blob: 10ad877c2cdfa88f9dc3ac29875d49b866ed8e14 [file] [log] [blame]
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001/*
2 * PHY functions
3 *
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03004 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
Nick Kossifidis33a31822009-02-09 06:00:34 +02005 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03006 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02007 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
Jiri Slabyfa1c1142007-08-12 17:33:16 +02008 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
24
25#include "ath5k.h"
26#include "reg.h"
27#include "base.h"
Nick Kossifidis33a31822009-02-09 06:00:34 +020028#include "rfbuffer.h"
29#include "rfgain.h"
Jiri Slabyfa1c1142007-08-12 17:33:16 +020030
31/*
32 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
33 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020034static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
35 const struct ath5k_rf_reg *rf_regs,
36 u32 val, u8 reg_id, bool set)
Jiri Slabyfa1c1142007-08-12 17:33:16 +020037{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020038 const struct ath5k_rf_reg *rfreg = NULL;
39 u8 offset, bank, num_bits, col, position;
40 u16 entry;
41 u32 mask, data, last_bit, bits_shifted, first_bit;
42 u32 *rfb;
43 s32 bits_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020044 int i;
45
46 data = 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020047 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020048
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020049 for (i = 0; i < ah->ah_rf_regs_count; i++) {
50 if (rf_regs[i].index == reg_id) {
51 rfreg = &rf_regs[i];
52 break;
53 }
54 }
55
56 if (rfb == NULL || rfreg == NULL) {
57 ATH5K_PRINTF("Rf register not found!\n");
Jiri Slabyfa1c1142007-08-12 17:33:16 +020058 /* should not happen */
59 return 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020060 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +020061
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020062 bank = rfreg->bank;
63 num_bits = rfreg->field.len;
64 first_bit = rfreg->field.pos;
65 col = rfreg->field.col;
66
67 /* first_bit is an offset from bank's
68 * start. Since we have all banks on
69 * the same array, we use this offset
70 * to mark each bank's start */
71 offset = ah->ah_offset[bank];
72
73 /* Boundary check */
74 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +020075 ATH5K_PRINTF("invalid values at offset %u\n", offset);
76 return 0;
77 }
78
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020079 entry = ((first_bit - 1) / 8) + offset;
80 position = (first_bit - 1) % 8;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020081
Joe Perchese9010e22008-03-07 14:21:16 -080082 if (set)
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020083 data = ath5k_hw_bitswap(val, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020084
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020085 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
86 position = 0, entry++) {
87
88 last_bit = (position + bits_left > 8) ? 8 :
89 position + bits_left;
90
91 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
92 (col * 8);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020093
Joe Perchese9010e22008-03-07 14:21:16 -080094 if (set) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020095 rfb[entry] &= ~mask;
96 rfb[entry] |= ((data << position) << (col * 8)) & mask;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020097 data >>= (8 - position);
98 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020099 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
100 << bits_shifted;
101 bits_shifted += last_bit - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200102 }
103
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200104 bits_left -= 8 - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200105 }
106
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200107 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200108
109 return data;
110}
111
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200112/**********************\
113* RF Gain optimization *
114\**********************/
115
116/*
117 * This code is used to optimize rf gain on different environments
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200118 * (temperature mostly) based on feedback from a power detector.
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200119 *
120 * It's only used on RF5111 and RF5112, later RF chips seem to have
121 * auto adjustment on hw -notice they have a much smaller BANK 7 and
122 * no gain optimization ladder-.
123 *
124 * For more infos check out this patent doc
125 * http://www.freepatentsonline.com/7400691.html
126 *
127 * This paper describes power drops as seen on the receiver due to
128 * probe packets
129 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
130 * %20of%20Power%20Control.pdf
131 *
132 * And this is the MadWiFi bug entry related to the above
133 * http://madwifi-project.org/ticket/1659
134 * with various measurements and diagrams
135 *
136 * TODO: Deal with power drops due to probes by setting an apropriate
137 * tx power on the probe packets ! Make this part of the calibration process.
138 */
139
140/* Initialize ah_gain durring attach */
141int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
142{
143 /* Initialize the gain optimization values */
144 switch (ah->ah_radio) {
145 case AR5K_RF5111:
146 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
147 ah->ah_gain.g_low = 20;
148 ah->ah_gain.g_high = 35;
149 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
150 break;
151 case AR5K_RF5112:
152 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
153 ah->ah_gain.g_low = 20;
154 ah->ah_gain.g_high = 85;
155 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
156 break;
157 default:
158 return -EINVAL;
159 }
160
161 return 0;
162}
163
164/* Schedule a gain probe check on the next transmited packet.
165 * That means our next packet is going to be sent with lower
166 * tx power and a Peak to Average Power Detector (PAPD) will try
167 * to measure the gain.
168 *
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200169 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
170 * just after we enable the probe so that we don't mess with
171 * standard traffic ? Maybe it's time to use sw interrupts and
172 * a probe tasklet !!!
173 */
174static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
175{
176
177 /* Skip if gain calibration is inactive or
178 * we already handle a probe request */
179 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
180 return;
181
Nick Kossifidis8f655dd2009-03-15 22:20:35 +0200182 /* Send the packet with 2dB below max power as
183 * patent doc suggest */
Nick Kossifidisa0823812009-04-30 15:55:44 -0400184 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200185 AR5K_PHY_PAPD_PROBE_TXPOWER) |
186 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
187
188 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
189
190}
191
192/* Calculate gain_F measurement correction
193 * based on the current step for RF5112 rev. 2 */
194static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200195{
196 u32 mix, step;
197 u32 *rf;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200198 const struct ath5k_gain_opt *go;
199 const struct ath5k_gain_opt_step *g_step;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200200 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200201
202 /* Only RF5112 Rev. 2 supports it */
203 if ((ah->ah_radio != AR5K_RF5112) ||
204 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
205 return 0;
206
207 go = &rfgain_opt_5112;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200208 rf_regs = rf_regs_5112a;
209 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200210
211 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200212
213 if (ah->ah_rf_banks == NULL)
214 return 0;
215
216 rf = ah->ah_rf_banks;
217 ah->ah_gain.g_f_corr = 0;
218
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200219 /* No VGA (Variable Gain Amplifier) override, skip */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200220 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200221 return 0;
222
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200223 /* Mix gain stepping */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200224 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200225
226 /* Mix gain override */
227 mix = g_step->gos_param[0];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200228
229 switch (mix) {
230 case 3:
231 ah->ah_gain.g_f_corr = step * 2;
232 break;
233 case 2:
234 ah->ah_gain.g_f_corr = (step - 5) * 2;
235 break;
236 case 1:
237 ah->ah_gain.g_f_corr = step;
238 break;
239 default:
240 ah->ah_gain.g_f_corr = 0;
241 break;
242 }
243
244 return ah->ah_gain.g_f_corr;
245}
246
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200247/* Check if current gain_F measurement is in the range of our
248 * power detector windows. If we get a measurement outside range
249 * we know it's not accurate (detectors can't measure anything outside
250 * their detection window) so we must ignore it */
251static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200252{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200253 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200254 u32 step, mix_ovr, level[4];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200255 u32 *rf;
256
257 if (ah->ah_rf_banks == NULL)
258 return false;
259
260 rf = ah->ah_rf_banks;
261
262 if (ah->ah_radio == AR5K_RF5111) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200263
264 rf_regs = rf_regs_5111;
265 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
266
267 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
268 false);
269
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200270 level[0] = 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200271 level[1] = (step == 63) ? 50 : step + 4;
272 level[2] = (step != 63) ? 64 : level[0];
273 level[3] = level[2] + 50 ;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200274
275 ah->ah_gain.g_high = level[3] -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200276 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200277 ah->ah_gain.g_low = level[0] +
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200278 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200279 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200280
281 rf_regs = rf_regs_5112;
282 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
283
284 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
285 false);
286
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200287 level[0] = level[2] = 0;
288
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200289 if (mix_ovr == 1) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200290 level[1] = level[3] = 83;
291 } else {
292 level[1] = level[3] = 107;
293 ah->ah_gain.g_high = 55;
294 }
295 }
296
297 return (ah->ah_gain.g_current >= level[0] &&
298 ah->ah_gain.g_current <= level[1]) ||
299 (ah->ah_gain.g_current >= level[2] &&
300 ah->ah_gain.g_current <= level[3]);
301}
302
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200303/* Perform gain_F adjustment by choosing the right set
304 * of parameters from rf gain optimization ladder */
305static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200306{
307 const struct ath5k_gain_opt *go;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200308 const struct ath5k_gain_opt_step *g_step;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200309 int ret = 0;
310
311 switch (ah->ah_radio) {
312 case AR5K_RF5111:
313 go = &rfgain_opt_5111;
314 break;
315 case AR5K_RF5112:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200316 go = &rfgain_opt_5112;
317 break;
318 default:
319 return 0;
320 }
321
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200322 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200323
324 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200325
326 /* Reached maximum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200327 if (ah->ah_gain.g_step_idx == 0)
328 return -1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200329
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200330 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
331 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
332 ah->ah_gain.g_step_idx > 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200333 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200334 ah->ah_gain.g_target -= 2 *
335 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200336 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200337
338 ret = 1;
339 goto done;
340 }
341
342 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200343
344 /* Reached minimum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200345 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
346 return -2;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200347
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200348 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
349 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
350 ah->ah_gain.g_step_idx < go->go_steps_count-1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200351 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200352 ah->ah_gain.g_target -= 2 *
353 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200354 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200355
356 ret = 2;
357 goto done;
358 }
359
360done:
361 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
362 "ret %d, gain step %u, current gain %u, target gain %u\n",
363 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
364 ah->ah_gain.g_target);
365
366 return ret;
367}
368
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200369/* Main callback for thermal rf gain calibration engine
370 * Check for a new gain reading and schedule an adjustment
371 * if needed.
372 *
373 * TODO: Use sw interrupt to schedule reset if gain_F needs
374 * adjustment */
375enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
376{
377 u32 data, type;
378 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
379
380 ATH5K_TRACE(ah->ah_sc);
381
382 if (ah->ah_rf_banks == NULL ||
383 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
384 return AR5K_RFGAIN_INACTIVE;
385
386 /* No check requested, either engine is inactive
387 * or an adjustment is already requested */
388 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
389 goto done;
390
391 /* Read the PAPD (Peak to Average Power Detector)
392 * register */
393 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
394
395 /* No probe is scheduled, read gain_F measurement */
396 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
397 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
398 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
399
400 /* If tx packet is CCK correct the gain_F measurement
401 * by cck ofdm gain delta */
402 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
403 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
404 ah->ah_gain.g_current +=
405 ee->ee_cck_ofdm_gain_delta;
406 else
407 ah->ah_gain.g_current +=
408 AR5K_GAIN_CCK_PROBE_CORR;
409 }
410
411 /* Further correct gain_F measurement for
412 * RF5112A radios */
413 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
414 ath5k_hw_rf_gainf_corr(ah);
415 ah->ah_gain.g_current =
416 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
417 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
418 0;
419 }
420
421 /* Check if measurement is ok and if we need
422 * to adjust gain, schedule a gain adjustment,
423 * else switch back to the acive state */
424 if (ath5k_hw_rf_check_gainf_readback(ah) &&
425 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
426 ath5k_hw_rf_gainf_adjust(ah)) {
427 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
428 } else {
429 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
430 }
431 }
432
433done:
434 return ah->ah_gain.g_state;
435}
436
437/* Write initial rf gain table to set the RF sensitivity
438 * this one works on all RF chips and has nothing to do
439 * with gain_F calibration */
440int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
441{
442 const struct ath5k_ini_rfgain *ath5k_rfg;
443 unsigned int i, size;
444
445 switch (ah->ah_radio) {
446 case AR5K_RF5111:
447 ath5k_rfg = rfgain_5111;
448 size = ARRAY_SIZE(rfgain_5111);
449 break;
450 case AR5K_RF5112:
451 ath5k_rfg = rfgain_5112;
452 size = ARRAY_SIZE(rfgain_5112);
453 break;
454 case AR5K_RF2413:
455 ath5k_rfg = rfgain_2413;
456 size = ARRAY_SIZE(rfgain_2413);
457 break;
458 case AR5K_RF2316:
459 ath5k_rfg = rfgain_2316;
460 size = ARRAY_SIZE(rfgain_2316);
461 break;
462 case AR5K_RF5413:
463 ath5k_rfg = rfgain_5413;
464 size = ARRAY_SIZE(rfgain_5413);
465 break;
466 case AR5K_RF2317:
467 case AR5K_RF2425:
468 ath5k_rfg = rfgain_2425;
469 size = ARRAY_SIZE(rfgain_2425);
470 break;
471 default:
472 return -EINVAL;
473 }
474
475 switch (freq) {
476 case AR5K_INI_RFGAIN_2GHZ:
477 case AR5K_INI_RFGAIN_5GHZ:
478 break;
479 default:
480 return -EINVAL;
481 }
482
483 for (i = 0; i < size; i++) {
484 AR5K_REG_WAIT(i);
485 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
486 (u32)ath5k_rfg[i].rfg_register);
487 }
488
489 return 0;
490}
491
492
493
494/********************\
495* RF Registers setup *
496\********************/
497
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200498
499/*
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200500 * Setup RF registers by writing rf buffer on hw
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200501 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200502int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200503 unsigned int mode)
504{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200505 const struct ath5k_rf_reg *rf_regs;
506 const struct ath5k_ini_rfbuffer *ini_rfb;
507 const struct ath5k_gain_opt *go = NULL;
508 const struct ath5k_gain_opt_step *g_step;
509 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
510 u8 ee_mode = 0;
511 u32 *rfb;
512 int i, obdb = -1, bank = -1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200513
514 switch (ah->ah_radio) {
515 case AR5K_RF5111:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200516 rf_regs = rf_regs_5111;
517 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
518 ini_rfb = rfb_5111;
519 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
520 go = &rfgain_opt_5111;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200521 break;
522 case AR5K_RF5112:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200523 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
524 rf_regs = rf_regs_5112a;
525 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
526 ini_rfb = rfb_5112a;
527 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
528 } else {
529 rf_regs = rf_regs_5112;
530 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
531 ini_rfb = rfb_5112;
532 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
533 }
534 go = &rfgain_opt_5112;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200535 break;
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500536 case AR5K_RF2413:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200537 rf_regs = rf_regs_2413;
538 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
539 ini_rfb = rfb_2413;
540 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
541 break;
542 case AR5K_RF2316:
543 rf_regs = rf_regs_2316;
544 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
545 ini_rfb = rfb_2316;
546 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
547 break;
548 case AR5K_RF5413:
549 rf_regs = rf_regs_5413;
550 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
551 ini_rfb = rfb_5413;
552 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
553 break;
554 case AR5K_RF2317:
555 rf_regs = rf_regs_2425;
556 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
557 ini_rfb = rfb_2317;
558 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500559 break;
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300560 case AR5K_RF2425:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200561 rf_regs = rf_regs_2425;
562 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
563 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
564 ini_rfb = rfb_2425;
565 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
566 } else {
567 ini_rfb = rfb_2417;
568 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
569 }
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300570 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200571 default:
572 return -EINVAL;
573 }
574
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200575 /* If it's the first time we set rf buffer, allocate
576 * ah->ah_rf_banks based on ah->ah_rf_banks_size
577 * we set above */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200578 if (ah->ah_rf_banks == NULL) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200579 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
580 GFP_KERNEL);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200581 if (ah->ah_rf_banks == NULL) {
582 ATH5K_ERR(ah->ah_sc, "out of memory\n");
583 return -ENOMEM;
584 }
585 }
586
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200587 /* Copy values to modify them */
588 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200589
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200590 for (i = 0; i < ah->ah_rf_banks_size; i++) {
591 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
592 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
593 return -EINVAL;
594 }
595
596 /* Bank changed, write down the offset */
597 if (bank != ini_rfb[i].rfb_bank) {
598 bank = ini_rfb[i].rfb_bank;
599 ah->ah_offset[bank] = i;
600 }
601
602 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
603 }
604
605 /* Set Output and Driver bias current (OB/DB) */
606 if (channel->hw_value & CHANNEL_2GHZ) {
607
608 if (channel->hw_value & CHANNEL_CCK)
609 ee_mode = AR5K_EEPROM_MODE_11B;
610 else
611 ee_mode = AR5K_EEPROM_MODE_11G;
612
613 /* For RF511X/RF211X combination we
614 * use b_OB and b_DB parameters stored
615 * in eeprom on ee->ee_ob[ee_mode][0]
616 *
617 * For all other chips we use OB/DB for 2Ghz
618 * stored in the b/g modal section just like
619 * 802.11a on ee->ee_ob[ee_mode][1] */
620 if ((ah->ah_radio == AR5K_RF5111) ||
621 (ah->ah_radio == AR5K_RF5112))
622 obdb = 0;
623 else
624 obdb = 1;
625
626 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
627 AR5K_RF_OB_2GHZ, true);
628
629 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
630 AR5K_RF_DB_2GHZ, true);
631
632 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
633 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
634 (ah->ah_radio == AR5K_RF5111)) {
635
636 /* For 11a, Turbo and XR we need to choose
637 * OB/DB based on frequency range */
638 ee_mode = AR5K_EEPROM_MODE_11A;
639 obdb = channel->center_freq >= 5725 ? 3 :
640 (channel->center_freq >= 5500 ? 2 :
641 (channel->center_freq >= 5260 ? 1 :
642 (channel->center_freq > 4000 ? 0 : -1)));
643
644 if (obdb < 0)
645 return -EINVAL;
646
647 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
648 AR5K_RF_OB_5GHZ, true);
649
650 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
651 AR5K_RF_DB_5GHZ, true);
652 }
653
654 g_step = &go->go_step[ah->ah_gain.g_step_idx];
655
656 /* Bank Modifications (chip-specific) */
657 if (ah->ah_radio == AR5K_RF5111) {
658
659 /* Set gain_F settings according to current step */
660 if (channel->hw_value & CHANNEL_OFDM) {
661
662 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
663 AR5K_PHY_FRAME_CTL_TX_CLIP,
664 g_step->gos_param[0]);
665
666 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
667 AR5K_RF_PWD_90, true);
668
669 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
670 AR5K_RF_PWD_84, true);
671
672 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
673 AR5K_RF_RFGAIN_SEL, true);
674
675 /* We programmed gain_F parameters, switch back
676 * to active state */
677 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
678
679 }
680
681 /* Bank 6/7 setup */
682
683 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
684 AR5K_RF_PWD_XPD, true);
685
686 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
687 AR5K_RF_XPD_GAIN, true);
688
689 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
690 AR5K_RF_GAIN_I, true);
691
692 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
693 AR5K_RF_PLO_SEL, true);
694
695 /* TODO: Half/quarter channel support */
696 }
697
698 if (ah->ah_radio == AR5K_RF5112) {
699
700 /* Set gain_F settings according to current step */
701 if (channel->hw_value & CHANNEL_OFDM) {
702
703 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
704 AR5K_RF_MIXGAIN_OVR, true);
705
706 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
707 AR5K_RF_PWD_138, true);
708
709 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
710 AR5K_RF_PWD_137, true);
711
712 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
713 AR5K_RF_PWD_136, true);
714
715 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
716 AR5K_RF_PWD_132, true);
717
718 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
719 AR5K_RF_PWD_131, true);
720
721 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
722 AR5K_RF_PWD_130, true);
723
724 /* We programmed gain_F parameters, switch back
725 * to active state */
726 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
727 }
728
729 /* Bank 6/7 setup */
730
731 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
732 AR5K_RF_XPD_SEL, true);
733
734 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
735 /* Rev. 1 supports only one xpd */
736 ath5k_hw_rfb_op(ah, rf_regs,
737 ee->ee_x_gain[ee_mode],
738 AR5K_RF_XPD_GAIN, true);
739
740 } else {
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300741 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
742 if (ee->ee_pd_gains[ee_mode] > 1) {
743 ath5k_hw_rfb_op(ah, rf_regs,
744 pdg_curve_to_idx[0],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200745 AR5K_RF_PD_GAIN_LO, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300746 ath5k_hw_rfb_op(ah, rf_regs,
747 pdg_curve_to_idx[1],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200748 AR5K_RF_PD_GAIN_HI, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300749 } else {
750 ath5k_hw_rfb_op(ah, rf_regs,
751 pdg_curve_to_idx[0],
752 AR5K_RF_PD_GAIN_LO, true);
753 ath5k_hw_rfb_op(ah, rf_regs,
754 pdg_curve_to_idx[0],
755 AR5K_RF_PD_GAIN_HI, true);
756 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200757
758 /* Lower synth voltage on Rev 2 */
759 ath5k_hw_rfb_op(ah, rf_regs, 2,
760 AR5K_RF_HIGH_VC_CP, true);
761
762 ath5k_hw_rfb_op(ah, rf_regs, 2,
763 AR5K_RF_MID_VC_CP, true);
764
765 ath5k_hw_rfb_op(ah, rf_regs, 2,
766 AR5K_RF_LOW_VC_CP, true);
767
768 ath5k_hw_rfb_op(ah, rf_regs, 2,
769 AR5K_RF_PUSH_UP, true);
770
771 /* Decrease power consumption on 5213+ BaseBand */
772 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
773 ath5k_hw_rfb_op(ah, rf_regs, 1,
774 AR5K_RF_PAD2GND, true);
775
776 ath5k_hw_rfb_op(ah, rf_regs, 1,
777 AR5K_RF_XB2_LVL, true);
778
779 ath5k_hw_rfb_op(ah, rf_regs, 1,
780 AR5K_RF_XB5_LVL, true);
781
782 ath5k_hw_rfb_op(ah, rf_regs, 1,
783 AR5K_RF_PWD_167, true);
784
785 ath5k_hw_rfb_op(ah, rf_regs, 1,
786 AR5K_RF_PWD_166, true);
787 }
788 }
789
790 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
791 AR5K_RF_GAIN_I, true);
792
793 /* TODO: Half/quarter channel support */
794
795 }
796
797 if (ah->ah_radio == AR5K_RF5413 &&
798 channel->hw_value & CHANNEL_2GHZ) {
799
800 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
801 true);
802
803 /* Set optimum value for early revisions (on pci-e chips) */
804 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
805 ah->ah_mac_srev < AR5K_SREV_AR5413)
806 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
807 AR5K_RF_PWD_ICLOBUF_2G, true);
808
809 }
810
811 /* Write RF banks on hw */
812 for (i = 0; i < ah->ah_rf_banks_size; i++) {
813 AR5K_REG_WAIT(i);
814 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
815 }
816
817 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200818}
819
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200820
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200821/**************************\
822 PHY/RF channel functions
823\**************************/
824
825/*
826 * Check if a channel is supported
827 */
828bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
829{
830 /* Check if the channel is in our supported range */
831 if (flags & CHANNEL_2GHZ) {
832 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
833 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
834 return true;
835 } else if (flags & CHANNEL_5GHZ)
836 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
837 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
838 return true;
839
840 return false;
841}
842
843/*
844 * Convertion needed for RF5110
845 */
846static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
847{
848 u32 athchan;
849
850 /*
851 * Convert IEEE channel/MHz to an internal channel value used
852 * by the AR5210 chipset. This has not been verified with
853 * newer chipsets like the AR5212A who have a completely
854 * different RF/PHY part.
855 */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500856 athchan = (ath5k_hw_bitswap(
857 (ieee80211_frequency_to_channel(
858 channel->center_freq) - 24) / 2, 5)
859 << 1) | (1 << 6) | 0x1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200860 return athchan;
861}
862
863/*
864 * Set channel on RF5110
865 */
866static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
867 struct ieee80211_channel *channel)
868{
869 u32 data;
870
871 /*
872 * Set the channel and wait
873 */
874 data = ath5k_hw_rf5110_chan2athchan(channel);
875 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
876 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
877 mdelay(1);
878
879 return 0;
880}
881
882/*
883 * Convertion needed for 5111
884 */
885static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
886 struct ath5k_athchan_2ghz *athchan)
887{
888 int channel;
889
890 /* Cast this value to catch negative channel numbers (>= -19) */
891 channel = (int)ieee;
892
893 /*
894 * Map 2GHz IEEE channel to 5GHz Atheros channel
895 */
896 if (channel <= 13) {
897 athchan->a2_athchan = 115 + channel;
898 athchan->a2_flags = 0x46;
899 } else if (channel == 14) {
900 athchan->a2_athchan = 124;
901 athchan->a2_flags = 0x44;
902 } else if (channel >= 15 && channel <= 26) {
903 athchan->a2_athchan = ((channel - 14) * 4) + 132;
904 athchan->a2_flags = 0x46;
905 } else
906 return -EINVAL;
907
908 return 0;
909}
910
911/*
912 * Set channel on 5111
913 */
914static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
915 struct ieee80211_channel *channel)
916{
917 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500918 unsigned int ath5k_channel =
919 ieee80211_frequency_to_channel(channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200920 u32 data0, data1, clock;
921 int ret;
922
923 /*
924 * Set the channel on the RF5111 radio
925 */
926 data0 = data1 = 0;
927
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500928 if (channel->hw_value & CHANNEL_2GHZ) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200929 /* Map 2GHz channel to 5GHz Atheros channel ID */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500930 ret = ath5k_hw_rf5111_chan2athchan(
931 ieee80211_frequency_to_channel(channel->center_freq),
932 &ath5k_channel_2ghz);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200933 if (ret)
934 return ret;
935
936 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
937 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
938 << 5) | (1 << 4);
939 }
940
941 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
942 clock = 1;
943 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
944 (clock << 1) | (1 << 10) | 1;
945 } else {
946 clock = 0;
947 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
948 << 2) | (clock << 1) | (1 << 10) | 1;
949 }
950
951 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
952 AR5K_RF_BUFFER);
953 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
954 AR5K_RF_BUFFER_CONTROL_3);
955
956 return 0;
957}
958
959/*
960 * Set channel on 5112 and newer
961 */
962static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
963 struct ieee80211_channel *channel)
964{
965 u32 data, data0, data1, data2;
966 u16 c;
967
968 data = data0 = data1 = data2 = 0;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500969 c = channel->center_freq;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200970
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200971 if (c < 4800) {
972 if (!((c - 2224) % 5)) {
973 data0 = ((2 * (c - 704)) - 3040) / 10;
974 data1 = 1;
975 } else if (!((c - 2192) % 5)) {
976 data0 = ((2 * (c - 672)) - 3040) / 10;
977 data1 = 0;
978 } else
979 return -EINVAL;
980
981 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +0300982 } else if ((c - (c % 5)) != 2 || c > 5435) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200983 if (!(c % 20) && c >= 5120) {
984 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
985 data2 = ath5k_hw_bitswap(3, 2);
986 } else if (!(c % 10)) {
987 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
988 data2 = ath5k_hw_bitswap(2, 2);
989 } else if (!(c % 5)) {
990 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
991 data2 = ath5k_hw_bitswap(1, 2);
992 } else
993 return -EINVAL;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +0300994 } else {
995 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
996 data2 = ath5k_hw_bitswap(0, 2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200997 }
998
999 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1000
1001 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1002 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1003
1004 return 0;
1005}
1006
1007/*
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001008 * Set the channel on the RF2425
1009 */
1010static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1011 struct ieee80211_channel *channel)
1012{
1013 u32 data, data0, data2;
1014 u16 c;
1015
1016 data = data0 = data2 = 0;
1017 c = channel->center_freq;
1018
1019 if (c < 4800) {
1020 data0 = ath5k_hw_bitswap((c - 2272), 8);
1021 data2 = 0;
1022 /* ? 5GHz ? */
1023 } else if ((c - (c % 5)) != 2 || c > 5435) {
1024 if (!(c % 20) && c < 5120)
1025 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1026 else if (!(c % 10))
1027 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1028 else if (!(c % 5))
1029 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1030 else
1031 return -EINVAL;
1032 data2 = ath5k_hw_bitswap(1, 2);
1033 } else {
1034 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1035 data2 = ath5k_hw_bitswap(0, 2);
1036 }
1037
1038 data = (data0 << 4) | data2 << 2 | 0x1001;
1039
1040 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1041 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1042
1043 return 0;
1044}
1045
1046/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001047 * Set a channel on the radio chip
1048 */
1049int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1050{
1051 int ret;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001052 /*
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001053 * Check bounds supported by the PHY (we don't care about regultory
1054 * restrictions at this point). Note: hw_value already has the band
1055 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1056 * of the band by that */
1057 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001058 ATH5K_ERR(ah->ah_sc,
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001059 "channel frequency (%u MHz) out of supported "
1060 "band range\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001061 channel->center_freq);
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001062 return -EINVAL;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001063 }
1064
1065 /*
1066 * Set the channel and wait
1067 */
1068 switch (ah->ah_radio) {
1069 case AR5K_RF5110:
1070 ret = ath5k_hw_rf5110_channel(ah, channel);
1071 break;
1072 case AR5K_RF5111:
1073 ret = ath5k_hw_rf5111_channel(ah, channel);
1074 break;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001075 case AR5K_RF2425:
1076 ret = ath5k_hw_rf2425_channel(ah, channel);
1077 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001078 default:
1079 ret = ath5k_hw_rf5112_channel(ah, channel);
1080 break;
1081 }
1082
1083 if (ret)
1084 return ret;
1085
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001086 /* Set JAPAN setting for channel 14 */
1087 if (channel->center_freq == 2484) {
1088 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1089 AR5K_PHY_CCKTXCTL_JAPAN);
1090 } else {
1091 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1092 AR5K_PHY_CCKTXCTL_WORLD);
1093 }
1094
Bob Copeland46026e82009-06-10 22:22:20 -04001095 ah->ah_current_channel = channel;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001096 ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001097
1098 return 0;
1099}
1100
1101/*****************\
1102 PHY calibration
1103\*****************/
1104
Nick Kossifidis6e220662009-08-10 03:31:31 +03001105void
1106ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1107{
1108 /* Calibration interval in jiffies */
1109 unsigned long cal_intval;
1110
1111 cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1112
1113 /* Initialize timestamp if needed */
1114 if (!ah->ah_cal_tstamp)
1115 ah->ah_cal_tstamp = jiffies;
1116
1117 /* For now we always do full calibration
1118 * Mark software interrupt mask and fire software
1119 * interrupt (bit gets auto-cleared) */
1120 if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1121 ah->ah_cal_tstamp = jiffies;
1122 ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1123 AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1124 }
Nick Kossifidis6e220662009-08-10 03:31:31 +03001125}
1126
Bob Copelande5e26472009-10-14 14:16:30 -04001127static int sign_extend(int val, const int nbits)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001128{
Bob Copelande5e26472009-10-14 14:16:30 -04001129 int order = BIT(nbits-1);
1130 return (val ^ order) - order;
1131}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001132
Bob Copelande5e26472009-10-14 14:16:30 -04001133static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1134{
1135 s32 val;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001136
Bob Copelande5e26472009-10-14 14:16:30 -04001137 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1138 return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1139}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001140
Bob Copelande5e26472009-10-14 14:16:30 -04001141void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1142{
1143 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001144
Bob Copelande5e26472009-10-14 14:16:30 -04001145 ah->ah_nfcal_hist.index = 0;
1146 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1147 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1148}
1149
1150static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1151{
1152 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1153 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1154 hist->nfval[hist->index] = noise_floor;
1155}
1156
1157static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1158{
1159 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1160 s16 tmp;
1161 int i, j;
1162
1163 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1164 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1165 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1166 if (sort[j] > sort[j-1]) {
1167 tmp = sort[j];
1168 sort[j] = sort[j-1];
1169 sort[j-1] = tmp;
1170 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001171 }
1172 }
Bob Copelande5e26472009-10-14 14:16:30 -04001173 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1174 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1175 "cal %d:%d\n", i, sort[i]);
1176 }
1177 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1178}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001179
Bob Copelande5e26472009-10-14 14:16:30 -04001180/*
1181 * When we tell the hardware to perform a noise floor calibration
1182 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1183 * sample-and-hold the minimum noise level seen at the antennas.
1184 * This value is then stored in a ring buffer of recently measured
1185 * noise floor values so we have a moving window of the last few
1186 * samples.
1187 *
1188 * The median of the values in the history is then loaded into the
1189 * hardware for its own use for RSSI and CCA measurements.
1190 */
Pavel Roskin626ede62010-02-18 20:28:02 -05001191static void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
Bob Copelande5e26472009-10-14 14:16:30 -04001192{
1193 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1194 u32 val;
1195 s16 nf, threshold;
1196 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001197
Bob Copelande5e26472009-10-14 14:16:30 -04001198 /* keep last value if calibration hasn't completed */
1199 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1200 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1201 "NF did not complete in calibration window\n");
1202
1203 return;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001204 }
1205
Bob Copelande5e26472009-10-14 14:16:30 -04001206 switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1207 case CHANNEL_A:
1208 case CHANNEL_T:
1209 case CHANNEL_XR:
1210 ee_mode = AR5K_EEPROM_MODE_11A;
1211 break;
1212 case CHANNEL_G:
1213 case CHANNEL_TG:
1214 ee_mode = AR5K_EEPROM_MODE_11G;
1215 break;
1216 default:
1217 case CHANNEL_B:
1218 ee_mode = AR5K_EEPROM_MODE_11B;
1219 break;
1220 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001221
Bob Copelande5e26472009-10-14 14:16:30 -04001222
1223 /* completed NF calibration, test threshold */
1224 nf = ath5k_hw_read_measured_noise_floor(ah);
1225 threshold = ee->ee_noise_floor_thr[ee_mode];
1226
1227 if (nf > threshold) {
1228 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1229 "noise floor failure detected; "
1230 "read %d, threshold %d\n",
1231 nf, threshold);
1232
1233 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1234 }
1235
1236 ath5k_hw_update_nfcal_hist(ah, nf);
1237 nf = ath5k_hw_get_median_noise_floor(ah);
1238
1239 /* load noise floor (in .5 dBm) so the hardware will use it */
1240 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1241 val |= (nf * 2) & AR5K_PHY_NF_M;
1242 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1243
1244 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1245 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1246
1247 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1248 0, false);
1249
1250 /*
1251 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1252 * so that we're not capped by the median we just loaded.
1253 * This will be used as the initial value for the next noise
1254 * floor calibration.
1255 */
1256 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1257 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1258 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1259 AR5K_PHY_AGCCTL_NF_EN |
1260 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1261 AR5K_PHY_AGCCTL_NF);
1262
1263 ah->ah_noise_floor = nf;
1264
1265 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1266 "noise floor calibrated: %d\n", nf);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001267}
1268
1269/*
1270 * Perform a PHY calibration on RF5110
1271 * -Fix BPSK/QAM Constellation (I/Q correction)
1272 * -Calculate Noise Floor
1273 */
1274static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1275 struct ieee80211_channel *channel)
1276{
1277 u32 phy_sig, phy_agc, phy_sat, beacon;
1278 int ret;
1279
1280 /*
1281 * Disable beacons and RX/TX queues, wait
1282 */
1283 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1284 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1285 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1286 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1287
Nick Kossifidis84e463f2008-09-17 03:33:19 +03001288 mdelay(2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001289
1290 /*
1291 * Set the channel (with AGC turned off)
1292 */
1293 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1294 udelay(10);
1295 ret = ath5k_hw_channel(ah, channel);
1296
1297 /*
1298 * Activate PHY and wait
1299 */
1300 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1301 mdelay(1);
1302
1303 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1304
1305 if (ret)
1306 return ret;
1307
1308 /*
1309 * Calibrate the radio chip
1310 */
1311
1312 /* Remember normal state */
1313 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1314 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1315 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1316
1317 /* Update radio registers */
1318 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1319 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1320
1321 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1322 AR5K_PHY_AGCCOARSE_LO)) |
1323 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1324 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1325
1326 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1327 AR5K_PHY_ADCSAT_THR)) |
1328 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1329 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1330
1331 udelay(20);
1332
1333 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1334 udelay(10);
1335 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1336 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1337
1338 mdelay(1);
1339
1340 /*
1341 * Enable calibration and wait until completion
1342 */
1343 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1344
1345 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1346 AR5K_PHY_AGCCTL_CAL, 0, false);
1347
1348 /* Reset to normal state */
1349 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1350 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1351 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1352
1353 if (ret) {
1354 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001355 channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001356 return ret;
1357 }
1358
Bob Copelande5e26472009-10-14 14:16:30 -04001359 ath5k_hw_update_noise_floor(ah);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001360
1361 /*
1362 * Re-enable RX/TX and beacons
1363 */
1364 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1365 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1366 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1367
1368 return 0;
1369}
1370
1371/*
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001372 * Perform a PHY calibration on RF5111/5112 and newer chips
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001373 */
1374static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1375 struct ieee80211_channel *channel)
1376{
1377 u32 i_pwr, q_pwr;
1378 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001379 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001380 ATH5K_TRACE(ah->ah_sc);
1381
Joe Perchese9010e22008-03-07 14:21:16 -08001382 if (!ah->ah_calibration ||
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001383 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001384 goto done;
1385
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001386 /* Calibration has finished, get the results and re-run */
1387 for (i = 0; i <= 10; i++) {
1388 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1389 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1390 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1391 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001392
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001393 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001394 q_coffd = q_pwr >> 7;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001395
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001396 /* No correction */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001397 if (i_coffd == 0 || q_coffd == 0)
1398 goto done;
1399
LukĂ¡Å¡ Turekf1cf2db2009-11-19 23:02:02 +01001400 i_coff = ((-iq_corr) / i_coffd);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001401
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001402 /* Boundary check */
1403 if (i_coff > 31)
1404 i_coff = 31;
1405 if (i_coff < -32)
1406 i_coff = -32;
1407
LukĂ¡Å¡ Turekf1cf2db2009-11-19 23:02:02 +01001408 q_coff = (((s32)i_pwr / q_coffd) - 128);
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001409
1410 /* Boundary check */
1411 if (q_coff > 15)
1412 q_coff = 15;
1413 if (q_coff < -16)
1414 q_coff = -16;
1415
1416 /* Commit new I/Q value */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001417 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1418 ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1419
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001420 /* Re-enable calibration -if we don't we'll commit
1421 * the same values again and again */
1422 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1423 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1424 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1425
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001426done:
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001427
1428 /* TODO: Separate noise floor calibration from I/Q calibration
1429 * since noise floor calibration interrupts rx path while I/Q
1430 * calibration doesn't. We don't need to run noise floor calibration
1431 * as often as I/Q calibration.*/
Bob Copelande5e26472009-10-14 14:16:30 -04001432 ath5k_hw_update_noise_floor(ah);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001433
Nick Kossifidis6f3b4142009-02-09 06:03:41 +02001434 /* Initiate a gain_F calibration */
1435 ath5k_hw_request_rfgain_probe(ah);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001436
1437 return 0;
1438}
1439
1440/*
1441 * Perform a PHY calibration
1442 */
1443int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1444 struct ieee80211_channel *channel)
1445{
1446 int ret;
1447
1448 if (ah->ah_radio == AR5K_RF5110)
1449 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1450 else
1451 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1452
1453 return ret;
1454}
1455
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001456/***************************\
1457* Spur mitigation functions *
1458\***************************/
1459
1460bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1461 struct ieee80211_channel *channel)
1462{
1463 u8 refclk_freq;
1464
1465 if ((ah->ah_radio == AR5K_RF5112) ||
1466 (ah->ah_radio == AR5K_RF5413) ||
1467 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1468 refclk_freq = 40;
1469 else
1470 refclk_freq = 32;
1471
1472 if ((channel->center_freq % refclk_freq != 0) &&
1473 ((channel->center_freq % refclk_freq < 10) ||
1474 (channel->center_freq % refclk_freq > 22)))
1475 return true;
1476 else
1477 return false;
1478}
1479
1480void
1481ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1482 struct ieee80211_channel *channel)
1483{
1484 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1485 u32 mag_mask[4] = {0, 0, 0, 0};
1486 u32 pilot_mask[2] = {0, 0};
1487 /* Note: fbin values are scaled up by 2 */
1488 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1489 s32 spur_delta_phase, spur_freq_sigma_delta;
1490 s32 spur_offset, num_symbols_x16;
1491 u8 num_symbol_offsets, i, freq_band;
1492
1493 /* Convert current frequency to fbin value (the same way channels
1494 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1495 * up by 2 so we can compare it later */
1496 if (channel->hw_value & CHANNEL_2GHZ) {
1497 chan_fbin = (channel->center_freq - 2300) * 10;
1498 freq_band = AR5K_EEPROM_BAND_2GHZ;
1499 } else {
1500 chan_fbin = (channel->center_freq - 4900) * 10;
1501 freq_band = AR5K_EEPROM_BAND_5GHZ;
1502 }
1503
1504 /* Check if any spur_chan_fbin from EEPROM is
1505 * within our current channel's spur detection range */
1506 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1507 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1508 /* XXX: Half/Quarter channels ?*/
1509 if (channel->hw_value & CHANNEL_TURBO)
1510 spur_detection_window *= 2;
1511
1512 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1513 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1514
1515 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1516 * so it's zero if we got nothing from EEPROM */
1517 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1518 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1519 break;
1520 }
1521
1522 if ((chan_fbin - spur_detection_window <=
1523 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1524 (chan_fbin + spur_detection_window >=
1525 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1526 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1527 break;
1528 }
1529 }
1530
1531 /* We need to enable spur filter for this channel */
1532 if (spur_chan_fbin) {
1533 spur_offset = spur_chan_fbin - chan_fbin;
1534 /*
1535 * Calculate deltas:
1536 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1537 * spur_delta_phase -> spur_offset / chip_freq << 11
1538 * Note: Both values have 100KHz resolution
1539 */
1540 /* XXX: Half/Quarter rate channels ? */
1541 switch (channel->hw_value) {
1542 case CHANNEL_A:
1543 /* Both sample_freq and chip_freq are 40MHz */
1544 spur_delta_phase = (spur_offset << 17) / 25;
1545 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1546 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1547 break;
1548 case CHANNEL_G:
1549 /* sample_freq -> 40MHz chip_freq -> 44MHz
1550 * (for b compatibility) */
1551 spur_freq_sigma_delta = (spur_offset << 8) / 55;
1552 spur_delta_phase = (spur_offset << 17) / 25;
1553 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1554 break;
1555 case CHANNEL_T:
1556 case CHANNEL_TG:
1557 /* Both sample_freq and chip_freq are 80MHz */
1558 spur_delta_phase = (spur_offset << 16) / 25;
1559 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1560 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1561 break;
1562 default:
1563 return;
1564 }
1565
1566 /* Calculate pilot and magnitude masks */
1567
1568 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1569 * and divide by symbol_width to find how many symbols we have
1570 * Note: number of symbols is scaled up by 16 */
1571 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1572
1573 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1574 if (!(num_symbols_x16 & 0xF))
1575 /* _X_ */
1576 num_symbol_offsets = 3;
1577 else
1578 /* _xx_ */
1579 num_symbol_offsets = 4;
1580
1581 for (i = 0; i < num_symbol_offsets; i++) {
1582
1583 /* Calculate pilot mask */
1584 s32 curr_sym_off =
1585 (num_symbols_x16 / 16) + i + 25;
1586
1587 /* Pilot magnitude mask seems to be a way to
1588 * declare the boundaries for our detection
1589 * window or something, it's 2 for the middle
1590 * value(s) where the symbol is expected to be
1591 * and 1 on the boundary values */
1592 u8 plt_mag_map =
1593 (i == 0 || i == (num_symbol_offsets - 1))
1594 ? 1 : 2;
1595
1596 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1597 if (curr_sym_off <= 25)
1598 pilot_mask[0] |= 1 << curr_sym_off;
1599 else if (curr_sym_off >= 27)
1600 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1601 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1602 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1603
1604 /* Calculate magnitude mask (for viterbi decoder) */
1605 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1606 mag_mask[0] |=
1607 plt_mag_map << (curr_sym_off + 1) * 2;
1608 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1609 mag_mask[1] |=
1610 plt_mag_map << (curr_sym_off - 15) * 2;
1611 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1612 mag_mask[2] |=
1613 plt_mag_map << (curr_sym_off - 31) * 2;
1614 else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1615 mag_mask[3] |=
1616 plt_mag_map << (curr_sym_off - 47) * 2;
1617
1618 }
1619
1620 /* Write settings on hw to enable spur filter */
1621 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1622 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1623 /* XXX: Self correlator also ? */
1624 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1625 AR5K_PHY_IQ_PILOT_MASK_EN |
1626 AR5K_PHY_IQ_CHAN_MASK_EN |
1627 AR5K_PHY_IQ_SPUR_FILT_EN);
1628
1629 /* Set delta phase and freq sigma delta */
1630 ath5k_hw_reg_write(ah,
1631 AR5K_REG_SM(spur_delta_phase,
1632 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1633 AR5K_REG_SM(spur_freq_sigma_delta,
1634 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1635 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1636 AR5K_PHY_TIMING_11);
1637
1638 /* Write pilot masks */
1639 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1640 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1641 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1642 pilot_mask[1]);
1643
1644 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1645 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1646 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1647 pilot_mask[1]);
1648
1649 /* Write magnitude masks */
1650 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1651 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1652 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1653 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1654 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1655 mag_mask[3]);
1656
1657 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1658 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1659 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1660 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1661 AR5K_PHY_BIN_MASK2_4_MASK_4,
1662 mag_mask[3]);
1663
1664 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1665 AR5K_PHY_IQ_SPUR_FILT_EN) {
1666 /* Clean up spur mitigation settings and disable fliter */
1667 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1668 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1669 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1670 AR5K_PHY_IQ_PILOT_MASK_EN |
1671 AR5K_PHY_IQ_CHAN_MASK_EN |
1672 AR5K_PHY_IQ_SPUR_FILT_EN);
1673 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1674
1675 /* Clear pilot masks */
1676 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1677 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1678 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1679 0);
1680
1681 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1682 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1683 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1684 0);
1685
1686 /* Clear magnitude masks */
1687 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1688 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1689 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1690 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1691 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1692 0);
1693
1694 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1695 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1696 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1697 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1698 AR5K_PHY_BIN_MASK2_4_MASK_4,
1699 0);
1700 }
1701}
1702
1703/********************\
1704 Misc PHY functions
1705\********************/
1706
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001707int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1708{
1709 ATH5K_TRACE(ah->ah_sc);
1710 /*Just a try M.F.*/
1711 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1712
1713 return 0;
1714}
1715
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001716/*
1717 * Get the PHY Chip revision
1718 */
1719u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1720{
1721 unsigned int i;
1722 u32 srev;
1723 u16 ret;
1724
1725 ATH5K_TRACE(ah->ah_sc);
1726
1727 /*
1728 * Set the radio chip access register
1729 */
1730 switch (chan) {
1731 case CHANNEL_2GHZ:
1732 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1733 break;
1734 case CHANNEL_5GHZ:
1735 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1736 break;
1737 default:
1738 return 0;
1739 }
1740
1741 mdelay(2);
1742
1743 /* ...wait until PHY is ready and read the selected radio revision */
1744 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1745
1746 for (i = 0; i < 8; i++)
1747 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1748
1749 if (ah->ah_version == AR5K_AR5210) {
1750 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1751 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1752 } else {
1753 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1754 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1755 ((srev & 0x0f) << 4), 8);
1756 }
1757
1758 /* Reset to the 5GHz mode */
1759 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1760
1761 return ret;
1762}
1763
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001764/*****************\
1765* Antenna control *
1766\*****************/
1767
Pavel Roskin626ede62010-02-18 20:28:02 -05001768static void /*TODO:Boundary check*/
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001769ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001770{
1771 ATH5K_TRACE(ah->ah_sc);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001772
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001773 if (ah->ah_version != AR5K_AR5210)
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001774 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001775}
1776
Pavel Roskin626ede62010-02-18 20:28:02 -05001777#if 0
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001778unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1779{
1780 ATH5K_TRACE(ah->ah_sc);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001781
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001782 if (ah->ah_version != AR5K_AR5210)
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001783 return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001784
1785 return false; /*XXX: What do we return for 5210 ?*/
1786}
Pavel Roskin626ede62010-02-18 20:28:02 -05001787#endif
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001788
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001789/*
1790 * Enable/disable fast rx antenna diversity
1791 */
1792static void
1793ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1794{
1795 switch (ee_mode) {
1796 case AR5K_EEPROM_MODE_11G:
1797 /* XXX: This is set to
1798 * disabled on initvals !!! */
1799 case AR5K_EEPROM_MODE_11A:
1800 if (enable)
1801 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1802 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1803 else
1804 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1805 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1806 break;
1807 case AR5K_EEPROM_MODE_11B:
1808 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1809 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1810 break;
1811 default:
1812 return;
1813 }
1814
1815 if (enable) {
1816 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1817 AR5K_PHY_RESTART_DIV_GC, 0xc);
1818
1819 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1820 AR5K_PHY_FAST_ANT_DIV_EN);
1821 } else {
1822 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1823 AR5K_PHY_RESTART_DIV_GC, 0x8);
1824
1825 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1826 AR5K_PHY_FAST_ANT_DIV_EN);
1827 }
1828}
1829
1830/*
1831 * Set antenna operating mode
1832 */
1833void
1834ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1835{
Bob Copeland46026e82009-06-10 22:22:20 -04001836 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001837 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1838 bool use_def_for_sg;
1839 u8 def_ant, tx_ant, ee_mode;
1840 u32 sta_id1 = 0;
1841
1842 def_ant = ah->ah_def_ant;
1843
1844 ATH5K_TRACE(ah->ah_sc);
1845
1846 switch (channel->hw_value & CHANNEL_MODES) {
1847 case CHANNEL_A:
1848 case CHANNEL_T:
1849 case CHANNEL_XR:
1850 ee_mode = AR5K_EEPROM_MODE_11A;
1851 break;
1852 case CHANNEL_G:
1853 case CHANNEL_TG:
1854 ee_mode = AR5K_EEPROM_MODE_11G;
1855 break;
1856 case CHANNEL_B:
1857 ee_mode = AR5K_EEPROM_MODE_11B;
1858 break;
1859 default:
1860 ATH5K_ERR(ah->ah_sc,
1861 "invalid channel: %d\n", channel->center_freq);
1862 return;
1863 }
1864
1865 switch (ant_mode) {
1866 case AR5K_ANTMODE_DEFAULT:
1867 tx_ant = 0;
1868 use_def_for_tx = false;
1869 update_def_on_tx = false;
1870 use_def_for_rts = false;
1871 use_def_for_sg = false;
1872 fast_div = true;
1873 break;
1874 case AR5K_ANTMODE_FIXED_A:
1875 def_ant = 1;
1876 tx_ant = 0;
1877 use_def_for_tx = true;
1878 update_def_on_tx = false;
1879 use_def_for_rts = true;
1880 use_def_for_sg = true;
1881 fast_div = false;
1882 break;
1883 case AR5K_ANTMODE_FIXED_B:
1884 def_ant = 2;
1885 tx_ant = 0;
1886 use_def_for_tx = true;
1887 update_def_on_tx = false;
1888 use_def_for_rts = true;
1889 use_def_for_sg = true;
1890 fast_div = false;
1891 break;
1892 case AR5K_ANTMODE_SINGLE_AP:
1893 def_ant = 1; /* updated on tx */
1894 tx_ant = 0;
1895 use_def_for_tx = true;
1896 update_def_on_tx = true;
1897 use_def_for_rts = true;
1898 use_def_for_sg = true;
1899 fast_div = true;
1900 break;
1901 case AR5K_ANTMODE_SECTOR_AP:
1902 tx_ant = 1; /* variable */
1903 use_def_for_tx = false;
1904 update_def_on_tx = false;
1905 use_def_for_rts = true;
1906 use_def_for_sg = false;
1907 fast_div = false;
1908 break;
1909 case AR5K_ANTMODE_SECTOR_STA:
1910 tx_ant = 1; /* variable */
1911 use_def_for_tx = true;
1912 update_def_on_tx = false;
1913 use_def_for_rts = true;
1914 use_def_for_sg = false;
1915 fast_div = true;
1916 break;
1917 case AR5K_ANTMODE_DEBUG:
1918 def_ant = 1;
1919 tx_ant = 2;
1920 use_def_for_tx = false;
1921 update_def_on_tx = false;
1922 use_def_for_rts = false;
1923 use_def_for_sg = false;
1924 fast_div = false;
1925 break;
1926 default:
1927 return;
1928 }
1929
1930 ah->ah_tx_ant = tx_ant;
1931 ah->ah_ant_mode = ant_mode;
1932
1933 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1934 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1935 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1936 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1937
1938 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1939
1940 if (sta_id1)
1941 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1942
1943 /* Note: set diversity before default antenna
1944 * because it won't work correctly */
1945 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1946 ath5k_hw_set_def_antenna(ah, def_ant);
1947}
1948
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001949
1950/****************\
1951* TX power setup *
1952\****************/
1953
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001954/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001955 * Helper functions
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001956 */
1957
1958/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001959 * Do linear interpolation between two given (x, y) points
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001960 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001961static s16
1962ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1963 s16 y_left, s16 y_right)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001964{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001965 s16 ratio, result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001966
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001967 /* Avoid divide by zero and skip interpolation
1968 * if we have the same point */
1969 if ((x_left == x_right) || (y_left == y_right))
1970 return y_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001971
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001972 /*
1973 * Since we use ints and not fps, we need to scale up in
1974 * order to get a sane ratio value (or else we 'll eg. get
1975 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1976 * to have some accuracy both for 0.5 and 0.25 steps.
1977 */
1978 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001979
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001980 /* Now scale down to be in range */
1981 result = y_left + (ratio * (target - x_left) / 100);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001982
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001983 return result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001984}
1985
1986/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001987 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1988 *
1989 * Since we have the top of the curve and we draw the line below
1990 * until we reach 1 (1 pcdac step) we need to know which point
1991 * (x value) that is so that we don't go below y axis and have negative
1992 * pcdac values when creating the curve, or fill the table with zeroes.
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001993 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001994static s16
1995ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1996 const s16 *pwrL, const s16 *pwrR)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001997{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001998 s8 tmp;
1999 s16 min_pwrL, min_pwrR;
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002000 s16 pwr_i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002001
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +03002002 /* Some vendors write the same pcdac value twice !!! */
2003 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2004 return max(pwrL[0], pwrR[0]);
Bob Copeland9c8b3ed2009-05-19 23:37:31 -04002005
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002006 if (pwrL[0] == pwrL[1])
2007 min_pwrL = pwrL[0];
2008 else {
2009 pwr_i = pwrL[0];
2010 do {
2011 pwr_i--;
2012 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2013 pwrL[0], pwrL[1],
2014 stepL[0], stepL[1]);
2015 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002016
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002017 min_pwrL = pwr_i;
2018 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002019
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002020 if (pwrR[0] == pwrR[1])
2021 min_pwrR = pwrR[0];
2022 else {
2023 pwr_i = pwrR[0];
2024 do {
2025 pwr_i--;
2026 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2027 pwrR[0], pwrR[1],
2028 stepR[0], stepR[1]);
2029 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002030
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002031 min_pwrR = pwr_i;
2032 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002033
2034 /* Keep the right boundary so that it works for both curves */
2035 return max(min_pwrL, min_pwrR);
2036}
2037
2038/*
2039 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2040 * Power to PCDAC curve.
2041 *
2042 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2043 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2044 * PCDAC/PDADC step for each curve is 64 but we can write more than
2045 * one curves on hw so we can go up to 128 (which is the max step we
2046 * can write on the final table).
2047 *
2048 * We write y values (PCDAC/PDADC steps) on hw.
2049 */
2050static void
2051ath5k_create_power_curve(s16 pmin, s16 pmax,
2052 const s16 *pwr, const u8 *vpd,
2053 u8 num_points,
2054 u8 *vpd_table, u8 type)
2055{
2056 u8 idx[2] = { 0, 1 };
2057 s16 pwr_i = 2*pmin;
2058 int i;
2059
2060 if (num_points < 2)
2061 return;
2062
2063 /* We want the whole line, so adjust boundaries
2064 * to cover the entire power range. Note that
2065 * power values are already 0.25dB so no need
2066 * to multiply pwr_i by 2 */
2067 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2068 pwr_i = pmin;
2069 pmin = 0;
2070 pmax = 63;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002071 }
2072
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002073 /* Find surrounding turning points (TPs)
2074 * and interpolate between them */
2075 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2076 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2077
2078 /* We passed the right TP, move to the next set of TPs
2079 * if we pass the last TP, extrapolate above using the last
2080 * two TPs for ratio */
2081 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2082 idx[0]++;
2083 idx[1]++;
2084 }
2085
2086 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2087 pwr[idx[0]], pwr[idx[1]],
2088 vpd[idx[0]], vpd[idx[1]]);
2089
2090 /* Increase by 0.5dB
2091 * (0.25 dB units) */
2092 pwr_i += 2;
2093 }
2094}
2095
2096/*
2097 * Get the surrounding per-channel power calibration piers
2098 * for a given frequency so that we can interpolate between
2099 * them and come up with an apropriate dataset for our current
2100 * channel.
2101 */
2102static void
2103ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2104 struct ieee80211_channel *channel,
2105 struct ath5k_chan_pcal_info **pcinfo_l,
2106 struct ath5k_chan_pcal_info **pcinfo_r)
2107{
2108 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2109 struct ath5k_chan_pcal_info *pcinfo;
2110 u8 idx_l, idx_r;
2111 u8 mode, max, i;
2112 u32 target = channel->center_freq;
2113
2114 idx_l = 0;
2115 idx_r = 0;
2116
2117 if (!(channel->hw_value & CHANNEL_OFDM)) {
2118 pcinfo = ee->ee_pwr_cal_b;
2119 mode = AR5K_EEPROM_MODE_11B;
2120 } else if (channel->hw_value & CHANNEL_2GHZ) {
2121 pcinfo = ee->ee_pwr_cal_g;
2122 mode = AR5K_EEPROM_MODE_11G;
2123 } else {
2124 pcinfo = ee->ee_pwr_cal_a;
2125 mode = AR5K_EEPROM_MODE_11A;
2126 }
2127 max = ee->ee_n_piers[mode] - 1;
2128
2129 /* Frequency is below our calibrated
2130 * range. Use the lowest power curve
2131 * we have */
2132 if (target < pcinfo[0].freq) {
2133 idx_l = idx_r = 0;
2134 goto done;
2135 }
2136
2137 /* Frequency is above our calibrated
2138 * range. Use the highest power curve
2139 * we have */
2140 if (target > pcinfo[max].freq) {
2141 idx_l = idx_r = max;
2142 goto done;
2143 }
2144
2145 /* Frequency is inside our calibrated
2146 * channel range. Pick the surrounding
2147 * calibration piers so that we can
2148 * interpolate */
2149 for (i = 0; i <= max; i++) {
2150
2151 /* Frequency matches one of our calibration
2152 * piers, no need to interpolate, just use
2153 * that calibration pier */
2154 if (pcinfo[i].freq == target) {
2155 idx_l = idx_r = i;
2156 goto done;
2157 }
2158
2159 /* We found a calibration pier that's above
2160 * frequency, use this pier and the previous
2161 * one to interpolate */
2162 if (target < pcinfo[i].freq) {
2163 idx_r = i;
2164 idx_l = idx_r - 1;
2165 goto done;
2166 }
2167 }
2168
2169done:
2170 *pcinfo_l = &pcinfo[idx_l];
2171 *pcinfo_r = &pcinfo[idx_r];
2172
2173 return;
2174}
2175
2176/*
2177 * Get the surrounding per-rate power calibration data
2178 * for a given frequency and interpolate between power
2179 * values to set max target power supported by hw for
2180 * each rate.
2181 */
2182static void
2183ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2184 struct ieee80211_channel *channel,
2185 struct ath5k_rate_pcal_info *rates)
2186{
2187 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2188 struct ath5k_rate_pcal_info *rpinfo;
2189 u8 idx_l, idx_r;
2190 u8 mode, max, i;
2191 u32 target = channel->center_freq;
2192
2193 idx_l = 0;
2194 idx_r = 0;
2195
2196 if (!(channel->hw_value & CHANNEL_OFDM)) {
2197 rpinfo = ee->ee_rate_tpwr_b;
2198 mode = AR5K_EEPROM_MODE_11B;
2199 } else if (channel->hw_value & CHANNEL_2GHZ) {
2200 rpinfo = ee->ee_rate_tpwr_g;
2201 mode = AR5K_EEPROM_MODE_11G;
2202 } else {
2203 rpinfo = ee->ee_rate_tpwr_a;
2204 mode = AR5K_EEPROM_MODE_11A;
2205 }
2206 max = ee->ee_rate_target_pwr_num[mode] - 1;
2207
2208 /* Get the surrounding calibration
2209 * piers - same as above */
2210 if (target < rpinfo[0].freq) {
2211 idx_l = idx_r = 0;
2212 goto done;
2213 }
2214
2215 if (target > rpinfo[max].freq) {
2216 idx_l = idx_r = max;
2217 goto done;
2218 }
2219
2220 for (i = 0; i <= max; i++) {
2221
2222 if (rpinfo[i].freq == target) {
2223 idx_l = idx_r = i;
2224 goto done;
2225 }
2226
2227 if (target < rpinfo[i].freq) {
2228 idx_r = i;
2229 idx_l = idx_r - 1;
2230 goto done;
2231 }
2232 }
2233
2234done:
2235 /* Now interpolate power value, based on the frequency */
2236 rates->freq = target;
2237
2238 rates->target_power_6to24 =
2239 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2240 rpinfo[idx_r].freq,
2241 rpinfo[idx_l].target_power_6to24,
2242 rpinfo[idx_r].target_power_6to24);
2243
2244 rates->target_power_36 =
2245 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2246 rpinfo[idx_r].freq,
2247 rpinfo[idx_l].target_power_36,
2248 rpinfo[idx_r].target_power_36);
2249
2250 rates->target_power_48 =
2251 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2252 rpinfo[idx_r].freq,
2253 rpinfo[idx_l].target_power_48,
2254 rpinfo[idx_r].target_power_48);
2255
2256 rates->target_power_54 =
2257 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2258 rpinfo[idx_r].freq,
2259 rpinfo[idx_l].target_power_54,
2260 rpinfo[idx_r].target_power_54);
2261}
2262
2263/*
2264 * Get the max edge power for this channel if
2265 * we have such data from EEPROM's Conformance Test
2266 * Limits (CTL), and limit max power if needed.
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002267 */
2268static void
2269ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2270 struct ieee80211_channel *channel)
2271{
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002272 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002273 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2274 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2275 u8 *ctl_val = ee->ee_ctl;
2276 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2277 s16 edge_pwr = 0;
2278 u8 rep_idx;
2279 u8 i, ctl_mode;
2280 u8 ctl_idx = 0xFF;
2281 u32 target = channel->center_freq;
2282
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002283 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
Bob Copeland6752ee92009-04-30 15:55:51 -04002284
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002285 switch (channel->hw_value & CHANNEL_MODES) {
2286 case CHANNEL_A:
Bob Copeland6752ee92009-04-30 15:55:51 -04002287 ctl_mode |= AR5K_CTL_11A;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002288 break;
2289 case CHANNEL_G:
Bob Copeland6752ee92009-04-30 15:55:51 -04002290 ctl_mode |= AR5K_CTL_11G;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002291 break;
2292 case CHANNEL_B:
Bob Copeland6752ee92009-04-30 15:55:51 -04002293 ctl_mode |= AR5K_CTL_11B;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002294 break;
2295 case CHANNEL_T:
Bob Copeland6752ee92009-04-30 15:55:51 -04002296 ctl_mode |= AR5K_CTL_TURBO;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002297 break;
2298 case CHANNEL_TG:
Bob Copeland6752ee92009-04-30 15:55:51 -04002299 ctl_mode |= AR5K_CTL_TURBOG;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002300 break;
2301 case CHANNEL_XR:
2302 /* Fall through */
2303 default:
2304 return;
2305 }
Nick Kossifidis903b4742008-02-28 14:50:50 -05002306
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002307 for (i = 0; i < ee->ee_ctls; i++) {
2308 if (ctl_val[i] == ctl_mode) {
2309 ctl_idx = i;
2310 break;
2311 }
2312 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002313
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002314 /* If we have a CTL dataset available grab it and find the
2315 * edge power for our frequency */
2316 if (ctl_idx == 0xFF)
2317 return;
2318
2319 /* Edge powers are sorted by frequency from lower
2320 * to higher. Each CTL corresponds to 8 edge power
2321 * measurements. */
2322 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2323
2324 /* Don't do boundaries check because we
2325 * might have more that one bands defined
2326 * for this mode */
2327
2328 /* Get the edge power that's closer to our
2329 * frequency */
2330 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2331 rep_idx += i;
2332 if (target <= rep[rep_idx].freq)
2333 edge_pwr = (s16) rep[rep_idx].edge;
2334 }
2335
2336 if (edge_pwr)
2337 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2338}
2339
2340
2341/*
2342 * Power to PCDAC table functions
2343 */
2344
2345/*
2346 * Fill Power to PCDAC table on RF5111
2347 *
2348 * No further processing is needed for RF5111, the only thing we have to
2349 * do is fill the values below and above calibration range since eeprom data
2350 * may not cover the entire PCDAC table.
2351 */
2352static void
2353ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2354 s16 *table_max)
2355{
2356 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2357 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2358 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2359 s16 min_pwr, max_pwr;
2360
2361 /* Get table boundaries */
2362 min_pwr = table_min[0];
2363 pcdac_0 = pcdac_tmp[0];
2364
2365 max_pwr = table_max[0];
2366 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2367
2368 /* Extrapolate below minimum using pcdac_0 */
2369 pcdac_i = 0;
2370 for (i = 0; i < min_pwr; i++)
2371 pcdac_out[pcdac_i++] = pcdac_0;
2372
2373 /* Copy values from pcdac_tmp */
2374 pwr_idx = min_pwr;
2375 for (i = 0 ; pwr_idx <= max_pwr &&
2376 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2377 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2378 pwr_idx++;
2379 }
2380
2381 /* Extrapolate above maximum */
2382 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2383 pcdac_out[pcdac_i++] = pcdac_n;
2384
2385}
2386
2387/*
2388 * Combine available XPD Curves and fill Linear Power to PCDAC table
2389 * on RF5112
2390 *
2391 * RFX112 can have up to 2 curves (one for low txpower range and one for
2392 * higher txpower range). We need to put them both on pcdac_out and place
2393 * them in the correct location. In case we only have one curve available
2394 * just fit it on pcdac_out (it's supposed to cover the entire range of
2395 * available pwr levels since it's always the higher power curve). Extrapolate
2396 * below and above final table if needed.
2397 */
2398static void
2399ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2400 s16 *table_max, u8 pdcurves)
2401{
2402 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2403 u8 *pcdac_low_pwr;
2404 u8 *pcdac_high_pwr;
2405 u8 *pcdac_tmp;
2406 u8 pwr;
2407 s16 max_pwr_idx;
2408 s16 min_pwr_idx;
2409 s16 mid_pwr_idx = 0;
2410 /* Edge flag turs on the 7nth bit on the PCDAC
2411 * to delcare the higher power curve (force values
2412 * to be greater than 64). If we only have one curve
2413 * we don't need to set this, if we have 2 curves and
2414 * fill the table backwards this can also be used to
2415 * switch from higher power curve to lower power curve */
2416 u8 edge_flag;
2417 int i;
2418
2419 /* When we have only one curve available
2420 * that's the higher power curve. If we have
2421 * two curves the first is the high power curve
2422 * and the next is the low power curve. */
2423 if (pdcurves > 1) {
2424 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2425 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2426 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2427 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2428
2429 /* If table size goes beyond 31.5dB, keep the
2430 * upper 31.5dB range when setting tx power.
2431 * Note: 126 = 31.5 dB in quarter dB steps */
2432 if (table_max[0] - table_min[1] > 126)
2433 min_pwr_idx = table_max[0] - 126;
2434 else
2435 min_pwr_idx = table_min[1];
2436
2437 /* Since we fill table backwards
2438 * start from high power curve */
2439 pcdac_tmp = pcdac_high_pwr;
2440
2441 edge_flag = 0x40;
2442#if 0
2443 /* If both min and max power limits are in lower
2444 * power curve's range, only use the low power curve.
2445 * TODO: min/max levels are related to target
2446 * power values requested from driver/user
2447 * XXX: Is this really needed ? */
2448 if (min_pwr < table_max[1] &&
2449 max_pwr < table_max[1]) {
2450 edge_flag = 0;
2451 pcdac_tmp = pcdac_low_pwr;
2452 max_pwr_idx = (table_max[1] - table_min[1])/2;
2453 }
2454#endif
2455 } else {
2456 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2457 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2458 min_pwr_idx = table_min[0];
2459 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2460 pcdac_tmp = pcdac_high_pwr;
2461 edge_flag = 0;
2462 }
2463
2464 /* This is used when setting tx power*/
2465 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2466
2467 /* Fill Power to PCDAC table backwards */
2468 pwr = max_pwr_idx;
2469 for (i = 63; i >= 0; i--) {
2470 /* Entering lower power range, reset
2471 * edge flag and set pcdac_tmp to lower
2472 * power curve.*/
2473 if (edge_flag == 0x40 &&
2474 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2475 edge_flag = 0x00;
2476 pcdac_tmp = pcdac_low_pwr;
2477 pwr = mid_pwr_idx/2;
2478 }
2479
2480 /* Don't go below 1, extrapolate below if we have
2481 * already swithced to the lower power curve -or
2482 * we only have one curve and edge_flag is zero
2483 * anyway */
2484 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2485 while (i >= 0) {
2486 pcdac_out[i] = pcdac_out[i + 1];
2487 i--;
2488 }
2489 break;
2490 }
2491
2492 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2493
2494 /* Extrapolate above if pcdac is greater than
2495 * 126 -this can happen because we OR pcdac_out
2496 * value with edge_flag on high power curve */
2497 if (pcdac_out[i] > 126)
2498 pcdac_out[i] = 126;
2499
2500 /* Decrease by a 0.5dB step */
2501 pwr--;
2502 }
2503}
2504
2505/* Write PCDAC values on hw */
2506static void
2507ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2508{
2509 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2510 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002511
2512 /*
2513 * Write TX power values
2514 */
2515 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2516 ath5k_hw_reg_write(ah,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002517 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2518 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002519 AR5K_PHY_PCDAC_TXPOWER(i));
2520 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002521}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002522
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002523
2524/*
2525 * Power to PDADC table functions
2526 */
2527
2528/*
2529 * Set the gain boundaries and create final Power to PDADC table
2530 *
2531 * We can have up to 4 pd curves, we need to do a simmilar process
2532 * as we do for RF5112. This time we don't have an edge_flag but we
2533 * set the gain boundaries on a separate register.
2534 */
2535static void
2536ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2537 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2538{
2539 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2540 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2541 u8 *pdadc_tmp;
2542 s16 pdadc_0;
2543 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2544 u8 pd_gain_overlap;
2545
2546 /* Note: Register value is initialized on initvals
2547 * there is no feedback from hw.
2548 * XXX: What about pd_gain_overlap from EEPROM ? */
2549 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2550 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2551
2552 /* Create final PDADC table */
2553 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2554 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2555
2556 if (pdg == pdcurves - 1)
2557 /* 2 dB boundary stretch for last
2558 * (higher power) curve */
2559 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2560 else
2561 /* Set gain boundary in the middle
2562 * between this curve and the next one */
2563 gain_boundaries[pdg] =
2564 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2565
2566 /* Sanity check in case our 2 db stretch got out of
2567 * range. */
2568 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2569 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2570
2571 /* For the first curve (lower power)
2572 * start from 0 dB */
2573 if (pdg == 0)
2574 pdadc_0 = 0;
2575 else
2576 /* For the other curves use the gain overlap */
2577 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2578 pd_gain_overlap;
2579
2580 /* Force each power step to be at least 0.5 dB */
2581 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2582 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2583 else
2584 pwr_step = 1;
2585
2586 /* If pdadc_0 is negative, we need to extrapolate
2587 * below this pdgain by a number of pwr_steps */
2588 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2589 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2590 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2591 pdadc_0++;
2592 }
2593
2594 /* Set last pwr level, using gain boundaries */
2595 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2596 /* Limit it to be inside pwr range */
2597 table_size = pwr_max[pdg] - pwr_min[pdg];
2598 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2599
2600 /* Fill pdadc_out table */
2601 while (pdadc_0 < max_idx)
2602 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2603
2604 /* Need to extrapolate above this pdgain? */
2605 if (pdadc_n <= max_idx)
2606 continue;
2607
2608 /* Force each power step to be at least 0.5 dB */
2609 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2610 pwr_step = pdadc_tmp[table_size - 1] -
2611 pdadc_tmp[table_size - 2];
2612 else
2613 pwr_step = 1;
2614
2615 /* Extrapolate above */
2616 while ((pdadc_0 < (s16) pdadc_n) &&
2617 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2618 s16 tmp = pdadc_tmp[table_size - 1] +
2619 (pdadc_0 - max_idx) * pwr_step;
2620 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2621 pdadc_0++;
2622 }
2623 }
2624
2625 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2626 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2627 pdg++;
2628 }
2629
2630 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2631 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2632 pdadc_i++;
2633 }
2634
2635 /* Set gain boundaries */
2636 ath5k_hw_reg_write(ah,
2637 AR5K_REG_SM(pd_gain_overlap,
2638 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2639 AR5K_REG_SM(gain_boundaries[0],
2640 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2641 AR5K_REG_SM(gain_boundaries[1],
2642 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2643 AR5K_REG_SM(gain_boundaries[2],
2644 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2645 AR5K_REG_SM(gain_boundaries[3],
2646 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2647 AR5K_PHY_TPC_RG5);
2648
2649 /* Used for setting rate power table */
2650 ah->ah_txpower.txp_min_idx = pwr_min[0];
2651
2652}
2653
2654/* Write PDADC values on hw */
2655static void
2656ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2657 u8 pdcurves, u8 *pdg_to_idx)
2658{
2659 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2660 u32 reg;
2661 u8 i;
2662
2663 /* Select the right pdgain curves */
2664
2665 /* Clear current settings */
2666 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2667 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2668 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2669 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2670 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2671
2672 /*
2673 * Use pd_gains curve from eeprom
2674 *
2675 * This overrides the default setting from initvals
2676 * in case some vendors (e.g. Zcomax) don't use the default
2677 * curves. If we don't honor their settings we 'll get a
2678 * 5dB (1 * gain overlap ?) drop.
2679 */
2680 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2681
2682 switch (pdcurves) {
2683 case 3:
2684 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2685 /* Fall through */
2686 case 2:
2687 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2688 /* Fall through */
2689 case 1:
2690 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2691 break;
2692 }
2693 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2694
2695 /*
2696 * Write TX power values
2697 */
2698 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2699 ath5k_hw_reg_write(ah,
2700 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2701 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2702 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2703 ((pdadc_out[4*i + 3] & 0xff) << 24),
2704 AR5K_PHY_PDADC_TXPOWER(i));
2705 }
2706}
2707
2708
2709/*
2710 * Common code for PCDAC/PDADC tables
2711 */
2712
2713/*
2714 * This is the main function that uses all of the above
2715 * to set PCDAC/PDADC table on hw for the current channel.
2716 * This table is used for tx power calibration on the basband,
2717 * without it we get weird tx power levels and in some cases
2718 * distorted spectral mask
2719 */
2720static int
2721ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2722 struct ieee80211_channel *channel,
2723 u8 ee_mode, u8 type)
2724{
2725 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2726 struct ath5k_chan_pcal_info *pcinfo_L;
2727 struct ath5k_chan_pcal_info *pcinfo_R;
2728 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2729 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2730 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2731 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2732 u8 *tmpL;
2733 u8 *tmpR;
2734 u32 target = channel->center_freq;
2735 int pdg, i;
2736
2737 /* Get surounding freq piers for this channel */
2738 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2739 &pcinfo_L,
2740 &pcinfo_R);
2741
2742 /* Loop over pd gain curves on
2743 * surounding freq piers by index */
2744 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2745
2746 /* Fill curves in reverse order
2747 * from lower power (max gain)
2748 * to higher power. Use curve -> idx
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002749 * backmapping we did on eeprom init */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002750 u8 idx = pdg_curve_to_idx[pdg];
2751
2752 /* Grab the needed curves by index */
2753 pdg_L = &pcinfo_L->pd_curves[idx];
2754 pdg_R = &pcinfo_R->pd_curves[idx];
2755
2756 /* Initialize the temp tables */
2757 tmpL = ah->ah_txpower.tmpL[pdg];
2758 tmpR = ah->ah_txpower.tmpR[pdg];
2759
2760 /* Set curve's x boundaries and create
2761 * curves so that they cover the same
2762 * range (if we don't do that one table
2763 * will have values on some range and the
2764 * other one won't have any so interpolation
2765 * will fail) */
2766 table_min[pdg] = min(pdg_L->pd_pwr[0],
2767 pdg_R->pd_pwr[0]) / 2;
2768
2769 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2770 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2771
2772 /* Now create the curves on surrounding channels
2773 * and interpolate if needed to get the final
2774 * curve for this gain on this channel */
2775 switch (type) {
2776 case AR5K_PWRTABLE_LINEAR_PCDAC:
2777 /* Override min/max so that we don't loose
2778 * accuracy (don't divide by 2) */
2779 table_min[pdg] = min(pdg_L->pd_pwr[0],
2780 pdg_R->pd_pwr[0]);
2781
2782 table_max[pdg] =
2783 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2784 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2785
2786 /* Override minimum so that we don't get
2787 * out of bounds while extrapolating
2788 * below. Don't do this when we have 2
2789 * curves and we are on the high power curve
2790 * because table_min is ok in this case */
2791 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2792
2793 table_min[pdg] =
2794 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2795 pdg_R->pd_step,
2796 pdg_L->pd_pwr,
2797 pdg_R->pd_pwr);
2798
2799 /* Don't go too low because we will
2800 * miss the upper part of the curve.
2801 * Note: 126 = 31.5dB (max power supported)
2802 * in 0.25dB units */
2803 if (table_max[pdg] - table_min[pdg] > 126)
2804 table_min[pdg] = table_max[pdg] - 126;
2805 }
2806
2807 /* Fall through */
2808 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2809 case AR5K_PWRTABLE_PWR_TO_PDADC:
2810
2811 ath5k_create_power_curve(table_min[pdg],
2812 table_max[pdg],
2813 pdg_L->pd_pwr,
2814 pdg_L->pd_step,
2815 pdg_L->pd_points, tmpL, type);
2816
2817 /* We are in a calibration
2818 * pier, no need to interpolate
2819 * between freq piers */
2820 if (pcinfo_L == pcinfo_R)
2821 continue;
2822
2823 ath5k_create_power_curve(table_min[pdg],
2824 table_max[pdg],
2825 pdg_R->pd_pwr,
2826 pdg_R->pd_step,
2827 pdg_R->pd_points, tmpR, type);
2828 break;
2829 default:
2830 return -EINVAL;
2831 }
2832
2833 /* Interpolate between curves
2834 * of surounding freq piers to
2835 * get the final curve for this
2836 * pd gain. Re-use tmpL for interpolation
2837 * output */
2838 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2839 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2840 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2841 (s16) pcinfo_L->freq,
2842 (s16) pcinfo_R->freq,
2843 (s16) tmpL[i],
2844 (s16) tmpR[i]);
2845 }
2846 }
2847
2848 /* Now we have a set of curves for this
2849 * channel on tmpL (x range is table_max - table_min
2850 * and y values are tmpL[pdg][]) sorted in the same
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002851 * order as EEPROM (because we've used the backmapping).
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002852 * So for RF5112 it's from higher power to lower power
2853 * and for RF2413 it's from lower power to higher power.
2854 * For RF5111 we only have one curve. */
2855
2856 /* Fill min and max power levels for this
2857 * channel by interpolating the values on
2858 * surounding channels to complete the dataset */
2859 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2860 (s16) pcinfo_L->freq,
2861 (s16) pcinfo_R->freq,
2862 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2863
2864 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2865 (s16) pcinfo_L->freq,
2866 (s16) pcinfo_R->freq,
2867 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2868
2869 /* We are ready to go, fill PCDAC/PDADC
2870 * table and write settings on hardware */
2871 switch (type) {
2872 case AR5K_PWRTABLE_LINEAR_PCDAC:
2873 /* For RF5112 we can have one or two curves
2874 * and each curve covers a certain power lvl
2875 * range so we need to do some more processing */
2876 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2877 ee->ee_pd_gains[ee_mode]);
2878
2879 /* Set txp.offset so that we can
2880 * match max power value with max
2881 * table index */
2882 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2883
2884 /* Write settings on hw */
2885 ath5k_setup_pcdac_table(ah);
2886 break;
2887 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2888 /* We are done for RF5111 since it has only
2889 * one curve, just fit the curve on the table */
2890 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2891
2892 /* No rate powertable adjustment for RF5111 */
2893 ah->ah_txpower.txp_min_idx = 0;
2894 ah->ah_txpower.txp_offset = 0;
2895
2896 /* Write settings on hw */
2897 ath5k_setup_pcdac_table(ah);
2898 break;
2899 case AR5K_PWRTABLE_PWR_TO_PDADC:
2900 /* Set PDADC boundaries and fill
2901 * final PDADC table */
2902 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2903 ee->ee_pd_gains[ee_mode]);
2904
2905 /* Write settings on hw */
2906 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2907
2908 /* Set txp.offset, note that table_min
2909 * can be negative */
2910 ah->ah_txpower.txp_offset = table_min[0];
2911 break;
2912 default:
2913 return -EINVAL;
2914 }
2915
2916 return 0;
2917}
2918
2919
2920/*
2921 * Per-rate tx power setting
2922 *
2923 * This is the code that sets the desired tx power (below
2924 * maximum) on hw for each rate (we also have TPC that sets
2925 * power per packet). We do that by providing an index on the
2926 * PCDAC/PDADC table we set up.
2927 */
2928
2929/*
2930 * Set rate power table
2931 *
2932 * For now we only limit txpower based on maximum tx power
2933 * supported by hw (what's inside rate_info). We need to limit
2934 * this even more, based on regulatory domain etc.
2935 *
2936 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2937 * and is indexed as follows:
2938 * rates[0] - rates[7] -> OFDM rates
2939 * rates[8] - rates[14] -> CCK rates
2940 * rates[15] -> XR rates (they all have the same power)
2941 */
2942static void
2943ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2944 struct ath5k_rate_pcal_info *rate_info,
2945 u8 ee_mode)
2946{
2947 unsigned int i;
2948 u16 *rates;
2949
2950 /* max_pwr is power level we got from driver/user in 0.5dB
2951 * units, switch to 0.25dB units so we can compare */
2952 max_pwr *= 2;
2953 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2954
2955 /* apply rate limits */
2956 rates = ah->ah_txpower.txp_rates_power_table;
2957
2958 /* OFDM rates 6 to 24Mb/s */
2959 for (i = 0; i < 5; i++)
2960 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2961
2962 /* Rest OFDM rates */
2963 rates[5] = min(rates[0], rate_info->target_power_36);
2964 rates[6] = min(rates[0], rate_info->target_power_48);
2965 rates[7] = min(rates[0], rate_info->target_power_54);
2966
2967 /* CCK rates */
2968 /* 1L */
2969 rates[8] = min(rates[0], rate_info->target_power_6to24);
2970 /* 2L */
2971 rates[9] = min(rates[0], rate_info->target_power_36);
2972 /* 2S */
2973 rates[10] = min(rates[0], rate_info->target_power_36);
2974 /* 5L */
2975 rates[11] = min(rates[0], rate_info->target_power_48);
2976 /* 5S */
2977 rates[12] = min(rates[0], rate_info->target_power_48);
2978 /* 11L */
2979 rates[13] = min(rates[0], rate_info->target_power_54);
2980 /* 11S */
2981 rates[14] = min(rates[0], rate_info->target_power_54);
2982
2983 /* XR rates */
2984 rates[15] = min(rates[0], rate_info->target_power_6to24);
2985
2986 /* CCK rates have different peak to average ratio
2987 * so we have to tweak their power so that gainf
2988 * correction works ok. For this we use OFDM to
2989 * CCK delta from eeprom */
2990 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2991 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2992 for (i = 8; i <= 15; i++)
2993 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2994
Nick Kossifidisa0823812009-04-30 15:55:44 -04002995 /* Now that we have all rates setup use table offset to
2996 * match the power range set by user with the power indices
2997 * on PCDAC/PDADC table */
2998 for (i = 0; i < 16; i++) {
2999 rates[i] += ah->ah_txpower.txp_offset;
3000 /* Don't get out of bounds */
3001 if (rates[i] > 63)
3002 rates[i] = 63;
3003 }
3004
3005 /* Min/max in 0.25dB units */
3006 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3007 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003008 ah->ah_txpower.txp_ofdm = rates[7];
3009}
3010
3011
3012/*
3013 * Set transmition power
3014 */
3015int
3016ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3017 u8 ee_mode, u8 txpower)
3018{
3019 struct ath5k_rate_pcal_info rate_info;
3020 u8 type;
3021 int ret;
3022
3023 ATH5K_TRACE(ah->ah_sc);
3024 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3025 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3026 return -EINVAL;
3027 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003028
3029 /* Reset TX power values */
3030 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3031 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3032 ah->ah_txpower.txp_min_pwr = 0;
3033 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3034
3035 /* Initialize TX power table */
3036 switch (ah->ah_radio) {
3037 case AR5K_RF5111:
3038 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3039 break;
3040 case AR5K_RF5112:
3041 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3042 break;
3043 case AR5K_RF2413:
3044 case AR5K_RF5413:
3045 case AR5K_RF2316:
3046 case AR5K_RF2317:
3047 case AR5K_RF2425:
3048 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3049 break;
3050 default:
3051 return -EINVAL;
3052 }
3053
3054 /* FIXME: Only on channel/mode change */
3055 ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3056 if (ret)
3057 return ret;
3058
3059 /* Limit max power if we have a CTL available */
3060 ath5k_get_max_ctl_power(ah, channel);
3061
3062 /* FIXME: Tx power limit for this regdomain
3063 * XXX: Mac80211/CRDA will do that anyway ? */
3064
3065 /* FIXME: Antenna reduction stuff */
3066
3067 /* FIXME: Limit power on turbo modes */
3068
3069 /* FIXME: TPC scale reduction */
3070
3071 /* Get surounding channels for per-rate power table
3072 * calibration */
3073 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3074
3075 /* Setup rate power table */
3076 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3077
3078 /* Write rate power table on hw */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003079 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3080 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3081 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3082
3083 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3084 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3085 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3086
3087 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3088 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3089 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3090
3091 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3092 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3093 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3094
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003095 /* FIXME: TPC support */
3096 if (ah->ah_txpower.txp_tpc) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003097 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3098 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003099
3100 ath5k_hw_reg_write(ah,
3101 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3102 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3103 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3104 AR5K_TPC);
3105 } else {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003106 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3107 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003108 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003109
3110 return 0;
3111}
3112
Nick Kossifidisa0823812009-04-30 15:55:44 -04003113int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003114{
3115 /*Just a try M.F.*/
Bob Copeland46026e82009-06-10 22:22:20 -04003116 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidisa0823812009-04-30 15:55:44 -04003117 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003118
3119 ATH5K_TRACE(ah->ah_sc);
Nick Kossifidisa0823812009-04-30 15:55:44 -04003120
3121 switch (channel->hw_value & CHANNEL_MODES) {
3122 case CHANNEL_A:
3123 case CHANNEL_T:
3124 case CHANNEL_XR:
3125 ee_mode = AR5K_EEPROM_MODE_11A;
3126 break;
3127 case CHANNEL_G:
3128 case CHANNEL_TG:
3129 ee_mode = AR5K_EEPROM_MODE_11G;
3130 break;
3131 case CHANNEL_B:
3132 ee_mode = AR5K_EEPROM_MODE_11B;
3133 break;
3134 default:
3135 ATH5K_ERR(ah->ah_sc,
3136 "invalid channel: %d\n", channel->center_freq);
3137 return -EINVAL;
3138 }
3139
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003140 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003141 "changing txpower to %d\n", txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003142
Nick Kossifidisa0823812009-04-30 15:55:44 -04003143 return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003144}