blob: 547542428edccb7eacaab031045b204821706086 [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
Bruce Allanc7e54b12009-11-20 23:25:45 +00004 Copyright(c) 1999 - 2009 Intel Corporation.
Auke Kokbc7f75f2007-09-17 12:30:59 -07005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
Auke Kokbc7f75f2007-09-17 12:30:59 -070029#include "e1000.h"
30
31enum e1000_mng_mode {
32 e1000_mng_mode_none = 0,
33 e1000_mng_mode_asf,
34 e1000_mng_mode_pt,
35 e1000_mng_mode_ipmi,
36 e1000_mng_mode_host_if_only
37};
38
39#define E1000_FACTPS_MNGCG 0x20000000
40
Bruce Allanad680762008-03-28 09:15:03 -070041/* Intel(R) Active Management Technology signature */
42#define E1000_IAMT_SIGNATURE 0x544D4149
Auke Kokbc7f75f2007-09-17 12:30:59 -070043
44/**
45 * e1000e_get_bus_info_pcie - Get PCIe bus information
46 * @hw: pointer to the HW structure
47 *
48 * Determines and stores the system bus information for a particular
49 * network interface. The following bus information is determined and stored:
50 * bus speed, bus width, type (PCIe), and PCIe function.
51 **/
52s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
53{
54 struct e1000_bus_info *bus = &hw->bus;
55 struct e1000_adapter *adapter = hw->adapter;
56 u32 status;
57 u16 pcie_link_status, pci_header_type, cap_offset;
58
59 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
60 if (!cap_offset) {
61 bus->width = e1000_bus_width_unknown;
62 } else {
63 pci_read_config_word(adapter->pdev,
64 cap_offset + PCIE_LINK_STATUS,
65 &pcie_link_status);
66 bus->width = (enum e1000_bus_width)((pcie_link_status &
67 PCIE_LINK_WIDTH_MASK) >>
68 PCIE_LINK_WIDTH_SHIFT);
69 }
70
71 pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
72 &pci_header_type);
73 if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
74 status = er32(STATUS);
75 bus->func = (status & E1000_STATUS_FUNC_MASK)
76 >> E1000_STATUS_FUNC_SHIFT;
77 } else {
78 bus->func = 0;
79 }
80
81 return 0;
82}
83
84/**
Bruce Allancaaddaf2009-12-01 15:46:43 +000085 * e1000_clear_vfta_generic - Clear VLAN filter table
86 * @hw: pointer to the HW structure
87 *
88 * Clears the register array which contains the VLAN filter table by
89 * setting all the values to 0.
90 **/
91void e1000_clear_vfta_generic(struct e1000_hw *hw)
92{
93 u32 offset;
94
95 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
96 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
97 e1e_flush();
98 }
99}
100
101/**
102 * e1000_write_vfta_generic - Write value to VLAN filter table
Auke Kokbc7f75f2007-09-17 12:30:59 -0700103 * @hw: pointer to the HW structure
104 * @offset: register offset in VLAN filter table
105 * @value: register value written to VLAN filter table
106 *
107 * Writes value at the given offset in the register array which stores
108 * the VLAN filter table.
109 **/
Bruce Allancaaddaf2009-12-01 15:46:43 +0000110void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700111{
112 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
113 e1e_flush();
114}
115
116/**
117 * e1000e_init_rx_addrs - Initialize receive address's
118 * @hw: pointer to the HW structure
119 * @rar_count: receive address registers
120 *
121 * Setups the receive address registers by setting the base receive address
122 * register to the devices MAC address and clearing all the other receive
123 * address registers to 0.
124 **/
125void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
126{
127 u32 i;
Bruce Allanb7a92162010-01-07 16:32:13 +0000128 u8 mac_addr[ETH_ALEN] = {0};
Auke Kokbc7f75f2007-09-17 12:30:59 -0700129
130 /* Setup the receive address */
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000131 e_dbg("Programming MAC Address into RAR[0]\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700132
133 e1000e_rar_set(hw, hw->mac.addr, 0);
134
135 /* Zero out the other (rar_entry_count - 1) receive addresses */
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000136 e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
Bruce Allanb7a92162010-01-07 16:32:13 +0000137 for (i = 1; i < rar_count; i++)
138 e1000e_rar_set(hw, mac_addr, i);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700139}
140
141/**
Bruce Allan608f8a02010-01-13 02:04:58 +0000142 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
143 * @hw: pointer to the HW structure
144 *
145 * Checks the nvm for an alternate MAC address. An alternate MAC address
146 * can be setup by pre-boot software and must be treated like a permanent
147 * address and must override the actual permanent MAC address. If an
148 * alternate MAC address is found it is programmed into RAR0, replacing
149 * the permanent address that was installed into RAR0 by the Si on reset.
150 * This function will return SUCCESS unless it encounters an error while
151 * reading the EEPROM.
152 **/
153s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
154{
155 u32 i;
156 s32 ret_val = 0;
157 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
158 u8 alt_mac_addr[ETH_ALEN];
159
160 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
161 &nvm_alt_mac_addr_offset);
162 if (ret_val) {
163 e_dbg("NVM Read Error\n");
164 goto out;
165 }
166
167 if (nvm_alt_mac_addr_offset == 0xFFFF) {
168 /* There is no Alternate MAC Address */
169 goto out;
170 }
171
172 if (hw->bus.func == E1000_FUNC_1)
173 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
174 for (i = 0; i < ETH_ALEN; i += 2) {
175 offset = nvm_alt_mac_addr_offset + (i >> 1);
176 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
177 if (ret_val) {
178 e_dbg("NVM Read Error\n");
179 goto out;
180 }
181
182 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
183 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
184 }
185
186 /* if multicast bit is set, the alternate address will not be used */
187 if (alt_mac_addr[0] & 0x01) {
188 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
189 goto out;
190 }
191
192 /*
193 * We have a valid alternate MAC address, and we want to treat it the
194 * same as the normal permanent MAC address stored by the HW into the
195 * RAR. Do this by mapping this address into RAR0.
196 */
197 e1000e_rar_set(hw, alt_mac_addr, 0);
198
199out:
200 return ret_val;
201}
202
203/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700204 * e1000e_rar_set - Set receive address register
205 * @hw: pointer to the HW structure
206 * @addr: pointer to the receive address
207 * @index: receive address array register
208 *
209 * Sets the receive address array register at index to the address passed
210 * in by addr.
211 **/
212void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
213{
214 u32 rar_low, rar_high;
215
Bruce Allanad680762008-03-28 09:15:03 -0700216 /*
217 * HW expects these in little endian so we reverse the byte order
Auke Kokbc7f75f2007-09-17 12:30:59 -0700218 * from network order (big endian) to little endian
219 */
220 rar_low = ((u32) addr[0] |
221 ((u32) addr[1] << 8) |
222 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
223
224 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
225
Bruce Allanb7a92162010-01-07 16:32:13 +0000226 /* If MAC address zero, no need to set the AV bit */
227 if (rar_low || rar_high)
228 rar_high |= E1000_RAH_AV;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700229
Bruce Allanb7a92162010-01-07 16:32:13 +0000230 /*
231 * Some bridges will combine consecutive 32-bit writes into
232 * a single burst write, which will malfunction on some parts.
233 * The flushes avoid this.
234 */
235 ew32(RAL(index), rar_low);
236 e1e_flush();
237 ew32(RAH(index), rar_high);
238 e1e_flush();
Auke Kokbc7f75f2007-09-17 12:30:59 -0700239}
240
241/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700242 * e1000_hash_mc_addr - Generate a multicast hash value
243 * @hw: pointer to the HW structure
244 * @mc_addr: pointer to a multicast address
245 *
246 * Generates a multicast address hash value which is used to determine
247 * the multicast filter table array address and new table value. See
248 * e1000_mta_set_generic()
249 **/
250static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
251{
252 u32 hash_value, hash_mask;
253 u8 bit_shift = 0;
254
255 /* Register count multiplied by bits per register */
256 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
257
Bruce Allanad680762008-03-28 09:15:03 -0700258 /*
259 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
260 * where 0xFF would still fall within the hash mask.
261 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700262 while (hash_mask >> bit_shift != 0xFF)
263 bit_shift++;
264
Bruce Allanad680762008-03-28 09:15:03 -0700265 /*
266 * The portion of the address that is used for the hash table
Auke Kokbc7f75f2007-09-17 12:30:59 -0700267 * is determined by the mc_filter_type setting.
268 * The algorithm is such that there is a total of 8 bits of shifting.
269 * The bit_shift for a mc_filter_type of 0 represents the number of
270 * left-shifts where the MSB of mc_addr[5] would still fall within
271 * the hash_mask. Case 0 does this exactly. Since there are a total
272 * of 8 bits of shifting, then mc_addr[4] will shift right the
273 * remaining number of bits. Thus 8 - bit_shift. The rest of the
274 * cases are a variation of this algorithm...essentially raising the
275 * number of bits to shift mc_addr[5] left, while still keeping the
276 * 8-bit shifting total.
Bruce Allanad680762008-03-28 09:15:03 -0700277 *
278 * For example, given the following Destination MAC Address and an
Auke Kokbc7f75f2007-09-17 12:30:59 -0700279 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
280 * we can see that the bit_shift for case 0 is 4. These are the hash
281 * values resulting from each mc_filter_type...
282 * [0] [1] [2] [3] [4] [5]
283 * 01 AA 00 12 34 56
284 * LSB MSB
285 *
286 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
287 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
288 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
289 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
290 */
291 switch (hw->mac.mc_filter_type) {
292 default:
293 case 0:
294 break;
295 case 1:
296 bit_shift += 1;
297 break;
298 case 2:
299 bit_shift += 2;
300 break;
301 case 3:
302 bit_shift += 4;
303 break;
304 }
305
306 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
307 (((u16) mc_addr[5]) << bit_shift)));
308
309 return hash_value;
310}
311
312/**
Jeff Kirshere2de3eb2008-03-28 09:15:11 -0700313 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
Auke Kokbc7f75f2007-09-17 12:30:59 -0700314 * @hw: pointer to the HW structure
315 * @mc_addr_list: array of multicast addresses to program
316 * @mc_addr_count: number of multicast addresses to program
317 * @rar_used_count: the first RAR register free to program
318 * @rar_count: total number of supported Receive Address Registers
319 *
320 * Updates the Receive Address Registers and Multicast Table Array.
321 * The caller must have a packed mc_addr_list of multicast addresses.
322 * The parameter rar_count will usually be hw->mac.rar_entry_count
323 * unless there are workarounds that change this.
324 **/
Jeff Kirshere2de3eb2008-03-28 09:15:11 -0700325void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
326 u8 *mc_addr_list, u32 mc_addr_count,
327 u32 rar_used_count, u32 rar_count)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700328{
Auke Kokbc7f75f2007-09-17 12:30:59 -0700329 u32 i;
Jesse Brandeburga72d2b22009-03-25 22:05:21 +0000330 u32 *mcarray = kzalloc(hw->mac.mta_reg_count * sizeof(u32), GFP_ATOMIC);
331
332 if (!mcarray) {
333 printk(KERN_ERR "multicast array memory allocation failed\n");
334 return;
335 }
Auke Kokbc7f75f2007-09-17 12:30:59 -0700336
Bruce Allanad680762008-03-28 09:15:03 -0700337 /*
338 * Load the first set of multicast addresses into the exact
Auke Kokbc7f75f2007-09-17 12:30:59 -0700339 * filters (RAR). If there are not enough to fill the RAR
340 * array, clear the filters.
341 */
342 for (i = rar_used_count; i < rar_count; i++) {
343 if (mc_addr_count) {
344 e1000e_rar_set(hw, mc_addr_list, i);
345 mc_addr_count--;
346 mc_addr_list += ETH_ALEN;
347 } else {
348 E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
349 e1e_flush();
350 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
351 e1e_flush();
352 }
353 }
354
Auke Kokbc7f75f2007-09-17 12:30:59 -0700355 /* Load any remaining multicast addresses into the hash table. */
356 for (; mc_addr_count > 0; mc_addr_count--) {
Jesse Brandeburga72d2b22009-03-25 22:05:21 +0000357 u32 hash_value, hash_reg, hash_bit, mta;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700358 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000359 e_dbg("Hash value = 0x%03X\n", hash_value);
Jesse Brandeburga72d2b22009-03-25 22:05:21 +0000360 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
361 hash_bit = hash_value & 0x1F;
362 mta = (1 << hash_bit);
363 mcarray[hash_reg] |= mta;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700364 mc_addr_list += ETH_ALEN;
365 }
Jesse Brandeburga72d2b22009-03-25 22:05:21 +0000366
367 /* write the hash table completely */
368 for (i = 0; i < hw->mac.mta_reg_count; i++)
369 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, mcarray[i]);
370
371 e1e_flush();
372 kfree(mcarray);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700373}
374
375/**
376 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
377 * @hw: pointer to the HW structure
378 *
379 * Clears the base hardware counters by reading the counter registers.
380 **/
381void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
382{
Bruce Allan99673d92009-11-20 23:27:21 +0000383 er32(CRCERRS);
384 er32(SYMERRS);
385 er32(MPC);
386 er32(SCC);
387 er32(ECOL);
388 er32(MCC);
389 er32(LATECOL);
390 er32(COLC);
391 er32(DC);
392 er32(SEC);
393 er32(RLEC);
394 er32(XONRXC);
395 er32(XONTXC);
396 er32(XOFFRXC);
397 er32(XOFFTXC);
398 er32(FCRUC);
399 er32(GPRC);
400 er32(BPRC);
401 er32(MPRC);
402 er32(GPTC);
403 er32(GORCL);
404 er32(GORCH);
405 er32(GOTCL);
406 er32(GOTCH);
407 er32(RNBC);
408 er32(RUC);
409 er32(RFC);
410 er32(ROC);
411 er32(RJC);
412 er32(TORL);
413 er32(TORH);
414 er32(TOTL);
415 er32(TOTH);
416 er32(TPR);
417 er32(TPT);
418 er32(MPTC);
419 er32(BPTC);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700420}
421
422/**
423 * e1000e_check_for_copper_link - Check for link (Copper)
424 * @hw: pointer to the HW structure
425 *
426 * Checks to see of the link status of the hardware has changed. If a
427 * change in link status has been detected, then we read the PHY registers
428 * to get the current speed/duplex if link exists.
429 **/
430s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
431{
432 struct e1000_mac_info *mac = &hw->mac;
433 s32 ret_val;
434 bool link;
435
Bruce Allanad680762008-03-28 09:15:03 -0700436 /*
437 * We only want to go out to the PHY registers to see if Auto-Neg
Auke Kokbc7f75f2007-09-17 12:30:59 -0700438 * has completed and/or if our link status has changed. The
439 * get_link_status flag is set upon receiving a Link Status
440 * Change or Rx Sequence Error interrupt.
441 */
442 if (!mac->get_link_status)
443 return 0;
444
Bruce Allanad680762008-03-28 09:15:03 -0700445 /*
446 * First we want to see if the MII Status Register reports
Auke Kokbc7f75f2007-09-17 12:30:59 -0700447 * link. If so, then we want to get the current speed/duplex
448 * of the PHY.
449 */
450 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
451 if (ret_val)
452 return ret_val;
453
454 if (!link)
455 return ret_val; /* No link detected */
456
Bruce Allan564ea9b2009-11-20 23:26:44 +0000457 mac->get_link_status = false;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700458
Bruce Allanad680762008-03-28 09:15:03 -0700459 /*
460 * Check if there was DownShift, must be checked
461 * immediately after link-up
462 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700463 e1000e_check_downshift(hw);
464
Bruce Allanad680762008-03-28 09:15:03 -0700465 /*
466 * If we are forcing speed/duplex, then we simply return since
Auke Kokbc7f75f2007-09-17 12:30:59 -0700467 * we have already determined whether we have link or not.
468 */
469 if (!mac->autoneg) {
470 ret_val = -E1000_ERR_CONFIG;
471 return ret_val;
472 }
473
Bruce Allanad680762008-03-28 09:15:03 -0700474 /*
475 * Auto-Neg is enabled. Auto Speed Detection takes care
Auke Kokbc7f75f2007-09-17 12:30:59 -0700476 * of MAC speed/duplex configuration. So we only need to
477 * configure Collision Distance in the MAC.
478 */
479 e1000e_config_collision_dist(hw);
480
Bruce Allanad680762008-03-28 09:15:03 -0700481 /*
482 * Configure Flow Control now that Auto-Neg has completed.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700483 * First, we need to restore the desired flow control
484 * settings because we may have had to re-autoneg with a
485 * different link partner.
486 */
487 ret_val = e1000e_config_fc_after_link_up(hw);
488 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000489 e_dbg("Error configuring flow control\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700490 }
491
492 return ret_val;
493}
494
495/**
496 * e1000e_check_for_fiber_link - Check for link (Fiber)
497 * @hw: pointer to the HW structure
498 *
499 * Checks for link up on the hardware. If link is not up and we have
500 * a signal, then we need to force link up.
501 **/
502s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
503{
504 struct e1000_mac_info *mac = &hw->mac;
505 u32 rxcw;
506 u32 ctrl;
507 u32 status;
508 s32 ret_val;
509
510 ctrl = er32(CTRL);
511 status = er32(STATUS);
512 rxcw = er32(RXCW);
513
Bruce Allanad680762008-03-28 09:15:03 -0700514 /*
515 * If we don't have link (auto-negotiation failed or link partner
Auke Kokbc7f75f2007-09-17 12:30:59 -0700516 * cannot auto-negotiate), the cable is plugged in (we have signal),
517 * and our link partner is not trying to auto-negotiate with us (we
518 * are receiving idles or data), we need to force link up. We also
519 * need to give auto-negotiation time to complete, in case the cable
520 * was just plugged in. The autoneg_failed flag does this.
521 */
522 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
523 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
524 (!(rxcw & E1000_RXCW_C))) {
525 if (mac->autoneg_failed == 0) {
526 mac->autoneg_failed = 1;
527 return 0;
528 }
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000529 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700530
531 /* Disable auto-negotiation in the TXCW register */
532 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
533
534 /* Force link-up and also force full-duplex. */
535 ctrl = er32(CTRL);
536 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
537 ew32(CTRL, ctrl);
538
539 /* Configure Flow Control after forcing link up. */
540 ret_val = e1000e_config_fc_after_link_up(hw);
541 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000542 e_dbg("Error configuring flow control\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700543 return ret_val;
544 }
545 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
Bruce Allanad680762008-03-28 09:15:03 -0700546 /*
547 * If we are forcing link and we are receiving /C/ ordered
Auke Kokbc7f75f2007-09-17 12:30:59 -0700548 * sets, re-enable auto-negotiation in the TXCW register
549 * and disable forced link in the Device Control register
550 * in an attempt to auto-negotiate with our link partner.
551 */
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000552 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700553 ew32(TXCW, mac->txcw);
554 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
555
Alex Chiang612e2442009-02-05 23:55:45 -0800556 mac->serdes_has_link = true;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700557 }
558
559 return 0;
560}
561
562/**
563 * e1000e_check_for_serdes_link - Check for link (Serdes)
564 * @hw: pointer to the HW structure
565 *
566 * Checks for link up on the hardware. If link is not up and we have
567 * a signal, then we need to force link up.
568 **/
569s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
570{
571 struct e1000_mac_info *mac = &hw->mac;
572 u32 rxcw;
573 u32 ctrl;
574 u32 status;
575 s32 ret_val;
576
577 ctrl = er32(CTRL);
578 status = er32(STATUS);
579 rxcw = er32(RXCW);
580
Bruce Allanad680762008-03-28 09:15:03 -0700581 /*
582 * If we don't have link (auto-negotiation failed or link partner
Auke Kokbc7f75f2007-09-17 12:30:59 -0700583 * cannot auto-negotiate), and our link partner is not trying to
584 * auto-negotiate with us (we are receiving idles or data),
585 * we need to force link up. We also need to give auto-negotiation
586 * time to complete.
587 */
588 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
589 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
590 if (mac->autoneg_failed == 0) {
591 mac->autoneg_failed = 1;
592 return 0;
593 }
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000594 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700595
596 /* Disable auto-negotiation in the TXCW register */
597 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
598
599 /* Force link-up and also force full-duplex. */
600 ctrl = er32(CTRL);
601 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
602 ew32(CTRL, ctrl);
603
604 /* Configure Flow Control after forcing link up. */
605 ret_val = e1000e_config_fc_after_link_up(hw);
606 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000607 e_dbg("Error configuring flow control\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700608 return ret_val;
609 }
610 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
Bruce Allanad680762008-03-28 09:15:03 -0700611 /*
612 * If we are forcing link and we are receiving /C/ ordered
Auke Kokbc7f75f2007-09-17 12:30:59 -0700613 * sets, re-enable auto-negotiation in the TXCW register
614 * and disable forced link in the Device Control register
615 * in an attempt to auto-negotiate with our link partner.
616 */
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000617 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700618 ew32(TXCW, mac->txcw);
619 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
620
Alex Chiang612e2442009-02-05 23:55:45 -0800621 mac->serdes_has_link = true;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700622 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
Bruce Allanad680762008-03-28 09:15:03 -0700623 /*
624 * If we force link for non-auto-negotiation switch, check
Auke Kokbc7f75f2007-09-17 12:30:59 -0700625 * link status based on MAC synchronization for internal
626 * serdes media type.
627 */
628 /* SYNCH bit and IV bit are sticky. */
629 udelay(10);
Bruce Allan63dcf3d2008-11-21 16:50:34 -0800630 rxcw = er32(RXCW);
631 if (rxcw & E1000_RXCW_SYNCH) {
Auke Kokbc7f75f2007-09-17 12:30:59 -0700632 if (!(rxcw & E1000_RXCW_IV)) {
Bruce Allan63dcf3d2008-11-21 16:50:34 -0800633 mac->serdes_has_link = true;
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000634 e_dbg("SERDES: Link up - forced.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700635 }
636 } else {
Bruce Allan63dcf3d2008-11-21 16:50:34 -0800637 mac->serdes_has_link = false;
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000638 e_dbg("SERDES: Link down - force failed.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700639 }
640 }
641
642 if (E1000_TXCW_ANE & er32(TXCW)) {
643 status = er32(STATUS);
Bruce Allan63dcf3d2008-11-21 16:50:34 -0800644 if (status & E1000_STATUS_LU) {
645 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
646 udelay(10);
647 rxcw = er32(RXCW);
648 if (rxcw & E1000_RXCW_SYNCH) {
649 if (!(rxcw & E1000_RXCW_IV)) {
650 mac->serdes_has_link = true;
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000651 e_dbg("SERDES: Link up - autoneg "
Bruce Allan63dcf3d2008-11-21 16:50:34 -0800652 "completed sucessfully.\n");
653 } else {
654 mac->serdes_has_link = false;
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000655 e_dbg("SERDES: Link down - invalid"
Bruce Allan63dcf3d2008-11-21 16:50:34 -0800656 "codewords detected in autoneg.\n");
657 }
658 } else {
659 mac->serdes_has_link = false;
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000660 e_dbg("SERDES: Link down - no sync.\n");
Bruce Allan63dcf3d2008-11-21 16:50:34 -0800661 }
662 } else {
663 mac->serdes_has_link = false;
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000664 e_dbg("SERDES: Link down - autoneg failed\n");
Bruce Allan63dcf3d2008-11-21 16:50:34 -0800665 }
Auke Kokbc7f75f2007-09-17 12:30:59 -0700666 }
667
668 return 0;
669}
670
671/**
672 * e1000_set_default_fc_generic - Set flow control default values
673 * @hw: pointer to the HW structure
674 *
675 * Read the EEPROM for the default values for flow control and store the
676 * values.
677 **/
678static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
679{
Auke Kokbc7f75f2007-09-17 12:30:59 -0700680 s32 ret_val;
681 u16 nvm_data;
682
Bruce Allanad680762008-03-28 09:15:03 -0700683 /*
684 * Read and store word 0x0F of the EEPROM. This word contains bits
Auke Kokbc7f75f2007-09-17 12:30:59 -0700685 * that determine the hardware's default PAUSE (flow control) mode,
686 * a bit that determines whether the HW defaults to enabling or
687 * disabling auto-negotiation, and the direction of the
688 * SW defined pins. If there is no SW over-ride of the flow
689 * control setting, then the variable hw->fc will
690 * be initialized based on a value in the EEPROM.
691 */
692 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
693
694 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000695 e_dbg("NVM Read Error\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700696 return ret_val;
697 }
698
699 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
Bruce Allan5c48ef3e22008-11-21 16:57:36 -0800700 hw->fc.requested_mode = e1000_fc_none;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700701 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
702 NVM_WORD0F_ASM_DIR)
Bruce Allan5c48ef3e22008-11-21 16:57:36 -0800703 hw->fc.requested_mode = e1000_fc_tx_pause;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700704 else
Bruce Allan5c48ef3e22008-11-21 16:57:36 -0800705 hw->fc.requested_mode = e1000_fc_full;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700706
707 return 0;
708}
709
710/**
711 * e1000e_setup_link - Setup flow control and link settings
712 * @hw: pointer to the HW structure
713 *
714 * Determines which flow control settings to use, then configures flow
715 * control. Calls the appropriate media-specific link configuration
716 * function. Assuming the adapter has a valid link partner, a valid link
717 * should be established. Assumes the hardware has previously been reset
718 * and the transmitter and receiver are not enabled.
719 **/
720s32 e1000e_setup_link(struct e1000_hw *hw)
721{
722 struct e1000_mac_info *mac = &hw->mac;
723 s32 ret_val;
724
Bruce Allanad680762008-03-28 09:15:03 -0700725 /*
726 * In the case of the phy reset being blocked, we already have a link.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700727 * We do not need to set it up again.
728 */
729 if (e1000_check_reset_block(hw))
730 return 0;
731
Auke Kok309af402007-10-05 15:22:02 -0700732 /*
Bruce Allan5c48ef3e22008-11-21 16:57:36 -0800733 * If requested flow control is set to default, set flow control
734 * based on the EEPROM flow control settings.
Auke Kok309af402007-10-05 15:22:02 -0700735 */
Bruce Allan5c48ef3e22008-11-21 16:57:36 -0800736 if (hw->fc.requested_mode == e1000_fc_default) {
Auke Kok309af402007-10-05 15:22:02 -0700737 ret_val = e1000_set_default_fc_generic(hw);
738 if (ret_val)
739 return ret_val;
740 }
Auke Kokbc7f75f2007-09-17 12:30:59 -0700741
Bruce Allanad680762008-03-28 09:15:03 -0700742 /*
Bruce Allan5c48ef3e22008-11-21 16:57:36 -0800743 * Save off the requested flow control mode for use later. Depending
744 * on the link partner's capabilities, we may or may not use this mode.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700745 */
Bruce Allan5c48ef3e22008-11-21 16:57:36 -0800746 hw->fc.current_mode = hw->fc.requested_mode;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700747
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000748 e_dbg("After fix-ups FlowControl is now = %x\n",
Bruce Allan5c48ef3e22008-11-21 16:57:36 -0800749 hw->fc.current_mode);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700750
751 /* Call the necessary media_type subroutine to configure the link. */
752 ret_val = mac->ops.setup_physical_interface(hw);
753 if (ret_val)
754 return ret_val;
755
Bruce Allanad680762008-03-28 09:15:03 -0700756 /*
757 * Initialize the flow control address, type, and PAUSE timer
Auke Kokbc7f75f2007-09-17 12:30:59 -0700758 * registers to their default values. This is done even if flow
759 * control is disabled, because it does not hurt anything to
760 * initialize these registers.
761 */
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000762 e_dbg("Initializing the Flow Control address, type and timer regs\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700763 ew32(FCT, FLOW_CONTROL_TYPE);
764 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
765 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
766
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700767 ew32(FCTTV, hw->fc.pause_time);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700768
769 return e1000e_set_fc_watermarks(hw);
770}
771
772/**
773 * e1000_commit_fc_settings_generic - Configure flow control
774 * @hw: pointer to the HW structure
775 *
776 * Write the flow control settings to the Transmit Config Word Register (TXCW)
777 * base on the flow control settings in e1000_mac_info.
778 **/
779static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
780{
781 struct e1000_mac_info *mac = &hw->mac;
782 u32 txcw;
783
Bruce Allanad680762008-03-28 09:15:03 -0700784 /*
785 * Check for a software override of the flow control settings, and
Auke Kokbc7f75f2007-09-17 12:30:59 -0700786 * setup the device accordingly. If auto-negotiation is enabled, then
787 * software will have to set the "PAUSE" bits to the correct value in
788 * the Transmit Config Word Register (TXCW) and re-start auto-
789 * negotiation. However, if auto-negotiation is disabled, then
790 * software will have to manually configure the two flow control enable
791 * bits in the CTRL register.
792 *
793 * The possible values of the "fc" parameter are:
794 * 0: Flow control is completely disabled
795 * 1: Rx flow control is enabled (we can receive pause frames,
796 * but not send pause frames).
797 * 2: Tx flow control is enabled (we can send pause frames but we
798 * do not support receiving pause frames).
Bruce Allanad680762008-03-28 09:15:03 -0700799 * 3: Both Rx and Tx flow control (symmetric) are enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700800 */
Bruce Allan5c48ef3e22008-11-21 16:57:36 -0800801 switch (hw->fc.current_mode) {
Auke Kokbc7f75f2007-09-17 12:30:59 -0700802 case e1000_fc_none:
803 /* Flow control completely disabled by a software over-ride. */
804 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
805 break;
806 case e1000_fc_rx_pause:
Bruce Allanad680762008-03-28 09:15:03 -0700807 /*
808 * Rx Flow control is enabled and Tx Flow control is disabled
Auke Kokbc7f75f2007-09-17 12:30:59 -0700809 * by a software over-ride. Since there really isn't a way to
Bruce Allanad680762008-03-28 09:15:03 -0700810 * advertise that we are capable of Rx Pause ONLY, we will
811 * advertise that we support both symmetric and asymmetric Rx
Auke Kokbc7f75f2007-09-17 12:30:59 -0700812 * PAUSE. Later, we will disable the adapter's ability to send
813 * PAUSE frames.
814 */
815 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
816 break;
817 case e1000_fc_tx_pause:
Bruce Allanad680762008-03-28 09:15:03 -0700818 /*
819 * Tx Flow control is enabled, and Rx Flow control is disabled,
Auke Kokbc7f75f2007-09-17 12:30:59 -0700820 * by a software over-ride.
821 */
822 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
823 break;
824 case e1000_fc_full:
Bruce Allanad680762008-03-28 09:15:03 -0700825 /*
826 * Flow control (both Rx and Tx) is enabled by a software
Auke Kokbc7f75f2007-09-17 12:30:59 -0700827 * over-ride.
828 */
829 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
830 break;
831 default:
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000832 e_dbg("Flow control param set incorrectly\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700833 return -E1000_ERR_CONFIG;
834 break;
835 }
836
837 ew32(TXCW, txcw);
838 mac->txcw = txcw;
839
840 return 0;
841}
842
843/**
844 * e1000_poll_fiber_serdes_link_generic - Poll for link up
845 * @hw: pointer to the HW structure
846 *
847 * Polls for link up by reading the status register, if link fails to come
848 * up with auto-negotiation, then the link is forced if a signal is detected.
849 **/
850static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
851{
852 struct e1000_mac_info *mac = &hw->mac;
853 u32 i, status;
854 s32 ret_val;
855
Bruce Allanad680762008-03-28 09:15:03 -0700856 /*
857 * If we have a signal (the cable is plugged in, or assumed true for
Auke Kokbc7f75f2007-09-17 12:30:59 -0700858 * serdes media) then poll for a "Link-Up" indication in the Device
859 * Status Register. Time-out if a link isn't seen in 500 milliseconds
860 * seconds (Auto-negotiation should complete in less than 500
861 * milliseconds even if the other end is doing it in SW).
862 */
863 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
864 msleep(10);
865 status = er32(STATUS);
866 if (status & E1000_STATUS_LU)
867 break;
868 }
869 if (i == FIBER_LINK_UP_LIMIT) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000870 e_dbg("Never got a valid link from auto-neg!!!\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700871 mac->autoneg_failed = 1;
Bruce Allanad680762008-03-28 09:15:03 -0700872 /*
873 * AutoNeg failed to achieve a link, so we'll call
Auke Kokbc7f75f2007-09-17 12:30:59 -0700874 * mac->check_for_link. This routine will force the
875 * link up if we detect a signal. This will allow us to
876 * communicate with non-autonegotiating link partners.
877 */
878 ret_val = mac->ops.check_for_link(hw);
879 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000880 e_dbg("Error while checking for link\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700881 return ret_val;
882 }
883 mac->autoneg_failed = 0;
884 } else {
885 mac->autoneg_failed = 0;
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000886 e_dbg("Valid Link Found\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700887 }
888
889 return 0;
890}
891
892/**
893 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
894 * @hw: pointer to the HW structure
895 *
896 * Configures collision distance and flow control for fiber and serdes
897 * links. Upon successful setup, poll for link.
898 **/
899s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
900{
901 u32 ctrl;
902 s32 ret_val;
903
904 ctrl = er32(CTRL);
905
906 /* Take the link out of reset */
907 ctrl &= ~E1000_CTRL_LRST;
908
909 e1000e_config_collision_dist(hw);
910
911 ret_val = e1000_commit_fc_settings_generic(hw);
912 if (ret_val)
913 return ret_val;
914
Bruce Allanad680762008-03-28 09:15:03 -0700915 /*
916 * Since auto-negotiation is enabled, take the link out of reset (the
Auke Kokbc7f75f2007-09-17 12:30:59 -0700917 * link will be in reset, because we previously reset the chip). This
918 * will restart auto-negotiation. If auto-negotiation is successful
919 * then the link-up status bit will be set and the flow control enable
920 * bits (RFCE and TFCE) will be set according to their negotiated value.
921 */
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000922 e_dbg("Auto-negotiation enabled\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700923
924 ew32(CTRL, ctrl);
925 e1e_flush();
926 msleep(1);
927
Bruce Allanad680762008-03-28 09:15:03 -0700928 /*
929 * For these adapters, the SW definable pin 1 is set when the optics
Auke Kokbc7f75f2007-09-17 12:30:59 -0700930 * detect a signal. If we have a signal, then poll for a "Link-Up"
931 * indication.
932 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700933 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
Auke Kokbc7f75f2007-09-17 12:30:59 -0700934 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
935 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
936 } else {
Bruce Allan3bb99fe2009-11-20 23:25:07 +0000937 e_dbg("No signal detected\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -0700938 }
939
940 return 0;
941}
942
943/**
944 * e1000e_config_collision_dist - Configure collision distance
945 * @hw: pointer to the HW structure
946 *
947 * Configures the collision distance to the default value and is used
948 * during link setup. Currently no func pointer exists and all
949 * implementations are handled in the generic version of this function.
950 **/
951void e1000e_config_collision_dist(struct e1000_hw *hw)
952{
953 u32 tctl;
954
955 tctl = er32(TCTL);
956
957 tctl &= ~E1000_TCTL_COLD;
958 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
959
960 ew32(TCTL, tctl);
961 e1e_flush();
962}
963
964/**
965 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
966 * @hw: pointer to the HW structure
967 *
968 * Sets the flow control high/low threshold (watermark) registers. If
969 * flow control XON frame transmission is enabled, then set XON frame
Bruce Allanad680762008-03-28 09:15:03 -0700970 * transmission as well.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700971 **/
972s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
973{
Auke Kokbc7f75f2007-09-17 12:30:59 -0700974 u32 fcrtl = 0, fcrth = 0;
975
Bruce Allanad680762008-03-28 09:15:03 -0700976 /*
977 * Set the flow control receive threshold registers. Normally,
Auke Kokbc7f75f2007-09-17 12:30:59 -0700978 * these registers will be set to a default threshold that may be
979 * adjusted later by the driver's runtime code. However, if the
980 * ability to transmit pause frames is not enabled, then these
981 * registers will be set to 0.
982 */
Bruce Allan5c48ef3e22008-11-21 16:57:36 -0800983 if (hw->fc.current_mode & e1000_fc_tx_pause) {
Bruce Allanad680762008-03-28 09:15:03 -0700984 /*
985 * We need to set up the Receive Threshold high and low water
Auke Kokbc7f75f2007-09-17 12:30:59 -0700986 * marks as well as (optionally) enabling the transmission of
987 * XON frames.
988 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700989 fcrtl = hw->fc.low_water;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700990 fcrtl |= E1000_FCRTL_XONE;
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700991 fcrth = hw->fc.high_water;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700992 }
993 ew32(FCRTL, fcrtl);
994 ew32(FCRTH, fcrth);
995
996 return 0;
997}
998
999/**
1000 * e1000e_force_mac_fc - Force the MAC's flow control settings
1001 * @hw: pointer to the HW structure
1002 *
1003 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
1004 * device control register to reflect the adapter settings. TFCE and RFCE
1005 * need to be explicitly set by software when a copper PHY is used because
1006 * autonegotiation is managed by the PHY rather than the MAC. Software must
1007 * also configure these bits when link is forced on a fiber connection.
1008 **/
1009s32 e1000e_force_mac_fc(struct e1000_hw *hw)
1010{
Auke Kokbc7f75f2007-09-17 12:30:59 -07001011 u32 ctrl;
1012
1013 ctrl = er32(CTRL);
1014
Bruce Allanad680762008-03-28 09:15:03 -07001015 /*
1016 * Because we didn't get link via the internal auto-negotiation
Auke Kokbc7f75f2007-09-17 12:30:59 -07001017 * mechanism (we either forced link or we got link via PHY
1018 * auto-neg), we have to manually enable/disable transmit an
1019 * receive flow control.
1020 *
1021 * The "Case" statement below enables/disable flow control
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08001022 * according to the "hw->fc.current_mode" parameter.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001023 *
1024 * The possible values of the "fc" parameter are:
1025 * 0: Flow control is completely disabled
1026 * 1: Rx flow control is enabled (we can receive pause
1027 * frames but not send pause frames).
1028 * 2: Tx flow control is enabled (we can send pause frames
1029 * frames but we do not receive pause frames).
Bruce Allanad680762008-03-28 09:15:03 -07001030 * 3: Both Rx and Tx flow control (symmetric) is enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001031 * other: No other values should be possible at this point.
1032 */
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001033 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001034
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08001035 switch (hw->fc.current_mode) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001036 case e1000_fc_none:
1037 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1038 break;
1039 case e1000_fc_rx_pause:
1040 ctrl &= (~E1000_CTRL_TFCE);
1041 ctrl |= E1000_CTRL_RFCE;
1042 break;
1043 case e1000_fc_tx_pause:
1044 ctrl &= (~E1000_CTRL_RFCE);
1045 ctrl |= E1000_CTRL_TFCE;
1046 break;
1047 case e1000_fc_full:
1048 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1049 break;
1050 default:
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001051 e_dbg("Flow control param set incorrectly\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001052 return -E1000_ERR_CONFIG;
1053 }
1054
1055 ew32(CTRL, ctrl);
1056
1057 return 0;
1058}
1059
1060/**
1061 * e1000e_config_fc_after_link_up - Configures flow control after link
1062 * @hw: pointer to the HW structure
1063 *
1064 * Checks the status of auto-negotiation after link up to ensure that the
1065 * speed and duplex were not forced. If the link needed to be forced, then
1066 * flow control needs to be forced also. If auto-negotiation is enabled
1067 * and did not fail, then we configure flow control based on our link
1068 * partner.
1069 **/
1070s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1071{
1072 struct e1000_mac_info *mac = &hw->mac;
1073 s32 ret_val = 0;
1074 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1075 u16 speed, duplex;
1076
Bruce Allanad680762008-03-28 09:15:03 -07001077 /*
1078 * Check for the case where we have fiber media and auto-neg failed
Auke Kokbc7f75f2007-09-17 12:30:59 -07001079 * so we had to force link. In this case, we need to force the
1080 * configuration of the MAC to match the "fc" parameter.
1081 */
1082 if (mac->autoneg_failed) {
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001083 if (hw->phy.media_type == e1000_media_type_fiber ||
1084 hw->phy.media_type == e1000_media_type_internal_serdes)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001085 ret_val = e1000e_force_mac_fc(hw);
1086 } else {
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001087 if (hw->phy.media_type == e1000_media_type_copper)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001088 ret_val = e1000e_force_mac_fc(hw);
1089 }
1090
1091 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001092 e_dbg("Error forcing flow control settings\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001093 return ret_val;
1094 }
1095
Bruce Allanad680762008-03-28 09:15:03 -07001096 /*
1097 * Check for the case where we have copper media and auto-neg is
Auke Kokbc7f75f2007-09-17 12:30:59 -07001098 * enabled. In this case, we need to check and see if Auto-Neg
1099 * has completed, and if so, how the PHY and link partner has
1100 * flow control configured.
1101 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001102 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
Bruce Allanad680762008-03-28 09:15:03 -07001103 /*
1104 * Read the MII Status Register and check to see if AutoNeg
Auke Kokbc7f75f2007-09-17 12:30:59 -07001105 * has completed. We read this twice because this reg has
1106 * some "sticky" (latched) bits.
1107 */
1108 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1109 if (ret_val)
1110 return ret_val;
1111 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1112 if (ret_val)
1113 return ret_val;
1114
1115 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001116 e_dbg("Copper PHY and Auto Neg "
Auke Kokbc7f75f2007-09-17 12:30:59 -07001117 "has not completed.\n");
1118 return ret_val;
1119 }
1120
Bruce Allanad680762008-03-28 09:15:03 -07001121 /*
1122 * The AutoNeg process has completed, so we now need to
Auke Kokbc7f75f2007-09-17 12:30:59 -07001123 * read both the Auto Negotiation Advertisement
1124 * Register (Address 4) and the Auto_Negotiation Base
1125 * Page Ability Register (Address 5) to determine how
1126 * flow control was negotiated.
1127 */
1128 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1129 if (ret_val)
1130 return ret_val;
1131 ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1132 if (ret_val)
1133 return ret_val;
1134
Bruce Allanad680762008-03-28 09:15:03 -07001135 /*
1136 * Two bits in the Auto Negotiation Advertisement Register
Auke Kokbc7f75f2007-09-17 12:30:59 -07001137 * (Address 4) and two bits in the Auto Negotiation Base
1138 * Page Ability Register (Address 5) determine flow control
1139 * for both the PHY and the link partner. The following
1140 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1141 * 1999, describes these PAUSE resolution bits and how flow
1142 * control is determined based upon these settings.
1143 * NOTE: DC = Don't Care
1144 *
1145 * LOCAL DEVICE | LINK PARTNER
1146 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1147 *-------|---------|-------|---------|--------------------
1148 * 0 | 0 | DC | DC | e1000_fc_none
1149 * 0 | 1 | 0 | DC | e1000_fc_none
1150 * 0 | 1 | 1 | 0 | e1000_fc_none
1151 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1152 * 1 | 0 | 0 | DC | e1000_fc_none
1153 * 1 | DC | 1 | DC | e1000_fc_full
1154 * 1 | 1 | 0 | 0 | e1000_fc_none
1155 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1156 *
Bruce Allanad680762008-03-28 09:15:03 -07001157 * Are both PAUSE bits set to 1? If so, this implies
Auke Kokbc7f75f2007-09-17 12:30:59 -07001158 * Symmetric Flow Control is enabled at both ends. The
1159 * ASM_DIR bits are irrelevant per the spec.
1160 *
1161 * For Symmetric Flow Control:
1162 *
1163 * LOCAL DEVICE | LINK PARTNER
1164 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1165 *-------|---------|-------|---------|--------------------
1166 * 1 | DC | 1 | DC | E1000_fc_full
1167 *
1168 */
1169 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1170 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
Bruce Allanad680762008-03-28 09:15:03 -07001171 /*
1172 * Now we need to check if the user selected Rx ONLY
Auke Kokbc7f75f2007-09-17 12:30:59 -07001173 * of pause frames. In this case, we had to advertise
Bruce Allanad680762008-03-28 09:15:03 -07001174 * FULL flow control because we could not advertise Rx
Auke Kokbc7f75f2007-09-17 12:30:59 -07001175 * ONLY. Hence, we must now check to see if we need to
1176 * turn OFF the TRANSMISSION of PAUSE frames.
1177 */
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08001178 if (hw->fc.requested_mode == e1000_fc_full) {
1179 hw->fc.current_mode = e1000_fc_full;
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001180 e_dbg("Flow Control = FULL.\r\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001181 } else {
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08001182 hw->fc.current_mode = e1000_fc_rx_pause;
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001183 e_dbg("Flow Control = "
Auke Kokbc7f75f2007-09-17 12:30:59 -07001184 "RX PAUSE frames only.\r\n");
1185 }
1186 }
Bruce Allanad680762008-03-28 09:15:03 -07001187 /*
1188 * For receiving PAUSE frames ONLY.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001189 *
1190 * LOCAL DEVICE | LINK PARTNER
1191 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1192 *-------|---------|-------|---------|--------------------
1193 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
Auke Kokbc7f75f2007-09-17 12:30:59 -07001194 */
1195 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1196 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1197 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1198 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08001199 hw->fc.current_mode = e1000_fc_tx_pause;
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001200 e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001201 }
Bruce Allanad680762008-03-28 09:15:03 -07001202 /*
1203 * For transmitting PAUSE frames ONLY.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001204 *
1205 * LOCAL DEVICE | LINK PARTNER
1206 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1207 *-------|---------|-------|---------|--------------------
1208 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
Auke Kokbc7f75f2007-09-17 12:30:59 -07001209 */
1210 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1211 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1212 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1213 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08001214 hw->fc.current_mode = e1000_fc_rx_pause;
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001215 e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
Jesse Brandeburgde92d842008-02-21 15:11:02 -08001216 } else {
1217 /*
1218 * Per the IEEE spec, at this point flow control
1219 * should be disabled.
1220 */
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08001221 hw->fc.current_mode = e1000_fc_none;
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001222 e_dbg("Flow Control = NONE.\r\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001223 }
1224
Bruce Allanad680762008-03-28 09:15:03 -07001225 /*
1226 * Now we need to do one last check... If we auto-
Auke Kokbc7f75f2007-09-17 12:30:59 -07001227 * negotiated to HALF DUPLEX, flow control should not be
1228 * enabled per IEEE 802.3 spec.
1229 */
1230 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1231 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001232 e_dbg("Error getting link speed and duplex\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001233 return ret_val;
1234 }
1235
1236 if (duplex == HALF_DUPLEX)
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08001237 hw->fc.current_mode = e1000_fc_none;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001238
Bruce Allanad680762008-03-28 09:15:03 -07001239 /*
1240 * Now we call a subroutine to actually force the MAC
Auke Kokbc7f75f2007-09-17 12:30:59 -07001241 * controller to use the correct flow control settings.
1242 */
1243 ret_val = e1000e_force_mac_fc(hw);
1244 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001245 e_dbg("Error forcing flow control settings\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001246 return ret_val;
1247 }
1248 }
1249
1250 return 0;
1251}
1252
1253/**
Auke Kok489815c2008-02-21 15:11:07 -08001254 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
Auke Kokbc7f75f2007-09-17 12:30:59 -07001255 * @hw: pointer to the HW structure
1256 * @speed: stores the current speed
1257 * @duplex: stores the current duplex
1258 *
1259 * Read the status register for the current speed/duplex and store the current
1260 * speed and duplex for copper connections.
1261 **/
1262s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1263{
1264 u32 status;
1265
1266 status = er32(STATUS);
1267 if (status & E1000_STATUS_SPEED_1000) {
1268 *speed = SPEED_1000;
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001269 e_dbg("1000 Mbs, ");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001270 } else if (status & E1000_STATUS_SPEED_100) {
1271 *speed = SPEED_100;
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001272 e_dbg("100 Mbs, ");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001273 } else {
1274 *speed = SPEED_10;
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001275 e_dbg("10 Mbs, ");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001276 }
1277
1278 if (status & E1000_STATUS_FD) {
1279 *duplex = FULL_DUPLEX;
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001280 e_dbg("Full Duplex\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001281 } else {
1282 *duplex = HALF_DUPLEX;
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001283 e_dbg("Half Duplex\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001284 }
1285
1286 return 0;
1287}
1288
1289/**
Auke Kok489815c2008-02-21 15:11:07 -08001290 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
Auke Kokbc7f75f2007-09-17 12:30:59 -07001291 * @hw: pointer to the HW structure
1292 * @speed: stores the current speed
1293 * @duplex: stores the current duplex
1294 *
1295 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1296 * for fiber/serdes links.
1297 **/
1298s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1299{
1300 *speed = SPEED_1000;
1301 *duplex = FULL_DUPLEX;
1302
1303 return 0;
1304}
1305
1306/**
1307 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1308 * @hw: pointer to the HW structure
1309 *
1310 * Acquire the HW semaphore to access the PHY or NVM
1311 **/
1312s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1313{
1314 u32 swsm;
1315 s32 timeout = hw->nvm.word_size + 1;
1316 s32 i = 0;
1317
1318 /* Get the SW semaphore */
1319 while (i < timeout) {
1320 swsm = er32(SWSM);
1321 if (!(swsm & E1000_SWSM_SMBI))
1322 break;
1323
1324 udelay(50);
1325 i++;
1326 }
1327
1328 if (i == timeout) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001329 e_dbg("Driver can't access device - SMBI bit is set.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001330 return -E1000_ERR_NVM;
1331 }
1332
1333 /* Get the FW semaphore. */
1334 for (i = 0; i < timeout; i++) {
1335 swsm = er32(SWSM);
1336 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1337
1338 /* Semaphore acquired if bit latched */
1339 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1340 break;
1341
1342 udelay(50);
1343 }
1344
1345 if (i == timeout) {
1346 /* Release semaphores */
1347 e1000e_put_hw_semaphore(hw);
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001348 e_dbg("Driver can't access the NVM\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001349 return -E1000_ERR_NVM;
1350 }
1351
1352 return 0;
1353}
1354
1355/**
1356 * e1000e_put_hw_semaphore - Release hardware semaphore
1357 * @hw: pointer to the HW structure
1358 *
1359 * Release hardware semaphore used to access the PHY or NVM
1360 **/
1361void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1362{
1363 u32 swsm;
1364
1365 swsm = er32(SWSM);
1366 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1367 ew32(SWSM, swsm);
1368}
1369
1370/**
1371 * e1000e_get_auto_rd_done - Check for auto read completion
1372 * @hw: pointer to the HW structure
1373 *
1374 * Check EEPROM for Auto Read done bit.
1375 **/
1376s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1377{
1378 s32 i = 0;
1379
1380 while (i < AUTO_READ_DONE_TIMEOUT) {
1381 if (er32(EECD) & E1000_EECD_AUTO_RD)
1382 break;
1383 msleep(1);
1384 i++;
1385 }
1386
1387 if (i == AUTO_READ_DONE_TIMEOUT) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001388 e_dbg("Auto read by HW from NVM has not completed.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001389 return -E1000_ERR_RESET;
1390 }
1391
1392 return 0;
1393}
1394
1395/**
1396 * e1000e_valid_led_default - Verify a valid default LED config
1397 * @hw: pointer to the HW structure
1398 * @data: pointer to the NVM (EEPROM)
1399 *
1400 * Read the EEPROM for the current default LED configuration. If the
1401 * LED configuration is not valid, set to a valid LED configuration.
1402 **/
1403s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1404{
1405 s32 ret_val;
1406
1407 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1408 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001409 e_dbg("NVM Read Error\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001410 return ret_val;
1411 }
1412
1413 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1414 *data = ID_LED_DEFAULT;
1415
1416 return 0;
1417}
1418
1419/**
1420 * e1000e_id_led_init -
1421 * @hw: pointer to the HW structure
1422 *
1423 **/
1424s32 e1000e_id_led_init(struct e1000_hw *hw)
1425{
1426 struct e1000_mac_info *mac = &hw->mac;
1427 s32 ret_val;
1428 const u32 ledctl_mask = 0x000000FF;
1429 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1430 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1431 u16 data, i, temp;
1432 const u16 led_mask = 0x0F;
1433
1434 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1435 if (ret_val)
1436 return ret_val;
1437
1438 mac->ledctl_default = er32(LEDCTL);
1439 mac->ledctl_mode1 = mac->ledctl_default;
1440 mac->ledctl_mode2 = mac->ledctl_default;
1441
1442 for (i = 0; i < 4; i++) {
1443 temp = (data >> (i << 2)) & led_mask;
1444 switch (temp) {
1445 case ID_LED_ON1_DEF2:
1446 case ID_LED_ON1_ON2:
1447 case ID_LED_ON1_OFF2:
1448 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1449 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1450 break;
1451 case ID_LED_OFF1_DEF2:
1452 case ID_LED_OFF1_ON2:
1453 case ID_LED_OFF1_OFF2:
1454 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1455 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1456 break;
1457 default:
1458 /* Do nothing */
1459 break;
1460 }
1461 switch (temp) {
1462 case ID_LED_DEF1_ON2:
1463 case ID_LED_ON1_ON2:
1464 case ID_LED_OFF1_ON2:
1465 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1466 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1467 break;
1468 case ID_LED_DEF1_OFF2:
1469 case ID_LED_ON1_OFF2:
1470 case ID_LED_OFF1_OFF2:
1471 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1472 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1473 break;
1474 default:
1475 /* Do nothing */
1476 break;
1477 }
1478 }
1479
1480 return 0;
1481}
1482
1483/**
Bruce Allana4f58f52009-06-02 11:29:18 +00001484 * e1000e_setup_led_generic - Configures SW controllable LED
1485 * @hw: pointer to the HW structure
1486 *
1487 * This prepares the SW controllable LED for use and saves the current state
1488 * of the LED so it can be later restored.
1489 **/
1490s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1491{
1492 u32 ledctl;
1493
1494 if (hw->mac.ops.setup_led != e1000e_setup_led_generic) {
1495 return -E1000_ERR_CONFIG;
1496 }
1497
1498 if (hw->phy.media_type == e1000_media_type_fiber) {
1499 ledctl = er32(LEDCTL);
1500 hw->mac.ledctl_default = ledctl;
1501 /* Turn off LED0 */
1502 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
1503 E1000_LEDCTL_LED0_BLINK |
1504 E1000_LEDCTL_LED0_MODE_MASK);
1505 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1506 E1000_LEDCTL_LED0_MODE_SHIFT);
1507 ew32(LEDCTL, ledctl);
1508 } else if (hw->phy.media_type == e1000_media_type_copper) {
1509 ew32(LEDCTL, hw->mac.ledctl_mode1);
1510 }
1511
1512 return 0;
1513}
1514
1515/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001516 * e1000e_cleanup_led_generic - Set LED config to default operation
1517 * @hw: pointer to the HW structure
1518 *
1519 * Remove the current LED configuration and set the LED configuration
1520 * to the default value, saved from the EEPROM.
1521 **/
1522s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1523{
1524 ew32(LEDCTL, hw->mac.ledctl_default);
1525 return 0;
1526}
1527
1528/**
1529 * e1000e_blink_led - Blink LED
1530 * @hw: pointer to the HW structure
1531 *
Auke Kok489815c2008-02-21 15:11:07 -08001532 * Blink the LEDs which are set to be on.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001533 **/
1534s32 e1000e_blink_led(struct e1000_hw *hw)
1535{
1536 u32 ledctl_blink = 0;
1537 u32 i;
1538
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001539 if (hw->phy.media_type == e1000_media_type_fiber) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001540 /* always blink LED0 for PCI-E fiber */
1541 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1542 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1543 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001544 /*
1545 * set the blink bit for each LED that's "on" (0x0E)
1546 * in ledctl_mode2
1547 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001548 ledctl_blink = hw->mac.ledctl_mode2;
1549 for (i = 0; i < 4; i++)
1550 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1551 E1000_LEDCTL_MODE_LED_ON)
1552 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1553 (i * 8));
1554 }
1555
1556 ew32(LEDCTL, ledctl_blink);
1557
1558 return 0;
1559}
1560
1561/**
1562 * e1000e_led_on_generic - Turn LED on
1563 * @hw: pointer to the HW structure
1564 *
1565 * Turn LED on.
1566 **/
1567s32 e1000e_led_on_generic(struct e1000_hw *hw)
1568{
1569 u32 ctrl;
1570
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001571 switch (hw->phy.media_type) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001572 case e1000_media_type_fiber:
1573 ctrl = er32(CTRL);
1574 ctrl &= ~E1000_CTRL_SWDPIN0;
1575 ctrl |= E1000_CTRL_SWDPIO0;
1576 ew32(CTRL, ctrl);
1577 break;
1578 case e1000_media_type_copper:
1579 ew32(LEDCTL, hw->mac.ledctl_mode2);
1580 break;
1581 default:
1582 break;
1583 }
1584
1585 return 0;
1586}
1587
1588/**
1589 * e1000e_led_off_generic - Turn LED off
1590 * @hw: pointer to the HW structure
1591 *
1592 * Turn LED off.
1593 **/
1594s32 e1000e_led_off_generic(struct e1000_hw *hw)
1595{
1596 u32 ctrl;
1597
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001598 switch (hw->phy.media_type) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001599 case e1000_media_type_fiber:
1600 ctrl = er32(CTRL);
1601 ctrl |= E1000_CTRL_SWDPIN0;
1602 ctrl |= E1000_CTRL_SWDPIO0;
1603 ew32(CTRL, ctrl);
1604 break;
1605 case e1000_media_type_copper:
1606 ew32(LEDCTL, hw->mac.ledctl_mode1);
1607 break;
1608 default:
1609 break;
1610 }
1611
1612 return 0;
1613}
1614
1615/**
1616 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1617 * @hw: pointer to the HW structure
1618 * @no_snoop: bitmap of snoop events
1619 *
1620 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1621 **/
1622void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1623{
1624 u32 gcr;
1625
1626 if (no_snoop) {
1627 gcr = er32(GCR);
1628 gcr &= ~(PCIE_NO_SNOOP_ALL);
1629 gcr |= no_snoop;
1630 ew32(GCR, gcr);
1631 }
1632}
1633
1634/**
1635 * e1000e_disable_pcie_master - Disables PCI-express master access
1636 * @hw: pointer to the HW structure
1637 *
1638 * Returns 0 if successful, else returns -10
Auke Kok489815c2008-02-21 15:11:07 -08001639 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
Auke Kokbc7f75f2007-09-17 12:30:59 -07001640 * the master requests to be disabled.
1641 *
1642 * Disables PCI-Express master access and verifies there are no pending
1643 * requests.
1644 **/
1645s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1646{
1647 u32 ctrl;
1648 s32 timeout = MASTER_DISABLE_TIMEOUT;
1649
1650 ctrl = er32(CTRL);
1651 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1652 ew32(CTRL, ctrl);
1653
1654 while (timeout) {
1655 if (!(er32(STATUS) &
1656 E1000_STATUS_GIO_MASTER_ENABLE))
1657 break;
1658 udelay(100);
1659 timeout--;
1660 }
1661
1662 if (!timeout) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001663 e_dbg("Master requests are pending.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001664 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1665 }
1666
1667 return 0;
1668}
1669
1670/**
1671 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1672 * @hw: pointer to the HW structure
1673 *
1674 * Reset the Adaptive Interframe Spacing throttle to default values.
1675 **/
1676void e1000e_reset_adaptive(struct e1000_hw *hw)
1677{
1678 struct e1000_mac_info *mac = &hw->mac;
1679
Bruce Allanf464ba82010-01-07 16:31:35 +00001680 if (!mac->adaptive_ifs) {
1681 e_dbg("Not in Adaptive IFS mode!\n");
1682 goto out;
1683 }
1684
Auke Kokbc7f75f2007-09-17 12:30:59 -07001685 mac->current_ifs_val = 0;
1686 mac->ifs_min_val = IFS_MIN;
1687 mac->ifs_max_val = IFS_MAX;
1688 mac->ifs_step_size = IFS_STEP;
1689 mac->ifs_ratio = IFS_RATIO;
1690
Bruce Allan564ea9b2009-11-20 23:26:44 +00001691 mac->in_ifs_mode = false;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001692 ew32(AIT, 0);
Bruce Allanf464ba82010-01-07 16:31:35 +00001693out:
1694 return;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001695}
1696
1697/**
1698 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1699 * @hw: pointer to the HW structure
1700 *
1701 * Update the Adaptive Interframe Spacing Throttle value based on the
1702 * time between transmitted packets and time between collisions.
1703 **/
1704void e1000e_update_adaptive(struct e1000_hw *hw)
1705{
1706 struct e1000_mac_info *mac = &hw->mac;
1707
Bruce Allanf464ba82010-01-07 16:31:35 +00001708 if (!mac->adaptive_ifs) {
1709 e_dbg("Not in Adaptive IFS mode!\n");
1710 goto out;
1711 }
1712
Auke Kokbc7f75f2007-09-17 12:30:59 -07001713 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1714 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
Bruce Allan564ea9b2009-11-20 23:26:44 +00001715 mac->in_ifs_mode = true;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001716 if (mac->current_ifs_val < mac->ifs_max_val) {
1717 if (!mac->current_ifs_val)
1718 mac->current_ifs_val = mac->ifs_min_val;
1719 else
1720 mac->current_ifs_val +=
1721 mac->ifs_step_size;
Bruce Allanad680762008-03-28 09:15:03 -07001722 ew32(AIT, mac->current_ifs_val);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001723 }
1724 }
1725 } else {
1726 if (mac->in_ifs_mode &&
1727 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1728 mac->current_ifs_val = 0;
Bruce Allan564ea9b2009-11-20 23:26:44 +00001729 mac->in_ifs_mode = false;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001730 ew32(AIT, 0);
1731 }
1732 }
Bruce Allanf464ba82010-01-07 16:31:35 +00001733out:
1734 return;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001735}
1736
1737/**
1738 * e1000_raise_eec_clk - Raise EEPROM clock
1739 * @hw: pointer to the HW structure
1740 * @eecd: pointer to the EEPROM
1741 *
1742 * Enable/Raise the EEPROM clock bit.
1743 **/
1744static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
1745{
1746 *eecd = *eecd | E1000_EECD_SK;
1747 ew32(EECD, *eecd);
1748 e1e_flush();
1749 udelay(hw->nvm.delay_usec);
1750}
1751
1752/**
1753 * e1000_lower_eec_clk - Lower EEPROM clock
1754 * @hw: pointer to the HW structure
1755 * @eecd: pointer to the EEPROM
1756 *
1757 * Clear/Lower the EEPROM clock bit.
1758 **/
1759static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
1760{
1761 *eecd = *eecd & ~E1000_EECD_SK;
1762 ew32(EECD, *eecd);
1763 e1e_flush();
1764 udelay(hw->nvm.delay_usec);
1765}
1766
1767/**
1768 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1769 * @hw: pointer to the HW structure
1770 * @data: data to send to the EEPROM
1771 * @count: number of bits to shift out
1772 *
1773 * We need to shift 'count' bits out to the EEPROM. So, the value in the
1774 * "data" parameter will be shifted out to the EEPROM one bit at a time.
1775 * In order to do this, "data" must be broken down into bits.
1776 **/
1777static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
1778{
1779 struct e1000_nvm_info *nvm = &hw->nvm;
1780 u32 eecd = er32(EECD);
1781 u32 mask;
1782
1783 mask = 0x01 << (count - 1);
1784 if (nvm->type == e1000_nvm_eeprom_spi)
1785 eecd |= E1000_EECD_DO;
1786
1787 do {
1788 eecd &= ~E1000_EECD_DI;
1789
1790 if (data & mask)
1791 eecd |= E1000_EECD_DI;
1792
1793 ew32(EECD, eecd);
1794 e1e_flush();
1795
1796 udelay(nvm->delay_usec);
1797
1798 e1000_raise_eec_clk(hw, &eecd);
1799 e1000_lower_eec_clk(hw, &eecd);
1800
1801 mask >>= 1;
1802 } while (mask);
1803
1804 eecd &= ~E1000_EECD_DI;
1805 ew32(EECD, eecd);
1806}
1807
1808/**
1809 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1810 * @hw: pointer to the HW structure
1811 * @count: number of bits to shift in
1812 *
1813 * In order to read a register from the EEPROM, we need to shift 'count' bits
1814 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
1815 * the EEPROM (setting the SK bit), and then reading the value of the data out
1816 * "DO" bit. During this "shifting in" process the data in "DI" bit should
1817 * always be clear.
1818 **/
1819static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
1820{
1821 u32 eecd;
1822 u32 i;
1823 u16 data;
1824
1825 eecd = er32(EECD);
1826
1827 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
1828 data = 0;
1829
1830 for (i = 0; i < count; i++) {
1831 data <<= 1;
1832 e1000_raise_eec_clk(hw, &eecd);
1833
1834 eecd = er32(EECD);
1835
1836 eecd &= ~E1000_EECD_DI;
1837 if (eecd & E1000_EECD_DO)
1838 data |= 1;
1839
1840 e1000_lower_eec_clk(hw, &eecd);
1841 }
1842
1843 return data;
1844}
1845
1846/**
1847 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1848 * @hw: pointer to the HW structure
1849 * @ee_reg: EEPROM flag for polling
1850 *
1851 * Polls the EEPROM status bit for either read or write completion based
1852 * upon the value of 'ee_reg'.
1853 **/
1854s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
1855{
1856 u32 attempts = 100000;
1857 u32 i, reg = 0;
1858
1859 for (i = 0; i < attempts; i++) {
1860 if (ee_reg == E1000_NVM_POLL_READ)
1861 reg = er32(EERD);
1862 else
1863 reg = er32(EEWR);
1864
1865 if (reg & E1000_NVM_RW_REG_DONE)
1866 return 0;
1867
1868 udelay(5);
1869 }
1870
1871 return -E1000_ERR_NVM;
1872}
1873
1874/**
1875 * e1000e_acquire_nvm - Generic request for access to EEPROM
1876 * @hw: pointer to the HW structure
1877 *
1878 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1879 * Return successful if access grant bit set, else clear the request for
1880 * EEPROM access and return -E1000_ERR_NVM (-1).
1881 **/
1882s32 e1000e_acquire_nvm(struct e1000_hw *hw)
1883{
1884 u32 eecd = er32(EECD);
1885 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
1886
1887 ew32(EECD, eecd | E1000_EECD_REQ);
1888 eecd = er32(EECD);
1889
1890 while (timeout) {
1891 if (eecd & E1000_EECD_GNT)
1892 break;
1893 udelay(5);
1894 eecd = er32(EECD);
1895 timeout--;
1896 }
1897
1898 if (!timeout) {
1899 eecd &= ~E1000_EECD_REQ;
1900 ew32(EECD, eecd);
Bruce Allan3bb99fe2009-11-20 23:25:07 +00001901 e_dbg("Could not acquire NVM grant\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001902 return -E1000_ERR_NVM;
1903 }
1904
1905 return 0;
1906}
1907
1908/**
1909 * e1000_standby_nvm - Return EEPROM to standby state
1910 * @hw: pointer to the HW structure
1911 *
1912 * Return the EEPROM to a standby state.
1913 **/
1914static void e1000_standby_nvm(struct e1000_hw *hw)
1915{
1916 struct e1000_nvm_info *nvm = &hw->nvm;
1917 u32 eecd = er32(EECD);
1918
1919 if (nvm->type == e1000_nvm_eeprom_spi) {
1920 /* Toggle CS to flush commands */
1921 eecd |= E1000_EECD_CS;
1922 ew32(EECD, eecd);
1923 e1e_flush();
1924 udelay(nvm->delay_usec);
1925 eecd &= ~E1000_EECD_CS;
1926 ew32(EECD, eecd);
1927 e1e_flush();
1928 udelay(nvm->delay_usec);
1929 }
1930}
1931
1932/**
1933 * e1000_stop_nvm - Terminate EEPROM command
1934 * @hw: pointer to the HW structure
1935 *
1936 * Terminates the current command by inverting the EEPROM's chip select pin.
1937 **/
1938static void e1000_stop_nvm(struct e1000_hw *hw)
1939{
1940 u32 eecd;
1941
1942 eecd = er32(EECD);
1943 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
1944 /* Pull CS high */
1945 eecd |= E1000_EECD_CS;
1946 e1000_lower_eec_clk(hw, &eecd);
1947 }
1948}
1949
1950/**
1951 * e1000e_release_nvm - Release exclusive access to EEPROM
1952 * @hw: pointer to the HW structure
1953 *
1954 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
1955 **/
1956void e1000e_release_nvm(struct e1000_hw *hw)
1957{
1958 u32 eecd;
1959
1960 e1000_stop_nvm(hw);
1961
1962 eecd = er32(EECD);
1963 eecd &= ~E1000_EECD_REQ;
1964 ew32(EECD, eecd);
1965}
1966
1967/**
1968 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1969 * @hw: pointer to the HW structure
1970 *
1971 * Setups the EEPROM for reading and writing.
1972 **/
1973static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
1974{
1975 struct e1000_nvm_info *nvm = &hw->nvm;
1976 u32 eecd = er32(EECD);
1977 u16 timeout = 0;
1978 u8 spi_stat_reg;
1979
1980 if (nvm->type == e1000_nvm_eeprom_spi) {
1981 /* Clear SK and CS */
1982 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
1983 ew32(EECD, eecd);
1984 udelay(1);
1985 timeout = NVM_MAX_RETRY_SPI;
1986
Bruce Allanad680762008-03-28 09:15:03 -07001987 /*
1988 * Read "Status Register" repeatedly until the LSB is cleared.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001989 * The EEPROM will signal that the command has been completed
1990 * by clearing bit 0 of the internal status register. If it's
Bruce Allanad680762008-03-28 09:15:03 -07001991 * not cleared within 'timeout', then error out.
1992 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001993 while (timeout) {
1994 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
1995 hw->nvm.opcode_bits);
1996 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
1997 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
1998 break;
1999
2000 udelay(5);
2001 e1000_standby_nvm(hw);
2002 timeout--;
2003 }
2004
2005 if (!timeout) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00002006 e_dbg("SPI NVM Status error\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002007 return -E1000_ERR_NVM;
2008 }
2009 }
2010
2011 return 0;
2012}
2013
2014/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002015 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
2016 * @hw: pointer to the HW structure
2017 * @offset: offset of word in the EEPROM to read
2018 * @words: number of words to read
2019 * @data: word read from the EEPROM
2020 *
2021 * Reads a 16 bit word from the EEPROM using the EERD register.
2022 **/
2023s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
2024{
2025 struct e1000_nvm_info *nvm = &hw->nvm;
2026 u32 i, eerd = 0;
2027 s32 ret_val = 0;
2028
Bruce Allanad680762008-03-28 09:15:03 -07002029 /*
2030 * A check for invalid values: offset too large, too many words,
2031 * too many words for the offset, and not enough words.
2032 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002033 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
2034 (words == 0)) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00002035 e_dbg("nvm parameter(s) out of bounds\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002036 return -E1000_ERR_NVM;
2037 }
2038
2039 for (i = 0; i < words; i++) {
2040 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
2041 E1000_NVM_RW_REG_START;
2042
2043 ew32(EERD, eerd);
2044 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
2045 if (ret_val)
2046 break;
2047
Bruce Allanad680762008-03-28 09:15:03 -07002048 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002049 }
2050
2051 return ret_val;
2052}
2053
2054/**
2055 * e1000e_write_nvm_spi - Write to EEPROM using SPI
2056 * @hw: pointer to the HW structure
2057 * @offset: offset within the EEPROM to be written to
2058 * @words: number of words to write
2059 * @data: 16 bit word(s) to be written to the EEPROM
2060 *
2061 * Writes data to EEPROM at offset using SPI interface.
2062 *
2063 * If e1000e_update_nvm_checksum is not called after this function , the
Auke Kok489815c2008-02-21 15:11:07 -08002064 * EEPROM will most likely contain an invalid checksum.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002065 **/
2066s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
2067{
2068 struct e1000_nvm_info *nvm = &hw->nvm;
2069 s32 ret_val;
2070 u16 widx = 0;
2071
Bruce Allanad680762008-03-28 09:15:03 -07002072 /*
2073 * A check for invalid values: offset too large, too many words,
2074 * and not enough words.
2075 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002076 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
2077 (words == 0)) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00002078 e_dbg("nvm parameter(s) out of bounds\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002079 return -E1000_ERR_NVM;
2080 }
2081
Bruce Allan94d81862009-11-20 23:25:26 +00002082 ret_val = nvm->ops.acquire(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002083 if (ret_val)
2084 return ret_val;
2085
2086 msleep(10);
2087
2088 while (widx < words) {
2089 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
2090
2091 ret_val = e1000_ready_nvm_eeprom(hw);
2092 if (ret_val) {
Bruce Allan94d81862009-11-20 23:25:26 +00002093 nvm->ops.release(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002094 return ret_val;
2095 }
2096
2097 e1000_standby_nvm(hw);
2098
2099 /* Send the WRITE ENABLE command (8 bit opcode) */
2100 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
2101 nvm->opcode_bits);
2102
2103 e1000_standby_nvm(hw);
2104
Bruce Allanad680762008-03-28 09:15:03 -07002105 /*
2106 * Some SPI eeproms use the 8th address bit embedded in the
2107 * opcode
2108 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002109 if ((nvm->address_bits == 8) && (offset >= 128))
2110 write_opcode |= NVM_A8_OPCODE_SPI;
2111
2112 /* Send the Write command (8-bit opcode + addr) */
2113 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
2114 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
2115 nvm->address_bits);
2116
2117 /* Loop to allow for up to whole page write of eeprom */
2118 while (widx < words) {
2119 u16 word_out = data[widx];
2120 word_out = (word_out >> 8) | (word_out << 8);
2121 e1000_shift_out_eec_bits(hw, word_out, 16);
2122 widx++;
2123
2124 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
2125 e1000_standby_nvm(hw);
2126 break;
2127 }
2128 }
2129 }
2130
2131 msleep(10);
Bruce Allan94d81862009-11-20 23:25:26 +00002132 nvm->ops.release(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002133 return 0;
2134}
2135
2136/**
Bruce Allan608f8a02010-01-13 02:04:58 +00002137 * e1000_read_mac_addr_generic - Read device MAC address
Auke Kokbc7f75f2007-09-17 12:30:59 -07002138 * @hw: pointer to the HW structure
2139 *
2140 * Reads the device MAC address from the EEPROM and stores the value.
2141 * Since devices with two ports use the same EEPROM, we increment the
2142 * last bit in the MAC address for the second port.
2143 **/
Bruce Allan608f8a02010-01-13 02:04:58 +00002144s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
Auke Kokbc7f75f2007-09-17 12:30:59 -07002145{
Bruce Allan608f8a02010-01-13 02:04:58 +00002146 u32 rar_high;
2147 u32 rar_low;
2148 u16 i;
Bill Hayes93ca1612007-10-31 15:21:52 -07002149
Bruce Allan608f8a02010-01-13 02:04:58 +00002150 rar_high = er32(RAH(0));
2151 rar_low = er32(RAL(0));
Bill Hayes93ca1612007-10-31 15:21:52 -07002152
Bruce Allan608f8a02010-01-13 02:04:58 +00002153 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
2154 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
Bill Hayes93ca1612007-10-31 15:21:52 -07002155
Bruce Allan608f8a02010-01-13 02:04:58 +00002156 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
2157 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002158
2159 for (i = 0; i < ETH_ALEN; i++)
2160 hw->mac.addr[i] = hw->mac.perm_addr[i];
2161
2162 return 0;
2163}
2164
2165/**
2166 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2167 * @hw: pointer to the HW structure
2168 *
2169 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2170 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2171 **/
2172s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
2173{
2174 s32 ret_val;
2175 u16 checksum = 0;
2176 u16 i, nvm_data;
2177
2178 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
2179 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2180 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00002181 e_dbg("NVM Read Error\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002182 return ret_val;
2183 }
2184 checksum += nvm_data;
2185 }
2186
2187 if (checksum != (u16) NVM_SUM) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00002188 e_dbg("NVM Checksum Invalid\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002189 return -E1000_ERR_NVM;
2190 }
2191
2192 return 0;
2193}
2194
2195/**
2196 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2197 * @hw: pointer to the HW structure
2198 *
2199 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2200 * up to the checksum. Then calculates the EEPROM checksum and writes the
2201 * value to the EEPROM.
2202 **/
2203s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
2204{
2205 s32 ret_val;
2206 u16 checksum = 0;
2207 u16 i, nvm_data;
2208
2209 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
2210 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2211 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00002212 e_dbg("NVM Read Error while updating checksum.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002213 return ret_val;
2214 }
2215 checksum += nvm_data;
2216 }
2217 checksum = (u16) NVM_SUM - checksum;
2218 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
2219 if (ret_val)
Bruce Allan3bb99fe2009-11-20 23:25:07 +00002220 e_dbg("NVM Write Error while updating checksum.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002221
2222 return ret_val;
2223}
2224
2225/**
2226 * e1000e_reload_nvm - Reloads EEPROM
2227 * @hw: pointer to the HW structure
2228 *
2229 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2230 * extended control register.
2231 **/
2232void e1000e_reload_nvm(struct e1000_hw *hw)
2233{
2234 u32 ctrl_ext;
2235
2236 udelay(10);
2237 ctrl_ext = er32(CTRL_EXT);
2238 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
2239 ew32(CTRL_EXT, ctrl_ext);
2240 e1e_flush();
2241}
2242
2243/**
2244 * e1000_calculate_checksum - Calculate checksum for buffer
2245 * @buffer: pointer to EEPROM
2246 * @length: size of EEPROM to calculate a checksum for
2247 *
2248 * Calculates the checksum for some buffer on a specified length. The
2249 * checksum calculated is returned.
2250 **/
2251static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
2252{
2253 u32 i;
2254 u8 sum = 0;
2255
2256 if (!buffer)
2257 return 0;
2258
2259 for (i = 0; i < length; i++)
2260 sum += buffer[i];
2261
2262 return (u8) (0 - sum);
2263}
2264
2265/**
2266 * e1000_mng_enable_host_if - Checks host interface is enabled
2267 * @hw: pointer to the HW structure
2268 *
2269 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2270 *
Auke Kok489815c2008-02-21 15:11:07 -08002271 * This function checks whether the HOST IF is enabled for command operation
Auke Kokbc7f75f2007-09-17 12:30:59 -07002272 * and also checks whether the previous command is completed. It busy waits
2273 * in case of previous command is not completed.
2274 **/
2275static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
2276{
2277 u32 hicr;
2278 u8 i;
2279
2280 /* Check that the host interface is enabled. */
2281 hicr = er32(HICR);
2282 if ((hicr & E1000_HICR_EN) == 0) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00002283 e_dbg("E1000_HOST_EN bit disabled.\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002284 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2285 }
2286 /* check the previous command is completed */
2287 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
2288 hicr = er32(HICR);
2289 if (!(hicr & E1000_HICR_C))
2290 break;
2291 mdelay(1);
2292 }
2293
2294 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00002295 e_dbg("Previous command timeout failed .\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002296 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2297 }
2298
2299 return 0;
2300}
2301
2302/**
Bruce Allan4662e822008-08-26 18:37:06 -07002303 * e1000e_check_mng_mode_generic - check management mode
Auke Kokbc7f75f2007-09-17 12:30:59 -07002304 * @hw: pointer to the HW structure
2305 *
2306 * Reads the firmware semaphore register and returns true (>0) if
2307 * manageability is enabled, else false (0).
2308 **/
Bruce Allan4662e822008-08-26 18:37:06 -07002309bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
Auke Kokbc7f75f2007-09-17 12:30:59 -07002310{
2311 u32 fwsm = er32(FWSM);
2312
Bruce Allan4662e822008-08-26 18:37:06 -07002313 return (fwsm & E1000_FWSM_MODE_MASK) ==
2314 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002315}
2316
2317/**
Bruce Allanad680762008-03-28 09:15:03 -07002318 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
Auke Kokbc7f75f2007-09-17 12:30:59 -07002319 * @hw: pointer to the HW structure
2320 *
2321 * Enables packet filtering on transmit packets if manageability is enabled
2322 * and host interface is enabled.
2323 **/
2324bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
2325{
2326 struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
2327 u32 *buffer = (u32 *)&hw->mng_cookie;
2328 u32 offset;
2329 s32 ret_val, hdr_csum, csum;
2330 u8 i, len;
2331
Bruce Allanca777f92010-01-07 16:31:54 +00002332 hw->mac.tx_pkt_filtering = true;
2333
Auke Kokbc7f75f2007-09-17 12:30:59 -07002334 /* No manageability, no filtering */
2335 if (!e1000e_check_mng_mode(hw)) {
Bruce Allan564ea9b2009-11-20 23:26:44 +00002336 hw->mac.tx_pkt_filtering = false;
Bruce Allanca777f92010-01-07 16:31:54 +00002337 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002338 }
2339
Bruce Allanad680762008-03-28 09:15:03 -07002340 /*
2341 * If we can't read from the host interface for whatever
Auke Kokbc7f75f2007-09-17 12:30:59 -07002342 * reason, disable filtering.
2343 */
2344 ret_val = e1000_mng_enable_host_if(hw);
Bruce Allanca777f92010-01-07 16:31:54 +00002345 if (ret_val) {
Bruce Allan564ea9b2009-11-20 23:26:44 +00002346 hw->mac.tx_pkt_filtering = false;
Bruce Allanca777f92010-01-07 16:31:54 +00002347 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002348 }
2349
2350 /* Read in the header. Length and offset are in dwords. */
2351 len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
2352 offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
2353 for (i = 0; i < len; i++)
2354 *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
2355 hdr_csum = hdr->checksum;
2356 hdr->checksum = 0;
2357 csum = e1000_calculate_checksum((u8 *)hdr,
2358 E1000_MNG_DHCP_COOKIE_LENGTH);
Bruce Allanad680762008-03-28 09:15:03 -07002359 /*
2360 * If either the checksums or signature don't match, then
Auke Kokbc7f75f2007-09-17 12:30:59 -07002361 * the cookie area isn't considered valid, in which case we
2362 * take the safe route of assuming Tx filtering is enabled.
2363 */
2364 if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
Bruce Allan564ea9b2009-11-20 23:26:44 +00002365 hw->mac.tx_pkt_filtering = true;
Bruce Allanca777f92010-01-07 16:31:54 +00002366 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002367 }
2368
2369 /* Cookie area is valid, make the final check for filtering. */
2370 if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
Bruce Allan564ea9b2009-11-20 23:26:44 +00002371 hw->mac.tx_pkt_filtering = false;
Bruce Allanca777f92010-01-07 16:31:54 +00002372 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002373 }
2374
Bruce Allanca777f92010-01-07 16:31:54 +00002375out:
2376 return hw->mac.tx_pkt_filtering;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002377}
2378
2379/**
2380 * e1000_mng_write_cmd_header - Writes manageability command header
2381 * @hw: pointer to the HW structure
2382 * @hdr: pointer to the host interface command header
2383 *
2384 * Writes the command header after does the checksum calculation.
2385 **/
2386static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
2387 struct e1000_host_mng_command_header *hdr)
2388{
2389 u16 i, length = sizeof(struct e1000_host_mng_command_header);
2390
2391 /* Write the whole command header structure with new checksum. */
2392
2393 hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
2394
2395 length >>= 2;
2396 /* Write the relevant command block into the ram area. */
2397 for (i = 0; i < length; i++) {
2398 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
2399 *((u32 *) hdr + i));
2400 e1e_flush();
2401 }
2402
2403 return 0;
2404}
2405
2406/**
Bruce Allan5ff5b662009-12-01 15:51:11 +00002407 * e1000_mng_host_if_write - Write to the manageability host interface
Auke Kokbc7f75f2007-09-17 12:30:59 -07002408 * @hw: pointer to the HW structure
2409 * @buffer: pointer to the host interface buffer
2410 * @length: size of the buffer
2411 * @offset: location in the buffer to write to
2412 * @sum: sum of the data (not checksum)
2413 *
2414 * This function writes the buffer content at the offset given on the host if.
2415 * It also does alignment considerations to do the writes in most efficient
2416 * way. Also fills up the sum of the buffer in *buffer parameter.
2417 **/
2418static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
2419 u16 length, u16 offset, u8 *sum)
2420{
2421 u8 *tmp;
2422 u8 *bufptr = buffer;
2423 u32 data = 0;
2424 u16 remaining, i, j, prev_bytes;
2425
2426 /* sum = only sum of the data and it is not checksum */
2427
2428 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
2429 return -E1000_ERR_PARAM;
2430
2431 tmp = (u8 *)&data;
2432 prev_bytes = offset & 0x3;
2433 offset >>= 2;
2434
2435 if (prev_bytes) {
2436 data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
2437 for (j = prev_bytes; j < sizeof(u32); j++) {
2438 *(tmp + j) = *bufptr++;
2439 *sum += *(tmp + j);
2440 }
2441 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
2442 length -= j - prev_bytes;
2443 offset++;
2444 }
2445
2446 remaining = length & 0x3;
2447 length -= remaining;
2448
2449 /* Calculate length in DWORDs */
2450 length >>= 2;
2451
Bruce Allanad680762008-03-28 09:15:03 -07002452 /*
2453 * The device driver writes the relevant command block into the
2454 * ram area.
2455 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002456 for (i = 0; i < length; i++) {
2457 for (j = 0; j < sizeof(u32); j++) {
2458 *(tmp + j) = *bufptr++;
2459 *sum += *(tmp + j);
2460 }
2461
2462 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2463 }
2464 if (remaining) {
2465 for (j = 0; j < sizeof(u32); j++) {
2466 if (j < remaining)
2467 *(tmp + j) = *bufptr++;
2468 else
2469 *(tmp + j) = 0;
2470
2471 *sum += *(tmp + j);
2472 }
2473 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2474 }
2475
2476 return 0;
2477}
2478
2479/**
2480 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2481 * @hw: pointer to the HW structure
2482 * @buffer: pointer to the host interface
2483 * @length: size of the buffer
2484 *
2485 * Writes the DHCP information to the host interface.
2486 **/
2487s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
2488{
2489 struct e1000_host_mng_command_header hdr;
2490 s32 ret_val;
2491 u32 hicr;
2492
2493 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
2494 hdr.command_length = length;
2495 hdr.reserved1 = 0;
2496 hdr.reserved2 = 0;
2497 hdr.checksum = 0;
2498
2499 /* Enable the host interface */
2500 ret_val = e1000_mng_enable_host_if(hw);
2501 if (ret_val)
2502 return ret_val;
2503
2504 /* Populate the host interface with the contents of "buffer". */
2505 ret_val = e1000_mng_host_if_write(hw, buffer, length,
2506 sizeof(hdr), &(hdr.checksum));
2507 if (ret_val)
2508 return ret_val;
2509
2510 /* Write the manageability command header */
2511 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
2512 if (ret_val)
2513 return ret_val;
2514
2515 /* Tell the ARC a new command is pending. */
2516 hicr = er32(HICR);
2517 ew32(HICR, hicr | E1000_HICR_C);
2518
2519 return 0;
2520}
2521
2522/**
2523 * e1000e_enable_mng_pass_thru - Enable processing of ARP's
2524 * @hw: pointer to the HW structure
2525 *
2526 * Verifies the hardware needs to allow ARPs to be processed by the host.
2527 **/
2528bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
2529{
2530 u32 manc;
2531 u32 fwsm, factps;
Bruce Allan564ea9b2009-11-20 23:26:44 +00002532 bool ret_val = false;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002533
2534 manc = er32(MANC);
2535
2536 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
2537 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
2538 return ret_val;
2539
2540 if (hw->mac.arc_subsystem_valid) {
2541 fwsm = er32(FWSM);
2542 factps = er32(FACTPS);
2543
2544 if (!(factps & E1000_FACTPS_MNGCG) &&
2545 ((fwsm & E1000_FWSM_MODE_MASK) ==
2546 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
Bruce Allan564ea9b2009-11-20 23:26:44 +00002547 ret_val = true;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002548 return ret_val;
2549 }
2550 } else {
2551 if ((manc & E1000_MANC_SMBUS_EN) &&
2552 !(manc & E1000_MANC_ASF_EN)) {
Bruce Allan564ea9b2009-11-20 23:26:44 +00002553 ret_val = true;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002554 return ret_val;
2555 }
2556 }
2557
2558 return ret_val;
2559}
2560
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07002561s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
Auke Kokbc7f75f2007-09-17 12:30:59 -07002562{
2563 s32 ret_val;
2564 u16 nvm_data;
2565
2566 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
2567 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00002568 e_dbg("NVM Read Error\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002569 return ret_val;
2570 }
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07002571 *pba_num = (u32)(nvm_data << 16);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002572
2573 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
2574 if (ret_val) {
Bruce Allan3bb99fe2009-11-20 23:25:07 +00002575 e_dbg("NVM Read Error\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002576 return ret_val;
2577 }
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07002578 *pba_num |= nvm_data;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002579
2580 return 0;
2581}