The Android Open Source Project | a27d2ba | 2008-10-21 07:00:00 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 1985, 1993 |
| 3 | * The Regents of the University of California. All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * 3. All advertising materials mentioning features or use of this software |
| 14 | * must display the following acknowledgement: |
| 15 | * This product includes software developed by the University of |
| 16 | * California, Berkeley and its contributors. |
| 17 | * 4. Neither the name of the University nor the names of its contributors |
| 18 | * may be used to endorse or promote products derived from this software |
| 19 | * without specific prior written permission. |
| 20 | * |
| 21 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 31 | * SUCH DAMAGE. |
| 32 | */ |
| 33 | |
| 34 | #ifndef lint |
| 35 | static char sccsid[] = "@(#)exp.c 8.1 (Berkeley) 6/4/93"; |
| 36 | #endif /* not lint */ |
| 37 | #include <sys/cdefs.h> |
| 38 | /* __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_exp.c,v 1.7 2004/12/16 20:40:37 das Exp $"); */ |
| 39 | |
| 40 | |
| 41 | /* EXP(X) |
| 42 | * RETURN THE EXPONENTIAL OF X |
| 43 | * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) |
| 44 | * CODED IN C BY K.C. NG, 1/19/85; |
| 45 | * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86. |
| 46 | * |
| 47 | * Required system supported functions: |
| 48 | * scalb(x,n) |
| 49 | * copysign(x,y) |
| 50 | * finite(x) |
| 51 | * |
| 52 | * Method: |
| 53 | * 1. Argument Reduction: given the input x, find r and integer k such |
| 54 | * that |
| 55 | * x = k*ln2 + r, |r| <= 0.5*ln2 . |
| 56 | * r will be represented as r := z+c for better accuracy. |
| 57 | * |
| 58 | * 2. Compute exp(r) by |
| 59 | * |
| 60 | * exp(r) = 1 + r + r*R1/(2-R1), |
| 61 | * where |
| 62 | * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))). |
| 63 | * |
| 64 | * 3. exp(x) = 2^k * exp(r) . |
| 65 | * |
| 66 | * Special cases: |
| 67 | * exp(INF) is INF, exp(NaN) is NaN; |
| 68 | * exp(-INF)= 0; |
| 69 | * for finite argument, only exp(0)=1 is exact. |
| 70 | * |
| 71 | * Accuracy: |
| 72 | * exp(x) returns the exponential of x nearly rounded. In a test run |
| 73 | * with 1,156,000 random arguments on a VAX, the maximum observed |
| 74 | * error was 0.869 ulps (units in the last place). |
| 75 | */ |
| 76 | |
| 77 | #include "mathimpl.h" |
| 78 | |
| 79 | const static double p1 = 0x1.555555555553ep-3; |
| 80 | const static double p2 = -0x1.6c16c16bebd93p-9; |
| 81 | const static double p3 = 0x1.1566aaf25de2cp-14; |
| 82 | const static double p4 = -0x1.bbd41c5d26bf1p-20; |
| 83 | const static double p5 = 0x1.6376972bea4d0p-25; |
| 84 | const static double ln2hi = 0x1.62e42fee00000p-1; |
| 85 | const static double ln2lo = 0x1.a39ef35793c76p-33; |
| 86 | const static double lnhuge = 0x1.6602b15b7ecf2p9; |
| 87 | const static double lntiny = -0x1.77af8ebeae354p9; |
| 88 | const static double invln2 = 0x1.71547652b82fep0; |
| 89 | |
| 90 | #if 0 |
| 91 | double exp(x) |
| 92 | double x; |
| 93 | { |
| 94 | double z,hi,lo,c; |
| 95 | int k; |
| 96 | |
| 97 | #if !defined(vax)&&!defined(tahoe) |
| 98 | if(x!=x) return(x); /* x is NaN */ |
| 99 | #endif /* !defined(vax)&&!defined(tahoe) */ |
| 100 | if( x <= lnhuge ) { |
| 101 | if( x >= lntiny ) { |
| 102 | |
| 103 | /* argument reduction : x --> x - k*ln2 */ |
| 104 | |
| 105 | k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */ |
| 106 | |
| 107 | /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */ |
| 108 | |
| 109 | hi=x-k*ln2hi; |
| 110 | x=hi-(lo=k*ln2lo); |
| 111 | |
| 112 | /* return 2^k*[1+x+x*c/(2+c)] */ |
| 113 | z=x*x; |
| 114 | c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); |
| 115 | return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k); |
| 116 | |
| 117 | } |
| 118 | /* end of x > lntiny */ |
| 119 | |
| 120 | else |
| 121 | /* exp(-big#) underflows to zero */ |
| 122 | if(finite(x)) return(scalb(1.0,-5000)); |
| 123 | |
| 124 | /* exp(-INF) is zero */ |
| 125 | else return(0.0); |
| 126 | } |
| 127 | /* end of x < lnhuge */ |
| 128 | |
| 129 | else |
| 130 | /* exp(INF) is INF, exp(+big#) overflows to INF */ |
| 131 | return( finite(x) ? scalb(1.0,5000) : x); |
| 132 | } |
| 133 | #endif |
| 134 | |
| 135 | /* returns exp(r = x + c) for |c| < |x| with no overlap. */ |
| 136 | |
| 137 | double __exp__D(x, c) |
| 138 | double x, c; |
| 139 | { |
| 140 | double z,hi,lo; |
| 141 | int k; |
| 142 | |
| 143 | if (x != x) /* x is NaN */ |
| 144 | return(x); |
| 145 | if ( x <= lnhuge ) { |
| 146 | if ( x >= lntiny ) { |
| 147 | |
| 148 | /* argument reduction : x --> x - k*ln2 */ |
| 149 | z = invln2*x; |
| 150 | k = z + copysign(.5, x); |
| 151 | |
| 152 | /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */ |
| 153 | |
| 154 | hi=(x-k*ln2hi); /* Exact. */ |
| 155 | x= hi - (lo = k*ln2lo-c); |
| 156 | /* return 2^k*[1+x+x*c/(2+c)] */ |
| 157 | z=x*x; |
| 158 | c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); |
| 159 | c = (x*c)/(2.0-c); |
| 160 | |
| 161 | return scalb(1.+(hi-(lo - c)), k); |
| 162 | } |
| 163 | /* end of x > lntiny */ |
| 164 | |
| 165 | else |
| 166 | /* exp(-big#) underflows to zero */ |
| 167 | if(finite(x)) return(scalb(1.0,-5000)); |
| 168 | |
| 169 | /* exp(-INF) is zero */ |
| 170 | else return(0.0); |
| 171 | } |
| 172 | /* end of x < lnhuge */ |
| 173 | |
| 174 | else |
| 175 | /* exp(INF) is INF, exp(+big#) overflows to INF */ |
| 176 | return( finite(x) ? scalb(1.0,5000) : x); |
| 177 | } |