blob: 9d9b4377a6f2f4b91bc3228f4575ad65d371b737 [file] [log] [blame]
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001/*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
25 */
26
27/*
28 * Set enviroment defines for rt2x00.h
29 */
30#define DRV_NAME "rt2500pci"
31
32#include <linux/delay.h>
33#include <linux/etherdevice.h>
34#include <linux/init.h>
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/eeprom_93cx6.h>
39
40#include "rt2x00.h"
41#include "rt2x00pci.h"
42#include "rt2500pci.h"
43
44/*
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00pci_register_read and rt2x00pci_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 */
57static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58{
59 u32 reg;
60 unsigned int i;
61
62 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65 break;
66 udelay(REGISTER_BUSY_DELAY);
67 }
68
69 return reg;
70}
71
72static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73 const unsigned int word, const u8 value)
74{
75 u32 reg;
76
77 /*
78 * Wait until the BBP becomes ready.
79 */
80 reg = rt2500pci_bbp_check(rt2x00dev);
81 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83 return;
84 }
85
86 /*
87 * Write the data into the BBP.
88 */
89 reg = 0;
90 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96}
97
98static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99 const unsigned int word, u8 *value)
100{
101 u32 reg;
102
103 /*
104 * Wait until the BBP becomes ready.
105 */
106 reg = rt2500pci_bbp_check(rt2x00dev);
107 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109 return;
110 }
111
112 /*
113 * Write the request into the BBP.
114 */
115 reg = 0;
116 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122 /*
123 * Wait until the BBP becomes ready.
124 */
125 reg = rt2500pci_bbp_check(rt2x00dev);
126 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128 *value = 0xff;
129 return;
130 }
131
132 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133}
134
135static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136 const unsigned int word, const u32 value)
137{
138 u32 reg;
139 unsigned int i;
140
141 if (!word)
142 return;
143
144 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147 goto rf_write;
148 udelay(REGISTER_BUSY_DELAY);
149 }
150
151 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152 return;
153
154rf_write:
155 reg = 0;
156 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162 rt2x00_rf_write(rt2x00dev, word, value);
163}
164
165static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166{
167 struct rt2x00_dev *rt2x00dev = eeprom->data;
168 u32 reg;
169
170 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174 eeprom->reg_data_clock =
175 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176 eeprom->reg_chip_select =
177 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178}
179
180static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181{
182 struct rt2x00_dev *rt2x00dev = eeprom->data;
183 u32 reg = 0;
184
185 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188 !!eeprom->reg_data_clock);
189 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190 !!eeprom->reg_chip_select);
191
192 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193}
194
195#ifdef CONFIG_RT2X00_LIB_DEBUGFS
196#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199 const unsigned int word, u32 *data)
200{
201 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202}
203
204static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205 const unsigned int word, u32 data)
206{
207 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208}
209
210static const struct rt2x00debug rt2500pci_rt2x00debug = {
211 .owner = THIS_MODULE,
212 .csr = {
213 .read = rt2500pci_read_csr,
214 .write = rt2500pci_write_csr,
215 .word_size = sizeof(u32),
216 .word_count = CSR_REG_SIZE / sizeof(u32),
217 },
218 .eeprom = {
219 .read = rt2x00_eeprom_read,
220 .write = rt2x00_eeprom_write,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
223 },
224 .bbp = {
225 .read = rt2500pci_bbp_read,
226 .write = rt2500pci_bbp_write,
227 .word_size = sizeof(u8),
228 .word_count = BBP_SIZE / sizeof(u8),
229 },
230 .rf = {
231 .read = rt2x00_rf_read,
232 .write = rt2500pci_rf_write,
233 .word_size = sizeof(u32),
234 .word_count = RF_SIZE / sizeof(u32),
235 },
236};
237#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239#ifdef CONFIG_RT2500PCI_RFKILL
240static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241{
242 u32 reg;
243
244 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246}
Ivo van Doorn81873e92007-10-06 14:14:06 +0200247#else
248#define rt2500pci_rfkill_poll NULL
Ivo van Doorndcf54752007-09-25 20:57:25 +0200249#endif /* CONFIG_RT2500PCI_RFKILL */
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700250
251/*
252 * Configuration handlers.
253 */
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200254static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
255 __le32 *mac)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700256{
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200257 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
258 (2 * sizeof(__le32)));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700259}
260
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200261static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
262 __le32 *bssid)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700263{
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200264 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
265 (2 * sizeof(__le32)));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700266}
267
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700268static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type)
269{
Johannes Berg4150c572007-09-17 01:29:23 -0400270 struct interface *intf = &rt2x00dev->interface;
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700271 u32 reg;
272
273 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
274
275 /*
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700276 * Enable beacon config
277 */
278 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
279 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
280 PREAMBLE + get_duration(IEEE80211_HEADER, 2));
281 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
282 rt2x00lib_get_ring(rt2x00dev,
283 IEEE80211_TX_QUEUE_BEACON)
284 ->tx_params.cw_min);
285 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
286
287 /*
288 * Enable synchronisation.
289 */
290 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
Johannes Berg4150c572007-09-17 01:29:23 -0400291 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
292 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700293 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
Johannes Berg4150c572007-09-17 01:29:23 -0400294 if (is_interface_type(intf, IEEE80211_IF_TYPE_IBSS) ||
295 is_interface_type(intf, IEEE80211_IF_TYPE_AP))
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700296 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 2);
Johannes Berg4150c572007-09-17 01:29:23 -0400297 else if (is_interface_type(intf, IEEE80211_IF_TYPE_STA))
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700298 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 1);
Johannes Berg4150c572007-09-17 01:29:23 -0400299 else
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700300 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700301 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
302}
303
304static void rt2500pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
305{
306 struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
307 u32 reg;
308 u32 preamble;
309 u16 value;
310
311 if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
312 preamble = SHORT_PREAMBLE;
313 else
314 preamble = PREAMBLE;
315
316 reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
317 rt2x00pci_register_write(rt2x00dev, ARCSR1, reg);
318
319 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
320 value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
321 SHORT_DIFS : DIFS) +
322 PLCP + preamble + get_duration(ACK_SIZE, 10);
323 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, value);
324 value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10);
325 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, value);
326 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
327
328 preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00;
329
330 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
331 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble);
332 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
333 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
334 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
335
336 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
337 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble);
338 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
339 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
340 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
341
342 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
343 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble);
344 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
345 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
346 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
347
348 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
349 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble);
350 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
351 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
352 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
353}
354
355static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
356 const int phymode)
357{
358 struct ieee80211_hw_mode *mode;
359 struct ieee80211_rate *rate;
360
361 if (phymode == MODE_IEEE80211A)
362 rt2x00dev->curr_hwmode = HWMODE_A;
363 else if (phymode == MODE_IEEE80211B)
364 rt2x00dev->curr_hwmode = HWMODE_B;
365 else
366 rt2x00dev->curr_hwmode = HWMODE_G;
367
368 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
369 rate = &mode->rates[mode->num_rates - 1];
370
371 rt2500pci_config_rate(rt2x00dev, rate->val2);
372}
373
374static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
375 const int index, const int channel,
376 const int txpower)
377{
378 struct rf_channel reg;
379 u8 r70;
380
381 /*
382 * Fill rf_reg structure.
383 */
384 memcpy(&reg, &rt2x00dev->spec.channels[index], sizeof(reg));
385
386 /*
387 * Set TXpower.
388 */
389 rt2x00_set_field32(&reg.rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
390
391 /*
392 * Switch on tuning bits.
393 * For RT2523 devices we do not need to update the R1 register.
394 */
395 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
396 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 1);
397 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 1);
398
399 /*
400 * For RT2525 we should first set the channel to half band higher.
401 */
402 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
403 static const u32 vals[] = {
404 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
405 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
406 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
407 0x00080d2e, 0x00080d3a
408 };
409
410 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
411 rt2500pci_rf_write(rt2x00dev, 2, vals[channel - 1]);
412 rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
413 if (reg.rf4)
414 rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
415 }
416
417 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
418 rt2500pci_rf_write(rt2x00dev, 2, reg.rf2);
419 rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
420 if (reg.rf4)
421 rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
422
423 /*
424 * Channel 14 requires the Japan filter bit to be set.
425 */
426 r70 = 0x46;
427 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, channel == 14);
428 rt2500pci_bbp_write(rt2x00dev, 70, r70);
429
430 msleep(1);
431
432 /*
433 * Switch off tuning bits.
434 * For RT2523 devices we do not need to update the R1 register.
435 */
436 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
437 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 0);
438 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
439 }
440
441 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 0);
442 rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
443
444 /*
445 * Clear false CRC during channel switch.
446 */
447 rt2x00pci_register_read(rt2x00dev, CNT0, &reg.rf1);
448}
449
450static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
451 const int txpower)
452{
453 u32 rf3;
454
455 rt2x00_rf_read(rt2x00dev, 3, &rf3);
456 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
457 rt2500pci_rf_write(rt2x00dev, 3, rf3);
458}
459
460static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
461 const int antenna_tx, const int antenna_rx)
462{
463 u32 reg;
464 u8 r14;
465 u8 r2;
466
467 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
468 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
469 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
470
471 /*
472 * Configure the TX antenna.
473 */
474 switch (antenna_tx) {
475 case ANTENNA_SW_DIVERSITY:
476 case ANTENNA_HW_DIVERSITY:
477 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
478 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
479 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
480 break;
481 case ANTENNA_A:
482 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
483 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
484 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
485 break;
486 case ANTENNA_B:
487 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
488 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
489 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
490 break;
491 }
492
493 /*
494 * Configure the RX antenna.
495 */
496 switch (antenna_rx) {
497 case ANTENNA_SW_DIVERSITY:
498 case ANTENNA_HW_DIVERSITY:
499 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
500 break;
501 case ANTENNA_A:
502 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
503 break;
504 case ANTENNA_B:
505 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
506 break;
507 }
508
509 /*
510 * RT2525E and RT5222 need to flip TX I/Q
511 */
512 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
513 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
514 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
515 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
516 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
517
518 /*
519 * RT2525E does not need RX I/Q Flip.
520 */
521 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
522 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
523 } else {
524 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
525 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
526 }
527
528 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
529 rt2500pci_bbp_write(rt2x00dev, 14, r14);
530 rt2500pci_bbp_write(rt2x00dev, 2, r2);
531}
532
533static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
534 const int short_slot_time,
535 const int beacon_int)
536{
537 u32 reg;
538
539 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
540 rt2x00_set_field32(&reg, CSR11_SLOT_TIME,
541 short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
542 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
543
544 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
545 rt2x00_set_field32(&reg, CSR18_SIFS, SIFS);
546 rt2x00_set_field32(&reg, CSR18_PIFS,
547 short_slot_time ? SHORT_PIFS : PIFS);
548 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
549
550 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
551 rt2x00_set_field32(&reg, CSR19_DIFS,
552 short_slot_time ? SHORT_DIFS : DIFS);
553 rt2x00_set_field32(&reg, CSR19_EIFS, EIFS);
554 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
555
556 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
557 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
558 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
559 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
560
561 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
562 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, beacon_int * 16);
563 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, beacon_int * 16);
564 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
565}
566
567static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
568 const unsigned int flags,
569 struct ieee80211_conf *conf)
570{
571 int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
572
573 if (flags & CONFIG_UPDATE_PHYMODE)
574 rt2500pci_config_phymode(rt2x00dev, conf->phymode);
575 if (flags & CONFIG_UPDATE_CHANNEL)
576 rt2500pci_config_channel(rt2x00dev, conf->channel_val,
577 conf->channel, conf->power_level);
578 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
579 rt2500pci_config_txpower(rt2x00dev, conf->power_level);
580 if (flags & CONFIG_UPDATE_ANTENNA)
581 rt2500pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
582 conf->antenna_sel_rx);
583 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
584 rt2500pci_config_duration(rt2x00dev, short_slot_time,
585 conf->beacon_int);
586}
587
588/*
589 * LED functions.
590 */
591static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
592{
593 u32 reg;
594
595 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
596
597 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
598 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
599
600 if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
601 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
602 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
603 } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
604 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
605 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
606 } else {
607 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
608 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
609 }
610
611 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
612}
613
614static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
615{
616 u32 reg;
617
618 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
619 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
620 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
621 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
622}
623
624/*
625 * Link tuning
626 */
627static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev)
628{
629 u32 reg;
630
631 /*
632 * Update FCS error count from register.
633 */
634 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
635 rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
636
637 /*
638 * Update False CCA count from register.
639 */
640 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
641 rt2x00dev->link.false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
642}
643
644static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
645{
646 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
647 rt2x00dev->link.vgc_level = 0x48;
648}
649
650static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
651{
652 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
653 u8 r17;
654
655 /*
656 * To prevent collisions with MAC ASIC on chipsets
657 * up to version C the link tuning should halt after 20
658 * seconds.
659 */
660 if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
661 rt2x00dev->link.count > 20)
662 return;
663
664 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
665
666 /*
667 * Chipset versions C and lower should directly continue
668 * to the dynamic CCA tuning.
669 */
670 if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
671 goto dynamic_cca_tune;
672
673 /*
674 * A too low RSSI will cause too much false CCA which will
675 * then corrupt the R17 tuning. To remidy this the tuning should
676 * be stopped (While making sure the R17 value will not exceed limits)
677 */
678 if (rssi < -80 && rt2x00dev->link.count > 20) {
679 if (r17 >= 0x41) {
680 r17 = rt2x00dev->link.vgc_level;
681 rt2500pci_bbp_write(rt2x00dev, 17, r17);
682 }
683 return;
684 }
685
686 /*
687 * Special big-R17 for short distance
688 */
689 if (rssi >= -58) {
690 if (r17 != 0x50)
691 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
692 return;
693 }
694
695 /*
696 * Special mid-R17 for middle distance
697 */
698 if (rssi >= -74) {
699 if (r17 != 0x41)
700 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
701 return;
702 }
703
704 /*
705 * Leave short or middle distance condition, restore r17
706 * to the dynamic tuning range.
707 */
708 if (r17 >= 0x41) {
709 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
710 return;
711 }
712
713dynamic_cca_tune:
714
715 /*
716 * R17 is inside the dynamic tuning range,
717 * start tuning the link based on the false cca counter.
718 */
719 if (rt2x00dev->link.false_cca > 512 && r17 < 0x40) {
720 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
721 rt2x00dev->link.vgc_level = r17;
722 } else if (rt2x00dev->link.false_cca < 100 && r17 > 0x32) {
723 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
724 rt2x00dev->link.vgc_level = r17;
725 }
726}
727
728/*
729 * Initialization functions.
730 */
731static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
732{
733 struct data_ring *ring = rt2x00dev->rx;
734 struct data_desc *rxd;
735 unsigned int i;
736 u32 word;
737
738 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
739
740 for (i = 0; i < ring->stats.limit; i++) {
741 rxd = ring->entry[i].priv;
742
743 rt2x00_desc_read(rxd, 1, &word);
744 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
745 ring->entry[i].data_dma);
746 rt2x00_desc_write(rxd, 1, word);
747
748 rt2x00_desc_read(rxd, 0, &word);
749 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
750 rt2x00_desc_write(rxd, 0, word);
751 }
752
753 rt2x00_ring_index_clear(rt2x00dev->rx);
754}
755
756static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
757{
758 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
759 struct data_desc *txd;
760 unsigned int i;
761 u32 word;
762
763 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
764
765 for (i = 0; i < ring->stats.limit; i++) {
766 txd = ring->entry[i].priv;
767
768 rt2x00_desc_read(txd, 1, &word);
769 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
770 ring->entry[i].data_dma);
771 rt2x00_desc_write(txd, 1, word);
772
773 rt2x00_desc_read(txd, 0, &word);
774 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
775 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
776 rt2x00_desc_write(txd, 0, word);
777 }
778
779 rt2x00_ring_index_clear(ring);
780}
781
782static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
783{
784 u32 reg;
785
786 /*
787 * Initialize rings.
788 */
789 rt2500pci_init_rxring(rt2x00dev);
790 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
791 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
792 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
793 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
794
795 /*
796 * Initialize registers.
797 */
798 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
799 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
800 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
801 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
802 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
803 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
804 rt2x00dev->bcn[1].stats.limit);
805 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
806 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
807 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
808
809 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
810 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
811 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
812 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
813
814 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
815 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
816 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
817 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
818
819 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
820 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
821 rt2x00dev->bcn[1].data_dma);
822 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
823
824 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
825 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
826 rt2x00dev->bcn[0].data_dma);
827 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
828
829 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
830 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
831 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
832 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
833
834 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
835 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
836 rt2x00dev->rx->data_dma);
837 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
838
839 return 0;
840}
841
842static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
843{
844 u32 reg;
845
846 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
847 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
848 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
849 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
850
851 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
852 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
853 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
854 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
855 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
856
857 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
858 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
859 rt2x00dev->rx->data_size / 128);
860 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
861
862 /*
863 * Always use CWmin and CWmax set in descriptor.
864 */
865 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
866 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
867 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
868
869 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
870
871 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
872 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
873 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
874 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
875 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
876 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
877 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
878 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
879 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
880 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
881
882 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
883 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
884 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
885 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
886 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
887 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
888
889 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
890 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
891 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
892 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
893 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
894 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
895
896 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
897 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
898 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
899 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
900 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
901 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
902
903 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
904 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
905 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
906 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
907 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
908 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
909 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
910 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
911 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
912 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
913
914 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
915 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
916 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
917 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
918 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
919 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
920 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
921 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
922 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
923
924 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
925
926 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
927 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
928
929 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
930 return -EBUSY;
931
932 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
933 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
934
935 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
936 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
937 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
938
939 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
940 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
941 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
942 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
943 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
944 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
945 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
946 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
947
948 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
949
950 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
951
952 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
953 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
954 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
955 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
956 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
957
958 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
959 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
960 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
961 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
962
963 /*
964 * We must clear the FCS and FIFO error count.
965 * These registers are cleared on read,
966 * so we may pass a useless variable to store the value.
967 */
968 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
969 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
970
971 return 0;
972}
973
974static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
975{
976 unsigned int i;
977 u16 eeprom;
978 u8 reg_id;
979 u8 value;
980
981 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
982 rt2500pci_bbp_read(rt2x00dev, 0, &value);
983 if ((value != 0xff) && (value != 0x00))
984 goto continue_csr_init;
985 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
986 udelay(REGISTER_BUSY_DELAY);
987 }
988
989 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
990 return -EACCES;
991
992continue_csr_init:
993 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
994 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
995 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
996 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
997 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
998 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
999 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1000 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1001 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1002 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1003 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1004 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1005 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1006 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1007 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1008 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1009 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1010 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1011 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1012 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1013 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1014 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1015 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1016 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1017 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1018 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1019 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1020 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1021 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1022 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1023
1024 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
1025 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1026 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1027
1028 if (eeprom != 0xffff && eeprom != 0x0000) {
1029 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1030 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1031 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
1032 reg_id, value);
1033 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1034 }
1035 }
1036 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1037
1038 return 0;
1039}
1040
1041/*
1042 * Device state switch handlers.
1043 */
1044static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1045 enum dev_state state)
1046{
1047 u32 reg;
1048
1049 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1050 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1051 state == STATE_RADIO_RX_OFF);
1052 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1053}
1054
1055static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1056 enum dev_state state)
1057{
1058 int mask = (state == STATE_RADIO_IRQ_OFF);
1059 u32 reg;
1060
1061 /*
1062 * When interrupts are being enabled, the interrupt registers
1063 * should clear the register to assure a clean state.
1064 */
1065 if (state == STATE_RADIO_IRQ_ON) {
1066 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1067 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1068 }
1069
1070 /*
1071 * Only toggle the interrupts bits we are going to use.
1072 * Non-checked interrupt bits are disabled by default.
1073 */
1074 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1075 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1076 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1077 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1078 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1079 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1080 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1081}
1082
1083static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1084{
1085 /*
1086 * Initialize all registers.
1087 */
1088 if (rt2500pci_init_rings(rt2x00dev) ||
1089 rt2500pci_init_registers(rt2x00dev) ||
1090 rt2500pci_init_bbp(rt2x00dev)) {
1091 ERROR(rt2x00dev, "Register initialization failed.\n");
1092 return -EIO;
1093 }
1094
1095 /*
1096 * Enable interrupts.
1097 */
1098 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1099
1100 /*
1101 * Enable LED
1102 */
1103 rt2500pci_enable_led(rt2x00dev);
1104
1105 return 0;
1106}
1107
1108static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1109{
1110 u32 reg;
1111
1112 /*
1113 * Disable LED
1114 */
1115 rt2500pci_disable_led(rt2x00dev);
1116
1117 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1118
1119 /*
1120 * Disable synchronisation.
1121 */
1122 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1123
1124 /*
1125 * Cancel RX and TX.
1126 */
1127 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1128 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1129 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1130
1131 /*
1132 * Disable interrupts.
1133 */
1134 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1135}
1136
1137static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1138 enum dev_state state)
1139{
1140 u32 reg;
1141 unsigned int i;
1142 char put_to_sleep;
1143 char bbp_state;
1144 char rf_state;
1145
1146 put_to_sleep = (state != STATE_AWAKE);
1147
1148 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1149 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1150 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1151 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1152 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1153 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1154
1155 /*
1156 * Device is not guaranteed to be in the requested state yet.
1157 * We must wait until the register indicates that the
1158 * device has entered the correct state.
1159 */
1160 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1161 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1162 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1163 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1164 if (bbp_state == state && rf_state == state)
1165 return 0;
1166 msleep(10);
1167 }
1168
1169 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1170 "current device state: bbp %d and rf %d.\n",
1171 state, bbp_state, rf_state);
1172
1173 return -EBUSY;
1174}
1175
1176static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1177 enum dev_state state)
1178{
1179 int retval = 0;
1180
1181 switch (state) {
1182 case STATE_RADIO_ON:
1183 retval = rt2500pci_enable_radio(rt2x00dev);
1184 break;
1185 case STATE_RADIO_OFF:
1186 rt2500pci_disable_radio(rt2x00dev);
1187 break;
1188 case STATE_RADIO_RX_ON:
1189 case STATE_RADIO_RX_OFF:
1190 rt2500pci_toggle_rx(rt2x00dev, state);
1191 break;
1192 case STATE_DEEP_SLEEP:
1193 case STATE_SLEEP:
1194 case STATE_STANDBY:
1195 case STATE_AWAKE:
1196 retval = rt2500pci_set_state(rt2x00dev, state);
1197 break;
1198 default:
1199 retval = -ENOTSUPP;
1200 break;
1201 }
1202
1203 return retval;
1204}
1205
1206/*
1207 * TX descriptor initialization
1208 */
1209static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1210 struct data_desc *txd,
Johannes Berg4150c572007-09-17 01:29:23 -04001211 struct txdata_entry_desc *desc,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001212 struct ieee80211_hdr *ieee80211hdr,
1213 unsigned int length,
1214 struct ieee80211_tx_control *control)
1215{
1216 u32 word;
1217
1218 /*
1219 * Start writing the descriptor words.
1220 */
1221 rt2x00_desc_read(txd, 2, &word);
1222 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1223 rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1224 rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1225 rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1226 rt2x00_desc_write(txd, 2, word);
1227
1228 rt2x00_desc_read(txd, 3, &word);
1229 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1230 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1231 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1232 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1233 rt2x00_desc_write(txd, 3, word);
1234
1235 rt2x00_desc_read(txd, 10, &word);
1236 rt2x00_set_field32(&word, TXD_W10_RTS,
1237 test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1238 rt2x00_desc_write(txd, 10, word);
1239
1240 rt2x00_desc_read(txd, 0, &word);
1241 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1242 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1243 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1244 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1245 rt2x00_set_field32(&word, TXD_W0_ACK,
1246 !(control->flags & IEEE80211_TXCTL_NO_ACK));
1247 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1248 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1249 rt2x00_set_field32(&word, TXD_W0_OFDM,
1250 test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1251 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1252 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1253 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1254 !!(control->flags &
1255 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1256 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1257 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1258 rt2x00_desc_write(txd, 0, word);
1259}
1260
1261/*
1262 * TX data initialization
1263 */
1264static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1265 unsigned int queue)
1266{
1267 u32 reg;
1268
1269 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1270 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1271 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1272 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1273 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1274 }
1275 return;
1276 }
1277
1278 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1279 if (queue == IEEE80211_TX_QUEUE_DATA0)
1280 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1281 else if (queue == IEEE80211_TX_QUEUE_DATA1)
1282 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1283 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1284 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1285 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1286}
1287
1288/*
1289 * RX control handlers
1290 */
Johannes Berg4150c572007-09-17 01:29:23 -04001291static void rt2500pci_fill_rxdone(struct data_entry *entry,
1292 struct rxdata_entry_desc *desc)
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001293{
1294 struct data_desc *rxd = entry->priv;
1295 u32 word0;
1296 u32 word2;
1297
1298 rt2x00_desc_read(rxd, 0, &word0);
1299 rt2x00_desc_read(rxd, 2, &word2);
1300
Johannes Berg4150c572007-09-17 01:29:23 -04001301 desc->flags = 0;
1302 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1303 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1304 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1305 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001306
Johannes Berg4150c572007-09-17 01:29:23 -04001307 desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1308 desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001309 entry->ring->rt2x00dev->rssi_offset;
Johannes Berg4150c572007-09-17 01:29:23 -04001310 desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1311 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001312}
1313
1314/*
1315 * Interrupt functions.
1316 */
1317static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1318{
1319 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1320 struct data_entry *entry;
1321 struct data_desc *txd;
1322 u32 word;
1323 int tx_status;
1324 int retry;
1325
1326 while (!rt2x00_ring_empty(ring)) {
1327 entry = rt2x00_get_data_entry_done(ring);
1328 txd = entry->priv;
1329 rt2x00_desc_read(txd, 0, &word);
1330
1331 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1332 !rt2x00_get_field32(word, TXD_W0_VALID))
1333 break;
1334
1335 /*
1336 * Obtain the status about this packet.
1337 */
1338 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1339 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1340
1341 rt2x00lib_txdone(entry, tx_status, retry);
1342
1343 /*
1344 * Make this entry available for reuse.
1345 */
1346 entry->flags = 0;
1347 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1348 rt2x00_desc_write(txd, 0, word);
1349 rt2x00_ring_index_done_inc(ring);
1350 }
1351
1352 /*
1353 * If the data ring was full before the txdone handler
1354 * we must make sure the packet queue in the mac80211 stack
1355 * is reenabled when the txdone handler has finished.
1356 */
1357 entry = ring->entry;
1358 if (!rt2x00_ring_full(ring))
1359 ieee80211_wake_queue(rt2x00dev->hw,
1360 entry->tx_status.control.queue);
1361}
1362
1363static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1364{
1365 struct rt2x00_dev *rt2x00dev = dev_instance;
1366 u32 reg;
1367
1368 /*
1369 * Get the interrupt sources & saved to local variable.
1370 * Write register value back to clear pending interrupts.
1371 */
1372 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1373 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1374
1375 if (!reg)
1376 return IRQ_NONE;
1377
1378 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1379 return IRQ_HANDLED;
1380
1381 /*
1382 * Handle interrupts, walk through all bits
1383 * and run the tasks, the bits are checked in order of
1384 * priority.
1385 */
1386
1387 /*
1388 * 1 - Beacon timer expired interrupt.
1389 */
1390 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1391 rt2x00lib_beacondone(rt2x00dev);
1392
1393 /*
1394 * 2 - Rx ring done interrupt.
1395 */
1396 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1397 rt2x00pci_rxdone(rt2x00dev);
1398
1399 /*
1400 * 3 - Atim ring transmit done interrupt.
1401 */
1402 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1403 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1404
1405 /*
1406 * 4 - Priority ring transmit done interrupt.
1407 */
1408 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1409 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1410
1411 /*
1412 * 5 - Tx ring transmit done interrupt.
1413 */
1414 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1415 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1416
1417 return IRQ_HANDLED;
1418}
1419
1420/*
1421 * Device probe functions.
1422 */
1423static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1424{
1425 struct eeprom_93cx6 eeprom;
1426 u32 reg;
1427 u16 word;
1428 u8 *mac;
1429
1430 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1431
1432 eeprom.data = rt2x00dev;
1433 eeprom.register_read = rt2500pci_eepromregister_read;
1434 eeprom.register_write = rt2500pci_eepromregister_write;
1435 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1436 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1437 eeprom.reg_data_in = 0;
1438 eeprom.reg_data_out = 0;
1439 eeprom.reg_data_clock = 0;
1440 eeprom.reg_chip_select = 0;
1441
1442 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1443 EEPROM_SIZE / sizeof(u16));
1444
1445 /*
1446 * Start validation of the data that has been read.
1447 */
1448 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1449 if (!is_valid_ether_addr(mac)) {
Joe Perches0795af52007-10-03 17:59:30 -07001450 DECLARE_MAC_BUF(macbuf);
1451
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001452 random_ether_addr(mac);
Joe Perches0795af52007-10-03 17:59:30 -07001453 EEPROM(rt2x00dev, "MAC: %s\n",
1454 print_mac(macbuf, mac));
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001455 }
1456
1457 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1458 if (word == 0xffff) {
1459 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1460 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0);
1461 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0);
1462 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0);
1463 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1464 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1465 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1466 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1467 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1468 }
1469
1470 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1471 if (word == 0xffff) {
1472 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1473 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1474 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1475 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1476 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1477 }
1478
1479 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1480 if (word == 0xffff) {
1481 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1482 DEFAULT_RSSI_OFFSET);
1483 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1484 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1485 }
1486
1487 return 0;
1488}
1489
1490static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1491{
1492 u32 reg;
1493 u16 value;
1494 u16 eeprom;
1495
1496 /*
1497 * Read EEPROM word for configuration.
1498 */
1499 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1500
1501 /*
1502 * Identify RF chipset.
1503 */
1504 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1505 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1506 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1507
1508 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1509 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1510 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1511 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1512 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1513 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1514 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1515 return -ENODEV;
1516 }
1517
1518 /*
1519 * Identify default antenna configuration.
1520 */
1521 rt2x00dev->hw->conf.antenna_sel_tx =
1522 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1523 rt2x00dev->hw->conf.antenna_sel_rx =
1524 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1525
1526 /*
1527 * Store led mode, for correct led behaviour.
1528 */
1529 rt2x00dev->led_mode =
1530 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1531
1532 /*
1533 * Detect if this device has an hardware controlled radio.
1534 */
Ivo van Doorn81873e92007-10-06 14:14:06 +02001535#ifdef CONFIG_RT2500PCI_RFKILL
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001536 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
Ivo van Doorn066cb632007-09-25 20:55:39 +02001537 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
Ivo van Doorn81873e92007-10-06 14:14:06 +02001538#endif /* CONFIG_RT2500PCI_RFKILL */
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001539
1540 /*
1541 * Check if the BBP tuning should be enabled.
1542 */
1543 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1544
1545 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1546 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1547
1548 /*
1549 * Read the RSSI <-> dBm offset information.
1550 */
1551 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1552 rt2x00dev->rssi_offset =
1553 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1554
1555 return 0;
1556}
1557
1558/*
1559 * RF value list for RF2522
1560 * Supports: 2.4 GHz
1561 */
1562static const struct rf_channel rf_vals_bg_2522[] = {
1563 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1564 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1565 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1566 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1567 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1568 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1569 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1570 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1571 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1572 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1573 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1574 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1575 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1576 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1577};
1578
1579/*
1580 * RF value list for RF2523
1581 * Supports: 2.4 GHz
1582 */
1583static const struct rf_channel rf_vals_bg_2523[] = {
1584 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1585 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1586 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1587 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1588 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1589 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1590 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1591 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1592 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1593 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1594 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1595 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1596 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1597 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1598};
1599
1600/*
1601 * RF value list for RF2524
1602 * Supports: 2.4 GHz
1603 */
1604static const struct rf_channel rf_vals_bg_2524[] = {
1605 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1606 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1607 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1608 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1609 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1610 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1611 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1612 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1613 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1614 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1615 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1616 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1617 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1618 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1619};
1620
1621/*
1622 * RF value list for RF2525
1623 * Supports: 2.4 GHz
1624 */
1625static const struct rf_channel rf_vals_bg_2525[] = {
1626 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1627 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1628 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1629 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1630 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1631 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1632 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1633 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1634 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1635 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1636 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1637 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1638 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1639 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1640};
1641
1642/*
1643 * RF value list for RF2525e
1644 * Supports: 2.4 GHz
1645 */
1646static const struct rf_channel rf_vals_bg_2525e[] = {
1647 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1648 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1649 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1650 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1651 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1652 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1653 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1654 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1655 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1656 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1657 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1658 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1659 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1660 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1661};
1662
1663/*
1664 * RF value list for RF5222
1665 * Supports: 2.4 GHz & 5.2 GHz
1666 */
1667static const struct rf_channel rf_vals_5222[] = {
1668 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1669 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1670 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1671 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1672 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1673 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1674 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1675 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1676 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1677 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1678 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1679 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1680 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1681 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1682
1683 /* 802.11 UNI / HyperLan 2 */
1684 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1685 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1686 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1687 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1688 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1689 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1690 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1691 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1692
1693 /* 802.11 HyperLan 2 */
1694 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1695 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1696 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1697 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1698 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1699 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1700 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1701 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1702 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1703 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1704
1705 /* 802.11 UNII */
1706 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1707 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1708 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1709 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1710 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1711};
1712
1713static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1714{
1715 struct hw_mode_spec *spec = &rt2x00dev->spec;
1716 u8 *txpower;
1717 unsigned int i;
1718
1719 /*
1720 * Initialize all hw fields.
1721 */
Johannes Berg4150c572007-09-17 01:29:23 -04001722 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001723 rt2x00dev->hw->extra_tx_headroom = 0;
1724 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1725 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1726 rt2x00dev->hw->queues = 2;
1727
1728 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1729 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1730 rt2x00_eeprom_addr(rt2x00dev,
1731 EEPROM_MAC_ADDR_0));
1732
1733 /*
1734 * Convert tx_power array in eeprom.
1735 */
1736 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1737 for (i = 0; i < 14; i++)
1738 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1739
1740 /*
1741 * Initialize hw_mode information.
1742 */
1743 spec->num_modes = 2;
1744 spec->num_rates = 12;
1745 spec->tx_power_a = NULL;
1746 spec->tx_power_bg = txpower;
1747 spec->tx_power_default = DEFAULT_TXPOWER;
1748
1749 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1750 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1751 spec->channels = rf_vals_bg_2522;
1752 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1753 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1754 spec->channels = rf_vals_bg_2523;
1755 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1756 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1757 spec->channels = rf_vals_bg_2524;
1758 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1759 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1760 spec->channels = rf_vals_bg_2525;
1761 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1762 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1763 spec->channels = rf_vals_bg_2525e;
1764 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1765 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1766 spec->channels = rf_vals_5222;
1767 spec->num_modes = 3;
1768 }
1769}
1770
1771static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1772{
1773 int retval;
1774
1775 /*
1776 * Allocate eeprom data.
1777 */
1778 retval = rt2500pci_validate_eeprom(rt2x00dev);
1779 if (retval)
1780 return retval;
1781
1782 retval = rt2500pci_init_eeprom(rt2x00dev);
1783 if (retval)
1784 return retval;
1785
1786 /*
1787 * Initialize hw specifications.
1788 */
1789 rt2500pci_probe_hw_mode(rt2x00dev);
1790
1791 /*
1792 * This device requires the beacon ring
1793 */
Ivo van Doorn066cb632007-09-25 20:55:39 +02001794 __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001795
1796 /*
1797 * Set the rssi offset.
1798 */
1799 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1800
1801 return 0;
1802}
1803
1804/*
1805 * IEEE80211 stack callback functions.
1806 */
Johannes Berg4150c572007-09-17 01:29:23 -04001807static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1808 unsigned int changed_flags,
1809 unsigned int *total_flags,
1810 int mc_count,
1811 struct dev_addr_list *mc_list)
1812{
1813 struct rt2x00_dev *rt2x00dev = hw->priv;
1814 struct interface *intf = &rt2x00dev->interface;
1815 u32 reg;
1816
1817 /*
1818 * Mask off any flags we are going to ignore from
1819 * the total_flags field.
1820 */
1821 *total_flags &=
1822 FIF_ALLMULTI |
1823 FIF_FCSFAIL |
1824 FIF_PLCPFAIL |
1825 FIF_CONTROL |
1826 FIF_OTHER_BSS |
1827 FIF_PROMISC_IN_BSS;
1828
1829 /*
1830 * Apply some rules to the filters:
1831 * - Some filters imply different filters to be set.
1832 * - Some things we can't filter out at all.
1833 * - Some filters are set based on interface type.
1834 */
1835 if (mc_count)
1836 *total_flags |= FIF_ALLMULTI;
Ivo van Doorn5886d0d2007-10-06 14:13:38 +02001837 if (*total_flags & FIF_OTHER_BSS ||
1838 *total_flags & FIF_PROMISC_IN_BSS)
Johannes Berg4150c572007-09-17 01:29:23 -04001839 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1840 if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1841 *total_flags |= FIF_PROMISC_IN_BSS;
1842
1843 /*
1844 * Check if there is any work left for us.
1845 */
1846 if (intf->filter == *total_flags)
1847 return;
1848 intf->filter = *total_flags;
1849
1850 /*
1851 * Start configuration steps.
1852 * Note that the version error will always be dropped
1853 * and broadcast frames will always be accepted since
1854 * there is no filter for it at this time.
1855 */
1856 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1857 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1858 !(*total_flags & FIF_FCSFAIL));
1859 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1860 !(*total_flags & FIF_PLCPFAIL));
1861 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1862 !(*total_flags & FIF_CONTROL));
1863 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1864 !(*total_flags & FIF_PROMISC_IN_BSS));
1865 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1866 !(*total_flags & FIF_PROMISC_IN_BSS));
1867 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1868 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1869 !(*total_flags & FIF_ALLMULTI));
1870 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1871 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1872}
1873
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001874static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1875 u32 short_retry, u32 long_retry)
1876{
1877 struct rt2x00_dev *rt2x00dev = hw->priv;
1878 u32 reg;
1879
1880 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1881 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1882 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1883 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1884
1885 return 0;
1886}
1887
1888static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1889{
1890 struct rt2x00_dev *rt2x00dev = hw->priv;
1891 u64 tsf;
1892 u32 reg;
1893
1894 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1895 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1896 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1897 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1898
1899 return tsf;
1900}
1901
1902static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1903{
1904 struct rt2x00_dev *rt2x00dev = hw->priv;
1905
1906 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1907 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1908}
1909
1910static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1911{
1912 struct rt2x00_dev *rt2x00dev = hw->priv;
1913 u32 reg;
1914
1915 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1916 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1917}
1918
1919static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1920 .tx = rt2x00mac_tx,
Johannes Berg4150c572007-09-17 01:29:23 -04001921 .start = rt2x00mac_start,
1922 .stop = rt2x00mac_stop,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001923 .add_interface = rt2x00mac_add_interface,
1924 .remove_interface = rt2x00mac_remove_interface,
1925 .config = rt2x00mac_config,
1926 .config_interface = rt2x00mac_config_interface,
Johannes Berg4150c572007-09-17 01:29:23 -04001927 .configure_filter = rt2500pci_configure_filter,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001928 .get_stats = rt2x00mac_get_stats,
1929 .set_retry_limit = rt2500pci_set_retry_limit,
1930 .conf_tx = rt2x00mac_conf_tx,
1931 .get_tx_stats = rt2x00mac_get_tx_stats,
1932 .get_tsf = rt2500pci_get_tsf,
1933 .reset_tsf = rt2500pci_reset_tsf,
1934 .beacon_update = rt2x00pci_beacon_update,
1935 .tx_last_beacon = rt2500pci_tx_last_beacon,
1936};
1937
1938static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1939 .irq_handler = rt2500pci_interrupt,
1940 .probe_hw = rt2500pci_probe_hw,
1941 .initialize = rt2x00pci_initialize,
1942 .uninitialize = rt2x00pci_uninitialize,
1943 .set_device_state = rt2500pci_set_device_state,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001944 .rfkill_poll = rt2500pci_rfkill_poll,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001945 .link_stats = rt2500pci_link_stats,
1946 .reset_tuner = rt2500pci_reset_tuner,
1947 .link_tuner = rt2500pci_link_tuner,
1948 .write_tx_desc = rt2500pci_write_tx_desc,
1949 .write_tx_data = rt2x00pci_write_tx_data,
1950 .kick_tx_queue = rt2500pci_kick_tx_queue,
1951 .fill_rxdone = rt2500pci_fill_rxdone,
1952 .config_mac_addr = rt2500pci_config_mac_addr,
1953 .config_bssid = rt2500pci_config_bssid,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001954 .config_type = rt2500pci_config_type,
1955 .config = rt2500pci_config,
1956};
1957
1958static const struct rt2x00_ops rt2500pci_ops = {
1959 .name = DRV_NAME,
1960 .rxd_size = RXD_DESC_SIZE,
1961 .txd_size = TXD_DESC_SIZE,
1962 .eeprom_size = EEPROM_SIZE,
1963 .rf_size = RF_SIZE,
1964 .lib = &rt2500pci_rt2x00_ops,
1965 .hw = &rt2500pci_mac80211_ops,
1966#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1967 .debugfs = &rt2500pci_rt2x00debug,
1968#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1969};
1970
1971/*
1972 * RT2500pci module information.
1973 */
1974static struct pci_device_id rt2500pci_device_table[] = {
1975 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1976 { 0, }
1977};
1978
1979MODULE_AUTHOR(DRV_PROJECT);
1980MODULE_VERSION(DRV_VERSION);
1981MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1982MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1983MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1984MODULE_LICENSE("GPL");
1985
1986static struct pci_driver rt2500pci_driver = {
1987 .name = DRV_NAME,
1988 .id_table = rt2500pci_device_table,
1989 .probe = rt2x00pci_probe,
1990 .remove = __devexit_p(rt2x00pci_remove),
1991 .suspend = rt2x00pci_suspend,
1992 .resume = rt2x00pci_resume,
1993};
1994
1995static int __init rt2500pci_init(void)
1996{
1997 return pci_register_driver(&rt2500pci_driver);
1998}
1999
2000static void __exit rt2500pci_exit(void)
2001{
2002 pci_unregister_driver(&rt2500pci_driver);
2003}
2004
2005module_init(rt2500pci_init);
2006module_exit(rt2500pci_exit);