Ray27186dc2007-08-21 20:49:15 -07001182 * carefully so the SGE doesn't read it accidentally before it's written
1183 * in its entirety.
Divy Le Ray4d22de32007-01-18 22:04:14 -05001184 */
1185static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1186 unsigned int len, unsigned int gen)
1187{
1188 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1189 struct work_request_hdr *to = (struct work_request_hdr *)d;
1190
Divy Le Ray27186dc2007-08-21 20:49:15 -07001191 if (likely(!skb->data_len))
1192 memcpy(&to[1], &from[1], len - sizeof(*from));
1193 else
1194 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1195
Divy Le Ray4d22de32007-01-18 22:04:14 -05001196 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1197 V_WR_BCNTLFLT(len & 7));
1198 wmb();
1199 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1200 V_WR_LEN((len + 7) / 8));
1201 wr_gen2(d, gen);
1202 kfree_skb(skb);
1203}
1204
1205/**
1206 * check_desc_avail - check descriptor availability on a send queue
1207 * @adap: the adapter
1208 * @q: the send queue
1209 * @skb: the packet needing the descriptors
1210 * @ndesc: the number of Tx descriptors needed
1211 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1212 *
1213 * Checks if the requested number of Tx descriptors is available on an
1214 * SGE send queue. If the queue is already suspended or not enough
1215 * descriptors are available the packet is queued for later transmission.
1216 * Must be called with the Tx queue locked.
1217 *
1218 * Returns 0 if enough descriptors are available, 1 if there aren't
1219 * enough descriptors and the packet has been queued, and 2 if the caller
1220 * needs to retry because there weren't enough descriptors at the
1221 * beginning of the call but some freed up in the mean time.
1222 */
1223static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1224 struct sk_buff *skb, unsigned int ndesc,
1225 unsigned int qid)
1226{
1227 if (unlikely(!skb_queue_empty(&q->sendq))) {
1228 addq_exit:__skb_queue_tail(&q->sendq, skb);
1229 return 1;
1230 }
1231 if (unlikely(q->size - q->in_use < ndesc)) {
1232 struct sge_qset *qs = txq_to_qset(q, qid);
1233
1234 set_bit(qid, &qs->txq_stopped);
1235 smp_mb__after_clear_bit();
1236
1237 if (should_restart_tx(q) &&
1238 test_and_clear_bit(qid, &qs->txq_stopped))
1239 return 2;
1240
1241 q->stops++;
1242 goto addq_exit;
1243 }
1244 return 0;
1245}
1246
1247/**
1248 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1249 * @q: the SGE control Tx queue
1250 *
1251 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1252 * that send only immediate data (presently just the control queues) and
1253 * thus do not have any sk_buffs to release.
1254 */
1255static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1256{
1257 unsigned int reclaim = q->processed - q->cleaned;
1258
1259 q->in_use -= reclaim;
1260 q->cleaned += reclaim;
1261}
1262
1263static inline int immediate(const struct sk_buff *skb)
1264{
Divy Le Ray27186dc2007-08-21 20:49:15 -07001265 return skb->len <= WR_LEN;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001266}
1267
1268/**
1269 * ctrl_xmit - send a packet through an SGE control Tx queue
1270 * @adap: the adapter
1271 * @q: the control queue
1272 * @skb: the packet
1273 *
1274 * Send a packet through an SGE control Tx queue. Packets sent through
1275 * a control queue must fit entirely as immediate data in a single Tx
1276 * descriptor and have no page fragments.
1277 */
1278static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1279 struct sk_buff *skb)
1280{
1281 int ret;
1282 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1283
1284 if (unlikely(!immediate(skb))) {
1285 WARN_ON(1);
1286 dev_kfree_skb(skb);
1287 return NET_XMIT_SUCCESS;
1288 }
1289
1290 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1291 wrp->wr_lo = htonl(V_WR_TID(q->token));
1292
1293 spin_lock(&q->lock);
1294 again:reclaim_completed_tx_imm(q);
1295
1296 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1297 if (unlikely(ret)) {
1298 if (ret == 1) {
1299 spin_unlock(&q->lock);
1300 return NET_XMIT_CN;
1301 }
1302 goto again;
1303 }
1304
1305 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1306
1307 q->in_use++;
1308 if (++q->pidx >= q->size) {
1309 q->pidx = 0;
1310 q->gen ^= 1;
1311 }
1312 spin_unlock(&q->lock);
1313 wmb();
1314 t3_write_reg(adap, A_SG_KDOORBELL,
1315 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1316 return NET_XMIT_SUCCESS;
1317}
1318
1319/**
1320 * restart_ctrlq - restart a suspended control queue
1321 * @qs: the queue set cotaining the control queue
1322 *
1323 * Resumes transmission on a suspended Tx control queue.
1324 */
1325static void restart_ctrlq(unsigned long data)
1326{
1327 struct sk_buff *skb;
1328 struct sge_qset *qs = (struct sge_qset *)data;
1329 struct sge_txq *q = &qs->txq[TXQ_CTRL];
Divy Le Ray4d22de32007-01-18 22:04:14 -05001330
1331 spin_lock(&q->lock);
1332 again:reclaim_completed_tx_imm(q);
1333
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001334 while (q->in_use < q->size &&
1335 (skb = __skb_dequeue(&q->sendq)) != NULL) {
Divy Le Ray4d22de32007-01-18 22:04:14 -05001336
1337 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1338
1339 if (++q->pidx >= q->size) {
1340 q->pidx = 0;
1341 q->gen ^= 1;
1342 }
1343 q->in_use++;
1344 }
1345
1346 if (!skb_queue_empty(&q->sendq)) {
1347 set_bit(TXQ_CTRL, &qs->txq_stopped);
1348 smp_mb__after_clear_bit();
1349
1350 if (should_restart_tx(q) &&
1351 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1352 goto again;
1353 q->stops++;
1354 }
1355
1356 spin_unlock(&q->lock);
Divy Le Rayafefce62007-11-16 11:22:21 -08001357 wmb();
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001358 t3_write_reg(qs->adap, A_SG_KDOORBELL,
Divy Le Ray4d22de32007-01-18 22:04:14 -05001359 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1360}
1361
Divy Le Ray14ab9892007-01-30 19:43:50 -08001362/*
1363 * Send a management message through control queue 0
1364 */
1365int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1366{
Divy Le Raybc4b6b52007-12-17 18:47:41 -08001367 int ret;
1368 local_bh_disable();
1369 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1370 local_bh_enable();
1371
1372 return ret;
Divy Le Ray14ab9892007-01-30 19:43:50 -08001373}
1374
Divy Le Ray4d22de32007-01-18 22:04:14 -05001375/**
Divy Le Ray99d7cf32007-02-24 16:44:06 -08001376 * deferred_unmap_destructor - unmap a packet when it is freed
1377 * @skb: the packet
1378 *
1379 * This is the packet destructor used for Tx packets that need to remain
1380 * mapped until they are freed rather than until their Tx descriptors are
1381 * freed.
1382 */
1383static void deferred_unmap_destructor(struct sk_buff *skb)
1384{
1385 int i;
1386 const dma_addr_t *p;
1387 const struct skb_shared_info *si;
1388 const struct deferred_unmap_info *dui;
Divy Le Ray99d7cf32007-02-24 16:44:06 -08001389
1390 dui = (struct deferred_unmap_info *)skb->head;
1391 p = dui->addr;
1392
Divy Le Ray23561c92007-11-16 11:22:05 -08001393 if (skb->tail - skb->transport_header)
1394 pci_unmap_single(dui->pdev, *p++,
1395 skb->tail - skb->transport_header,
1396 PCI_DMA_TODEVICE);
Divy Le Ray99d7cf32007-02-24 16:44:06 -08001397
1398 si = skb_shinfo(skb);
1399 for (i = 0; i < si->nr_frags; i++)
1400 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1401 PCI_DMA_TODEVICE);
1402}
1403
1404static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1405 const struct sg_ent *sgl, int sgl_flits)
1406{
1407 dma_addr_t *p;
1408 struct deferred_unmap_info *dui;
1409
1410 dui = (struct deferred_unmap_info *)skb->head;
1411 dui->pdev = pdev;
1412 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1413 *p++ = be64_to_cpu(sgl->addr[0]);
1414 *p++ = be64_to_cpu(sgl->addr[1]);
1415 }
1416 if (sgl_flits)
1417 *p = be64_to_cpu(sgl->addr[0]);
1418}
1419
1420/**
Divy Le Ray4d22de32007-01-18 22:04:14 -05001421 * write_ofld_wr - write an offload work request
1422 * @adap: the adapter
1423 * @skb: the packet to send
1424 * @q: the Tx queue
1425 * @pidx: index of the first Tx descriptor to write
1426 * @gen: the generation value to use
1427 * @ndesc: number of descriptors the packet will occupy
1428 *
1429 * Write an offload work request to send the supplied packet. The packet
1430 * data already carry the work request with most fields populated.
1431 */
1432static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1433 struct sge_txq *q, unsigned int pidx,
1434 unsigned int gen, unsigned int ndesc)
1435{
1436 unsigned int sgl_flits, flits;
1437 struct work_request_hdr *from;
1438 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1439 struct tx_desc *d = &q->desc[pidx];
1440
1441 if (immediate(skb)) {
1442 q->sdesc[pidx].skb = NULL;
1443 write_imm(d, skb, skb->len, gen);
1444 return;
1445 }
1446
1447 /* Only TX_DATA builds SGLs */
1448
1449 from = (struct work_request_hdr *)skb->data;
Arnaldo Carvalho de Meloea2ae172007-04-25 17:55:53 -07001450 memcpy(&d->flit[1], &from[1],
1451 skb_transport_offset(skb) - sizeof(*from));
Divy Le Ray4d22de32007-01-18 22:04:14 -05001452
Arnaldo Carvalho de Meloea2ae172007-04-25 17:55:53 -07001453 flits = skb_transport_offset(skb) / 8;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001454 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
Arnaldo Carvalho de Melo9c702202007-04-25 18:04:18 -07001455 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
Arnaldo Carvalho de Melo27a884d2007-04-19 20:29:13 -07001456 skb->tail - skb->transport_header,
Divy Le Ray4d22de32007-01-18 22:04:14 -05001457 adap->pdev);
Divy Le Ray99d7cf32007-02-24 16:44:06 -08001458 if (need_skb_unmap()) {
1459 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1460 skb->destructor = deferred_unmap_destructor;
Divy Le Ray99d7cf32007-02-24 16:44:06 -08001461 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05001462
1463 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1464 gen, from->wr_hi, from->wr_lo);
1465}
1466
1467/**
1468 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1469 * @skb: the packet
1470 *
1471 * Returns the number of Tx descriptors needed for the given offload
1472 * packet. These packets are already fully constructed.
1473 */
1474static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1475{
Divy Le Ray27186dc2007-08-21 20:49:15 -07001476 unsigned int flits, cnt;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001477
Divy Le Ray27186dc2007-08-21 20:49:15 -07001478 if (skb->len <= WR_LEN)
Divy Le Ray4d22de32007-01-18 22:04:14 -05001479 return 1; /* packet fits as immediate data */
1480
Arnaldo Carvalho de Meloea2ae172007-04-25 17:55:53 -07001481 flits = skb_transport_offset(skb) / 8; /* headers */
Divy Le Ray27186dc2007-08-21 20:49:15 -07001482 cnt = skb_shinfo(skb)->nr_frags;
Arnaldo Carvalho de Melo27a884d2007-04-19 20:29:13 -07001483 if (skb->tail != skb->transport_header)
Divy Le Ray4d22de32007-01-18 22:04:14 -05001484 cnt++;
1485 return flits_to_desc(flits + sgl_len(cnt));
1486}
1487
1488/**
1489 * ofld_xmit - send a packet through an offload queue
1490 * @adap: the adapter
1491 * @q: the Tx offload queue
1492 * @skb: the packet
1493 *
1494 * Send an offload packet through an SGE offload queue.
1495 */
1496static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1497 struct sk_buff *skb)
1498{
1499 int ret;
1500 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1501
1502 spin_lock(&q->lock);
1503 again:reclaim_completed_tx(adap, q);
1504
1505 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1506 if (unlikely(ret)) {
1507 if (ret == 1) {
1508 skb->priority = ndesc; /* save for restart */
1509 spin_unlock(&q->lock);
1510 return NET_XMIT_CN;
1511 }
1512 goto again;
1513 }
1514
1515 gen = q->gen;
1516 q->in_use += ndesc;
1517 pidx = q->pidx;
1518 q->pidx += ndesc;
1519 if (q->pidx >= q->size) {
1520 q->pidx -= q->size;
1521 q->gen ^= 1;
1522 }
1523 spin_unlock(&q->lock);
1524
1525 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1526 check_ring_tx_db(adap, q);
1527 return NET_XMIT_SUCCESS;
1528}
1529
1530/**
1531 * restart_offloadq - restart a suspended offload queue
1532 * @qs: the queue set cotaining the offload queue
1533 *
1534 * Resumes transmission on a suspended Tx offload queue.
1535 */
1536static void restart_offloadq(unsigned long data)
1537{
1538 struct sk_buff *skb;
1539 struct sge_qset *qs = (struct sge_qset *)data;
1540 struct sge_txq *q = &qs->txq[TXQ_OFLD];
Divy Le Ray5fbf8162007-08-29 19:15:47 -07001541 const struct port_info *pi = netdev_priv(qs->netdev);
1542 struct adapter *adap = pi->adapter;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001543
1544 spin_lock(&q->lock);
1545 again:reclaim_completed_tx(adap, q);
1546
1547 while ((skb = skb_peek(&q->sendq)) != NULL) {
1548 unsigned int gen, pidx;
1549 unsigned int ndesc = skb->priority;
1550
1551 if (unlikely(q->size - q->in_use < ndesc)) {
1552 set_bit(TXQ_OFLD, &qs->txq_stopped);
1553 smp_mb__after_clear_bit();
1554
1555 if (should_restart_tx(q) &&
1556 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1557 goto again;
1558 q->stops++;
1559 break;
1560 }
1561
1562 gen = q->gen;
1563 q->in_use += ndesc;
1564 pidx = q->pidx;
1565 q->pidx += ndesc;
1566 if (q->pidx >= q->size) {
1567 q->pidx -= q->size;
1568 q->gen ^= 1;
1569 }
1570 __skb_unlink(skb, &q->sendq);
1571 spin_unlock(&q->lock);
1572
1573 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1574 spin_lock(&q->lock);
1575 }
1576 spin_unlock(&q->lock);
1577
1578#if USE_GTS
1579 set_bit(TXQ_RUNNING, &q->flags);
1580 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1581#endif
Divy Le Rayafefce62007-11-16 11:22:21 -08001582 wmb();
Divy Le Ray4d22de32007-01-18 22:04:14 -05001583 t3_write_reg(adap, A_SG_KDOORBELL,
1584 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1585}
1586
1587/**
1588 * queue_set - return the queue set a packet should use
1589 * @skb: the packet
1590 *
1591 * Maps a packet to the SGE queue set it should use. The desired queue
1592 * set is carried in bits 1-3 in the packet's priority.
1593 */
1594static inline int queue_set(const struct sk_buff *skb)
1595{
1596 return skb->priority >> 1;
1597}
1598
1599/**
1600 * is_ctrl_pkt - return whether an offload packet is a control packet
1601 * @skb: the packet
1602 *
1603 * Determines whether an offload packet should use an OFLD or a CTRL
1604 * Tx queue. This is indicated by bit 0 in the packet's priority.
1605 */
1606static inline int is_ctrl_pkt(const struct sk_buff *skb)
1607{
1608 return skb->priority & 1;
1609}
1610
1611/**
1612 * t3_offload_tx - send an offload packet
1613 * @tdev: the offload device to send to
1614 * @skb: the packet
1615 *
1616 * Sends an offload packet. We use the packet priority to select the
1617 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1618 * should be sent as regular or control, bits 1-3 select the queue set.
1619 */
1620int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1621{
1622 struct adapter *adap = tdev2adap(tdev);
1623 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1624
1625 if (unlikely(is_ctrl_pkt(skb)))
1626 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1627
1628 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1629}
1630
1631/**
1632 * offload_enqueue - add an offload packet to an SGE offload receive queue
1633 * @q: the SGE response queue
1634 * @skb: the packet
1635 *
1636 * Add a new offload packet to an SGE response queue's offload packet
1637 * queue. If the packet is the first on the queue it schedules the RX
1638 * softirq to process the queue.
1639 */
1640static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1641{
1642 skb->next = skb->prev = NULL;
1643 if (q->rx_tail)
1644 q->rx_tail->next = skb;
1645 else {
1646 struct sge_qset *qs = rspq_to_qset(q);
1647
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001648 napi_schedule(&qs->napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001649 q->rx_head = skb;
1650 }
1651 q->rx_tail = skb;
1652}
1653
1654/**
1655 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1656 * @tdev: the offload device that will be receiving the packets
1657 * @q: the SGE response queue that assembled the bundle
1658 * @skbs: the partial bundle
1659 * @n: the number of packets in the bundle
1660 *
1661 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1662 */
1663static inline void deliver_partial_bundle(struct t3cdev *tdev,
1664 struct sge_rspq *q,
1665 struct sk_buff *skbs[], int n)
1666{
1667 if (n) {
1668 q->offload_bundles++;
1669 tdev->recv(tdev, skbs, n);
1670 }
1671}
1672
1673/**
1674 * ofld_poll - NAPI handler for offload packets in interrupt mode
1675 * @dev: the network device doing the polling
1676 * @budget: polling budget
1677 *
1678 * The NAPI handler for offload packets when a response queue is serviced
1679 * by the hard interrupt handler, i.e., when it's operating in non-polling
1680 * mode. Creates small packet batches and sends them through the offload
1681 * receive handler. Batches need to be of modest size as we do prefetches
1682 * on the packets in each.
1683 */
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001684static int ofld_poll(struct napi_struct *napi, int budget)
Divy Le Ray4d22de32007-01-18 22:04:14 -05001685{
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001686 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001687 struct sge_rspq *q = &qs->rspq;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001688 struct adapter *adapter = qs->adap;
1689 int work_done = 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001690
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001691 while (work_done < budget) {
Divy Le Ray4d22de32007-01-18 22:04:14 -05001692 struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE];
1693 int ngathered;
1694
1695 spin_lock_irq(&q->lock);
1696 head = q->rx_head;
1697 if (!head) {
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001698 napi_complete(napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001699 spin_unlock_irq(&q->lock);
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001700 return work_done;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001701 }
1702
1703 tail = q->rx_tail;
1704 q->rx_head = q->rx_tail = NULL;
1705 spin_unlock_irq(&q->lock);
1706
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001707 for (ngathered = 0; work_done < budget && head; work_done++) {
Divy Le Ray4d22de32007-01-18 22:04:14 -05001708 prefetch(head->data);
1709 skbs[ngathered] = head;
1710 head = head->next;
1711 skbs[ngathered]->next = NULL;
1712 if (++ngathered == RX_BUNDLE_SIZE) {
1713 q->offload_bundles++;
1714 adapter->tdev.recv(&adapter->tdev, skbs,
1715 ngathered);
1716 ngathered = 0;
1717 }
1718 }
1719 if (head) { /* splice remaining packets back onto Rx queue */
1720 spin_lock_irq(&q->lock);
1721 tail->next = q->rx_head;
1722 if (!q->rx_head)
1723 q->rx_tail = tail;
1724 q->rx_head = head;
1725 spin_unlock_irq(&q->lock);
1726 }
1727 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1728 }
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001729
1730 return work_done;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001731}
1732
1733/**
1734 * rx_offload - process a received offload packet
1735 * @tdev: the offload device receiving the packet
1736 * @rq: the response queue that received the packet
1737 * @skb: the packet
1738 * @rx_gather: a gather list of packets if we are building a bundle
1739 * @gather_idx: index of the next available slot in the bundle
1740 *
1741 * Process an ingress offload pakcet and add it to the offload ingress
1742 * queue. Returns the index of the next available slot in the bundle.
1743 */
1744static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1745 struct sk_buff *skb, struct sk_buff *rx_gather[],
1746 unsigned int gather_idx)
1747{
Arnaldo Carvalho de Melo459a98e2007-03-19 15:30:44 -07001748 skb_reset_mac_header(skb);
Arnaldo Carvalho de Meloc1d2bbe2007-04-10 20:45:18 -07001749 skb_reset_network_header(skb);
Arnaldo Carvalho de Melobadff6d2007-03-13 13:06:52 -03001750 skb_reset_transport_header(skb);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001751
1752 if (rq->polling) {
1753 rx_gather[gather_idx++] = skb;
1754 if (gather_idx == RX_BUNDLE_SIZE) {
1755 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1756 gather_idx = 0;
1757 rq->offload_bundles++;
1758 }
1759 } else
1760 offload_enqueue(rq, skb);
1761
1762 return gather_idx;
1763}
1764
1765/**
Divy Le Ray4d22de32007-01-18 22:04:14 -05001766 * restart_tx - check whether to restart suspended Tx queues
1767 * @qs: the queue set to resume
1768 *
1769 * Restarts suspended Tx queues of an SGE queue set if they have enough
1770 * free resources to resume operation.
1771 */
1772static void restart_tx(struct sge_qset *qs)
1773{
1774 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1775 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1776 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1777 qs->txq[TXQ_ETH].restarts++;
1778 if (netif_running(qs->netdev))
1779 netif_wake_queue(qs->netdev);
1780 }
1781
1782 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1783 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1784 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1785 qs->txq[TXQ_OFLD].restarts++;
1786 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1787 }
1788 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1789 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1790 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1791 qs->txq[TXQ_CTRL].restarts++;
1792 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1793 }
1794}
1795
1796/**
1797 * rx_eth - process an ingress ethernet packet
1798 * @adap: the adapter
1799 * @rq: the response queue that received the packet
1800 * @skb: the packet
1801 * @pad: amount of padding at the start of the buffer
1802 *
1803 * Process an ingress ethernet pakcet and deliver it to the stack.
1804 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1805 * if it was immediate data in a response.
1806 */
1807static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1808 struct sk_buff *skb, int pad)
1809{
1810 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1811 struct port_info *pi;
1812
Divy Le Ray4d22de32007-01-18 22:04:14 -05001813 skb_pull(skb, sizeof(*p) + pad);
Arnaldo Carvalho de Melo4c13eb62007-04-25 17:40:23 -07001814 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
Divy Le Raye360b562007-05-30 10:01:29 -07001815 skb->dev->last_rx = jiffies;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001816 pi = netdev_priv(skb->dev);
1817 if (pi->rx_csum_offload && p->csum_valid && p->csum == 0xffff &&
1818 !p->fragment) {
1819 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1820 skb->ip_summed = CHECKSUM_UNNECESSARY;
1821 } else
1822 skb->ip_summed = CHECKSUM_NONE;
1823
1824 if (unlikely(p->vlan_valid)) {
1825 struct vlan_group *grp = pi->vlan_grp;
1826
1827 rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++;
1828 if (likely(grp))
1829 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1830 rq->polling);
1831 else
1832 dev_kfree_skb_any(skb);
1833 } else if (rq->polling)
1834 netif_receive_skb(skb);
1835 else
1836 netif_rx(skb);
1837}
1838
1839/**
1840 * handle_rsp_cntrl_info - handles control information in a response
1841 * @qs: the queue set corresponding to the response
1842 * @flags: the response control flags
Divy Le Ray4d22de32007-01-18 22:04:14 -05001843 *
1844 * Handles the control information of an SGE response, such as GTS
1845 * indications and completion credits for the queue set's Tx queues.
Divy Le Ray6195c712007-01-30 19:43:56 -08001846 * HW coalesces credits, we don't do any extra SW coalescing.
Divy Le Ray4d22de32007-01-18 22:04:14 -05001847 */
Divy Le Ray6195c712007-01-30 19:43:56 -08001848static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
Divy Le Ray4d22de32007-01-18 22:04:14 -05001849{
1850 unsigned int credits;
1851
1852#if USE_GTS
1853 if (flags & F_RSPD_TXQ0_GTS)
1854 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
1855#endif
1856
Divy Le Ray4d22de32007-01-18 22:04:14 -05001857 credits = G_RSPD_TXQ0_CR(flags);
1858 if (credits)
1859 qs->txq[TXQ_ETH].processed += credits;
1860
Divy Le Ray6195c712007-01-30 19:43:56 -08001861 credits = G_RSPD_TXQ2_CR(flags);
1862 if (credits)
1863 qs->txq[TXQ_CTRL].processed += credits;
1864
Divy Le Ray4d22de32007-01-18 22:04:14 -05001865# if USE_GTS
1866 if (flags & F_RSPD_TXQ1_GTS)
1867 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
1868# endif
Divy Le Ray6195c712007-01-30 19:43:56 -08001869 credits = G_RSPD_TXQ1_CR(flags);
1870 if (credits)
1871 qs->txq[TXQ_OFLD].processed += credits;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001872}
1873
1874/**
1875 * check_ring_db - check if we need to ring any doorbells
1876 * @adapter: the adapter
1877 * @qs: the queue set whose Tx queues are to be examined
1878 * @sleeping: indicates which Tx queue sent GTS
1879 *
1880 * Checks if some of a queue set's Tx queues need to ring their doorbells
1881 * to resume transmission after idling while they still have unprocessed
1882 * descriptors.
1883 */
1884static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
1885 unsigned int sleeping)
1886{
1887 if (sleeping & F_RSPD_TXQ0_GTS) {
1888 struct sge_txq *txq = &qs->txq[TXQ_ETH];
1889
1890 if (txq->cleaned + txq->in_use != txq->processed &&
1891 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1892 set_bit(TXQ_RUNNING, &txq->flags);
1893 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1894 V_EGRCNTX(txq->cntxt_id));
1895 }
1896 }
1897
1898 if (sleeping & F_RSPD_TXQ1_GTS) {
1899 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
1900
1901 if (txq->cleaned + txq->in_use != txq->processed &&
1902 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1903 set_bit(TXQ_RUNNING, &txq->flags);
1904 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1905 V_EGRCNTX(txq->cntxt_id));
1906 }
1907 }
1908}
1909
1910/**
1911 * is_new_response - check if a response is newly written
1912 * @r: the response descriptor
1913 * @q: the response queue
1914 *
1915 * Returns true if a response descriptor contains a yet unprocessed
1916 * response.
1917 */
1918static inline int is_new_response(const struct rsp_desc *r,
1919 const struct sge_rspq *q)
1920{
1921 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
1922}
1923
1924#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
1925#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
1926 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
1927 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
1928 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
1929
1930/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
1931#define NOMEM_INTR_DELAY 2500
1932
1933/**
1934 * process_responses - process responses from an SGE response queue
1935 * @adap: the adapter
1936 * @qs: the queue set to which the response queue belongs
1937 * @budget: how many responses can be processed in this round
1938 *
1939 * Process responses from an SGE response queue up to the supplied budget.
1940 * Responses include received packets as well as credits and other events
1941 * for the queues that belong to the response queue's queue set.
1942 * A negative budget is effectively unlimited.
1943 *
1944 * Additionally choose the interrupt holdoff time for the next interrupt
1945 * on this queue. If the system is under memory shortage use a fairly
1946 * long delay to help recovery.
1947 */
1948static int process_responses(struct adapter *adap, struct sge_qset *qs,
1949 int budget)
1950{
1951 struct sge_rspq *q = &qs->rspq;
1952 struct rsp_desc *r = &q->desc[q->cidx];
1953 int budget_left = budget;
Divy Le Ray6195c712007-01-30 19:43:56 -08001954 unsigned int sleeping = 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001955 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
1956 int ngathered = 0;
1957
1958 q->next_holdoff = q->holdoff_tmr;
1959
1960 while (likely(budget_left && is_new_response(r, q))) {
Divy Le Raye0994eb2007-02-24 16:44:17 -08001961 int eth, ethpad = 2;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001962 struct sk_buff *skb = NULL;
1963 u32 len, flags = ntohl(r->flags);
1964 u32 rss_hi = *(const u32 *)r, rss_lo = r->rss_hdr.rss_hash_val;
1965
1966 eth = r->rss_hdr.opcode == CPL_RX_PKT;
1967
1968 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
1969 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
1970 if (!skb)
1971 goto no_mem;
1972
1973 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
1974 skb->data[0] = CPL_ASYNC_NOTIF;
1975 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
1976 q->async_notif++;
1977 } else if (flags & F_RSPD_IMM_DATA_VALID) {
1978 skb = get_imm_packet(r);
1979 if (unlikely(!skb)) {
Divy Le Raycf992af2007-05-30 21:10:47 -07001980no_mem:
Divy Le Ray4d22de32007-01-18 22:04:14 -05001981 q->next_holdoff = NOMEM_INTR_DELAY;
1982 q->nomem++;
1983 /* consume one credit since we tried */
1984 budget_left--;
1985 break;
1986 }
1987 q->imm_data++;
Divy Le Raye0994eb2007-02-24 16:44:17 -08001988 ethpad = 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001989 } else if ((len = ntohl(r->len_cq)) != 0) {
Divy Le Raycf992af2007-05-30 21:10:47 -07001990 struct sge_fl *fl;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001991
Divy Le Raycf992af2007-05-30 21:10:47 -07001992 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
1993 if (fl->use_pages) {
1994 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
Divy Le Raye0994eb2007-02-24 16:44:17 -08001995
Divy Le Raycf992af2007-05-30 21:10:47 -07001996 prefetch(addr);
1997#if L1_CACHE_BYTES < 128
1998 prefetch(addr + L1_CACHE_BYTES);
1999#endif
Divy Le Raye0994eb2007-02-24 16:44:17 -08002000 __refill_fl(adap, fl);
2001
Divy Le Raycf992af2007-05-30 21:10:47 -07002002 skb = get_packet_pg(adap, fl, G_RSPD_LEN(len),
2003 eth ? SGE_RX_DROP_THRES : 0);
2004 } else
Divy Le Raye0994eb2007-02-24 16:44:17 -08002005 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2006 eth ? SGE_RX_DROP_THRES : 0);
Divy Le Raycf992af2007-05-30 21:10:47 -07002007 if (unlikely(!skb)) {
2008 if (!eth)
2009 goto no_mem;
2010 q->rx_drops++;
2011 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2012 __skb_pull(skb, 2);
Divy Le Raye0994eb2007-02-24 16:44:17 -08002013
Divy Le Ray4d22de32007-01-18 22:04:14 -05002014 if (++fl->cidx == fl->size)
2015 fl->cidx = 0;
2016 } else
2017 q->pure_rsps++;
2018
2019 if (flags & RSPD_CTRL_MASK) {
2020 sleeping |= flags & RSPD_GTS_MASK;
Divy Le Ray6195c712007-01-30 19:43:56 -08002021 handle_rsp_cntrl_info(qs, flags);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002022 }
2023
2024 r++;
2025 if (unlikely(++q->cidx == q->size)) {
2026 q->cidx = 0;
2027 q->gen ^= 1;
2028 r = q->desc;
2029 }
2030 prefetch(r);
2031
2032 if (++q->credits >= (q->size / 4)) {
2033 refill_rspq(adap, q, q->credits);
2034 q->credits = 0;
2035 }
2036
Divy Le Raycf992af2007-05-30 21:10:47 -07002037 if (likely(skb != NULL)) {
Divy Le Ray4d22de32007-01-18 22:04:14 -05002038 if (eth)
2039 rx_eth(adap, q, skb, ethpad);
2040 else {
Divy Le Rayafefce62007-11-16 11:22:21 -08002041 q->offload_pkts++;
Divy Le Raycf992af2007-05-30 21:10:47 -07002042 /* Preserve the RSS info in csum & priority */
2043 skb->csum = rss_hi;
2044 skb->priority = rss_lo;
2045 ngathered = rx_offload(&adap->tdev, q, skb,
2046 offload_skbs,
Divy Le Raye0994eb2007-02-24 16:44:17 -08002047 ngathered);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002048 }
2049 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05002050 --budget_left;
2051 }
2052
Divy Le Ray4d22de32007-01-18 22:04:14 -05002053 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2054 if (sleeping)
2055 check_ring_db(adap, qs, sleeping);
2056
2057 smp_mb(); /* commit Tx queue .processed updates */
2058 if (unlikely(qs->txq_stopped != 0))
2059 restart_tx(qs);
2060
2061 budget -= budget_left;
2062 return budget;
2063}
2064
2065static inline int is_pure_response(const struct rsp_desc *r)
2066{
2067 u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2068
2069 return (n | r->len_cq) == 0;
2070}
2071
2072/**
2073 * napi_rx_handler - the NAPI handler for Rx processing
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002074 * @napi: the napi instance
Divy Le Ray4d22de32007-01-18 22:04:14 -05002075 * @budget: how many packets we can process in this round
2076 *
2077 * Handler for new data events when using NAPI.
2078 */
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002079static int napi_rx_handler(struct napi_struct *napi, int budget)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002080{
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002081 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2082 struct adapter *adap = qs->adap;
2083 int work_done = process_responses(adap, qs, budget);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002084
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002085 if (likely(work_done < budget)) {
2086 napi_complete(napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002087
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002088 /*
2089 * Because we don't atomically flush the following
2090 * write it is possible that in very rare cases it can
2091 * reach the device in a way that races with a new
2092 * response being written plus an error interrupt
2093 * causing the NAPI interrupt handler below to return
2094 * unhandled status to the OS. To protect against
2095 * this would require flushing the write and doing
2096 * both the write and the flush with interrupts off.
2097 * Way too expensive and unjustifiable given the
2098 * rarity of the race.
2099 *
2100 * The race cannot happen at all with MSI-X.
2101 */
2102 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2103 V_NEWTIMER(qs->rspq.next_holdoff) |
2104 V_NEWINDEX(qs->rspq.cidx));
2105 }
2106 return work_done;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002107}
2108
2109/*
2110 * Returns true if the device is already scheduled for polling.
2111 */
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002112static inline int napi_is_scheduled(struct napi_struct *napi)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002113{
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002114 return test_bit(NAPI_STATE_SCHED, &napi->state);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002115}
2116
2117/**
2118 * process_pure_responses - process pure responses from a response queue
2119 * @adap: the adapter
2120 * @qs: the queue set owning the response queue
2121 * @r: the first pure response to process
2122 *
2123 * A simpler version of process_responses() that handles only pure (i.e.,
2124 * non data-carrying) responses. Such respones are too light-weight to
2125 * justify calling a softirq under NAPI, so we handle them specially in
2126 * the interrupt handler. The function is called with a pointer to a
2127 * response, which the caller must ensure is a valid pure response.
2128 *
2129 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2130 */
2131static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2132 struct rsp_desc *r)
2133{
2134 struct sge_rspq *q = &qs->rspq;
Divy Le Ray6195c712007-01-30 19:43:56 -08002135 unsigned int sleeping = 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002136
2137 do {
2138 u32 flags = ntohl(r->flags);
2139
2140 r++;
2141 if (unlikely(++q->cidx == q->size)) {
2142 q->cidx = 0;
2143 q->gen ^= 1;
2144 r = q->desc;
2145 }
2146 prefetch(r);
2147
2148 if (flags & RSPD_CTRL_MASK) {
2149 sleeping |= flags & RSPD_GTS_MASK;
Divy Le Ray6195c712007-01-30 19:43:56 -08002150 handle_rsp_cntrl_info(qs, flags);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002151 }
2152
2153 q->pure_rsps++;
2154 if (++q->credits >= (q->size / 4)) {
2155 refill_rspq(adap, q, q->credits);
2156 q->credits = 0;
2157 }
2158 } while (is_new_response(r, q) && is_pure_response(r));
2159
Divy Le Ray4d22de32007-01-18 22:04:14 -05002160 if (sleeping)
2161 check_ring_db(adap, qs, sleeping);
2162
2163 smp_mb(); /* commit Tx queue .processed updates */
2164 if (unlikely(qs->txq_stopped != 0))
2165 restart_tx(qs);
2166
2167 return is_new_response(r, q);
2168}
2169
2170/**
2171 * handle_responses - decide what to do with new responses in NAPI mode
2172 * @adap: the adapter
2173 * @q: the response queue
2174 *
2175 * This is used by the NAPI interrupt handlers to decide what to do with
2176 * new SGE responses. If there are no new responses it returns -1. If
2177 * there are new responses and they are pure (i.e., non-data carrying)
2178 * it handles them straight in hard interrupt context as they are very
2179 * cheap and don't deliver any packets. Finally, if there are any data
2180 * signaling responses it schedules the NAPI handler. Returns 1 if it
2181 * schedules NAPI, 0 if all new responses were pure.
2182 *
2183 * The caller must ascertain NAPI is not already running.
2184 */
2185static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2186{
2187 struct sge_qset *qs = rspq_to_qset(q);
2188 struct rsp_desc *r = &q->desc[q->cidx];
2189
2190 if (!is_new_response(r, q))
2191 return -1;
2192 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2193 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2194 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2195 return 0;
2196 }
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002197 napi_schedule(&qs->napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002198 return 1;
2199}
2200
2201/*
2202 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2203 * (i.e., response queue serviced in hard interrupt).
2204 */
2205irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2206{
2207 struct sge_qset *qs = cookie;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002208 struct adapter *adap = qs->adap;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002209 struct sge_rspq *q = &qs->rspq;
2210
2211 spin_lock(&q->lock);
2212 if (process_responses(adap, qs, -1) == 0)
2213 q->unhandled_irqs++;
2214 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2215 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2216 spin_unlock(&q->lock);
2217 return IRQ_HANDLED;
2218}
2219
2220/*
2221 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2222 * (i.e., response queue serviced by NAPI polling).
2223 */
Stephen Hemminger9265fab2007-10-08 16:22:29 -07002224static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002225{
2226 struct sge_qset *qs = cookie;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002227 struct sge_rspq *q = &qs->rspq;
2228
2229 spin_lock(&q->lock);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002230
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002231 if (handle_responses(qs->adap, q) < 0)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002232 q->unhandled_irqs++;
2233 spin_unlock(&q->lock);
2234 return IRQ_HANDLED;
2235}
2236
2237/*
2238 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2239 * SGE response queues as well as error and other async events as they all use
2240 * the same MSI vector. We use one SGE response queue per port in this mode
2241 * and protect all response queues with queue 0's lock.
2242 */
2243static irqreturn_t t3_intr_msi(int irq, void *cookie)
2244{
2245 int new_packets = 0;
2246 struct adapter *adap = cookie;
2247 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2248
2249 spin_lock(&q->lock);
2250
2251 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2252 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2253 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2254 new_packets = 1;
2255 }
2256
2257 if (adap->params.nports == 2 &&
2258 process_responses(adap, &adap->sge.qs[1], -1)) {
2259 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2260
2261 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2262 V_NEWTIMER(q1->next_holdoff) |
2263 V_NEWINDEX(q1->cidx));
2264 new_packets = 1;
2265 }
2266
2267 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2268 q->unhandled_irqs++;
2269
2270 spin_unlock(&q->lock);
2271 return IRQ_HANDLED;
2272}
2273
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002274static int rspq_check_napi(struct sge_qset *qs)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002275{
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002276 struct sge_rspq *q = &qs->rspq;
2277
2278 if (!napi_is_scheduled(&qs->napi) &&
2279 is_new_response(&q->desc[q->cidx], q)) {
2280 napi_schedule(&qs->napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002281 return 1;
2282 }
2283 return 0;
2284}
2285
2286/*
2287 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2288 * by NAPI polling). Handles data events from SGE response queues as well as
2289 * error and other async events as they all use the same MSI vector. We use
2290 * one SGE response queue per port in this mode and protect all response
2291 * queues with queue 0's lock.
2292 */
Stephen Hemminger9265fab2007-10-08 16:22:29 -07002293static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002294{
2295 int new_packets;
2296 struct adapter *adap = cookie;
2297 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2298
2299 spin_lock(&q->lock);
2300
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002301 new_packets = rspq_check_napi(&adap->sge.qs[0]);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002302 if (adap->params.nports == 2)
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002303 new_packets += rspq_check_napi(&adap->sge.qs[1]);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002304 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2305 q->unhandled_irqs++;
2306
2307 spin_unlock(&q->lock);
2308 return IRQ_HANDLED;
2309}
2310
2311/*
2312 * A helper function that processes responses and issues GTS.
2313 */
2314static inline int process_responses_gts(struct adapter *adap,
2315 struct sge_rspq *rq)
2316{
2317 int work;
2318
2319 work = process_responses(adap, rspq_to_qset(rq), -1);
2320 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2321 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2322 return work;
2323}
2324
2325/*
2326 * The legacy INTx interrupt handler. This needs to handle data events from
2327 * SGE response queues as well as error and other async events as they all use
2328 * the same interrupt pin. We use one SGE response queue per port in this mode
2329 * and protect all response queues with queue 0's lock.
2330 */
2331static irqreturn_t t3_intr(int irq, void *cookie)
2332{
2333 int work_done, w0, w1;
2334 struct adapter *adap = cookie;
2335 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2336 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2337
2338 spin_lock(&q0->lock);
2339
2340 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2341 w1 = adap->params.nports == 2 &&
2342 is_new_response(&q1->desc[q1->cidx], q1);
2343
2344 if (likely(w0 | w1)) {
2345 t3_write_reg(adap, A_PL_CLI, 0);
2346 t3_read_reg(adap, A_PL_CLI); /* flush */
2347
2348 if (likely(w0))
2349 process_responses_gts(adap, q0);
2350
2351 if (w1)
2352 process_responses_gts(adap, q1);
2353
2354 work_done = w0 | w1;
2355 } else
2356 work_done = t3_slow_intr_handler(adap);
2357
2358 spin_unlock(&q0->lock);
2359 return IRQ_RETVAL(work_done != 0);
2360}
2361
2362/*
2363 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2364 * Handles data events from SGE response queues as well as error and other
2365 * async events as they all use the same interrupt pin. We use one SGE
2366 * response queue per port in this mode and protect all response queues with
2367 * queue 0's lock.
2368 */
2369static irqreturn_t t3b_intr(int irq, void *cookie)
2370{
2371 u32 map;
2372 struct adapter *adap = cookie;
2373 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2374
2375 t3_write_reg(adap, A_PL_CLI, 0);
2376 map = t3_read_reg(adap, A_SG_DATA_INTR);
2377
2378 if (unlikely(!map)) /* shared interrupt, most likely */
2379 return IRQ_NONE;
2380
2381 spin_lock(&q0->lock);
2382
2383 if (unlikely(map & F_ERRINTR))
2384 t3_slow_intr_handler(adap);
2385
2386 if (likely(map & 1))
2387 process_responses_gts(adap, q0);
2388
2389 if (map & 2)
2390 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2391
2392 spin_unlock(&q0->lock);
2393 return IRQ_HANDLED;
2394}
2395
2396/*
2397 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2398 * Handles data events from SGE response queues as well as error and other
2399 * async events as they all use the same interrupt pin. We use one SGE
2400 * response queue per port in this mode and protect all response queues with
2401 * queue 0's lock.
2402 */
2403static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2404{
2405 u32 map;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002406 struct adapter *adap = cookie;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002407 struct sge_qset *qs0 = &adap->sge.qs[0];
2408 struct sge_rspq *q0 = &qs0->rspq;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002409
2410 t3_write_reg(adap, A_PL_CLI, 0);
2411 map = t3_read_reg(adap, A_SG_DATA_INTR);
2412
2413 if (unlikely(!map)) /* shared interrupt, most likely */
2414 return IRQ_NONE;
2415
2416 spin_lock(&q0->lock);
2417
2418 if (unlikely(map & F_ERRINTR))
2419 t3_slow_intr_handler(adap);
2420
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002421 if (likely(map & 1))
2422 napi_schedule(&qs0->napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002423
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002424 if (map & 2)
2425 napi_schedule(&adap->sge.qs[1].napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002426
2427 spin_unlock(&q0->lock);
2428 return IRQ_HANDLED;
2429}
2430
2431/**
2432 * t3_intr_handler - select the top-level interrupt handler
2433 * @adap: the adapter
2434 * @polling: whether using NAPI to service response queues
2435 *
2436 * Selects the top-level interrupt handler based on the type of interrupts
2437 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2438 * response queues.
2439 */
Jeff Garzik7c239972007-10-19 03:12:20 -04002440irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002441{
2442 if (adap->flags & USING_MSIX)
2443 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2444 if (adap->flags & USING_MSI)
2445 return polling ? t3_intr_msi_napi : t3_intr_msi;
2446 if (adap->params.rev > 0)
2447 return polling ? t3b_intr_napi : t3b_intr;
2448 return t3_intr;
2449}
2450
Divy Le Rayb8819552007-12-17 18:47:31 -08002451#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2452 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2453 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2454 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2455 F_HIRCQPARITYERROR)
2456#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2457#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2458 F_RSPQDISABLED)
2459
Divy Le Ray4d22de32007-01-18 22:04:14 -05002460/**
2461 * t3_sge_err_intr_handler - SGE async event interrupt handler
2462 * @adapter: the adapter
2463 *
2464 * Interrupt handler for SGE asynchronous (non-data) events.
2465 */
2466void t3_sge_err_intr_handler(struct adapter *adapter)
2467{
2468 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2469
Divy Le Rayb8819552007-12-17 18:47:31 -08002470 if (status & SGE_PARERR)
2471 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2472 status & SGE_PARERR);
2473 if (status & SGE_FRAMINGERR)
2474 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2475 status & SGE_FRAMINGERR);
2476
Divy Le Ray4d22de32007-01-18 22:04:14 -05002477 if (status & F_RSPQCREDITOVERFOW)
2478 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2479
2480 if (status & F_RSPQDISABLED) {
2481 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2482
2483 CH_ALERT(adapter,
2484 "packet delivered to disabled response queue "
2485 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2486 }
2487
Divy Le Ray6e3f03b2007-08-21 20:49:10 -07002488 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2489 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2490 status & F_HIPIODRBDROPERR ? "high" : "lo");
2491
Divy Le Ray4d22de32007-01-18 22:04:14 -05002492 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
Divy Le Rayb8819552007-12-17 18:47:31 -08002493 if (status & SGE_FATALERR)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002494 t3_fatal_err(adapter);
2495}
2496
2497/**
2498 * sge_timer_cb - perform periodic maintenance of an SGE qset
2499 * @data: the SGE queue set to maintain
2500 *
2501 * Runs periodically from a timer to perform maintenance of an SGE queue
2502 * set. It performs two tasks:
2503 *
2504 * a) Cleans up any completed Tx descriptors that may still be pending.
2505 * Normal descriptor cleanup happens when new packets are added to a Tx
2506 * queue so this timer is relatively infrequent and does any cleanup only
2507 * if the Tx queue has not seen any new packets in a while. We make a
2508 * best effort attempt to reclaim descriptors, in that we don't wait
2509 * around if we cannot get a queue's lock (which most likely is because
2510 * someone else is queueing new packets and so will also handle the clean
2511 * up). Since control queues use immediate data exclusively we don't
2512 * bother cleaning them up here.
2513 *
2514 * b) Replenishes Rx queues that have run out due to memory shortage.
2515 * Normally new Rx buffers are added when existing ones are consumed but
2516 * when out of memory a queue can become empty. We try to add only a few
2517 * buffers here, the queue will be replenished fully as these new buffers
2518 * are used up if memory shortage has subsided.
2519 */
2520static void sge_timer_cb(unsigned long data)
2521{
2522 spinlock_t *lock;
2523 struct sge_qset *qs = (struct sge_qset *)data;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002524 struct adapter *adap = qs->adap;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002525
2526 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2527 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2528 spin_unlock(&qs->txq[TXQ_ETH].lock);
2529 }
2530 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2531 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2532 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2533 }
2534 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002535 &adap->sge.qs[0].rspq.lock;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002536 if (spin_trylock_irq(lock)) {
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002537 if (!napi_is_scheduled(&qs->napi)) {
Divy Le Raybae73f42007-02-24 16:44:12 -08002538 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2539
Divy Le Ray4d22de32007-01-18 22:04:14 -05002540 if (qs->fl[0].credits < qs->fl[0].size)
2541 __refill_fl(adap, &qs->fl[0]);
2542 if (qs->fl[1].credits < qs->fl[1].size)
2543 __refill_fl(adap, &qs->fl[1]);
Divy Le Raybae73f42007-02-24 16:44:12 -08002544
2545 if (status & (1 << qs->rspq.cntxt_id)) {
2546 qs->rspq.starved++;
2547 if (qs->rspq.credits) {
2548 refill_rspq(adap, &qs->rspq, 1);
2549 qs->rspq.credits--;
2550 qs->rspq.restarted++;
Divy Le Raye0994eb2007-02-24 16:44:17 -08002551 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
Divy Le Raybae73f42007-02-24 16:44:12 -08002552 1 << qs->rspq.cntxt_id);
2553 }
2554 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05002555 }
2556 spin_unlock_irq(lock);
2557 }
2558 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2559}
2560
2561/**
2562 * t3_update_qset_coalesce - update coalescing settings for a queue set
2563 * @qs: the SGE queue set
2564 * @p: new queue set parameters
2565 *
2566 * Update the coalescing settings for an SGE queue set. Nothing is done
2567 * if the queue set is not initialized yet.
2568 */
2569void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2570{
Divy Le Ray4d22de32007-01-18 22:04:14 -05002571 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2572 qs->rspq.polling = p->polling;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002573 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002574}
2575
2576/**
2577 * t3_sge_alloc_qset - initialize an SGE queue set
2578 * @adapter: the adapter
2579 * @id: the queue set id
2580 * @nports: how many Ethernet ports will be using this queue set
2581 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2582 * @p: configuration parameters for this queue set
2583 * @ntxq: number of Tx queues for the queue set
2584 * @netdev: net device associated with this queue set
2585 *
2586 * Allocate resources and initialize an SGE queue set. A queue set
2587 * comprises a response queue, two Rx free-buffer queues, and up to 3
2588 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2589 * queue, offload queue, and control queue.
2590 */
2591int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2592 int irq_vec_idx, const struct qset_params *p,
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002593 int ntxq, struct net_device *dev)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002594{
2595 int i, ret = -ENOMEM;
2596 struct sge_qset *q = &adapter->sge.qs[id];
2597
2598 init_qset_cntxt(q, id);
2599 init_timer(&q->tx_reclaim_timer);
2600 q->tx_reclaim_timer.data = (unsigned long)q;
2601 q->tx_reclaim_timer.function = sge_timer_cb;
2602
2603 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2604 sizeof(struct rx_desc),
2605 sizeof(struct rx_sw_desc),
2606 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2607 if (!q->fl[0].desc)
2608 goto err;
2609
2610 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2611 sizeof(struct rx_desc),
2612 sizeof(struct rx_sw_desc),
2613 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2614 if (!q->fl[1].desc)
2615 goto err;
2616
2617 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2618 sizeof(struct rsp_desc), 0,
2619 &q->rspq.phys_addr, NULL);
2620 if (!q->rspq.desc)
2621 goto err;
2622
2623 for (i = 0; i < ntxq; ++i) {
2624 /*
2625 * The control queue always uses immediate data so does not
2626 * need to keep track of any sk_buffs.
2627 */
2628 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2629
2630 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2631 sizeof(struct tx_desc), sz,
2632 &q->txq[i].phys_addr,
2633 &q->txq[i].sdesc);
2634 if (!q->txq[i].desc)
2635 goto err;
2636
2637 q->txq[i].gen = 1;
2638 q->txq[i].size = p->txq_size[i];
2639 spin_lock_init(&q->txq[i].lock);
2640 skb_queue_head_init(&q->txq[i].sendq);
2641 }
2642
2643 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2644 (unsigned long)q);
2645 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2646 (unsigned long)q);
2647
2648 q->fl[0].gen = q->fl[1].gen = 1;
2649 q->fl[0].size = p->fl_size;
2650 q->fl[1].size = p->jumbo_size;
2651
2652 q->rspq.gen = 1;
2653 q->rspq.size = p->rspq_size;
2654 spin_lock_init(&q->rspq.lock);
2655
2656 q->txq[TXQ_ETH].stop_thres = nports *
2657 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2658
Divy Le Raycf992af2007-05-30 21:10:47 -07002659#if FL0_PG_CHUNK_SIZE > 0
2660 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
Divy Le Raye0994eb2007-02-24 16:44:17 -08002661#else
Divy Le Raycf992af2007-05-30 21:10:47 -07002662 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
Divy Le Raye0994eb2007-02-24 16:44:17 -08002663#endif
Divy Le Raycf992af2007-05-30 21:10:47 -07002664 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
2665 q->fl[1].buf_size = is_offload(adapter) ?
2666 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
2667 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002668
2669 spin_lock(&adapter->sge.reg_lock);
2670
2671 /* FL threshold comparison uses < */
2672 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2673 q->rspq.phys_addr, q->rspq.size,
2674 q->fl[0].buf_size, 1, 0);
2675 if (ret)
2676 goto err_unlock;
2677
2678 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2679 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2680 q->fl[i].phys_addr, q->fl[i].size,
2681 q->fl[i].buf_size, p->cong_thres, 1,
2682 0);
2683 if (ret)
2684 goto err_unlock;
2685 }
2686
2687 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2688 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2689 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2690 1, 0);
2691 if (ret)
2692 goto err_unlock;
2693
2694 if (ntxq > 1) {
2695 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2696 USE_GTS, SGE_CNTXT_OFLD, id,
2697 q->txq[TXQ_OFLD].phys_addr,
2698 q->txq[TXQ_OFLD].size, 0, 1, 0);
2699 if (ret)
2700 goto err_unlock;
2701 }
2702
2703 if (ntxq > 2) {
2704 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2705 SGE_CNTXT_CTRL, id,
2706 q->txq[TXQ_CTRL].phys_addr,
2707 q->txq[TXQ_CTRL].size,
2708 q->txq[TXQ_CTRL].token, 1, 0);
2709 if (ret)
2710 goto err_unlock;
2711 }
2712
2713 spin_unlock(&adapter->sge.reg_lock);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002714
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002715 q->adap = adapter;
2716 q->netdev = dev;
2717 t3_update_qset_coalesce(q, p);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002718
2719 refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL);
2720 refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL);
2721 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2722
2723 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2724 V_NEWTIMER(q->rspq.holdoff_tmr));
2725
2726 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2727 return 0;
2728
2729 err_unlock:
2730 spin_unlock(&adapter->sge.reg_lock);
2731 err:
2732 t3_free_qset(adapter, q);
2733 return ret;
2734}
2735
2736/**
2737 * t3_free_sge_resources - free SGE resources
2738 * @adap: the adapter
2739 *
2740 * Frees resources used by the SGE queue sets.
2741 */
2742void t3_free_sge_resources(struct adapter *adap)
2743{
2744 int i;
2745
2746 for (i = 0; i < SGE_QSETS; ++i)
2747 t3_free_qset(adap, &adap->sge.qs[i]);
2748}
2749
2750/**
2751 * t3_sge_start - enable SGE
2752 * @adap: the adapter
2753 *
2754 * Enables the SGE for DMAs. This is the last step in starting packet
2755 * transfers.
2756 */
2757void t3_sge_start(struct adapter *adap)
2758{
2759 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
2760}
2761
2762/**
2763 * t3_sge_stop - disable SGE operation
2764 * @adap: the adapter
2765 *
2766 * Disables the DMA engine. This can be called in emeregencies (e.g.,
2767 * from error interrupts) or from normal process context. In the latter
2768 * case it also disables any pending queue restart tasklets. Note that
2769 * if it is called in interrupt context it cannot disable the restart
2770 * tasklets as it cannot wait, however the tasklets will have no effect
2771 * since the doorbells are disabled and the driver will call this again
2772 * later from process context, at which time the tasklets will be stopped
2773 * if they are still running.
2774 */
2775void t3_sge_stop(struct adapter *adap)
2776{
2777 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
2778 if (!in_interrupt()) {
2779 int i;
2780
2781 for (i = 0; i < SGE_QSETS; ++i) {
2782 struct sge_qset *qs = &adap->sge.qs[i];
2783
2784 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
2785 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
2786 }
2787 }
2788}
2789
2790/**
2791 * t3_sge_init - initialize SGE
2792 * @adap: the adapter
2793 * @p: the SGE parameters
2794 *
2795 * Performs SGE initialization needed every time after a chip reset.
2796 * We do not initialize any of the queue sets here, instead the driver
2797 * top-level must request those individually. We also do not enable DMA
2798 * here, that should be done after the queues have been set up.
2799 */
2800void t3_sge_init(struct adapter *adap, struct sge_params *p)
2801{
2802 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
2803
2804 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
Divy Le Rayb8819552007-12-17 18:47:31 -08002805 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
Divy Le Ray4d22de32007-01-18 22:04:14 -05002806 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
2807 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
2808#if SGE_NUM_GENBITS == 1
2809 ctrl |= F_EGRGENCTRL;
2810#endif
2811 if (adap->params.rev > 0) {
2812 if (!(adap->flags & (USING_MSIX | USING_MSI)))
2813 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002814 }
2815 t3_write_reg(adap, A_SG_CONTROL, ctrl);
2816 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
2817 V_LORCQDRBTHRSH(512));
2818 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
2819 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
Divy Le Ray6195c712007-01-30 19:43:56 -08002820 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
Divy Le Rayb8819552007-12-17 18:47:31 -08002821 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
2822 adap->params.rev < T3_REV_C ? 1000 : 500);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002823 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
2824 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
2825 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
2826 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
2827 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
2828}
2829
2830/**
2831 * t3_sge_prep - one-time SGE initialization
2832 * @adap: the associated adapter
2833 * @p: SGE parameters
2834 *
2835 * Performs one-time initialization of SGE SW state. Includes determining
2836 * defaults for the assorted SGE parameters, which admins can change until
2837 * they are used to initialize the SGE.
2838 */
2839void __devinit t3_sge_prep(struct adapter *adap, struct sge_params *p)
2840{
2841 int i;
2842
2843 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
2844 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2845
2846 for (i = 0; i < SGE_QSETS; ++i) {
2847 struct qset_params *q = p->qset + i;
2848
2849 q->polling = adap->params.rev > 0;
2850 q->coalesce_usecs = 5;
2851 q->rspq_size = 1024;
Divy Le Raye0994eb2007-02-24 16:44:17 -08002852 q->fl_size = 1024;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002853 q->jumbo_size = 512;
2854 q->txq_size[TXQ_ETH] = 1024;
2855 q->txq_size[TXQ_OFLD] = 1024;
2856 q->txq_size[TXQ_CTRL] = 256;
2857 q->cong_thres = 0;
2858 }
2859
2860 spin_lock_init(&adap->sge.reg_lock);
2861}
2862
2863/**
2864 * t3_get_desc - dump an SGE descriptor for debugging purposes
2865 * @qs: the queue set
2866 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
2867 * @idx: the descriptor index in the queue
2868 * @data: where to dump the descriptor contents
2869 *
2870 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
2871 * size of the descriptor.
2872 */
2873int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
2874 unsigned char *data)
2875{
2876 if (qnum >= 6)
2877 return -EINVAL;
2878
2879 if (qnum < 3) {
2880 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
2881 return -EINVAL;
2882 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
2883 return sizeof(struct tx_desc);
2884 }
2885
2886 if (qnum == 3) {
2887 if (!qs->rspq.desc || idx >= qs->rspq.size)
2888 return -EINVAL;
2889 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
2890 return sizeof(struct rsp_desc);
2891 }
2892
2893 qnum -= 4;
2894 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
2895 return -EINVAL;
2896 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
2897 return sizeof(struct rx_desc);
2898}