Implement method parser and SSA transformation.

Change-Id: If3fb3a36f33aaee8e5fdded4e9fa607be54f0bfb
diff --git a/vm/compiler/MethodSSATransformation.c b/vm/compiler/MethodSSATransformation.c
new file mode 100644
index 0000000..fc56891
--- /dev/null
+++ b/vm/compiler/MethodSSATransformation.c
@@ -0,0 +1,559 @@
+/*
+ * Copyright (C) 2010 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Dalvik.h"
+#include "Dataflow.h"
+#include "Loop.h"
+#include "libdex/DexOpcodes.h"
+
+/* Enter the node to the dfsOrder list then visit its successors */
+static void recordDFSPreOrder(CompilationUnit *cUnit, BasicBlock *block)
+{
+
+    if (block->visited) return;
+    block->visited = true;
+
+    /* Enqueue the block id */
+    dvmInsertGrowableList(&cUnit->dfsOrder, block->id);
+
+    if (block->taken) recordDFSPreOrder(cUnit, block->taken);
+    if (block->fallThrough) recordDFSPreOrder(cUnit, block->fallThrough);
+    if (block->successorBlockList.blockListType != kNotUsed) {
+        GrowableListIterator iterator;
+        dvmGrowableListIteratorInit(&block->successorBlockList.blocks,
+                                    &iterator);
+        while (true) {
+            BasicBlock *succBB =
+                (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
+            if (succBB == NULL) break;
+            recordDFSPreOrder(cUnit, succBB);
+        }
+    }
+    return;
+}
+
+/* Sort the blocks by the Depth-First-Search pre-order */
+static void computeDFSOrder(CompilationUnit *cUnit)
+{
+    /* Initialize the DFS order list */
+    dvmInitGrowableList(&cUnit->dfsOrder, cUnit->numBlocks);
+
+
+    dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
+                                          kAllNodes,
+                                          false /* isIterative */);
+
+    recordDFSPreOrder(cUnit, cUnit->entryBlock);
+    cUnit->numReachableBlocks = cUnit->dfsOrder.numUsed;
+}
+
+/*
+ * Mark block bit on the per-Dalvik register vector to denote that Dalvik
+ * register idx is defined in BasicBlock bb.
+ */
+static bool fillDefBlockMatrix(CompilationUnit *cUnit, BasicBlock *bb)
+{
+    if (bb->dataFlowInfo == NULL) return false;
+
+    BitVectorIterator iterator;
+
+    dvmBitVectorIteratorInit(bb->dataFlowInfo->defV, &iterator);
+    while (true) {
+        int idx = dvmBitVectorIteratorNext(&iterator);
+        if (idx == -1) break;
+        /* Block bb defines register idx */
+        dvmCompilerSetBit(cUnit->defBlockMatrix[idx], bb->id);
+    }
+    return true;
+}
+
+static void computeDefBlockMatrix(CompilationUnit *cUnit)
+{
+    int numRegisters = cUnit->numDalvikRegisters;
+    /* Allocate numDalvikRegisters bit vector pointers */
+    cUnit->defBlockMatrix = (BitVector **)
+        dvmCompilerNew(sizeof(BitVector *) * numRegisters, true);
+    int i;
+
+    /* Initialize numRegister vectors with numBlocks bits each */
+    for (i = 0; i < numRegisters; i++) {
+        cUnit->defBlockMatrix[i] = dvmCompilerAllocBitVector(cUnit->numBlocks,
+                                                             false);
+    }
+    dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerFindLocalLiveIn,
+                                          kAllNodes,
+                                          false /* isIterative */);
+    dvmCompilerDataFlowAnalysisDispatcher(cUnit, fillDefBlockMatrix,
+                                          kAllNodes,
+                                          false /* isIterative */);
+
+    /*
+     * Also set the incoming parameters as defs in the entry block.
+     * Only need to handle the parameters for the outer method.
+     */
+    int inReg = cUnit->method->registersSize - cUnit->method->insSize;
+    for (; inReg < cUnit->method->registersSize; inReg++) {
+        dvmCompilerSetBit(cUnit->defBlockMatrix[inReg],
+                          cUnit->entryBlock->id);
+    }
+}
+
+/* Compute the post-order traversal of the CFG */
+static void computeDomPostOrderTraversal(CompilationUnit *cUnit, BasicBlock *bb)
+{
+    BitVectorIterator bvIterator;
+    dvmBitVectorIteratorInit(bb->iDominated, &bvIterator);
+    GrowableList *blockList = &cUnit->blockList;
+
+    /* Iterate through the dominated blocks first */
+    while (true) {
+        int bbIdx = dvmBitVectorIteratorNext(&bvIterator);
+        if (bbIdx == -1) break;
+        BasicBlock *dominatedBB =
+            (BasicBlock *) dvmGrowableListGetElement(blockList, bbIdx);
+        computeDomPostOrderTraversal(cUnit, dominatedBB);
+    }
+
+    /* Enter the current block id */
+    dvmInsertGrowableList(&cUnit->domPostOrderTraversal, bb->id);
+
+    /* hacky loop detection */
+    if (bb->taken && dvmIsBitSet(bb->dominators, bb->taken->id)) {
+        cUnit->hasLoop = true;
+    }
+}
+
+/* Worker function to compute the dominance frontier */
+static bool computeDominanceFrontier(CompilationUnit *cUnit, BasicBlock *bb)
+{
+    GrowableList *blockList = &cUnit->blockList;
+
+    /* Calculate DF_local */
+    if (bb->taken && !dvmIsBitSet(bb->taken->dominators, bb->id)) {
+        dvmSetBit(bb->domFrontier, bb->taken->id);
+    }
+    if (bb->fallThrough &&
+        !dvmIsBitSet(bb->fallThrough->dominators, bb->id)) {
+        dvmSetBit(bb->domFrontier, bb->fallThrough->id);
+    }
+    if (bb->successorBlockList.blockListType != kNotUsed) {
+        GrowableListIterator iterator;
+        dvmGrowableListIteratorInit(&bb->successorBlockList.blocks,
+                                    &iterator);
+        while (true) {
+            BasicBlock *succBB =
+                (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
+            if (succBB == NULL) break;
+            if (!dvmIsBitSet(succBB->dominators, bb->id)) {
+                dvmSetBit(bb->domFrontier, succBB->id);
+            }
+        }
+    }
+
+    /* Calculate DF_up */
+    BitVectorIterator bvIterator;
+    dvmBitVectorIteratorInit(bb->iDominated, &bvIterator);
+    while (true) {
+        int dominatedIdx = dvmBitVectorIteratorNext(&bvIterator);
+        if (dominatedIdx == -1) break;
+        BasicBlock *dominatedBB = (BasicBlock *)
+            dvmGrowableListGetElement(blockList, dominatedIdx);
+        BitVectorIterator dfIterator;
+        dvmBitVectorIteratorInit(dominatedBB->domFrontier, &dfIterator);
+        while (true) {
+            int dfUpIdx = dvmBitVectorIteratorNext(&dfIterator);
+            if (dfUpIdx == -1) break;
+            BasicBlock *dfUpBlock = (BasicBlock *)
+                dvmGrowableListGetElement(blockList, dfUpIdx);
+            if (!dvmIsBitSet(dfUpBlock->dominators, bb->id)) {
+                dvmSetBit(bb->domFrontier, dfUpBlock->id);
+            }
+        }
+    }
+    if (cUnit->printMe) {
+        char blockName[BLOCK_NAME_LEN];
+        dvmGetBlockName(bb, blockName);
+        dvmDumpBlockBitVector(blockList, blockName, bb->domFrontier,
+                              cUnit->numBlocks);
+    }
+
+    return true;
+}
+
+/* Worker function for initializing domination-related data structures */
+static bool initializeDominationInfo(CompilationUnit *cUnit, BasicBlock *bb)
+{
+    int numTotalBlocks = cUnit->blockList.numUsed;
+
+    bb->dominators = dvmCompilerAllocBitVector(numTotalBlocks,
+                                               false /* expandable */);
+    bb->iDominated = dvmCompilerAllocBitVector(numTotalBlocks,
+                                               false /* expandable */);
+    bb->domFrontier = dvmCompilerAllocBitVector(numTotalBlocks,
+                                               false /* expandable */);
+    /* Set all bits in the dominator vector */
+    dvmSetInitialBits(bb->dominators, numTotalBlocks);
+
+    return true;
+}
+
+/* Worker function to compute each block's dominators */
+static bool computeBlockDominators(CompilationUnit *cUnit, BasicBlock *bb)
+{
+    GrowableList *blockList = &cUnit->blockList;
+    int numTotalBlocks = blockList->numUsed;
+    BitVector *tempBlockV = cUnit->tempBlockV;
+    BitVectorIterator bvIterator;
+
+    /*
+     * The dominator of the entry block has been preset to itself and we need
+     * to skip the calculation here.
+     */
+    if (bb == cUnit->entryBlock) return false;
+
+    dvmSetInitialBits(tempBlockV, numTotalBlocks);
+
+    /* Iterate through the predecessors */
+    dvmBitVectorIteratorInit(bb->predecessors, &bvIterator);
+    while (true) {
+        int predIdx = dvmBitVectorIteratorNext(&bvIterator);
+        if (predIdx == -1) break;
+        BasicBlock *predBB = (BasicBlock *) dvmGrowableListGetElement(
+                                 blockList, predIdx);
+        /* tempBlockV = tempBlockV ^ dominators */
+        dvmIntersectBitVectors(tempBlockV, tempBlockV, predBB->dominators);
+    }
+    dvmSetBit(tempBlockV, bb->id);
+    if (dvmCompareBitVectors(tempBlockV, bb->dominators)) {
+        dvmCopyBitVector(bb->dominators, tempBlockV);
+        return true;
+    }
+    return false;
+}
+
+/* Worker function to compute the idom */
+static bool computeImmediateDominator(CompilationUnit *cUnit, BasicBlock *bb)
+{
+    GrowableList *blockList = &cUnit->blockList;
+    BitVector *tempBlockV = cUnit->tempBlockV;
+    BitVectorIterator bvIterator;
+    BasicBlock *iDom;
+
+    if (bb == cUnit->entryBlock) return false;
+
+    dvmCopyBitVector(tempBlockV, bb->dominators);
+    dvmClearBit(tempBlockV, bb->id);
+    dvmBitVectorIteratorInit(tempBlockV, &bvIterator);
+
+    /* Should not see any dead block */
+    assert(dvmCountSetBits(tempBlockV) != 0);
+    if (dvmCountSetBits(tempBlockV) == 1) {
+        iDom = (BasicBlock *) dvmGrowableListGetElement(
+                       blockList, dvmBitVectorIteratorNext(&bvIterator));
+        bb->iDom = iDom;
+    } else {
+        int iDomIdx = dvmBitVectorIteratorNext(&bvIterator);
+        assert(iDomIdx != -1);
+        while (true) {
+            int nextDom = dvmBitVectorIteratorNext(&bvIterator);
+            if (nextDom == -1) break;
+            BasicBlock *nextDomBB = (BasicBlock *)
+                dvmGrowableListGetElement(blockList, nextDom);
+            /* iDom dominates nextDom - set new iDom */
+            if (dvmIsBitSet(nextDomBB->dominators, iDomIdx)) {
+                iDomIdx = nextDom;
+            }
+
+        }
+        iDom = (BasicBlock *) dvmGrowableListGetElement(blockList, iDomIdx);
+        /* Set the immediate dominator block for bb */
+        bb->iDom = iDom;
+    }
+    /* Add bb to the iDominated set of the immediate dominator block */
+    dvmCompilerSetBit(iDom->iDominated, bb->id);
+    return true;
+}
+
+/* Compute dominators, immediate dominator, and dominance fronter */
+static void computeDominators(CompilationUnit *cUnit)
+{
+    int numReachableBlocks = cUnit->numReachableBlocks;
+    int numTotalBlocks = cUnit->blockList.numUsed;
+
+    /* Initialize domination-related data structures */
+    dvmCompilerDataFlowAnalysisDispatcher(cUnit, initializeDominationInfo,
+                                          kReachableNodes,
+                                          false /* isIterative */);
+
+    /* Set the dominator for the root node */
+    dvmClearAllBits(cUnit->entryBlock->dominators);
+    dvmSetBit(cUnit->entryBlock->dominators, cUnit->entryBlock->id);
+
+    cUnit->tempBlockV = dvmCompilerAllocBitVector(numTotalBlocks,
+                                              false /* expandable */);
+    dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeBlockDominators,
+                                          kPreOrderDFSTraversal,
+                                          true /* isIterative */);
+
+    cUnit->entryBlock->iDom = NULL;
+    dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeImmediateDominator,
+                                          kReachableNodes,
+                                          false /* isIterative */);
+
+    /*
+     * Now go ahead and compute the post order traversal based on the
+     * iDominated sets.
+     */
+    dvmInitGrowableList(&cUnit->domPostOrderTraversal, numReachableBlocks);
+    computeDomPostOrderTraversal(cUnit, cUnit->entryBlock);
+    assert(cUnit->domPostOrderTraversal.numUsed ==
+           (unsigned) cUnit->numReachableBlocks);
+
+    /* Now compute the dominance frontier for each block */
+    dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeDominanceFrontier,
+                                          kPostOrderDOMTraversal,
+                                          false /* isIterative */);
+}
+
+/*
+ * Perform dest U= src1 ^ ~src2
+ * This is probably not general enough to be placed in BitVector.[ch].
+ */
+static void computeSuccLiveIn(BitVector *dest,
+                              const BitVector *src1,
+                              const BitVector *src2)
+{
+    if (dest->storageSize != src1->storageSize ||
+        dest->storageSize != src2->storageSize ||
+        dest->expandable != src1->expandable ||
+        dest->expandable != src2->expandable) {
+        LOGE("Incompatible set properties");
+        dvmAbort();
+    }
+
+    int i;
+    for (i = 0; i < dest->storageSize; i++) {
+        dest->storage[i] |= src1->storage[i] & ~src2->storage[i];
+    }
+}
+
+/*
+ * Iterate through all successor blocks and propagate up the live-in sets.
+ * The calculated result is used for phi-node pruning - where we only need to
+ * insert a phi node if the variable is live-in to the block.
+ */
+static bool computeBlockLiveIns(CompilationUnit *cUnit, BasicBlock *bb)
+{
+    BitVector *tempDalvikRegisterV = cUnit->tempDalvikRegisterV;
+
+    if (bb->dataFlowInfo == NULL) return false;
+    dvmCopyBitVector(tempDalvikRegisterV, bb->dataFlowInfo->liveInV);
+    if (bb->taken && bb->taken->dataFlowInfo)
+        computeSuccLiveIn(tempDalvikRegisterV, bb->taken->dataFlowInfo->liveInV,
+                          bb->dataFlowInfo->defV);
+    if (bb->fallThrough && bb->fallThrough->dataFlowInfo)
+        computeSuccLiveIn(tempDalvikRegisterV,
+                          bb->fallThrough->dataFlowInfo->liveInV,
+                          bb->dataFlowInfo->defV);
+    if (bb->successorBlockList.blockListType != kNotUsed) {
+        GrowableListIterator iterator;
+        dvmGrowableListIteratorInit(&bb->successorBlockList.blocks,
+                                    &iterator);
+        while (true) {
+            BasicBlock *succBB =
+                (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
+            if (succBB == NULL) break;
+            if (succBB->dataFlowInfo) {
+                computeSuccLiveIn(tempDalvikRegisterV,
+                                  succBB->dataFlowInfo->liveInV,
+                                  bb->dataFlowInfo->defV);
+            }
+        }
+    }
+    if (dvmCompareBitVectors(tempDalvikRegisterV, bb->dataFlowInfo->liveInV)) {
+        dvmCopyBitVector(bb->dataFlowInfo->liveInV, tempDalvikRegisterV);
+        return true;
+    }
+    return false;
+}
+
+/* Insert phi nodes to for each variable to the dominance frontiers */
+static void insertPhiNodes(CompilationUnit *cUnit)
+{
+    int dalvikReg;
+    const GrowableList *blockList = &cUnit->blockList;
+    BitVector *phiBlocks =
+        dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false);
+    BitVector *tmpBlocks =
+        dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false);
+    BitVector *inputBlocks =
+        dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false);
+
+    cUnit->tempDalvikRegisterV =
+        dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false);
+
+    dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeBlockLiveIns,
+                                          kPostOrderDFSTraversal,
+                                          true /* isIterative */);
+
+    /* Iterate through each Dalvik register */
+    for (dalvikReg = 0; dalvikReg < cUnit->numDalvikRegisters; dalvikReg++) {
+        bool change;
+        BitVectorIterator iterator;
+
+        dvmCopyBitVector(inputBlocks, cUnit->defBlockMatrix[dalvikReg]);
+        dvmClearAllBits(phiBlocks);
+        /* Calculate the phi blocks for each Dalvik register */
+        do {
+            change = false;
+            dvmClearAllBits(tmpBlocks);
+            dvmBitVectorIteratorInit(inputBlocks, &iterator);
+            while (true) {
+                int idx = dvmBitVectorIteratorNext(&iterator);
+                if (idx == -1) break;
+                BasicBlock *defBB =
+                    (BasicBlock *) dvmGrowableListGetElement(blockList, idx);
+                /* Merge the dominance frontier to tmpBlocks */
+                dvmUnifyBitVectors(tmpBlocks, tmpBlocks, defBB->domFrontier);
+            }
+            if (dvmCompareBitVectors(phiBlocks, tmpBlocks)) {
+                change = true;
+                dvmCopyBitVector(phiBlocks, tmpBlocks);
+
+                /*
+                 * Iterate through the original blocks plus the new ones in
+                 * the dominance frontier.
+                 */
+                dvmCopyBitVector(inputBlocks, phiBlocks);
+                dvmUnifyBitVectors(inputBlocks, inputBlocks,
+                                   cUnit->defBlockMatrix[dalvikReg]);
+            }
+        } while (change);
+
+        /*
+         * Insert a phi node for dalvikReg in the phiBlocks if the Dalvik
+         * register is in the live-in set.
+         */
+        dvmBitVectorIteratorInit(phiBlocks, &iterator);
+        while (true) {
+            int idx = dvmBitVectorIteratorNext(&iterator);
+            if (idx == -1) break;
+            BasicBlock *phiBB =
+                (BasicBlock *) dvmGrowableListGetElement(blockList, idx);
+            /* Variable will be clobbered before being used - no need for phi */
+            if (!dvmIsBitSet(phiBB->dataFlowInfo->liveInV, dalvikReg)) continue;
+            MIR *phi = (MIR *) dvmCompilerNew(sizeof(MIR), true);
+            phi->dalvikInsn.opcode = kMirOpPhi;
+            phi->dalvikInsn.vA = dalvikReg;
+            phi->offset = phiBB->startOffset;
+            dvmCompilerPrependMIR(phiBB, phi);
+        }
+    }
+}
+
+/*
+ * Worker function to insert phi-operands with latest SSA names from
+ * predecessor blocks
+ */
+static bool insertPhiNodeOperands(CompilationUnit *cUnit, BasicBlock *bb)
+{
+    BitVector *ssaRegV = cUnit->tempSSARegisterV;
+    BitVectorIterator bvIterator;
+    GrowableList *blockList = &cUnit->blockList;
+    MIR *mir;
+
+    /* Phi nodes are at the beginning of each block */
+    for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
+        if (mir->dalvikInsn.opcode != kMirOpPhi) return true;
+        int ssaReg = mir->ssaRep->defs[0];
+        int encodedDalvikValue =
+            (int) dvmGrowableListGetElement(cUnit->ssaToDalvikMap, ssaReg);
+        int dalvikReg = DECODE_REG(encodedDalvikValue);
+
+        dvmClearAllBits(ssaRegV);
+
+        /* Iterate through the predecessors */
+        dvmBitVectorIteratorInit(bb->predecessors, &bvIterator);
+        while (true) {
+            int predIdx = dvmBitVectorIteratorNext(&bvIterator);
+            if (predIdx == -1) break;
+            BasicBlock *predBB = (BasicBlock *) dvmGrowableListGetElement(
+                                     blockList, predIdx);
+            int encodedSSAValue =
+                predBB->dataFlowInfo->dalvikToSSAMap[dalvikReg];
+            int ssaReg = DECODE_REG(encodedSSAValue);
+            dvmSetBit(ssaRegV, ssaReg);
+        }
+
+        /* Count the number of SSA registers for a Dalvik register */
+        int numUses = dvmCountSetBits(ssaRegV);
+        mir->ssaRep->numUses = numUses;
+        mir->ssaRep->uses =
+            (int *) dvmCompilerNew(sizeof(int) * numUses, false);
+        mir->ssaRep->fpUse =
+            (bool *) dvmCompilerNew(sizeof(bool) * numUses, false);
+
+        BitVectorIterator phiIterator;
+
+        dvmBitVectorIteratorInit(ssaRegV, &phiIterator);
+        int *usePtr = mir->ssaRep->uses;
+
+        /* Set the uses array for the phi node */
+        while (true) {
+            int ssaRegIdx = dvmBitVectorIteratorNext(&phiIterator);
+            if (ssaRegIdx == -1) break;
+            *usePtr++ = ssaRegIdx;
+        }
+    }
+
+    return true;
+}
+
+/* Perform SSA transformation for the whole method */
+void dvmCompilerMethodSSATransformation(CompilationUnit *cUnit)
+{
+    /* Compute the DFS order */
+    computeDFSOrder(cUnit);
+
+    /* Compute the dominator info */
+    computeDominators(cUnit);
+
+    /* Allocate data structures in preparation for SSA conversion */
+    dvmInitializeSSAConversion(cUnit);
+
+    /* Find out the "Dalvik reg def x block" relation */
+    computeDefBlockMatrix(cUnit);
+
+    /* Insert phi nodes to dominance frontiers for all variables */
+    insertPhiNodes(cUnit);
+
+    /* Rename register names by local defs and phi nodes */
+    dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerDoSSAConversion,
+                                          kPreOrderDFSTraversal,
+                                          false /* isIterative */);
+
+    /*
+     * Shared temp bit vector used by each block to count the number of defs
+     * from all the predecessor blocks.
+     */
+    cUnit->tempSSARegisterV = dvmCompilerAllocBitVector(cUnit->numSSARegs,
+                                                        false);
+
+    /* Insert phi-operands with latest SSA names from predecessor blocks */
+    dvmCompilerDataFlowAnalysisDispatcher(cUnit, insertPhiNodeOperands,
+                                          kReachableNodes,
+                                          false /* isIterative */);
+}