resolved conflicts for merge of 7940e44f to dalvik-dev

Change-Id: I6529b2fc27dfaedd2cb87b3697d049ccabed36ee
diff --git a/compiler/sea_ir/frontend.cc b/compiler/sea_ir/frontend.cc
new file mode 100644
index 0000000..9af7eff
--- /dev/null
+++ b/compiler/sea_ir/frontend.cc
@@ -0,0 +1,67 @@
+#ifdef ART_SEA_IR_MODE
+#include <llvm/Support/Threading.h>
+#include "base/logging.h"
+#include "dex/portable/mir_to_gbc.h"
+#include "driver/compiler_driver.h"
+#include "leb128.h"
+#include "llvm/llvm_compilation_unit.h"
+#include "mirror/object.h"
+#include "runtime.h"
+#include "sea_ir/sea.h"
+
+namespace art {
+
+static CompiledMethod* CompileMethodWithSeaIr(CompilerDriver& compiler,
+                                     const CompilerBackend compiler_backend,
+                                     const DexFile::CodeItem* code_item,
+                                     uint32_t access_flags, InvokeType invoke_type,
+                                     uint32_t class_def_idx, uint32_t method_idx,
+                                     jobject class_loader, const DexFile& dex_file
+#if defined(ART_USE_PORTABLE_COMPILER)
+                                     , llvm::LlvmCompilationUnit* llvm_compilation_unit
+#endif
+) {
+  // NOTE: Instead of keeping the convention from the Dalvik frontend.cc
+  //       and silencing the cpplint.py warning, I just corrected the formatting.
+  VLOG(compiler) << "Compiling " << PrettyMethod(method_idx, dex_file) << "...";
+  sea_ir::SeaGraph* sg = sea_ir::SeaGraph::GetCurrentGraph();
+  sg->CompileMethod(code_item, class_def_idx, method_idx, dex_file);
+  sg->DumpSea("/tmp/temp.dot");
+  CHECK(0 && "No SEA compiled function exists yet.");
+  return NULL;
+}
+
+
+CompiledMethod* SeaIrCompileOneMethod(CompilerDriver& compiler,
+                                 const CompilerBackend backend,
+                                 const DexFile::CodeItem* code_item,
+                                 uint32_t access_flags,
+                                 InvokeType invoke_type,
+                                 uint32_t class_def_idx,
+                                 uint32_t method_idx,
+                                 jobject class_loader,
+                                 const DexFile& dex_file,
+                                 llvm::LlvmCompilationUnit* llvm_compilation_unit) {
+  return CompileMethodWithSeaIr(compiler, backend, code_item, access_flags, invoke_type, class_def_idx,
+                       method_idx, class_loader, dex_file
+#if defined(ART_USE_PORTABLE_COMPILER)
+                       , llvm_compilation_unit
+#endif
+                       ); // NOLINT
+}
+
+extern "C" art::CompiledMethod*
+    SeaIrCompileMethod(art::CompilerDriver& compiler,
+                          const art::DexFile::CodeItem* code_item,
+                          uint32_t access_flags, art::InvokeType invoke_type,
+                          uint32_t class_def_idx, uint32_t method_idx, jobject class_loader,
+                          const art::DexFile& dex_file) {
+  // TODO: check method fingerprint here to determine appropriate backend type.  Until then, use build default
+  art::CompilerBackend backend = compiler.GetCompilerBackend();
+  return art::SeaIrCompileOneMethod(compiler, backend, code_item, access_flags, invoke_type,
+                               class_def_idx, method_idx, class_loader, dex_file,
+                               NULL /* use thread llvm_info */);
+}
+#endif
+
+} // end namespace art
diff --git a/compiler/sea_ir/instruction_tools.cc b/compiler/sea_ir/instruction_tools.cc
new file mode 100644
index 0000000..5433591
--- /dev/null
+++ b/compiler/sea_ir/instruction_tools.cc
@@ -0,0 +1,797 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "instruction_tools.h"
+
+namespace sea_ir {
+
+bool InstructionTools::IsDefinition(const art::Instruction* const instruction) {
+  if (0 != (InstructionTools::instruction_attributes_[instruction->Opcode()] & (1 << kDA))) {
+    return true;
+  }
+  return false;
+}
+
+const int InstructionTools::instruction_attributes_[] = {
+  // 00 NOP
+  DF_NOP,
+
+  // 01 MOVE vA, vB
+  DF_DA | DF_UB | DF_IS_MOVE,
+
+  // 02 MOVE_FROM16 vAA, vBBBB
+  DF_DA | DF_UB | DF_IS_MOVE,
+
+  // 03 MOVE_16 vAAAA, vBBBB
+  DF_DA | DF_UB | DF_IS_MOVE,
+
+  // 04 MOVE_WIDE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
+
+  // 05 MOVE_WIDE_FROM16 vAA, vBBBB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
+
+  // 06 MOVE_WIDE_16 vAAAA, vBBBB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
+
+  // 07 MOVE_OBJECT vA, vB
+  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
+
+  // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
+  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
+
+  // 09 MOVE_OBJECT_16 vAAAA, vBBBB
+  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
+
+  // 0A MOVE_RESULT vAA
+  DF_DA,
+
+  // 0B MOVE_RESULT_WIDE vAA
+  DF_DA | DF_A_WIDE,
+
+  // 0C MOVE_RESULT_OBJECT vAA
+  DF_DA | DF_REF_A,
+
+  // 0D MOVE_EXCEPTION vAA
+  DF_DA | DF_REF_A | DF_NON_NULL_DST,
+
+  // 0E RETURN_VOID
+  DF_NOP,
+
+  // 0F RETURN vAA
+  DF_UA,
+
+  // 10 RETURN_WIDE vAA
+  DF_UA | DF_A_WIDE,
+
+  // 11 RETURN_OBJECT vAA
+  DF_UA | DF_REF_A,
+
+  // 12 CONST_4 vA, #+B
+  DF_DA | DF_SETS_CONST,
+
+  // 13 CONST_16 vAA, #+BBBB
+  DF_DA | DF_SETS_CONST,
+
+  // 14 CONST vAA, #+BBBBBBBB
+  DF_DA | DF_SETS_CONST,
+
+  // 15 CONST_HIGH16 VAA, #+BBBB0000
+  DF_DA | DF_SETS_CONST,
+
+  // 16 CONST_WIDE_16 vAA, #+BBBB
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
+  DF_DA | DF_A_WIDE | DF_SETS_CONST,
+
+  // 1A CONST_STRING vAA, string@BBBB
+  DF_DA | DF_REF_A | DF_NON_NULL_DST,
+
+  // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
+  DF_DA | DF_REF_A | DF_NON_NULL_DST,
+
+  // 1C CONST_CLASS vAA, type@BBBB
+  DF_DA | DF_REF_A | DF_NON_NULL_DST,
+
+  // 1D MONITOR_ENTER vAA
+  DF_UA | DF_NULL_CHK_0 | DF_REF_A,
+
+  // 1E MONITOR_EXIT vAA
+  DF_UA | DF_NULL_CHK_0 | DF_REF_A,
+
+  // 1F CHK_CAST vAA, type@BBBB
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 20 INSTANCE_OF vA, vB, type@CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS,
+
+  // 21 ARRAY_LENGTH vA, vB
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_CORE_A | DF_REF_B,
+
+  // 22 NEW_INSTANCE vAA, type@BBBB
+  DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS,
+
+  // 23 NEW_ARRAY vA, vB, type@CCCC
+  DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS,
+
+  // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS,
+
+  // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
+  DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS,
+
+  // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 27 THROW vAA
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 28 GOTO
+  DF_NOP,
+
+  // 29 GOTO_16
+  DF_NOP,
+
+  // 2A GOTO_32
+  DF_NOP,
+
+  // 2B PACKED_SWITCH vAA, +BBBBBBBB
+  DF_UA,
+
+  // 2C SPARSE_SWITCH vAA, +BBBBBBBB
+  DF_UA,
+
+  // 2D CMPL_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 2E CMPG_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 2F CMPL_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 30 CMPG_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
+
+  // 31 CMP_LONG vAA, vBB, vCC
+  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 32 IF_EQ vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 33 IF_NE vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 34 IF_LT vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 35 IF_GE vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 36 IF_GT vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 37 IF_LE vA, vB, +CCCC
+  DF_UA | DF_UB,
+
+  // 38 IF_EQZ vAA, +BBBB
+  DF_UA,
+
+  // 39 IF_NEZ vAA, +BBBB
+  DF_UA,
+
+  // 3A IF_LTZ vAA, +BBBB
+  DF_UA,
+
+  // 3B IF_GEZ vAA, +BBBB
+  DF_UA,
+
+  // 3C IF_GTZ vAA, +BBBB
+  DF_UA,
+
+  // 3D IF_LEZ vAA, +BBBB
+  DF_UA,
+
+  // 3E UNUSED_3E
+  DF_NOP,
+
+  // 3F UNUSED_3F
+  DF_NOP,
+
+  // 40 UNUSED_40
+  DF_NOP,
+
+  // 41 UNUSED_41
+  DF_NOP,
+
+  // 42 UNUSED_42
+  DF_NOP,
+
+  // 43 UNUSED_43
+  DF_NOP,
+
+  // 44 AGET vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 45 AGET_WIDE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 46 AGET_OBJECT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_A | DF_REF_B | DF_CORE_C,
+
+  // 47 AGET_BOOLEAN vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 48 AGET_BYTE vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 49 AGET_CHAR vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 4A AGET_SHORT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
+
+  // 4B APUT vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 4C APUT_WIDE vAA, vBB, vCC
+  DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_2 | DF_RANGE_CHK_3 | DF_REF_B | DF_CORE_C,
+
+  // 4D APUT_OBJECT vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_A | DF_REF_B | DF_CORE_C,
+
+  // 4E APUT_BOOLEAN vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 4F APUT_BYTE vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 50 APUT_CHAR vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 51 APUT_SHORT vAA, vBB, vCC
+  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
+
+  // 52 IGET vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 53 IGET_WIDE vA, vB, field@CCCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 54 IGET_OBJECT vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B,
+
+  // 55 IGET_BOOLEAN vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 56 IGET_BYTE vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 57 IGET_CHAR vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 58 IGET_SHORT vA, vB, field@CCCC
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // 59 IPUT vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5A IPUT_WIDE vA, vB, field@CCCC
+  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B,
+
+  // 5B IPUT_OBJECT vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B,
+
+  // 5C IPUT_BOOLEAN vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5D IPUT_BYTE vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5E IPUT_CHAR vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 5F IPUT_SHORT vA, vB, field@CCCC
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // 60 SGET vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 61 SGET_WIDE vAA, field@BBBB
+  DF_DA | DF_A_WIDE | DF_UMS,
+
+  // 62 SGET_OBJECT vAA, field@BBBB
+  DF_DA | DF_REF_A | DF_UMS,
+
+  // 63 SGET_BOOLEAN vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 64 SGET_BYTE vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 65 SGET_CHAR vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 66 SGET_SHORT vAA, field@BBBB
+  DF_DA | DF_UMS,
+
+  // 67 SPUT vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 68 SPUT_WIDE vAA, field@BBBB
+  DF_UA | DF_A_WIDE | DF_UMS,
+
+  // 69 SPUT_OBJECT vAA, field@BBBB
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // 6A SPUT_BOOLEAN vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6B SPUT_BYTE vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6C SPUT_CHAR vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6D SPUT_SHORT vAA, field@BBBB
+  DF_UA | DF_UMS,
+
+  // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_UMS,
+
+  // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 73 UNUSED_73
+  DF_NOP,
+
+  // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_UMS,
+
+  // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // 79 UNUSED_79
+  DF_NOP,
+
+  // 7A UNUSED_7A
+  DF_NOP,
+
+  // 7B NEG_INT vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 7C NOT_INT vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 7D NEG_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // 7E NOT_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // 7F NEG_FLOAT vA, vB
+  DF_DA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // 80 NEG_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // 81 INT_TO_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 82 INT_TO_FLOAT vA, vB
+  DF_DA | DF_UB | DF_FP_A | DF_CORE_B,
+
+  // 83 INT_TO_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B,
+
+  // 84 LONG_TO_INT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // 85 LONG_TO_FLOAT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
+
+  // 86 LONG_TO_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
+
+  // 87 FLOAT_TO_INT vA, vB
+  DF_DA | DF_UB | DF_FP_B | DF_CORE_A,
+
+  // 88 FLOAT_TO_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A,
+
+  // 89 FLOAT_TO_DOUBLE vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B,
+
+  // 8A DOUBLE_TO_INT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
+
+  // 8B DOUBLE_TO_LONG vA, vB
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
+
+  // 8C DOUBLE_TO_FLOAT vA, vB
+  DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // 8D INT_TO_BYTE vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 8E INT_TO_CHAR vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 8F INT_TO_SHORT vA, vB
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // 90 ADD_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 91 SUB_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 92 MUL_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 93 DIV_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 94 REM_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 95 AND_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 96 OR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 97 XOR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 98 SHL_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 99 SHR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9A USHR_INT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9B ADD_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9C SUB_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9D MUL_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9E DIV_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // 9F REM_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A0 AND_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A1 OR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A2 XOR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A3 SHL_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A4 SHR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A5 USHR_LONG vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
+
+  // A6 ADD_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // A7 SUB_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // A8 MUL_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // A9 DIV_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AA REM_FLOAT vAA, vBB, vCC
+  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AB ADD_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AC SUB_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AD MUL_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AE DIV_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // AF REM_DOUBLE vAA, vBB, vCC
+  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
+
+  // B0 ADD_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B1 SUB_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B2 MUL_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B3 DIV_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B4 REM_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B5 AND_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B6 OR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B7 XOR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B8 SHL_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // B9 SHR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // BA USHR_INT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // BB ADD_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BC SUB_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BD MUL_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BE DIV_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // BF REM_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C0 AND_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C1 OR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C2 XOR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
+
+  // C3 SHL_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // C4 SHR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // C5 USHR_LONG_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // C6 ADD_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // C7 SUB_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // C8 MUL_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // C9 DIV_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // CA REM_FLOAT_2ADDR vA, vB
+  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
+
+  // CB ADD_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CC SUB_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CD MUL_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CE DIV_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // CF REM_DOUBLE_2ADDR vA, vB
+  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
+
+  // D0 ADD_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D1 RSUB_INT vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D2 MUL_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D3 DIV_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D4 REM_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D5 AND_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D6 OR_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D7 XOR_INT_LIT16 vA, vB, #+CCCC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D8 ADD_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DA MUL_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DB DIV_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DC REM_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DD AND_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DE OR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // DF XOR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E0 SHL_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E1 SHR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E2 USHR_INT_LIT8 vAA, vBB, #+CC
+  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
+
+  // E3 IGET_VOLATILE
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // E4 IPUT_VOLATILE
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
+
+  // E5 SGET_VOLATILE
+  DF_DA | DF_UMS,
+
+  // E6 SPUT_VOLATILE
+  DF_UA | DF_UMS,
+
+  // E7 IGET_OBJECT_VOLATILE
+  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B,
+
+  // E8 IGET_WIDE_VOLATILE
+  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
+
+  // E9 IPUT_WIDE_VOLATILE
+  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B,
+
+  // EA SGET_WIDE_VOLATILE
+  DF_DA | DF_A_WIDE | DF_UMS,
+
+  // EB SPUT_WIDE_VOLATILE
+  DF_UA | DF_A_WIDE | DF_UMS,
+
+  // EC BREAKPOINT
+  DF_NOP,
+
+  // ED THROW_VERIFICATION_ERROR
+  DF_NOP | DF_UMS,
+
+  // EE EXECUTE_INLINE
+  DF_FORMAT_35C,
+
+  // EF EXECUTE_INLINE_RANGE
+  DF_FORMAT_3RC,
+
+  // F0 INVOKE_OBJECT_INIT_RANGE
+  DF_NOP | DF_NULL_CHK_0,
+
+  // F1 RETURN_VOID_BARRIER
+  DF_NOP,
+
+  // F2 IGET_QUICK
+  DF_DA | DF_UB | DF_NULL_CHK_0,
+
+  // F3 IGET_WIDE_QUICK
+  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0,
+
+  // F4 IGET_OBJECT_QUICK
+  DF_DA | DF_UB | DF_NULL_CHK_0,
+
+  // F5 IPUT_QUICK
+  DF_UA | DF_UB | DF_NULL_CHK_1,
+
+  // F6 IPUT_WIDE_QUICK
+  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2,
+
+  // F7 IPUT_OBJECT_QUICK
+  DF_UA | DF_UB | DF_NULL_CHK_1,
+
+  // F8 INVOKE_VIRTUAL_QUICK
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // F9 INVOKE_VIRTUAL_QUICK_RANGE
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // FA INVOKE_SUPER_QUICK
+  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // FB INVOKE_SUPER_QUICK_RANGE
+  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
+
+  // FC IPUT_OBJECT_VOLATILE
+  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B,
+
+  // FD SGET_OBJECT_VOLATILE
+  DF_DA | DF_REF_A | DF_UMS,
+
+  // FE SPUT_OBJECT_VOLATILE
+  DF_UA | DF_REF_A | DF_UMS,
+
+  // FF UNUSED_FF
+  DF_NOP
+};
+} // end namespace sea_ir
diff --git a/compiler/sea_ir/instruction_tools.h b/compiler/sea_ir/instruction_tools.h
new file mode 100644
index 0000000..f68cdd0
--- /dev/null
+++ b/compiler/sea_ir/instruction_tools.h
@@ -0,0 +1,124 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#include "dex_instruction.h"
+
+#ifndef INSTRUCTION_TOOLS_H_
+#define INSTRUCTION_TOOLS_H_
+
+// Note: This file has content cannibalized for SEA_IR from the MIR implementation,
+//       to avoid having a dependence on MIR.
+namespace sea_ir {
+
+#define DF_NOP                  0
+#define DF_UA                   (1 << kUA)
+#define DF_UB                   (1 << kUB)
+#define DF_UC                   (1 << kUC)
+#define DF_A_WIDE               (1 << kAWide)
+#define DF_B_WIDE               (1 << kBWide)
+#define DF_C_WIDE               (1 << kCWide)
+#define DF_DA                   (1 << kDA)
+#define DF_IS_MOVE              (1 << kIsMove)
+#define DF_SETS_CONST           (1 << kSetsConst)
+#define DF_FORMAT_35C           (1 << kFormat35c)
+#define DF_FORMAT_3RC           (1 << kFormat3rc)
+#define DF_NULL_CHK_0           (1 << kNullCheckSrc0)
+#define DF_NULL_CHK_1           (1 << kNullCheckSrc1)
+#define DF_NULL_CHK_2           (1 << kNullCheckSrc2)
+#define DF_NULL_CHK_OUT0        (1 << kNullCheckOut0)
+#define DF_NON_NULL_DST         (1 << kDstNonNull)
+#define DF_NON_NULL_RET         (1 << kRetNonNull)
+#define DF_NULL_TRANSFER_0      (1 << kNullTransferSrc0)
+#define DF_NULL_TRANSFER_N      (1 << kNullTransferSrcN)
+#define DF_RANGE_CHK_1          (1 << kRangeCheckSrc1)
+#define DF_RANGE_CHK_2          (1 << kRangeCheckSrc2)
+#define DF_RANGE_CHK_3          (1 << kRangeCheckSrc3)
+#define DF_FP_A                 (1 << kFPA)
+#define DF_FP_B                 (1 << kFPB)
+#define DF_FP_C                 (1 << kFPC)
+#define DF_CORE_A               (1 << kCoreA)
+#define DF_CORE_B               (1 << kCoreB)
+#define DF_CORE_C               (1 << kCoreC)
+#define DF_REF_A                (1 << kRefA)
+#define DF_REF_B                (1 << kRefB)
+#define DF_REF_C                (1 << kRefC)
+#define DF_UMS                  (1 << kUsesMethodStar)
+
+#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
+
+#define DF_HAS_DEFS             (DF_DA)
+
+#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
+                                 DF_NULL_CHK_1 | \
+                                 DF_NULL_CHK_2 | \
+                                 DF_NULL_CHK_OUT0)
+
+#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
+                                 DF_RANGE_CHK_2 | \
+                                 DF_RANGE_CHK_3)
+
+#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
+                                 DF_HAS_RANGE_CHKS)
+
+#define DF_A_IS_REG             (DF_UA | DF_DA)
+#define DF_B_IS_REG             (DF_UB)
+#define DF_C_IS_REG             (DF_UC)
+#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
+#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
+
+enum DataFlowAttributePos {
+  kUA = 0,
+  kUB,
+  kUC,
+  kAWide,
+  kBWide,
+  kCWide,
+  kDA,
+  kIsMove,
+  kSetsConst,
+  kFormat35c,
+  kFormat3rc,
+  kNullCheckSrc0,        // Null check of uses[0].
+  kNullCheckSrc1,        // Null check of uses[1].
+  kNullCheckSrc2,        // Null check of uses[2].
+  kNullCheckOut0,        // Null check out outgoing arg0.
+  kDstNonNull,           // May assume dst is non-null.
+  kRetNonNull,           // May assume retval is non-null.
+  kNullTransferSrc0,     // Object copy src[0] -> dst.
+  kNullTransferSrcN,     // Phi null check state transfer.
+  kRangeCheckSrc1,       // Range check of uses[1].
+  kRangeCheckSrc2,       // Range check of uses[2].
+  kRangeCheckSrc3,       // Range check of uses[3].
+  kFPA,
+  kFPB,
+  kFPC,
+  kCoreA,
+  kCoreB,
+  kCoreC,
+  kRefA,
+  kRefB,
+  kRefC,
+  kUsesMethodStar,       // Implicit use of Method*.
+};
+
+class InstructionTools {
+ public:
+  static bool IsDefinition(const art::Instruction* instruction);
+  static const int instruction_attributes_[];
+};
+} // end namespace sea_ir
+#endif // INSTRUCTION_TOOLS_H_
diff --git a/compiler/sea_ir/sea.cc b/compiler/sea_ir/sea.cc
new file mode 100644
index 0000000..c5ec2b9
--- /dev/null
+++ b/compiler/sea_ir/sea.cc
@@ -0,0 +1,701 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "sea.h"
+
+#include "file_output_stream.h"
+#include "instruction_tools.h"
+
+
+#define MAX_REACHING_DEF_ITERERATIONS (10)
+
+namespace sea_ir {
+
+SeaGraph SeaGraph::graph_;
+int SeaNode::current_max_node_id_ = 0;
+
+
+SeaGraph* SeaGraph::GetCurrentGraph() {
+  return &sea_ir::SeaGraph::graph_;
+}
+
+void SeaGraph::DumpSea(std::string filename) const {
+  LOG(INFO) << "Starting to write SEA string to file.";
+  std::string result;
+  result += "digraph seaOfNodes {\n";
+  for (std::vector<Region*>::const_iterator cit = regions_.begin(); cit != regions_.end(); cit++) {
+    (*cit)->ToDot(result);
+  }
+  result += "}\n";
+  art::File* file = art::OS::OpenFile(filename.c_str(), true, true);
+  art::FileOutputStream fos(file);
+  fos.WriteFully(result.c_str(), result.size());
+  LOG(INFO) << "Written SEA string to file.";
+}
+
+void SeaGraph::AddEdge(Region* src, Region* dst) const {
+  src->AddSuccessor(dst);
+  dst->AddPredecessor(src);
+}
+
+void SeaGraph::ComputeRPO(Region* current_region, int& current_rpo) {
+  current_region->SetRPO(VISITING);
+  std::vector<sea_ir::Region*>* succs = current_region->GetSuccessors();
+  for (std::vector<sea_ir::Region*>::iterator succ_it = succs->begin();
+      succ_it != succs->end(); ++succ_it) {
+    if (NOT_VISITED == (*succ_it)->GetRPO()) {
+      SeaGraph::ComputeRPO(*succ_it, current_rpo);
+    }
+  }
+  current_region->SetRPO(current_rpo--);
+}
+
+void SeaGraph::ComputeIDominators() {
+  bool changed = true;
+  while (changed) {
+    changed = false;
+    // Entry node has itself as IDOM.
+    std::vector<Region*>::iterator crt_it;
+    std::set<Region*> processedNodes;
+    // Find and mark the entry node(s).
+    for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) {
+      if ((*crt_it)->GetPredecessors()->size() == 0) {
+        processedNodes.insert(*crt_it);
+        (*crt_it)->SetIDominator(*crt_it);
+      }
+    }
+    for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) {
+      if ((*crt_it)->GetPredecessors()->size() == 0) {
+        continue;
+      }
+      // NewIDom = first (processed) predecessor of b.
+      Region* new_dom = NULL;
+      std::vector<Region*>* preds = (*crt_it)->GetPredecessors();
+      DCHECK(NULL != preds);
+      Region* root_pred = NULL;
+      for (std::vector<Region*>::iterator pred_it = preds->begin();
+          pred_it != preds->end(); ++pred_it) {
+        if (processedNodes.end() != processedNodes.find((*pred_it))) {
+          root_pred = *pred_it;
+          new_dom = root_pred;
+          break;
+        }
+      }
+      // For all other predecessors p of b, if idom is not set,
+      // then NewIdom = Intersect(p, NewIdom)
+      for (std::vector<Region*>::const_iterator pred_it = preds->begin();
+          pred_it != preds->end(); ++pred_it) {
+        DCHECK(NULL != *pred_it);
+        // if IDOMS[p] != UNDEFINED
+        if ((*pred_it != root_pred) && (*pred_it)->GetIDominator() != NULL) {
+          DCHECK(NULL != new_dom);
+          new_dom = SeaGraph::Intersect(*pred_it, new_dom);
+        }
+      }
+      DCHECK(NULL != *crt_it);
+      if ((*crt_it)->GetIDominator() != new_dom) {
+        (*crt_it)->SetIDominator(new_dom);
+        changed = true;
+      }
+      processedNodes.insert(*crt_it);
+    }
+  }
+
+  // For easily ordering of regions we need edges dominator->dominated.
+  for (std::vector<Region*>::iterator region_it = regions_.begin();
+      region_it != regions_.end(); region_it++) {
+    Region* idom = (*region_it)->GetIDominator();
+    if (idom != *region_it) {
+      idom->AddToIDominatedSet(*region_it);
+    }
+  }
+}
+
+Region* SeaGraph::Intersect(Region* i, Region* j) {
+  Region* finger1 = i;
+  Region* finger2 = j;
+  while (finger1 != finger2) {
+    while (finger1->GetRPO() > finger2->GetRPO()) {
+      DCHECK(NULL != finger1);
+      finger1 = finger1->GetIDominator(); // should have: finger1 != NULL
+      DCHECK(NULL != finger1);
+    }
+    while (finger1->GetRPO() < finger2->GetRPO()) {
+      DCHECK(NULL != finger2);
+      finger2 = finger2->GetIDominator(); // should have: finger1 != NULL
+      DCHECK(NULL != finger2);
+    }
+  }
+  return finger1; // finger1 should be equal to finger2 at this point.
+}
+
+void SeaGraph::ComputeDownExposedDefs() {
+  for (std::vector<Region*>::iterator region_it = regions_.begin();
+        region_it != regions_.end(); region_it++) {
+      (*region_it)->ComputeDownExposedDefs();
+    }
+}
+
+void SeaGraph::ComputeReachingDefs() {
+  // Iterate until the reaching definitions set doesn't change anymore.
+  // (See Cooper & Torczon, "Engineering a Compiler", second edition, page 487)
+  bool changed = true;
+  int iteration = 0;
+  while (changed && (iteration < MAX_REACHING_DEF_ITERERATIONS)) {
+    iteration++;
+    changed = false;
+    // TODO: optimize the ordering if this becomes performance bottleneck.
+    for (std::vector<Region*>::iterator regions_it = regions_.begin();
+        regions_it != regions_.end();
+        regions_it++) {
+      changed |= (*regions_it)->UpdateReachingDefs();
+    }
+  }
+  DCHECK(!changed) << "Reaching definitions computation did not reach a fixed point.";
+}
+
+
+void SeaGraph::BuildMethodSeaGraph(const art::DexFile::CodeItem* code_item,
+    const art::DexFile& dex_file) {
+  const uint16_t* code = code_item->insns_;
+  const size_t size_in_code_units = code_item->insns_size_in_code_units_;
+  // This maps target instruction pointers to their corresponding region objects.
+  std::map<const uint16_t*, Region*> target_regions;
+  size_t i = 0;
+  // Pass: Find the start instruction of basic blocks
+  //         by locating targets and flow-though instructions of branches.
+  while (i < size_in_code_units) {
+    const art::Instruction* inst = art::Instruction::At(&code[i]);
+    if (inst->IsBranch() || inst->IsUnconditional()) {
+      int32_t offset = inst->GetTargetOffset();
+      if (target_regions.end() == target_regions.find(&code[i + offset])) {
+        Region* region = GetNewRegion();
+        target_regions.insert(std::pair<const uint16_t*, Region*>(&code[i + offset], region));
+      }
+      if (inst->CanFlowThrough()
+          && (target_regions.end() == target_regions.find(&code[i + inst->SizeInCodeUnits()]))) {
+        Region* region = GetNewRegion();
+        target_regions.insert(
+            std::pair<const uint16_t*, Region*>(&code[i + inst->SizeInCodeUnits()], region));
+      }
+    }
+    i += inst->SizeInCodeUnits();
+  }
+  // Pass: Assign instructions to region nodes and
+  //         assign branches their control flow successors.
+  i = 0;
+  Region* r = GetNewRegion();
+  SignatureNode* parameter_def_node = new sea_ir::SignatureNode(code_item->registers_size_-1,
+        code_item->ins_size_);
+  r->AddChild(parameter_def_node);
+  sea_ir::InstructionNode* last_node = NULL;
+  sea_ir::InstructionNode* node = NULL;
+  while (i < size_in_code_units) {
+    const art::Instruction* inst = art::Instruction::At(&code[i]); //TODO: find workaround for this
+    last_node = node;
+    node = new sea_ir::InstructionNode(inst);
+
+    if (inst->IsBranch() || inst->IsUnconditional()) {
+      int32_t offset = inst->GetTargetOffset();
+      std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i + offset]);
+      DCHECK(it != target_regions.end());
+      AddEdge(r, it->second); // Add edge to branch target.
+    }
+
+    std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i]);
+    if (target_regions.end() != it) {
+      // Get the already created region because this is a branch target.
+      Region* nextRegion = it->second;
+      if (last_node->GetInstruction()->IsBranch()
+          && last_node->GetInstruction()->CanFlowThrough()) {
+        AddEdge(r, it->second); // Add flow-through edge.
+      }
+      r = nextRegion;
+    }
+    bool definesRegister = (0 != InstructionTools::instruction_attributes_[inst->Opcode()]
+        && (1 << kDA));
+    LOG(INFO)<< inst->GetDexPc(code) << "*** " << inst->DumpString(&dex_file)
+    << " region:" <<r->StringId() << "Definition?" << definesRegister << std::endl;
+    r->AddChild(node);
+    i += inst->SizeInCodeUnits();
+  }
+}
+
+void SeaGraph::ComputeRPO() {
+  int rpo_id = regions_.size() - 1;
+  for (std::vector<Region*>::const_iterator crt_it = regions_.begin(); crt_it != regions_.end();
+      ++crt_it) {
+    if ((*crt_it)->GetPredecessors()->size() == 0) {
+      ComputeRPO(*crt_it, rpo_id);
+    }
+  }
+}
+
+// Performs the renaming phase in traditional SSA transformations.
+// See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.)
+void SeaGraph::RenameAsSSA() {
+  utils::ScopedHashtable<int, InstructionNode*> scoped_table;
+  scoped_table.OpenScope();
+  for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end();
+      region_it++) {
+    if ((*region_it)->GetIDominator() == *region_it) {
+      RenameAsSSA(*region_it, &scoped_table);
+    }
+  }
+
+  scoped_table.CloseScope();
+}
+
+void SeaGraph::ConvertToSSA() {
+  // Pass: find global names.
+  // The map @block maps registers to the blocks in which they are defined.
+  std::map<int, std::set<Region*> > blocks;
+  // The set @globals records registers whose use
+  // is in a different block than the corresponding definition.
+  std::set<int> globals;
+  for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end();
+      region_it++) {
+    std::set<int> var_kill;
+    std::vector<InstructionNode*>* instructions = (*region_it)->GetInstructions();
+    for (std::vector<InstructionNode*>::iterator inst_it = instructions->begin();
+        inst_it != instructions->end(); inst_it++) {
+      std::vector<int> used_regs = (*inst_it)->GetUses();
+      for (std::size_t i = 0; i < used_regs.size(); i++) {
+        int used_reg = used_regs[i];
+        if (var_kill.find(used_reg) == var_kill.end()) {
+          globals.insert(used_reg);
+        }
+      }
+      const int reg_def = (*inst_it)->GetResultRegister();
+      if (reg_def != NO_REGISTER) {
+        var_kill.insert(reg_def);
+      }
+
+      blocks.insert(std::pair<int, std::set<Region*> >(reg_def, std::set<Region*>()));
+      std::set<Region*>* reg_def_blocks = &(blocks.find(reg_def)->second);
+      reg_def_blocks->insert(*region_it);
+    }
+  }
+
+  // Pass: Actually add phi-nodes to regions.
+  for (std::set<int>::const_iterator globals_it = globals.begin();
+      globals_it != globals.end(); globals_it++) {
+    int global = *globals_it;
+    // Copy the set, because we will modify the worklist as we go.
+    std::set<Region*> worklist((*(blocks.find(global))).second);
+    for (std::set<Region*>::const_iterator b_it = worklist.begin(); b_it != worklist.end(); b_it++) {
+      std::set<Region*>* df = (*b_it)->GetDominanceFrontier();
+      for (std::set<Region*>::const_iterator df_it = df->begin(); df_it != df->end(); df_it++) {
+        if ((*df_it)->InsertPhiFor(global)) {
+          // Check that the dominance frontier element is in the worklist already
+          // because we only want to break if the element is actually not there yet.
+          if (worklist.find(*df_it) == worklist.end()) {
+            worklist.insert(*df_it);
+            b_it = worklist.begin();
+            break;
+          }
+        }
+      }
+    }
+  }
+  // Pass: Build edges to the definition corresponding to each use.
+  // (This corresponds to the renaming phase in traditional SSA transformations.
+  // See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.)
+  RenameAsSSA();
+}
+
+void SeaGraph::RenameAsSSA(Region* crt_region,
+    utils::ScopedHashtable<int, InstructionNode*>* scoped_table) {
+  scoped_table->OpenScope();
+  // Rename phi nodes defined in the current region.
+  std::vector<PhiInstructionNode*>* phis = crt_region->GetPhiNodes();
+  for (std::vector<PhiInstructionNode*>::iterator phi_it = phis->begin();
+      phi_it != phis->end(); phi_it++) {
+    int reg_no = (*phi_it)->GetRegisterNumber();
+    scoped_table->Add(reg_no, (*phi_it));
+  }
+  // Rename operands of instructions from the current region.
+  std::vector<InstructionNode*>* instructions = crt_region->GetInstructions();
+  for (std::vector<InstructionNode*>::const_iterator instructions_it = instructions->begin();
+      instructions_it != instructions->end(); instructions_it++) {
+    InstructionNode* current_instruction = (*instructions_it);
+    // Rename uses.
+    std::vector<int> used_regs = current_instruction->GetUses();
+    for (std::vector<int>::const_iterator reg_it = used_regs.begin();
+        reg_it != used_regs.end(); reg_it++) {
+      int current_used_reg = (*reg_it);
+      InstructionNode* definition = scoped_table->Lookup(current_used_reg);
+      current_instruction->RenameToSSA(current_used_reg, definition);
+    }
+    // Update scope table with latest definitions.
+    std::vector<int> def_regs = current_instruction->GetDefinitions();
+    for (std::vector<int>::const_iterator reg_it = def_regs.begin();
+            reg_it != def_regs.end(); reg_it++) {
+      int current_defined_reg = (*reg_it);
+      scoped_table->Add(current_defined_reg, current_instruction);
+    }
+  }
+  // Fill in uses of phi functions in CFG successor regions.
+  const std::vector<Region*>* successors = crt_region->GetSuccessors();
+  for (std::vector<Region*>::const_iterator successors_it = successors->begin();
+      successors_it != successors->end(); successors_it++) {
+    Region* successor = (*successors_it);
+    successor->SetPhiDefinitionsForUses(scoped_table, crt_region);
+  }
+
+  // Rename all successors in the dominators tree.
+  const std::set<Region*>* dominated_nodes = crt_region->GetIDominatedSet();
+  for (std::set<Region*>::const_iterator dominated_nodes_it = dominated_nodes->begin();
+      dominated_nodes_it != dominated_nodes->end(); dominated_nodes_it++) {
+    Region* dominated_node = (*dominated_nodes_it);
+    RenameAsSSA(dominated_node, scoped_table);
+  }
+  scoped_table->CloseScope();
+}
+
+void SeaGraph::CompileMethod(const art::DexFile::CodeItem* code_item,
+  uint32_t class_def_idx, uint32_t method_idx, const art::DexFile& dex_file) {
+  // Two passes: Builds the intermediate structure (non-SSA) of the sea-ir for the function.
+  BuildMethodSeaGraph(code_item, dex_file);
+  //Pass: Compute reverse post-order of regions.
+  ComputeRPO();
+  // Multiple passes: compute immediate dominators.
+  ComputeIDominators();
+  // Pass: compute downward-exposed definitions.
+  ComputeDownExposedDefs();
+  // Multiple Passes (iterative fixed-point algorithm): Compute reaching definitions
+  ComputeReachingDefs();
+  // Pass (O(nlogN)): Compute the dominance frontier for region nodes.
+  ComputeDominanceFrontier();
+  // Two Passes: Phi node insertion.
+  ConvertToSSA();
+}
+
+
+void SeaGraph::ComputeDominanceFrontier() {
+  for (std::vector<Region*>::iterator region_it = regions_.begin();
+      region_it != regions_.end(); region_it++) {
+    std::vector<Region*>* preds = (*region_it)->GetPredecessors();
+    if (preds->size() > 1) {
+      for (std::vector<Region*>::iterator pred_it = preds->begin();
+          pred_it != preds->end(); pred_it++) {
+        Region* runner = *pred_it;
+        while (runner != (*region_it)->GetIDominator()) {
+          runner->AddToDominanceFrontier(*region_it);
+          runner = runner->GetIDominator();
+        }
+      }
+    }
+  }
+}
+
+Region* SeaGraph::GetNewRegion() {
+  Region* new_region = new Region();
+  AddRegion(new_region);
+  return new_region;
+}
+
+void SeaGraph::AddRegion(Region* r) {
+  DCHECK(r) << "Tried to add NULL region to SEA graph.";
+  regions_.push_back(r);
+}
+
+void SeaNode::AddSuccessor(Region* successor) {
+  DCHECK(successor) << "Tried to add NULL successor to SEA node.";
+  successors_.push_back(successor);
+  return;
+}
+
+void SeaNode::AddPredecessor(Region* predecessor) {
+  DCHECK(predecessor) << "Tried to add NULL predecessor to SEA node.";
+  predecessors_.push_back(predecessor);
+}
+
+void Region::AddChild(sea_ir::InstructionNode* instruction) {
+  DCHECK(instruction) << "Tried to add NULL instruction to region node.";
+  instructions_.push_back(instruction);
+}
+
+SeaNode* Region::GetLastChild() const {
+  if (instructions_.size() > 0) {
+    return instructions_.back();
+  }
+  return NULL;
+}
+
+void Region::ToDot(std::string& result) const {
+  result += "\n// Region: \n" + StringId() + " [label=\"region " + StringId() + "(rpo=";
+  std::stringstream ss;
+  ss << rpo_;
+  result.append(ss.str());
+  if (NULL != GetIDominator()) {
+    result += " dom=" + GetIDominator()->StringId();
+  }
+  result += ")\"];\n";
+
+  // Save phi-nodes.
+  for (std::vector<PhiInstructionNode*>::const_iterator cit = phi_instructions_.begin();
+      cit != phi_instructions_.end(); cit++) {
+    (*cit)->ToDot(result);
+    result += StringId() + " -> " + (*cit)->StringId() + "; // phi-function \n";
+  }
+
+  // Save instruction nodes.
+  for (std::vector<InstructionNode*>::const_iterator cit = instructions_.begin();
+      cit != instructions_.end(); cit++) {
+    (*cit)->ToDot(result);
+    result += StringId() + " -> " + (*cit)->StringId() + "; // region -> instruction \n";
+  }
+
+  for (std::vector<Region*>::const_iterator cit = successors_.begin(); cit != successors_.end();
+      cit++) {
+    DCHECK(NULL != *cit) << "Null successor found for SeaNode" << GetLastChild()->StringId() << ".";
+    result += GetLastChild()->StringId() + " -> " + (*cit)->StringId() + ";\n\n";
+  }
+  // Save reaching definitions.
+  for (std::map<int, std::set<sea_ir::InstructionNode*>* >::const_iterator cit =
+      reaching_defs_.begin();
+      cit != reaching_defs_.end(); cit++) {
+    for (std::set<sea_ir::InstructionNode*>::const_iterator
+        reaching_set_it = (*cit).second->begin();
+        reaching_set_it != (*cit).second->end();
+        reaching_set_it++) {
+      result += (*reaching_set_it)->StringId() +
+         " -> " + StringId() +
+         " [style=dotted]; // Reaching def.\n";
+    }
+  }
+  // Save dominance frontier.
+  for (std::set<Region*>::const_iterator cit = df_.begin(); cit != df_.end(); cit++) {
+    result += StringId() +
+        " -> " + (*cit)->StringId() +
+        " [color=gray]; // Dominance frontier.\n";
+  }
+  result += "// End Region.\n";
+}
+
+void Region::ComputeDownExposedDefs() {
+  for (std::vector<InstructionNode*>::const_iterator inst_it = instructions_.begin();
+      inst_it != instructions_.end(); inst_it++) {
+    int reg_no = (*inst_it)->GetResultRegister();
+    std::map<int, InstructionNode*>::iterator res = de_defs_.find(reg_no);
+    if ((reg_no != NO_REGISTER) && (res == de_defs_.end())) {
+      de_defs_.insert(std::pair<int, InstructionNode*>(reg_no, *inst_it));
+    } else {
+      res->second = *inst_it;
+    }
+  }
+  for (std::map<int, sea_ir::InstructionNode*>::const_iterator cit = de_defs_.begin();
+      cit != de_defs_.end(); cit++) {
+    (*cit).second->MarkAsDEDef();
+  }
+}
+
+const std::map<int, sea_ir::InstructionNode*>* Region::GetDownExposedDefs() const {
+  return &de_defs_;
+}
+
+std::map<int, std::set<sea_ir::InstructionNode*>* >* Region::GetReachingDefs() {
+  return &reaching_defs_;
+}
+
+bool Region::UpdateReachingDefs() {
+  std::map<int, std::set<sea_ir::InstructionNode*>* > new_reaching;
+  for (std::vector<Region*>::const_iterator pred_it = predecessors_.begin();
+      pred_it != predecessors_.end(); pred_it++) {
+    // The reaching_defs variable will contain reaching defs __for current predecessor only__
+    std::map<int, std::set<sea_ir::InstructionNode*>* > reaching_defs;
+    std::map<int, std::set<sea_ir::InstructionNode*>* >* pred_reaching = (*pred_it)->GetReachingDefs();
+    const std::map<int, InstructionNode*>* de_defs = (*pred_it)->GetDownExposedDefs();
+
+    // The definitions from the reaching set of the predecessor
+    // may be shadowed by downward exposed definitions from the predecessor,
+    // otherwise the defs from the reaching set are still good.
+    for (std::map<int, InstructionNode*>::const_iterator de_def = de_defs->begin();
+        de_def != de_defs->end(); de_def++) {
+      std::set<InstructionNode*>* solo_def;
+      solo_def = new std::set<InstructionNode*>();
+      solo_def->insert(de_def->second);
+      reaching_defs.insert(
+          std::pair<int const, std::set<InstructionNode*>*>(de_def->first, solo_def));
+    }
+    reaching_defs.insert(pred_reaching->begin(), pred_reaching->end());
+
+    // Now we combine the reaching map coming from the current predecessor (reaching_defs)
+    // with the accumulated set from all predecessors so far (from new_reaching).
+    std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = reaching_defs.begin();
+    for (; reaching_it != reaching_defs.end(); reaching_it++) {
+      std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator crt_entry =
+          new_reaching.find(reaching_it->first);
+      if (new_reaching.end() != crt_entry) {
+        crt_entry->second->insert(reaching_it->second->begin(), reaching_it->second->end());
+      } else {
+        new_reaching.insert(
+            std::pair<int, std::set<sea_ir::InstructionNode*>*>(
+                reaching_it->first,
+                reaching_it->second) );
+      }
+    }
+  }
+  bool changed = false;
+  // Because the sets are monotonically increasing,
+  // we can compare sizes instead of using set comparison.
+  // TODO: Find formal proof.
+  int old_size = 0;
+  if (-1 == reaching_defs_size_) {
+    std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = reaching_defs_.begin();
+    for (; reaching_it != reaching_defs_.end(); reaching_it++) {
+      old_size += (*reaching_it).second->size();
+    }
+  } else {
+    old_size = reaching_defs_size_;
+  }
+  int new_size = 0;
+  std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = new_reaching.begin();
+  for (; reaching_it != new_reaching.end(); reaching_it++) {
+    new_size += (*reaching_it).second->size();
+  }
+  if (old_size != new_size) {
+    changed = true;
+  }
+  if (changed) {
+    reaching_defs_ = new_reaching;
+    reaching_defs_size_ = new_size;
+  }
+  return changed;
+}
+
+bool Region::InsertPhiFor(int reg_no) {
+  if (!ContainsPhiFor(reg_no)) {
+    phi_set_.insert(reg_no);
+    PhiInstructionNode* new_phi = new PhiInstructionNode(reg_no);
+    phi_instructions_.push_back(new_phi);
+    return true;
+  }
+  return false;
+}
+
+void Region::SetPhiDefinitionsForUses(
+    const utils::ScopedHashtable<int, InstructionNode*>* scoped_table, Region* predecessor) {
+  int predecessor_id = -1;
+  for (unsigned int crt_pred_id = 0; crt_pred_id < predecessors_.size(); crt_pred_id++) {
+    if (predecessors_.at(crt_pred_id) == predecessor) {
+      predecessor_id = crt_pred_id;
+    }
+  }
+  DCHECK_NE(-1, predecessor_id);
+  for (std::vector<PhiInstructionNode*>::iterator phi_it = phi_instructions_.begin();
+      phi_it != phi_instructions_.end(); phi_it++) {
+    PhiInstructionNode* phi = (*phi_it);
+    int reg_no = phi->GetRegisterNumber();
+    InstructionNode* definition = scoped_table->Lookup(reg_no);
+    phi->RenameToSSA(reg_no, definition, predecessor_id);
+  }
+}
+
+void InstructionNode::ToDot(std::string& result) const {
+  result += "// Instruction: \n" + StringId() +
+      " [label=\"" + instruction_->DumpString(NULL) + "\"";
+  if (de_def_) {
+    result += "style=bold";
+  }
+  result += "];\n";
+  // SSA definitions:
+  for (std::map<int, InstructionNode* >::const_iterator def_it = definition_edges_.begin();
+      def_it != definition_edges_.end(); def_it++) {
+    if (NULL != def_it->second) {
+      result += def_it->second->StringId() + " -> " + StringId() +"[color=red,label=\"";
+      std::stringstream ss;
+      ss << def_it->first;
+      result.append(ss.str());
+      result += "\"] ; // ssa edge\n";
+    }
+  }
+}
+
+void InstructionNode::MarkAsDEDef() {
+  de_def_ = true;
+}
+
+int InstructionNode::GetResultRegister() const {
+  if (instruction_->HasVRegA()) {
+    return instruction_->VRegA();
+  }
+  return NO_REGISTER;
+}
+
+std::vector<int> InstructionNode::GetDefinitions() const {
+  // TODO: Extend this to handle instructions defining more than one register (if any)
+  // The return value should be changed to pointer to field then; for now it is an object
+  // so that we avoid possible memory leaks from allocating objects dynamically.
+  std::vector<int> definitions;
+  int result = GetResultRegister();
+  if (NO_REGISTER != result) {
+    definitions.push_back(result);
+  }
+  return definitions;
+}
+
+std::vector<int> InstructionNode::GetUses() {
+  std::vector<int> uses; // Using vector<> instead of set<> because order matters.
+
+  if (!InstructionTools::IsDefinition(instruction_) && (instruction_->HasVRegA())) {
+    int vA = instruction_->VRegA();
+    uses.push_back(vA);
+  }
+  if (instruction_->HasVRegB()) {
+    int vB = instruction_->VRegB();
+    uses.push_back(vB);
+  }
+  if (instruction_->HasVRegC()) {
+    int vC = instruction_->VRegC();
+    uses.push_back(vC);
+  }
+  // TODO: Add support for function argument registers.
+  return uses;
+}
+
+void PhiInstructionNode::ToDot(std::string& result) const {
+  result += "// PhiInstruction: \n" + StringId() +
+      " [label=\"" + "PHI(";
+  std::stringstream phi_reg_stream;
+  phi_reg_stream << register_no_;
+  result.append(phi_reg_stream.str());
+  result += ")\"";
+  result += "];\n";
+
+  for (std::vector<std::map<int, InstructionNode*>*>::const_iterator pred_it = definition_edges_.begin();
+      pred_it != definition_edges_.end(); pred_it++) {
+    std::map<int, InstructionNode*>* defs_from_pred = *pred_it;
+    for (std::map<int, InstructionNode* >::const_iterator def_it = defs_from_pred->begin();
+        def_it != defs_from_pred->end(); def_it++) {
+      if (NULL != def_it->second) {
+        result += def_it->second->StringId() + " -> " + StringId() +"[color=red,label=\"vR = ";
+        std::stringstream ss;
+        ss << def_it->first;
+        result.append(ss.str());
+        result += "\"] ; // phi-ssa edge\n";
+      } else {
+        result += StringId() + " -> " + StringId() +"[color=blue,label=\"vR = ";
+        std::stringstream ss;
+        ss << def_it->first;
+        result.append(ss.str());
+        result += "\"] ; // empty phi-ssa edge\n";
+      }
+    }
+  }
+}
+} // end namespace sea_ir
diff --git a/compiler/sea_ir/sea.h b/compiler/sea_ir/sea.h
new file mode 100644
index 0000000..a133678
--- /dev/null
+++ b/compiler/sea_ir/sea.h
@@ -0,0 +1,336 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef SEA_IR_H_
+#define SEA_IR_H_
+
+#include <set>
+#include <map>
+
+#include "dex_file.h"
+#include "dex_instruction.h"
+#include "sea_ir/instruction_tools.h"
+#include "utils/scoped_hashtable.h"
+
+
+namespace sea_ir {
+
+#define NO_REGISTER             (-1)
+
+// Reverse post-order numbering constants
+enum RegionNumbering {
+  NOT_VISITED = -1,
+  VISITING = -2
+};
+
+class Region;
+class InstructionNode;
+class PhiInstructionNode;
+
+class SeaNode {
+ public:
+  explicit SeaNode():id_(GetNewId()), string_id_(), successors_(), predecessors_() {
+    std::stringstream ss;
+    ss << id_;
+    string_id_.append(ss.str());
+  }
+  // Adds CFG predecessors and successors to each block.
+  void AddSuccessor(Region* successor);
+  void AddPredecessor(Region* predecesor);
+
+  std::vector<sea_ir::Region*>* GetSuccessors() {
+    return &successors_;
+  }
+  std::vector<sea_ir::Region*>* GetPredecessors() {
+    return &predecessors_;
+  }
+  // Returns the id of the current block as string
+  const std::string& StringId() const {
+    return string_id_;
+  }
+  // Appends to @result a dot language formatted string representing the node and
+  //    (by convention) outgoing edges, so that the composition of theToDot() of all nodes
+  //    builds a complete dot graph, but without prolog ("digraph {") and epilog ("}").
+  virtual void ToDot(std::string& result) const = 0;
+
+  virtual ~SeaNode() {}
+
+ protected:
+  static int GetNewId() {
+    return current_max_node_id_++;
+  }
+
+  const int id_;
+  std::string string_id_;
+  std::vector<sea_ir::Region*> successors_;    // CFG successor nodes (regions)
+  std::vector<sea_ir::Region*> predecessors_;  // CFG predecessor nodes (instructions/regions)
+
+ private:
+  static int current_max_node_id_;
+};
+
+class InstructionNode: public SeaNode {
+ public:
+  explicit InstructionNode(const art::Instruction* in):
+    SeaNode(), instruction_(in), de_def_(false) {}
+  // Returns the Dalvik instruction around which this InstructionNode is wrapped.
+  const art::Instruction* GetInstruction() const {
+    DCHECK(NULL != instruction_) << "Tried to access NULL instruction in an InstructionNode.";
+    return instruction_;
+  }
+  // Returns the register that is defined by the current instruction, or NO_REGISTER otherwise.
+  virtual int GetResultRegister() const;
+  // Returns the set of registers defined by the current instruction.
+  virtual std::vector<int> GetDefinitions() const;
+  // Returns the set of register numbers that are used by the instruction.
+  virtual std::vector<int> GetUses();
+  // Appends to @result the .dot string representation of the instruction.
+  void ToDot(std::string& result) const;
+  // Mark the current instruction as a dowward exposed definition.
+  void MarkAsDEDef();
+  // Rename the use of @reg_no to refer to the instruction @definition,
+  // essentially creating SSA form.
+  void RenameToSSA(int reg_no, InstructionNode* definition) {
+    definition_edges_.insert(std::pair<int, InstructionNode*>(reg_no, definition));
+  }
+
+ private:
+  const art::Instruction* const instruction_;
+  std::map<int, InstructionNode* > definition_edges_;
+  bool de_def_;
+};
+
+class SignatureNode: public InstructionNode {
+ public:
+  explicit SignatureNode(unsigned int start_register, unsigned int count):
+      InstructionNode(NULL), defined_regs_() {
+    for (unsigned int crt_offset = 0; crt_offset < count; crt_offset++) {
+      defined_regs_.push_back(start_register - crt_offset);
+    }
+  }
+
+  void ToDot(std::string& result) const {
+    result += StringId() +"[label=\"signature:";
+    std::stringstream vector_printer;
+    if (!defined_regs_.empty()) {
+      for (unsigned int crt_el = 0; crt_el < defined_regs_.size()-1; crt_el++) {
+        vector_printer << defined_regs_[crt_el] <<",";
+      }
+      vector_printer << defined_regs_[defined_regs_.size()-1] <<";";
+    }
+    result += "\"] // signature node\n";
+  }
+
+  std::vector<int> GetDefinitions() const {
+    return defined_regs_;
+  }
+
+  int GetResultRegister() const {
+    return NO_REGISTER;
+  }
+
+  std::vector<int> GetUses() {
+    return std::vector<int>();
+  }
+
+ private:
+  std::vector<int> defined_regs_;
+};
+
+
+class PhiInstructionNode: public InstructionNode {
+ public:
+  explicit PhiInstructionNode(int register_no):
+    InstructionNode(NULL), register_no_(register_no), definition_edges_() {}
+  // Appends to @result the .dot string representation of the instruction.
+  void ToDot(std::string& result) const;
+  // Returns the register on which this phi-function is used.
+  int GetRegisterNumber() {
+    return register_no_;
+  }
+
+  // Rename the use of @reg_no to refer to the instruction @definition.
+  // Phi-functions are different than normal instructions in that they
+  // have multiple predecessor regions; this is why RenameToSSA has
+  // the additional parameter specifying that @parameter_id is the incoming
+  // edge for @definition, essentially creating SSA form.
+  void RenameToSSA(int reg_no, InstructionNode* definition, unsigned int predecessor_id) {
+    DCHECK(NULL != definition) << "Tried to rename to SSA using a NULL definition for "
+        << StringId() << " register " << reg_no;
+    if (definition_edges_.size() < predecessor_id+1) {
+      definition_edges_.resize(predecessor_id+1, NULL);
+    }
+
+    if (NULL == definition_edges_.at(predecessor_id)) {
+      definition_edges_[predecessor_id] = new std::map<int, InstructionNode*>();
+    }
+    definition_edges_[predecessor_id]->insert(std::pair<int, InstructionNode*>(reg_no, definition));
+  }
+
+ private:
+  int register_no_;
+  std::vector<std::map<int, InstructionNode*>*> definition_edges_;
+};
+
+class Region : public SeaNode {
+ public:
+  explicit Region():
+    SeaNode(), reaching_defs_size_(0), rpo_(NOT_VISITED), idom_(NULL),
+    idominated_set_(), df_(), phi_set_() {}
+
+  // Adds @instruction as an instruction node child in the current region.
+  void AddChild(sea_ir::InstructionNode* insttruction);
+
+  // Returns the last instruction node child of the current region.
+  // This child has the CFG successors pointing to the new regions.
+  SeaNode* GetLastChild() const;
+  // Returns all the child instructions of this region, in program order.
+  std::vector<InstructionNode*>* GetInstructions() {
+    return &instructions_;
+  }
+  // Appends to @result a dot language formatted string representing the node and
+  //    (by convention) outgoing edges, so that the composition of theToDot() of all nodes
+  //    builds a complete dot graph (without prolog and epilog though).
+  virtual void ToDot(std::string& result) const;
+  // Computes Downward Exposed Definitions for the current node.
+
+  void ComputeDownExposedDefs();
+  const std::map<int, sea_ir::InstructionNode*>* GetDownExposedDefs() const;
+
+  // Performs one iteration of the reaching definitions algorithm
+  // and returns true if the reaching definitions set changed.
+  bool UpdateReachingDefs();
+  // Returns the set of reaching definitions for the current region.
+  std::map<int, std::set<sea_ir::InstructionNode*>* >* GetReachingDefs();
+
+  void SetRPO(int rpo) {
+    rpo_ = rpo;
+  }
+
+  int GetRPO() {
+    return rpo_;
+  }
+
+  void SetIDominator(Region* dom) {
+    idom_ = dom;
+  }
+
+  Region* GetIDominator() const {
+    return idom_;
+  }
+
+  void AddToIDominatedSet(Region* dominated) {
+    idominated_set_.insert(dominated);
+  }
+
+  const std::set<Region*>* GetIDominatedSet() {
+    return &idominated_set_;
+  }
+
+  // Adds @df_reg to the dominance frontier of the current region.
+  void AddToDominanceFrontier(Region* df_reg) {
+    df_.insert(df_reg);
+  }
+  // Returns the dominance frontier of the current region.
+  // Preconditions: SeaGraph.ComputeDominanceFrontier()
+  std::set<Region*>* GetDominanceFrontier() {
+    return &df_;
+  }
+  // Returns true if the region contains a phi function for @reg_no.
+  bool ContainsPhiFor(int reg_no) {
+    return (phi_set_.end() != phi_set_.find(reg_no));
+  }
+  // Returns the phi-functions from the region.
+  std::vector<PhiInstructionNode*>* GetPhiNodes() {
+    return &phi_instructions_;
+  }
+  // Adds a phi-function for @reg_no to this region.
+  // Note: The insertion order does not matter, as phi-functions
+  //       are conceptually executed at the same time.
+  bool InsertPhiFor(int reg_no);
+  // Sets the phi-function uses to be as defined in @scoped_table for predecessor @@predecessor.
+  void SetPhiDefinitionsForUses(const utils::ScopedHashtable<int, InstructionNode*>* scoped_table,
+      Region* predecessor);
+
+ private:
+  std::vector<sea_ir::InstructionNode*> instructions_;
+  std::map<int, sea_ir::InstructionNode*> de_defs_;
+  std::map<int, std::set<sea_ir::InstructionNode*>* > reaching_defs_;
+  int reaching_defs_size_;
+  int rpo_;
+  // Immediate dominator node.
+  Region* idom_;
+  // The set of nodes immediately dominated by the region.
+  std::set<Region*> idominated_set_;
+  // Records the dominance frontier.
+  std::set<Region*> df_;
+  // Records the set of register numbers that have phi nodes in this region.
+  std::set<int> phi_set_;
+  std::vector<PhiInstructionNode*> phi_instructions_;
+};
+
+class SeaGraph {
+ public:
+  static SeaGraph* GetCurrentGraph();
+
+  void CompileMethod(const art::DexFile::CodeItem* code_item,
+      uint32_t class_def_idx, uint32_t method_idx, const art::DexFile& dex_file);
+  // Returns a string representation of the region and its Instruction children.
+  void DumpSea(std::string filename) const;
+  // Recursively computes the reverse postorder value for @crt_bb and successors.
+  static void ComputeRPO(Region* crt_bb, int& crt_rpo);
+  // Returns the "lowest common ancestor" of @i and @j in the dominator tree.
+  static Region* Intersect(Region* i, Region* j);
+
+ private:
+  // Registers @childReg as a region belonging to the SeaGraph instance.
+  void AddRegion(Region* childReg);
+  // Returns new region and registers it with the  SeaGraph instance.
+  Region* GetNewRegion();
+  // Adds a CFG edge from @src node to @dst node.
+  void AddEdge(Region* src, Region* dst) const;
+  // Builds the non-SSA sea-ir representation of the function @code_item from @dex_file.
+  void BuildMethodSeaGraph(const art::DexFile::CodeItem* code_item, const art::DexFile& dex_file);
+  // Computes immediate dominators for each region.
+  // Precondition: ComputeMethodSeaGraph()
+  void ComputeIDominators();
+  // Computes Downward Exposed Definitions for all regions in the graph.
+  void ComputeDownExposedDefs();
+  // Computes the reaching definitions set following the equations from
+  // Cooper & Torczon, "Engineering a Compiler", second edition, page 491.
+  // Precondition: ComputeDEDefs()
+  void ComputeReachingDefs();
+  // Computes the reverse-postorder numbering for the region nodes.
+  // Precondition: ComputeDEDefs()
+  void ComputeRPO();
+  // Computes the dominance frontier for all regions in the graph,
+  // following the algorithm from
+  // Cooper & Torczon, "Engineering a Compiler", second edition, page 499.
+  // Precondition: ComputeIDominators()
+  void ComputeDominanceFrontier();
+
+  void ConvertToSSA();
+  // Identifies the definitions corresponding to uses for region @node
+  // by using the scoped hashtable of names @ scoped_table.
+  void RenameAsSSA(Region* node, utils::ScopedHashtable<int, InstructionNode*>* scoped_table);
+  void RenameAsSSA();
+
+  static SeaGraph graph_;
+  std::vector<Region*> regions_;
+};
+} // end namespace sea_ir
+#endif