auto import from //depot/cupcake/@135843
diff --git a/vm/analysis/CodeVerify.c b/vm/analysis/CodeVerify.c
new file mode 100644
index 0000000..65aa833
--- /dev/null
+++ b/vm/analysis/CodeVerify.c
@@ -0,0 +1,5420 @@
+/*
+ * Copyright (C) 2008 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * Dalvik bytecode structural verifier.  The only public entry point
+ * (except for a few shared utility functions) is dvmVerifyCodeFlow().
+ *
+ * TODO: might benefit from a signature-->class lookup cache.  Could avoid
+ * some string-peeling and wouldn't need to compute hashes.
+ *
+ * TODO: we do too much stuff in here that could be done in the static
+ * verification pass.  It's convenient, because we have all of the
+ * necessary information, but it's more efficient to do it over in
+ * DexVerify.c because in here we may have to process instructions
+ * multiple times.
+ */
+#include "Dalvik.h"
+#include "analysis/CodeVerify.h"
+#include "analysis/RegisterMap.h"
+#include "libdex/DexCatch.h"
+#include "libdex/InstrUtils.h"
+
+#include <stddef.h>
+
+
+/*
+ * We don't need to store the register data for many instructions, because
+ * we either only need it at branch points (for verification) or GC points
+ * and branches (for verification + type-precise register analysis).
+ */
+typedef enum RegisterTrackingMode {
+    kTrackRegsBranches,
+    kTrackRegsGcPoints,
+    kTrackRegsAll
+} RegisterTrackingMode;
+
+/*
+ * Set this to enable dead code scanning.  This is not required, but it's
+ * very useful when testing changes to the verifier (to make sure we're not
+ * skipping over stuff) and for checking the optimized output from "dx".
+ * The only reason not to do it is that it slightly increases the time
+ * required to perform verification.
+ */
+#define DEAD_CODE_SCAN  true
+
+static bool gDebugVerbose = false;      // TODO: remove this
+
+#if 0
+int gDvm__totalInstr = 0;
+int gDvm__gcInstr = 0;
+int gDvm__gcData = 0;
+int gDvm__gcSimpleData = 0;
+#endif
+
+/*
+ * Selectively enable verbose debug logging -- use this to activate
+ * dumpRegTypes() calls for all instructions in the specified method.
+ */
+static inline bool doVerboseLogging(const Method* meth) {
+    return false;       /* COMMENT OUT to enable verbose debugging */
+
+    const char* cd = "Lop_lshr;";
+    const char* mn = "test";
+    const char* sg = "(II)J";
+    return (strcmp(meth->clazz->descriptor, cd) == 0 &&
+            dvmCompareNameDescriptorAndMethod(mn, sg, meth) == 0);
+}
+
+#define SHOW_REG_DETAILS    (0 /*| DRT_SHOW_REF_TYPES | DRT_SHOW_LOCALS*/)
+
+/*
+ * We need an extra "pseudo register" to hold the return type briefly.  It
+ * can be category 1 or 2, so we need two slots.
+ */
+#define kExtraRegs  2
+#define RESULT_REGISTER(_insnRegCount)  (_insnRegCount)
+
+/*
+ * Big fat collection of registers.
+ */
+typedef struct RegisterTable {
+    /*
+     * Array of RegType arrays, one per address in the method.  We only
+     * set the pointers for certain addresses, based on what we're trying
+     * to accomplish.
+     */
+    RegType**   addrRegs;
+
+    /*
+     * Number of registers we track for each instruction.  This is equal
+     * to the method's declared "registersSize" plus kExtraRegs.
+     */
+    int         insnRegCountPlus;
+
+    /*
+     * A single large alloc, with all of the storage needed for addrRegs.
+     */
+    RegType*    regAlloc;
+} RegisterTable;
+
+
+/* fwd */
+static void checkMergeTab(void);
+static bool isInitMethod(const Method* meth);
+static RegType getInvocationThis(const RegType* insnRegs,\
+    const int insnRegCount, const DecodedInstruction* pDecInsn, bool* pOkay);
+static void verifyRegisterType(const RegType* insnRegs, const int insnRegCount,\
+    u4 vsrc, RegType checkType, bool* pOkay);
+static bool doCodeVerification(const Method* meth, InsnFlags* insnFlags,\
+    RegisterTable* regTable, UninitInstanceMap* uninitMap);
+static bool verifyInstruction(const Method* meth, InsnFlags* insnFlags,\
+    RegisterTable* regTable, RegType* workRegs, int insnIdx,
+    UninitInstanceMap* uninitMap, int* pStartGuess);
+static ClassObject* findCommonSuperclass(ClassObject* c1, ClassObject* c2);
+static void dumpRegTypes(const Method* meth, const InsnFlags* insnFlags,\
+    const RegType* addrRegs, int addr, const char* addrName,
+    const UninitInstanceMap* uninitMap, int displayFlags);
+
+/* bit values for dumpRegTypes() "displayFlags" */
+enum {
+    DRT_SIMPLE          = 0,
+    DRT_SHOW_REF_TYPES  = 0x01,
+    DRT_SHOW_LOCALS     = 0x02,
+};
+
+
+/*
+ * ===========================================================================
+ *      RegType and UninitInstanceMap utility functions
+ * ===========================================================================
+ */
+
+#define __  kRegTypeUnknown
+#define _U  kRegTypeUninit
+#define _X  kRegTypeConflict
+#define _F  kRegTypeFloat
+#define _0  kRegTypeZero
+#define _1  kRegTypeOne
+#define _Z  kRegTypeBoolean
+#define _b  kRegTypePosByte
+#define _B  kRegTypeByte
+#define _s  kRegTypePosShort
+#define _S  kRegTypeShort
+#define _C  kRegTypeChar
+#define _I  kRegTypeInteger
+#define _J  kRegTypeLongLo
+#define _j  kRegTypeLongHi
+#define _D  kRegTypeDoubleLo
+#define _d  kRegTypeDoubleHi
+
+/*
+ * Merge result table for primitive values.  The table is symmetric along
+ * the diagonal.
+ *
+ * Note that 32-bit int/float do not merge into 64-bit long/double.  This
+ * is a register merge, not a widening conversion.  Only the "implicit"
+ * widening within a category, e.g. byte to short, is allowed.
+ *
+ * Because Dalvik does not draw a distinction between int and float, we
+ * have to allow free exchange between 32-bit int/float and 64-bit
+ * long/double.
+ *
+ * Note that Uninit+Uninit=Uninit.  This holds true because we only
+ * use this when the RegType value is exactly equal to kRegTypeUninit, which
+ * can only happen for the zeroeth entry in the table.
+ *
+ * "Unknown" never merges with anything known.  The only time a register
+ * transitions from "unknown" to "known" is when we're executing code
+ * for the first time, and we handle that with a simple copy.
+ */
+const char gDvmMergeTab[kRegTypeMAX][kRegTypeMAX] =
+{
+    /* chk:  _  U  X  F  0  1  Z  b  B  s  S  C  I  J  j  D  d */
+    { /*_*/ __,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X },
+    { /*U*/ _X,_U,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X },
+    { /*X*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X },
+    { /*F*/ _X,_X,_X,_F,_F,_F,_F,_F,_F,_F,_F,_F,_F,_X,_X,_X,_X },
+    { /*0*/ _X,_X,_X,_F,_0,_Z,_Z,_b,_B,_s,_S,_C,_I,_X,_X,_X,_X },
+    { /*1*/ _X,_X,_X,_F,_Z,_1,_Z,_b,_B,_s,_S,_C,_I,_X,_X,_X,_X },
+    { /*Z*/ _X,_X,_X,_F,_Z,_Z,_Z,_b,_B,_s,_S,_C,_I,_X,_X,_X,_X },
+    { /*b*/ _X,_X,_X,_F,_b,_b,_b,_b,_B,_s,_S,_C,_I,_X,_X,_X,_X },
+    { /*B*/ _X,_X,_X,_F,_B,_B,_B,_B,_B,_S,_S,_I,_I,_X,_X,_X,_X },
+    { /*s*/ _X,_X,_X,_F,_s,_s,_s,_s,_S,_s,_S,_C,_I,_X,_X,_X,_X },
+    { /*S*/ _X,_X,_X,_F,_S,_S,_S,_S,_S,_S,_S,_I,_I,_X,_X,_X,_X },
+    { /*C*/ _X,_X,_X,_F,_C,_C,_C,_C,_I,_C,_I,_C,_I,_X,_X,_X,_X },
+    { /*I*/ _X,_X,_X,_F,_I,_I,_I,_I,_I,_I,_I,_I,_I,_X,_X,_X,_X },
+    { /*J*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_J,_X,_J,_X },
+    { /*j*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_j,_X,_j },
+    { /*D*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_J,_X,_D,_X },
+    { /*d*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_j,_X,_d },
+};
+
+#undef __
+#undef _U
+#undef _X
+#undef _F
+#undef _0
+#undef _1
+#undef _Z
+#undef _b
+#undef _B
+#undef _s
+#undef _S
+#undef _C
+#undef _I
+#undef _J
+#undef _j
+#undef _D
+#undef _d
+
+#ifndef NDEBUG
+/*
+ * Verify symmetry in the conversion table.
+ */
+static void checkMergeTab(void)
+{
+    int i, j;
+
+    for (i = 0; i < kRegTypeMAX; i++) {
+        for (j = i; j < kRegTypeMAX; j++) {
+            if (gDvmMergeTab[i][j] != gDvmMergeTab[j][i]) {
+                LOGE("Symmetry violation: %d,%d vs %d,%d\n", i, j, j, i);
+                dvmAbort();
+            }
+        }
+    }
+}
+#endif
+
+/*
+ * Determine whether we can convert "srcType" to "checkType", where
+ * "checkType" is one of the category-1 non-reference types.
+ *
+ * 32-bit int and float are interchangeable.
+ */
+static bool canConvertTo1nr(RegType srcType, RegType checkType)
+{
+    static const char convTab
+        [kRegType1nrEND-kRegType1nrSTART+1][kRegType1nrEND-kRegType1nrSTART+1] =
+    {
+        /* chk: F  0  1  Z  b  B  s  S  C  I */
+        { /*F*/ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+        { /*0*/ 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 },
+        { /*1*/ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 },
+        { /*Z*/ 1, 0, 0, 1, 1, 1, 1, 1, 1, 1 },
+        { /*b*/ 1, 0, 0, 0, 1, 1, 1, 1, 1, 1 },
+        { /*B*/ 1, 0, 0, 0, 0, 1, 0, 1, 0, 1 },
+        { /*s*/ 1, 0, 0, 0, 0, 0, 1, 1, 1, 1 },
+        { /*S*/ 1, 0, 0, 0, 0, 0, 0, 1, 0, 1 },
+        { /*C*/ 1, 0, 0, 0, 0, 0, 0, 0, 1, 1 },
+        { /*I*/ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+    };
+
+    assert(checkType >= kRegType1nrSTART && checkType <= kRegType1nrEND);
+#if 0
+    if (checkType < kRegType1nrSTART || checkType > kRegType1nrEND) {
+        LOG_VFY("Unexpected checkType %d (srcType=%d)\n", checkType, srcType);
+        assert(false);
+        return false;
+    }
+#endif
+
+    //printf("convTab[%d][%d] = %d\n", srcType, checkType,
+    //    convTab[srcType-kRegType1nrSTART][checkType-kRegType1nrSTART]);
+    if (srcType >= kRegType1nrSTART && srcType <= kRegType1nrEND)
+        return (bool) convTab[srcType-kRegType1nrSTART][checkType-kRegType1nrSTART];
+
+    return false;
+}
+
+/*
+ * Determine whether the types are compatible.  In Dalvik, 64-bit doubles
+ * and longs are interchangeable.
+ */
+static bool canConvertTo2(RegType srcType, RegType checkType)
+{
+    return ((srcType == kRegTypeLongLo || srcType == kRegTypeDoubleLo) &&
+            (checkType == kRegTypeLongLo || checkType == kRegTypeDoubleLo));
+}
+
+/*
+ * Determine whether or not "instrType" and "targetType" are compatible,
+ * for purposes of getting or setting a value in a field or array.  The
+ * idea is that an instruction with a category 1nr type (say, aget-short
+ * or iput-boolean) is accessing a static field, instance field, or array
+ * entry, and we want to make sure sure that the operation is legal.
+ *
+ * At a minimum, source and destination must have the same width.  We
+ * further refine this to assert that "short" and "char" are not
+ * compatible, because the sign-extension is different on the "get"
+ * operations.  As usual, "float" and "int" are interoperable.
+ *
+ * We're not considering the actual contents of the register, so we'll
+ * never get "pseudo-types" like kRegTypeZero or kRegTypePosShort.  We
+ * could get kRegTypeUnknown in "targetType" if a field or array class
+ * lookup failed.  Category 2 types and references are checked elsewhere.
+ */
+static bool checkFieldArrayStore1nr(RegType instrType, RegType targetType)
+{
+    if (instrType == targetType)
+        return true;            /* quick positive; most common case */
+
+    if ((instrType == kRegTypeInteger && targetType == kRegTypeFloat) ||
+        (instrType == kRegTypeFloat && targetType == kRegTypeInteger))
+    {
+        return true;
+    }
+
+    return false;
+}
+
+/*
+ * Convert a VM PrimitiveType enum value to the equivalent RegType value.
+ */
+static RegType primitiveTypeToRegType(PrimitiveType primType)
+{
+    struct {
+        RegType         regType;        /* type equivalent */
+        PrimitiveType   primType;       /* verification */
+    } convTab[] = {
+        /* must match order of enum in Object.h */
+        { kRegTypeBoolean,      PRIM_BOOLEAN },
+        { kRegTypeChar,         PRIM_CHAR },
+        { kRegTypeFloat,        PRIM_FLOAT },
+        { kRegTypeDoubleLo,     PRIM_DOUBLE },
+        { kRegTypeByte,         PRIM_BYTE },
+        { kRegTypeShort,        PRIM_SHORT },
+        { kRegTypeInteger,      PRIM_INT },
+        { kRegTypeLongLo,       PRIM_LONG },
+        // PRIM_VOID
+    };
+
+    if (primType < 0 || primType > (int) (sizeof(convTab) / sizeof(convTab[0])))
+    {
+        assert(false);
+        return kRegTypeUnknown;
+    }
+
+    assert(convTab[primType].primType == primType);
+    return convTab[primType].regType;
+}
+
+/*
+ * Create a new uninitialized instance map.
+ *
+ * The map is allocated and populated with address entries.  The addresses
+ * appear in ascending order to allow binary searching.
+ *
+ * Very few methods have 10 or more new-instance instructions; the
+ * majority have 0 or 1.  Occasionally a static initializer will have 200+.
+ */
+UninitInstanceMap* dvmCreateUninitInstanceMap(const Method* meth,
+    const InsnFlags* insnFlags, int newInstanceCount)
+{
+    const int insnsSize = dvmGetMethodInsnsSize(meth);
+    const u2* insns = meth->insns;
+    UninitInstanceMap* uninitMap;
+    bool isInit = false;
+    int idx, addr;
+
+    if (isInitMethod(meth)) {
+        newInstanceCount++;
+        isInit = true;
+    }
+
+    /*
+     * Allocate the header and map as a single unit.
+     *
+     * TODO: consider having a static instance so we can avoid allocations.
+     * I don't think the verifier is guaranteed to be single-threaded when
+     * running in the VM (rather than dexopt), so that must be taken into
+     * account.
+     */
+    int size = offsetof(UninitInstanceMap, map) +
+                newInstanceCount * sizeof(uninitMap->map[0]);
+    uninitMap = calloc(1, size);
+    if (uninitMap == NULL)
+        return NULL;
+    uninitMap->numEntries = newInstanceCount;
+
+    idx = 0;
+    if (isInit) {
+        uninitMap->map[idx++].addr = kUninitThisArgAddr;
+    }
+
+    /*
+     * Run through and find the new-instance instructions.
+     */
+    for (addr = 0; addr < insnsSize; /**/) {
+        int width = dvmInsnGetWidth(insnFlags, addr);
+
+        if ((*insns & 0xff) == OP_NEW_INSTANCE)
+            uninitMap->map[idx++].addr = addr;
+
+        addr += width;
+        insns += width;
+    }
+
+    assert(idx == newInstanceCount);
+    return uninitMap;
+}
+
+/*
+ * Free the map.
+ */
+void dvmFreeUninitInstanceMap(UninitInstanceMap* uninitMap)
+{
+    free(uninitMap);
+}
+
+/*
+ * Set the class object associated with the instruction at "addr".
+ *
+ * Returns the map slot index, or -1 if the address isn't listed in the map
+ * (shouldn't happen) or if a class is already associated with the address
+ * (bad bytecode).
+ *
+ * Entries, once set, do not change -- a given address can only allocate
+ * one type of object.
+ */
+int dvmSetUninitInstance(UninitInstanceMap* uninitMap, int addr,
+    ClassObject* clazz)
+{
+    int idx;
+
+    assert(clazz != NULL);
+
+    /* TODO: binary search when numEntries > 8 */
+    for (idx = uninitMap->numEntries - 1; idx >= 0; idx--) {
+        if (uninitMap->map[idx].addr == addr) {
+            if (uninitMap->map[idx].clazz != NULL &&
+                uninitMap->map[idx].clazz != clazz)
+            {
+                LOG_VFY("VFY: addr %d already set to %p, not setting to %p\n",
+                    addr, uninitMap->map[idx].clazz, clazz);
+                return -1;          // already set to something else??
+            }
+            uninitMap->map[idx].clazz = clazz;
+            return idx;
+        }
+    }
+
+    LOG_VFY("VFY: addr %d not found in uninit map\n", addr);
+    assert(false);      // shouldn't happen
+    return -1;
+}
+
+/*
+ * Get the class object at the specified index.
+ */
+ClassObject* dvmGetUninitInstance(const UninitInstanceMap* uninitMap, int idx)
+{
+    assert(idx >= 0 && idx < uninitMap->numEntries);
+    return uninitMap->map[idx].clazz;
+}
+
+/* determine if "type" is actually an object reference (init/uninit/zero) */
+static inline bool regTypeIsReference(RegType type) {
+    return (type > kRegTypeMAX || type == kRegTypeUninit ||
+            type == kRegTypeZero);
+}
+
+/* determine if "type" is an uninitialized object reference */
+static inline bool regTypeIsUninitReference(RegType type) {
+    return ((type & kRegTypeUninitMask) == kRegTypeUninit);
+}
+
+/* convert the initialized reference "type" to a ClassObject pointer */
+/* (does not expect uninit ref types or "zero") */
+static ClassObject* regTypeInitializedReferenceToClass(RegType type)
+{
+    assert(regTypeIsReference(type) && type != kRegTypeZero);
+    if ((type & 0x01) == 0) {
+        return (ClassObject*) type;
+    } else {
+        //LOG_VFY("VFY: attempted to use uninitialized reference\n");
+        return NULL;
+    }
+}
+
+/* extract the index into the uninitialized instance map table */
+static inline int regTypeToUninitIndex(RegType type) {
+    assert(regTypeIsUninitReference(type));
+    return (type & ~kRegTypeUninitMask) >> kRegTypeUninitShift;
+}
+
+/* convert the reference "type" to a ClassObject pointer */
+static ClassObject* regTypeReferenceToClass(RegType type,
+    const UninitInstanceMap* uninitMap)
+{
+    assert(regTypeIsReference(type) && type != kRegTypeZero);
+    if (regTypeIsUninitReference(type)) {
+        assert(uninitMap != NULL);
+        return dvmGetUninitInstance(uninitMap, regTypeToUninitIndex(type));
+    } else {
+        return (ClassObject*) type;
+    }
+}
+
+/* convert the ClassObject pointer to an (initialized) register type */
+static inline RegType regTypeFromClass(ClassObject* clazz) {
+    return (u4) clazz;
+}
+
+/* return the RegType for the uninitialized reference in slot "uidx" */
+static RegType regTypeFromUninitIndex(int uidx) {
+    return (u4) (kRegTypeUninit | (uidx << kRegTypeUninitShift));
+}
+
+
+/*
+ * ===========================================================================
+ *      Signature operations
+ * ===========================================================================
+ */
+
+/*
+ * Is this method a constructor?
+ */
+static bool isInitMethod(const Method* meth)
+{
+    return (*meth->name == '<' && strcmp(meth->name+1, "init>") == 0);
+}
+
+/*
+ * Is this method a class initializer?
+ */
+static bool isClassInitMethod(const Method* meth)
+{
+    return (*meth->name == '<' && strcmp(meth->name+1, "clinit>") == 0);
+}
+
+/*
+ * Look up a class reference given as a simple string descriptor.
+ */
+static ClassObject* lookupClassByDescriptor(const Method* meth,
+    const char* pDescriptor, bool* pOkay)
+{
+    /*
+     * The javac compiler occasionally puts references to nonexistent
+     * classes in signatures.  For example, if you have a non-static
+     * inner class with no constructor, the compiler provides
+     * a private <init> for you.  Constructing the class
+     * requires <init>(parent), but the outer class can't call
+     * that because the method is private.  So the compiler
+     * generates a package-scope <init>(parent,bogus) method that
+     * just calls the regular <init> (the "bogus" part being necessary
+     * to distinguish the signature of the synthetic method).
+     * Treating the bogus class as an instance of java.lang.Object
+     * allows the verifier to process the class successfully.
+     */
+
+    //LOGI("Looking up '%s'\n", typeStr);
+    ClassObject* clazz;
+    clazz = dvmFindClassNoInit(pDescriptor, meth->clazz->classLoader);
+    if (clazz == NULL) {
+        dvmClearOptException(dvmThreadSelf());
+        if (strchr(pDescriptor, '$') != NULL) {
+            LOGV("VFY: unable to find class referenced in signature (%s)\n",
+                pDescriptor);
+        } else {
+            LOG_VFY("VFY: unable to find class referenced in signature (%s)\n",
+                pDescriptor);
+        }
+
+        if (pDescriptor[0] == '[') {
+            /* We are looking at an array descriptor. */
+
+            /*
+             * There should never be a problem loading primitive arrays.
+             */
+            if (pDescriptor[1] != 'L' && pDescriptor[1] != '[') {
+                LOG_VFY("VFY: invalid char in signature in '%s'\n",
+                    pDescriptor);
+                *pOkay = false;
+            }
+
+            /*
+             * Try to continue with base array type.  This will let
+             * us pass basic stuff (e.g. get array len) that wouldn't
+             * fly with an Object.  This is NOT correct if the
+             * missing type is a primitive array, but we should never
+             * have a problem loading those.  (I'm not convinced this
+             * is correct or even useful.  Just use Object here?)
+             */
+            clazz = dvmFindClassNoInit("[Ljava/lang/Object;",
+                meth->clazz->classLoader);
+        } else if (pDescriptor[0] == 'L') {
+            /*
+             * We are looking at a non-array reference descriptor;
+             * try to continue with base reference type.
+             */
+            clazz = gDvm.classJavaLangObject;
+        } else {
+            /* We are looking at a primitive type. */
+            LOG_VFY("VFY: invalid char in signature in '%s'\n", pDescriptor);
+            *pOkay = false;
+        }
+
+        if (clazz == NULL) {
+            *pOkay = false;
+        }
+    }
+
+    if (dvmIsPrimitiveClass(clazz)) {
+        LOG_VFY("VFY: invalid use of primitive type '%s'\n", pDescriptor);
+        *pOkay = false;
+        clazz = NULL;
+    }
+
+    return clazz;
+}
+
+/*
+ * Look up a class reference in a signature.  Could be an arg or the
+ * return value.
+ *
+ * Advances "*pSig" to the last character in the signature (that is, to
+ * the ';').
+ *
+ * NOTE: this is also expected to verify the signature.
+ */
+static ClassObject* lookupSignatureClass(const Method* meth, const char** pSig,
+    bool* pOkay)
+{
+    const char* sig = *pSig;
+    const char* endp = sig;
+
+    assert(sig != NULL && *sig == 'L');
+
+    while (*++endp != ';' && *endp != '\0')
+        ;
+    if (*endp != ';') {
+        LOG_VFY("VFY: bad signature component '%s' (missing ';')\n", sig);
+        *pOkay = false;
+        return NULL;
+    }
+
+    endp++;    /* Advance past the ';'. */
+    int typeLen = endp - sig;
+    char typeStr[typeLen+1]; /* +1 for the '\0' */
+    memcpy(typeStr, sig, typeLen);
+    typeStr[typeLen] = '\0';
+
+    *pSig = endp - 1; /* - 1 so that *pSig points at, not past, the ';' */
+
+    return lookupClassByDescriptor(meth, typeStr, pOkay);
+}
+
+/*
+ * Look up an array class reference in a signature.  Could be an arg or the
+ * return value.
+ *
+ * Advances "*pSig" to the last character in the signature.
+ *
+ * NOTE: this is also expected to verify the signature.
+ */
+static ClassObject* lookupSignatureArrayClass(const Method* meth,
+    const char** pSig, bool* pOkay)
+{
+    const char* sig = *pSig;
+    const char* endp = sig;
+
+    assert(sig != NULL && *sig == '[');
+
+    /* find the end */
+    while (*++endp == '[' && *endp != '\0')
+        ;
+
+    if (*endp == 'L') {
+        while (*++endp != ';' && *endp != '\0')
+            ;
+        if (*endp != ';') {
+            LOG_VFY("VFY: bad signature component '%s' (missing ';')\n", sig);
+            *pOkay = false;
+            return NULL;
+        }
+    }
+
+    int typeLen = endp - sig +1;
+    char typeStr[typeLen+1];
+    memcpy(typeStr, sig, typeLen);
+    typeStr[typeLen] = '\0';
+
+    *pSig = endp;
+
+    return lookupClassByDescriptor(meth, typeStr, pOkay);
+}
+
+/*
+ * Set the register types for the first instruction in the method based on
+ * the method signature.
+ *
+ * This has the side-effect of validating the signature.
+ *
+ * Returns "true" on success.
+ */
+static bool setTypesFromSignature(const Method* meth, RegType* regTypes,
+    UninitInstanceMap* uninitMap)
+{
+    DexParameterIterator iterator;
+    int actualArgs, expectedArgs, argStart;
+    bool okay = true;
+
+    dexParameterIteratorInit(&iterator, &meth->prototype);
+    argStart = meth->registersSize - meth->insSize;
+    expectedArgs = meth->insSize;     /* long/double count as two */
+    actualArgs = 0;
+
+    assert(argStart >= 0);      /* should have been verified earlier */
+
+    /*
+     * Include the "this" pointer.
+     */
+    if (!dvmIsStaticMethod(meth)) {
+        /*
+         * If this is a constructor for a class other than java.lang.Object,
+         * mark the first ("this") argument as uninitialized.  This restricts
+         * field access until the superclass constructor is called.
+         */
+        if (isInitMethod(meth) && meth->clazz != gDvm.classJavaLangObject) {
+            int uidx = dvmSetUninitInstance(uninitMap, kUninitThisArgAddr,
+                            meth->clazz);
+            assert(uidx == 0);
+            regTypes[argStart + actualArgs] = regTypeFromUninitIndex(uidx);
+        } else {
+            regTypes[argStart + actualArgs] = regTypeFromClass(meth->clazz);
+        }
+        actualArgs++;
+    }
+
+    for (;;) {
+        const char* descriptor = dexParameterIteratorNextDescriptor(&iterator);
+
+        if (descriptor == NULL) {
+            break;
+        }
+
+        if (actualArgs >= expectedArgs) {
+            LOG_VFY("VFY: expected %d args, found more (%s)\n",
+                expectedArgs, descriptor);
+            goto bad_sig;
+        }
+
+        switch (*descriptor) {
+        case 'L':
+        case '[':
+            /*
+             * We assume that reference arguments are initialized.  The
+             * only way it could be otherwise (assuming the caller was
+             * verified) is if the current method is <init>, but in that
+             * case it's effectively considered initialized the instant
+             * we reach here (in the sense that we can return without
+             * doing anything or call virtual methods).
+             */
+            {
+                ClassObject* clazz =
+                    lookupClassByDescriptor(meth, descriptor, &okay);
+                if (!okay)
+                    goto bad_sig;
+                regTypes[argStart + actualArgs] = regTypeFromClass(clazz);
+            }
+            actualArgs++;
+            break;
+        case 'Z':
+            regTypes[argStart + actualArgs] = kRegTypeBoolean;
+            actualArgs++;
+            break;
+        case 'C':
+            regTypes[argStart + actualArgs] = kRegTypeChar;
+            actualArgs++;
+            break;
+        case 'B':
+            regTypes[argStart + actualArgs] = kRegTypeByte;
+            actualArgs++;
+            break;
+        case 'I':
+            regTypes[argStart + actualArgs] = kRegTypeInteger;
+            actualArgs++;
+            break;
+        case 'S':
+            regTypes[argStart + actualArgs] = kRegTypeShort;
+            actualArgs++;
+            break;
+        case 'F':
+            regTypes[argStart + actualArgs] = kRegTypeFloat;
+            actualArgs++;
+            break;
+        case 'D':
+            regTypes[argStart + actualArgs] = kRegTypeDoubleLo;
+            regTypes[argStart + actualArgs +1] = kRegTypeDoubleHi;
+            actualArgs += 2;
+            break;
+        case 'J':
+            regTypes[argStart + actualArgs] = kRegTypeLongLo;
+            regTypes[argStart + actualArgs +1] = kRegTypeLongHi;
+            actualArgs += 2;
+            break;
+        default:
+            LOG_VFY("VFY: unexpected signature type char '%c'\n", *descriptor);
+            goto bad_sig;
+        }
+    }
+
+    if (actualArgs != expectedArgs) {
+        LOG_VFY("VFY: expected %d args, found %d\n", expectedArgs, actualArgs);
+        goto bad_sig;
+    }
+
+    const char* descriptor = dexProtoGetReturnType(&meth->prototype);
+
+    /*
+     * Validate return type.  We don't do the type lookup; just want to make
+     * sure that it has the right format.  Only major difference from the
+     * method argument format is that 'V' is supported.
+     */
+    switch (*descriptor) {
+    case 'I':
+    case 'C':
+    case 'S':
+    case 'B':
+    case 'Z':
+    case 'V':
+    case 'F':
+    case 'D':
+    case 'J':
+        if (*(descriptor+1) != '\0')
+            goto bad_sig;
+        break;
+    case '[':
+        /* single/multi, object/primitive */
+        while (*++descriptor == '[')
+            ;
+        if (*descriptor == 'L') {
+            while (*++descriptor != ';' && *descriptor != '\0')
+                ;
+            if (*descriptor != ';')
+                goto bad_sig;
+        } else {
+            if (*(descriptor+1) != '\0')
+                goto bad_sig;
+        }
+        break;
+    case 'L':
+        /* could be more thorough here, but shouldn't be required */
+        while (*++descriptor != ';' && *descriptor != '\0')
+            ;
+        if (*descriptor != ';')
+            goto bad_sig;
+        break;
+    default:
+        goto bad_sig;
+    }
+
+    return true;
+
+//fail:
+//    LOG_VFY_METH(meth, "VFY:  bad sig\n");
+//    return false;
+
+bad_sig:
+    {
+        char* desc = dexProtoCopyMethodDescriptor(&meth->prototype);
+        LOG_VFY("VFY: bad signature '%s' for %s.%s\n",
+            desc, meth->clazz->descriptor, meth->name);
+        free(desc);
+    }
+    return false;
+}
+
+/*
+ * Return the register type for the method.  We can't just use the
+ * already-computed DalvikJniReturnType, because if it's a reference type
+ * we need to do the class lookup.
+ *
+ * Returned references are assumed to be initialized.
+ *
+ * Returns kRegTypeUnknown for "void".
+ */
+static RegType getMethodReturnType(const Method* meth)
+{
+    RegType type;
+    const char* descriptor = dexProtoGetReturnType(&meth->prototype);
+
+    switch (*descriptor) {
+    case 'I':
+        type = kRegTypeInteger;
+        break;
+    case 'C':
+        type = kRegTypeChar;
+        break;
+    case 'S':
+        type = kRegTypeShort;
+        break;
+    case 'B':
+        type = kRegTypeByte;
+        break;
+    case 'Z':
+        type = kRegTypeBoolean;
+        break;
+    case 'V':
+        type = kRegTypeUnknown;
+        break;
+    case 'F':
+        type = kRegTypeFloat;
+        break;
+    case 'D':
+        type = kRegTypeDoubleLo;
+        break;
+    case 'J':
+        type = kRegTypeLongLo;
+        break;
+    case 'L':
+    case '[':
+        {
+            bool okay = true;
+            ClassObject* clazz =
+                lookupClassByDescriptor(meth, descriptor, &okay);
+            assert(okay);
+            type = regTypeFromClass(clazz);
+        }
+        break;
+    default:
+        /* we verified signature return type earlier, so this is impossible */
+        assert(false);
+        type = kRegTypeConflict;
+        break;
+    }
+
+    return type;
+}
+
+/*
+ * Convert a single-character signature value (i.e. a primitive type) to
+ * the corresponding RegType.  This is intended for access to object fields
+ * holding primitive types.
+ *
+ * Returns kRegTypeUnknown for objects, arrays, and void.
+ */
+static RegType primSigCharToRegType(char sigChar)
+{
+    RegType type;
+
+    switch (sigChar) {
+    case 'I':
+        type = kRegTypeInteger;
+        break;
+    case 'C':
+        type = kRegTypeChar;
+        break;
+    case 'S':
+        type = kRegTypeShort;
+        break;
+    case 'B':
+        type = kRegTypeByte;
+        break;
+    case 'Z':
+        type = kRegTypeBoolean;
+        break;
+    case 'F':
+        type = kRegTypeFloat;
+        break;
+    case 'D':
+        type = kRegTypeDoubleLo;
+        break;
+    case 'J':
+        type = kRegTypeLongLo;
+        break;
+    case 'V':
+    case 'L':
+    case '[':
+        type = kRegTypeUnknown;
+        break;
+    default:
+        assert(false);
+        type = kRegTypeUnknown;
+        break;
+    }
+
+    return type;
+}
+
+/*
+ * Verify the arguments to a method.  We're executing in "method", making
+ * a call to the method reference in vB.
+ *
+ * If this is a "direct" invoke, we allow calls to <init>.  For calls to
+ * <init>, the first argument may be an uninitialized reference.  Otherwise,
+ * calls to anything starting with '<' will be rejected, as will any
+ * uninitialized reference arguments.
+ *
+ * For non-static method calls, this will verify that the method call is
+ * appropriate for the "this" argument.
+ *
+ * The method reference is in vBBBB.  The "isRange" parameter determines
+ * whether we use 0-4 "args" values or a range of registers defined by
+ * vAA and vCCCC.
+ *
+ * Widening conversions on integers and references are allowed, but
+ * narrowing conversions are not.
+ *
+ * Returns the resolved method on success, NULL (and sets "*pOkay" to "false")
+ * on failure.
+ */
+static Method* verifyInvocationArgs(const Method* meth, const RegType* insnRegs,
+    const int insnRegCount, const DecodedInstruction* pDecInsn,
+    UninitInstanceMap* uninitMap, MethodType methodType, bool isRange,
+    bool isSuper, bool* pOkay)
+{
+    Method* resMethod;
+    char* sigOriginal = NULL;
+
+    /*
+     * Resolve the method.  This could be an abstract or concrete method
+     * depending on what sort of call we're making.
+     */
+    if (methodType == METHOD_INTERFACE) {
+        resMethod = dvmOptResolveInterfaceMethod(meth->clazz, pDecInsn->vB);
+    } else {
+        resMethod = dvmOptResolveMethod(meth->clazz, pDecInsn->vB, methodType);
+    }
+    if (resMethod == NULL) {
+        /* failed; print a meaningful failure message */
+        DexFile* pDexFile = meth->clazz->pDvmDex->pDexFile;
+        const DexMethodId* pMethodId;
+        const char* methodName;
+        char* methodDesc;
+        const char* classDescriptor;
+
+        pMethodId = dexGetMethodId(pDexFile, pDecInsn->vB);
+        methodName = dexStringById(pDexFile, pMethodId->nameIdx);
+        methodDesc = dexCopyDescriptorFromMethodId(pDexFile, pMethodId);
+        classDescriptor = dexStringByTypeIdx(pDexFile, pMethodId->classIdx);
+
+        if (!gDvm.optimizing) {
+            char* dotMissingClass = dvmDescriptorToDot(classDescriptor);
+            char* dotMethClass = dvmDescriptorToDot(meth->clazz->descriptor);
+            //char* curMethodDesc =
+            //    dexProtoCopyMethodDescriptor(&meth->prototype);
+
+            LOGE("Could not find method %s.%s, referenced from "
+                 "method %s.%s\n",
+                 dotMissingClass, methodName/*, methodDesc*/,
+                 dotMethClass, meth->name/*, curMethodDesc*/);
+
+            free(dotMissingClass);
+            free(dotMethClass);
+            //free(curMethodDesc);
+        }
+
+        LOG_VFY("VFY: unable to resolve %s method %u: %s.%s %s\n",
+            dvmMethodTypeStr(methodType), pDecInsn->vB,
+            classDescriptor, methodName, methodDesc);
+        free(methodDesc);
+        goto fail;
+    }
+
+    /*
+     * Only time you can explicitly call a method starting with '<' is when
+     * making a "direct" invocation on "<init>".  There are additional
+     * restrictions but we don't enforce them here.
+     */
+    if (resMethod->name[0] == '<') {
+        if (methodType != METHOD_DIRECT || !isInitMethod(resMethod)) {
+            LOG_VFY("VFY: invalid call to %s.%s\n",
+                    resMethod->clazz->descriptor, resMethod->name);
+            goto bad_sig;
+        }
+    }
+
+    /*
+     * If we're using invoke-super(method), make sure that the executing
+     * method's class' superclass has a vtable entry for the target method.
+     */
+    if (isSuper) {
+        assert(methodType == METHOD_VIRTUAL);
+        ClassObject* super = meth->clazz->super;
+        if (super == NULL || resMethod->methodIndex > super->vtableCount) {
+            char* desc = dexProtoCopyMethodDescriptor(&resMethod->prototype);
+            LOG_VFY("VFY: invalid invoke-super from %s.%s to super %s.%s %s\n",
+                    meth->clazz->descriptor, meth->name,
+                    (super == NULL) ? "-" : super->descriptor,
+                    resMethod->name, desc);
+            free(desc);
+            goto fail;
+        }
+    }
+
+    /*
+     * We use vAA as our expected arg count, rather than resMethod->insSize,
+     * because we need to match the call to the signature.  Also, we might
+     * might be calling through an abstract method definition (which doesn't
+     * have register count values).
+     */
+    sigOriginal = dexProtoCopyMethodDescriptor(&resMethod->prototype);
+    const char* sig = sigOriginal;
+    int expectedArgs = pDecInsn->vA;
+    int actualArgs = 0;
+
+    if (!isRange && expectedArgs > 5) {
+        LOG_VFY("VFY: invalid arg count in non-range invoke (%d)\n",
+            pDecInsn->vA);
+        goto fail;
+    }
+    if (expectedArgs > meth->outsSize) {
+        LOG_VFY("VFY: invalid arg count (%d) exceeds outsSize (%d)\n",
+            expectedArgs, meth->outsSize);
+        goto fail;
+    }
+
+    if (*sig++ != '(')
+        goto bad_sig;
+
+    /*
+     * Check the "this" argument, which must be an instance of the class
+     * that declared the method.  For an interface class, we don't do the
+     * full interface merge, so we can't do a rigorous check here (which
+     * is okay since we have to do it at runtime).
+     */
+    if (!dvmIsStaticMethod(resMethod)) {
+        ClassObject* actualThisRef;
+        RegType actualArgType;
+
+        actualArgType = getInvocationThis(insnRegs, insnRegCount, pDecInsn,
+                            pOkay);
+        if (!*pOkay)
+            goto fail;
+
+        if (regTypeIsUninitReference(actualArgType) && resMethod->name[0] != '<')
+        {
+            LOG_VFY("VFY: 'this' arg must be initialized\n");
+            goto fail;
+        }
+        if (methodType != METHOD_INTERFACE && actualArgType != kRegTypeZero) {
+            actualThisRef = regTypeReferenceToClass(actualArgType, uninitMap);
+            if (!dvmInstanceof(actualThisRef, resMethod->clazz)) {
+                LOG_VFY("VFY: 'this' arg '%s' not instance of '%s'\n",
+                        actualThisRef->descriptor,
+                        resMethod->clazz->descriptor);
+                goto fail;
+            }
+        }
+        actualArgs++;
+    }
+
+    /*
+     * Process the target method's signature.  This signature may or may not
+     * have been verified, so we can't assume it's properly formed.
+     */
+    while (*sig != '\0' && *sig != ')') {
+        if (actualArgs >= expectedArgs) {
+            LOG_VFY("VFY: expected %d args, found more (%c)\n",
+                expectedArgs, *sig);
+            goto bad_sig;
+        }
+
+        u4 getReg;
+        if (isRange)
+            getReg = pDecInsn->vC + actualArgs;
+        else
+            getReg = pDecInsn->arg[actualArgs];
+
+        switch (*sig) {
+        case 'L':
+            {
+                ClassObject* clazz = lookupSignatureClass(meth, &sig, pOkay);
+                if (!*pOkay)
+                    goto bad_sig;
+                verifyRegisterType(insnRegs, insnRegCount, getReg,
+                    regTypeFromClass(clazz), pOkay);
+                if (!*pOkay) {
+                    LOG_VFY("VFY: bad arg %d (into %s)\n",
+                            actualArgs, clazz->descriptor);
+                    goto bad_sig;
+                }
+            }
+            actualArgs++;
+            break;
+        case '[':
+            {
+                ClassObject* clazz =
+                    lookupSignatureArrayClass(meth, &sig, pOkay);
+                if (!*pOkay)
+                    goto bad_sig;
+                verifyRegisterType(insnRegs, insnRegCount, getReg,
+                    regTypeFromClass(clazz), pOkay);
+                if (!*pOkay) {
+                    LOG_VFY("VFY: bad arg %d (into %s)\n",
+                            actualArgs, clazz->descriptor);
+                    goto bad_sig;
+                }
+            }
+            actualArgs++;
+            break;
+        case 'Z':
+            verifyRegisterType(insnRegs, insnRegCount, getReg,
+                kRegTypeBoolean, pOkay);
+            actualArgs++;
+            break;
+        case 'C':
+            verifyRegisterType(insnRegs, insnRegCount, getReg,
+                kRegTypeChar, pOkay);
+            actualArgs++;
+            break;
+        case 'B':
+            verifyRegisterType(insnRegs, insnRegCount, getReg,
+                kRegTypeByte, pOkay);
+            actualArgs++;
+            break;
+        case 'I':
+            verifyRegisterType(insnRegs, insnRegCount, getReg,
+                kRegTypeInteger, pOkay);
+            actualArgs++;
+            break;
+        case 'S':
+            verifyRegisterType(insnRegs, insnRegCount, getReg,
+                kRegTypeShort, pOkay);
+            actualArgs++;
+            break;
+        case 'F':
+            verifyRegisterType(insnRegs, insnRegCount, getReg,
+                kRegTypeFloat, pOkay);
+            actualArgs++;
+            break;
+        case 'D':
+            verifyRegisterType(insnRegs, insnRegCount, getReg,
+                kRegTypeDoubleLo, pOkay);
+            actualArgs += 2;
+            break;
+        case 'J':
+            verifyRegisterType(insnRegs, insnRegCount, getReg,
+                kRegTypeLongLo, pOkay);
+            actualArgs += 2;
+            break;
+        default:
+            LOG_VFY("VFY: invocation target: bad signature type char '%c'\n",
+                *sig);
+            goto bad_sig;
+        }
+
+        sig++;
+    }
+    if (*sig != ')') {
+        char* desc = dexProtoCopyMethodDescriptor(&resMethod->prototype);
+        LOG_VFY("VFY: invocation target: bad signature '%s'\n", desc);
+        free(desc);
+        goto bad_sig;
+    }
+
+    if (actualArgs != expectedArgs) {
+        LOG_VFY("VFY: expected %d args, found %d\n", expectedArgs, actualArgs);
+        goto bad_sig;
+    }
+
+    free(sigOriginal);
+    return resMethod;
+
+bad_sig:
+    if (resMethod != NULL) {
+        char* desc = dexProtoCopyMethodDescriptor(&resMethod->prototype);
+        LOG_VFY("VFY:  rejecting call to %s.%s %s\n",
+                resMethod->clazz->descriptor, resMethod->name, desc);
+        free(desc);
+    }
+
+fail:
+    free(sigOriginal);
+    *pOkay = false;
+    return NULL;
+}
+
+/*
+ * Get the class object for the type of data stored in a field.  This isn't
+ * stored in the Field struct, so we have to recover it from the signature.
+ *
+ * This only works for reference types.  Don't call this for primitive types.
+ *
+ * If we can't find the class, we return java.lang.Object, so that
+ * verification can continue if a field is only accessed in trivial ways.
+ */
+static ClassObject* getFieldClass(const Method* meth, const Field* field)
+{
+    ClassObject* fieldClass;
+    const char* signature = field->signature;
+
+    if ((*signature == 'L') || (*signature == '[')) {
+        fieldClass = dvmFindClassNoInit(signature,
+                meth->clazz->classLoader);
+    } else {
+        return NULL;
+    }
+
+    if (fieldClass == NULL) {
+        dvmClearOptException(dvmThreadSelf());
+        LOGV("VFY: unable to find class '%s' for field %s.%s, trying Object\n",
+            field->signature, meth->clazz->descriptor, field->name);
+        fieldClass = gDvm.classJavaLangObject;
+    } else {
+        assert(!dvmIsPrimitiveClass(fieldClass));
+    }
+    return fieldClass;
+}
+
+
+/*
+ * ===========================================================================
+ *      Register operations
+ * ===========================================================================
+ */
+
+/*
+ * Get the type of register N, verifying that the register is valid.
+ *
+ * Sets "*pOkay" to false if the register number is out of range.
+ */
+static inline RegType getRegisterType(const RegType* insnRegs,
+    const int insnRegCount, u4 vsrc, bool* pOkay)
+{
+    RegType type;
+
+    if (vsrc >= (u4) insnRegCount) {
+        *pOkay = false;
+        return kRegTypeUnknown;
+    } else {
+        return insnRegs[vsrc];
+    }
+}
+
+/*
+ * Get the value from a register, and cast it to a ClassObject.  Sets
+ * "pOkay" to false if something fails.
+ *
+ * This fails if the register holds an uninitialized class.
+ *
+ * If the register holds kRegTypeZero, this returns a NULL pointer.
+ */
+static ClassObject* getClassFromRegister(const RegType* insnRegs,
+    const int insnRegCount, u4 vsrc, bool* pOkay)
+{
+    ClassObject* clazz = NULL;
+    RegType type;
+
+    /* get the element type of the array held in vsrc */
+    type = getRegisterType(insnRegs, insnRegCount, vsrc, pOkay);
+    if (!*pOkay)
+        goto bail;
+
+    /* if "always zero", we allow it to fail at runtime */
+    if (type == kRegTypeZero)
+        goto bail;
+
+    if (!regTypeIsReference(type)) {
+        LOG_VFY("VFY: tried to get class from non-ref register v%d (type=%d)\n",
+            vsrc, type);
+        *pOkay = false;
+        goto bail;
+    }
+    if (regTypeIsUninitReference(type)) {
+        LOG_VFY("VFY: register %u holds uninitialized reference\n", vsrc);
+        *pOkay = false;
+        goto bail;
+    }
+
+    clazz = regTypeInitializedReferenceToClass(type);
+
+bail:
+    return clazz;
+}
+
+/*
+ * Get the "this" pointer from a non-static method invocation.  This
+ * returns the RegType so the caller can decide whether it needs the
+ * reference to be initialized or not.  (Can also return kRegTypeZero
+ * if the reference can only be zero at this point.)
+ *
+ * The argument count is in vA, and the first argument is in vC, for both
+ * "simple" and "range" versions.  We just need to make sure vA is >= 1
+ * and then return vC.
+ */
+static RegType getInvocationThis(const RegType* insnRegs,
+    const int insnRegCount, const DecodedInstruction* pDecInsn, bool* pOkay)
+{
+    RegType thisType = kRegTypeUnknown;
+
+    if (pDecInsn->vA < 1) {
+        LOG_VFY("VFY: invoke lacks 'this'\n");
+        *pOkay = false;
+        goto bail;
+    }
+
+    /* get the element type of the array held in vsrc */
+    thisType = getRegisterType(insnRegs, insnRegCount, pDecInsn->vC, pOkay);
+    if (!*pOkay) {
+        LOG_VFY("VFY: failed to get this from register %u\n", pDecInsn->vC);
+        goto bail;
+    }
+
+    if (!regTypeIsReference(thisType)) {
+        LOG_VFY("VFY: tried to get class from non-ref register v%d (type=%d)\n",
+            pDecInsn->vC, thisType);
+        *pOkay = false;
+        goto bail;
+    }
+
+bail:
+    return thisType;
+}
+
+/*
+ * Set the type of register N, verifying that the register is valid.  If
+ * "newType" is the "Lo" part of a 64-bit value, register N+1 will be
+ * set to "newType+1".
+ *
+ * Sets "*pOkay" to false if the register number is out of range.
+ */
+static void setRegisterType(RegType* insnRegs, const int insnRegCount,
+    u4 vdst, RegType newType, bool* pOkay)
+{
+    //LOGD("set-reg v%u = %d\n", vdst, newType);
+    switch (newType) {
+    case kRegTypeUnknown:
+    case kRegTypeBoolean:
+    case kRegTypeOne:
+    case kRegTypeByte:
+    case kRegTypePosByte:
+    case kRegTypeShort:
+    case kRegTypePosShort:
+    case kRegTypeChar:
+    case kRegTypeInteger:
+    case kRegTypeFloat:
+    case kRegTypeZero:
+        if (vdst >= (u4) insnRegCount) {
+            *pOkay = false;
+        } else {
+            insnRegs[vdst] = newType;
+        }
+        break;
+    case kRegTypeLongLo:
+    case kRegTypeDoubleLo:
+        if (vdst+1 >= (u4) insnRegCount) {
+            *pOkay = false;
+        } else {
+            insnRegs[vdst] = newType;
+            insnRegs[vdst+1] = newType+1;
+        }
+        break;
+    case kRegTypeLongHi:
+    case kRegTypeDoubleHi:
+        /* should never set these explicitly */
+        *pOkay = false;
+        break;
+
+    case kRegTypeUninit:
+    default:
+        if (regTypeIsReference(newType)) {
+            if (vdst >= (u4) insnRegCount) {
+                *pOkay = false;
+                break;
+            }
+            insnRegs[vdst] = newType;
+
+            /*
+             * In most circumstances we won't see a reference to a primitive
+             * class here (e.g. "D"), since that would mean the object in the
+             * register is actually a primitive type.  It can happen as the
+             * result of an assumed-successful check-cast instruction in
+             * which the second argument refers to a primitive class.  (In
+             * practice, such an instruction will always throw an exception.)
+             *
+             * This is not an issue for instructions like const-class, where
+             * the object in the register is a java.lang.Class instance.
+             */
+            break;
+        }
+        /* bad - fall through */
+
+    case kRegTypeConflict:      // should only be set during a merge
+        LOG_VFY("Unexpected set type %d\n", newType);
+        assert(false);
+        *pOkay = false;
+        break;
+    }
+}
+
+/*
+ * Verify that the contents of the specified register have the specified
+ * type (or can be converted to it through an implicit widening conversion).
+ *
+ * In theory we could use this to modify the type of the source register,
+ * e.g. a generic 32-bit constant, once used as a float, would thereafter
+ * remain a float.  There is no compelling reason to require this though.
+ *
+ * If "vsrc" is a reference, both it and the "vsrc" register must be
+ * initialized ("vsrc" may be Zero).  This will verify that the value in
+ * the register is an instance of checkType, or if checkType is an
+ * interface, verify that the register implements checkType.
+ */
+static void verifyRegisterType(const RegType* insnRegs, const int insnRegCount,
+    u4 vsrc, RegType checkType, bool* pOkay)
+{
+    if (vsrc >= (u4) insnRegCount) {
+        *pOkay = false;
+        return;
+    }
+
+    RegType srcType = insnRegs[vsrc];
+
+    //LOGD("check-reg v%u = %d\n", vsrc, checkType);
+    switch (checkType) {
+    case kRegTypeFloat:
+    case kRegTypeBoolean:
+    case kRegTypePosByte:
+    case kRegTypeByte:
+    case kRegTypePosShort:
+    case kRegTypeShort:
+    case kRegTypeChar:
+    case kRegTypeInteger:
+        if (!canConvertTo1nr(srcType, checkType)) {
+            LOG_VFY("VFY: register1 v%u type %d, wanted %d\n",
+                vsrc, srcType, checkType);
+            *pOkay = false;
+        }
+        break;
+    case kRegTypeLongLo:
+    case kRegTypeDoubleLo:
+        if (vsrc+1 >= (u4) insnRegCount) {
+            LOG_VFY("VFY: register2 v%u out of range (%d)\n",
+                vsrc, insnRegCount);
+            *pOkay = false;
+        } else if (insnRegs[vsrc+1] != srcType+1) {
+            LOG_VFY("VFY: register2 v%u-%u values %d,%d\n",
+                vsrc, vsrc+1, insnRegs[vsrc], insnRegs[vsrc+1]);
+            *pOkay = false;
+        } else if (!canConvertTo2(srcType, checkType)) {
+            LOG_VFY("VFY: register2 v%u type %d, wanted %d\n",
+                vsrc, srcType, checkType);
+            *pOkay = false;
+        }
+        break;
+
+    case kRegTypeLongHi:
+    case kRegTypeDoubleHi:
+    case kRegTypeZero:
+    case kRegTypeOne:
+    case kRegTypeUnknown:
+    case kRegTypeConflict:
+        /* should never be checking for these explicitly */
+        assert(false);
+        *pOkay = false;
+        return;
+    case kRegTypeUninit:
+    default:
+        /* make sure checkType is initialized reference */
+        if (!regTypeIsReference(checkType)) {
+            LOG_VFY("VFY: unexpected check type %d\n", checkType);
+            assert(false);
+            *pOkay = false;
+            break;
+        }
+        if (regTypeIsUninitReference(checkType)) {
+            LOG_VFY("VFY: uninitialized ref not expected as reg check\n");
+            *pOkay = false;
+            break;
+        }
+        /* make sure srcType is initialized reference or always-NULL */
+        if (!regTypeIsReference(srcType)) {
+            LOG_VFY("VFY: register1 v%u type %d, wanted ref\n", vsrc, srcType);
+            *pOkay = false;
+            break;
+        }
+        if (regTypeIsUninitReference(srcType)) {
+            LOG_VFY("VFY: register1 v%u holds uninitialized ref\n", vsrc);
+            *pOkay = false;
+            break;
+        }
+        /* if the register isn't Zero, make sure it's an instance of check */
+        if (srcType != kRegTypeZero) {
+            ClassObject* srcClass = regTypeInitializedReferenceToClass(srcType);
+            ClassObject* checkClass = regTypeInitializedReferenceToClass(checkType);
+            assert(srcClass != NULL);
+            assert(checkClass != NULL);
+
+            if (dvmIsInterfaceClass(checkClass)) {
+                /*
+                 * All objects implement all interfaces as far as the
+                 * verifier is concerned.  The runtime has to sort it out.
+                 * See comments above findCommonSuperclass.
+                 */
+                /*
+                if (srcClass != checkClass &&
+                    !dvmImplements(srcClass, checkClass))
+                {
+                    LOG_VFY("VFY: %s does not implement %s\n",
+                            srcClass->descriptor, checkClass->descriptor);
+                    *pOkay = false;
+                }
+                */
+            } else {
+                if (!dvmInstanceof(srcClass, checkClass)) {
+                    LOG_VFY("VFY: %s is not instance of %s\n",
+                            srcClass->descriptor, checkClass->descriptor);
+                    *pOkay = false;
+                }
+            }
+        }
+        break;
+    }
+}
+
+/*
+ * Set the type of the "result" register.  Mostly this exists to expand
+ * "insnRegCount" to encompass the result register.
+ */
+static void setResultRegisterType(RegType* insnRegs, const int insnRegCount,
+    RegType newType, bool* pOkay)
+{
+    setRegisterType(insnRegs, insnRegCount + kExtraRegs,
+        RESULT_REGISTER(insnRegCount), newType, pOkay);
+}
+
+
+/*
+ * Update all registers holding "uninitType" to instead hold the
+ * corresponding initialized reference type.  This is called when an
+ * appropriate <init> method is invoked -- all copies of the reference
+ * must be marked as initialized.
+ */
+static void markRefsAsInitialized(RegType* insnRegs, int insnRegCount,
+    UninitInstanceMap* uninitMap, RegType uninitType, bool* pOkay)
+{
+    ClassObject* clazz;
+    RegType initType;
+    int i, changed;
+
+    clazz = dvmGetUninitInstance(uninitMap, regTypeToUninitIndex(uninitType));
+    if (clazz == NULL) {
+        LOGE("VFY: unable to find type=0x%x (idx=%d)\n",
+            uninitType, regTypeToUninitIndex(uninitType));
+        *pOkay = false;
+        return;
+    }
+    initType = regTypeFromClass(clazz);
+
+    changed = 0;
+    for (i = 0; i < insnRegCount; i++) {
+        if (insnRegs[i] == uninitType) {
+            insnRegs[i] = initType;
+            changed++;
+        }
+    }
+    //LOGD("VFY: marked %d registers as initialized\n", changed);
+    assert(changed > 0);
+
+    return;
+}
+
+/*
+ * We're creating a new instance of class C at address A.  Any registers
+ * holding instances previously created at address A must be initialized
+ * by now.  If not, we mark them as "conflict" to prevent them from being
+ * used (otherwise, markRefsAsInitialized would mark the old ones and the
+ * new ones at the same time).
+ */
+static void markUninitRefsAsInvalid(RegType* insnRegs, int insnRegCount,
+    UninitInstanceMap* uninitMap, RegType uninitType)
+{
+    int i, changed;
+
+    changed = 0;
+    for (i = 0; i < insnRegCount; i++) {
+        if (insnRegs[i] == uninitType) {
+            insnRegs[i] = kRegTypeConflict;
+            changed++;
+        }
+    }
+
+    //if (changed)
+    //    LOGD("VFY: marked %d uninitialized registers as invalid\n", changed);
+}
+
+/*
+ * Find the start of the register set for the specified instruction in
+ * the current method.
+ */
+static inline RegType* getRegisterLine(const RegisterTable* regTable,
+    int insnIdx)
+{
+    return regTable->addrRegs[insnIdx];
+}
+
+/*
+ * Copy a bunch of registers.
+ */
+static inline void copyRegisters(RegType* dst, const RegType* src,
+    int numRegs)
+{
+    memcpy(dst, src, numRegs * sizeof(RegType));
+}
+
+/*
+ * Compare a bunch of registers.
+ *
+ * Returns 0 if they match.  Using this for a sort is unwise, since the
+ * value can change based on machine endianness.
+ */
+static inline int compareRegisters(const RegType* src1, const RegType* src2,
+    int numRegs)
+{
+    return memcmp(src1, src2, numRegs * sizeof(RegType));
+}
+
+/*
+ * Register type categories, for type checking.
+ *
+ * The spec says category 1 includes boolean, byte, char, short, int, float,
+ * reference, and returnAddress.  Category 2 includes long and double.
+ *
+ * We treat object references separately, so we have "category1nr".  We
+ * don't support jsr/ret, so there is no "returnAddress" type.
+ */
+typedef enum TypeCategory {
+    kTypeCategoryUnknown = 0,
+    kTypeCategory1nr,           // byte, char, int, float, boolean
+    kTypeCategory2,             // long, double
+    kTypeCategoryRef,           // object reference
+} TypeCategory;
+
+/*
+ * See if "type" matches "cat".  All we're really looking for here is that
+ * we're not mixing and matching 32-bit and 64-bit quantities, and we're
+ * not mixing references with numerics.  (For example, the arguments to
+ * "a < b" could be integers of different sizes, but they must both be
+ * integers.  Dalvik is less specific about int vs. float, so we treat them
+ * as equivalent here.)
+ *
+ * For category 2 values, "type" must be the "low" half of the value.
+ *
+ * Sets "*pOkay" to false if not.
+ */
+static void checkTypeCategory(RegType type, TypeCategory cat, bool* pOkay)
+{
+    switch (cat) {
+    case kTypeCategory1nr:
+        switch (type) {
+        case kRegTypeFloat:
+        case kRegTypeZero:
+        case kRegTypeOne:
+        case kRegTypeBoolean:
+        case kRegTypePosByte:
+        case kRegTypeByte:
+        case kRegTypePosShort:
+        case kRegTypeShort:
+        case kRegTypeChar:
+        case kRegTypeInteger:
+            break;
+        default:
+            *pOkay = false;
+            break;
+        }
+        break;
+
+    case kTypeCategory2:
+        switch (type) {
+        case kRegTypeLongLo:
+        case kRegTypeDoubleLo:
+            break;
+        default:
+            *pOkay = false;
+            break;
+        }
+        break;
+
+    case kTypeCategoryRef:
+        if (type != kRegTypeZero && !regTypeIsReference(type))
+            *pOkay = false;
+        break;
+
+    default:
+        assert(false);
+        *pOkay = false;
+        break;
+    }
+}
+
+/*
+ * For a category 2 register pair, verify that "typeh" is the appropriate
+ * high part for "typel".
+ *
+ * Does not verify that "typel" is in fact the low part of a 64-bit
+ * register pair.
+ */
+static void checkWidePair(RegType typel, RegType typeh, bool* pOkay)
+{
+    if ((typeh != typel+1))
+        *pOkay = false;
+}
+
+/*
+ * Implement category-1 "move" instructions.  Copy a 32-bit value from
+ * "vsrc" to "vdst".
+ *
+ * "insnRegCount" is the number of registers available.  The "vdst" and
+ * "vsrc" values are checked against this.
+ */
+static void copyRegister1(RegType* insnRegs, int insnRegCount, u4 vdst,
+    u4 vsrc, TypeCategory cat, bool* pOkay)
+{
+    RegType type = getRegisterType(insnRegs, insnRegCount, vsrc, pOkay);
+    if (*pOkay)
+        checkTypeCategory(type, cat, pOkay);
+    if (*pOkay)
+        setRegisterType(insnRegs, insnRegCount, vdst, type, pOkay);
+
+    if (!*pOkay) {
+        LOG_VFY("VFY: copy1 v%u<-v%u type=%d cat=%d\n", vdst, vsrc, type, cat);
+    }
+}
+
+/*
+ * Implement category-2 "move" instructions.  Copy a 64-bit value from
+ * "vsrc" to "vdst".  This copies both halves of the register.
+ */
+static void copyRegister2(RegType* insnRegs, int insnRegCount, u4 vdst,
+    u4 vsrc, bool* pOkay)
+{
+    RegType typel = getRegisterType(insnRegs, insnRegCount, vsrc, pOkay);
+    RegType typeh = getRegisterType(insnRegs, insnRegCount, vsrc+1, pOkay);
+    if (*pOkay) {
+        checkTypeCategory(typel, kTypeCategory2, pOkay);
+        checkWidePair(typel, typeh, pOkay);
+    }
+    if (*pOkay)
+        setRegisterType(insnRegs, insnRegCount, vdst, typel, pOkay);
+
+    if (!*pOkay) {
+        LOG_VFY("VFY: copy2 v%u<-v%u type=%d/%d\n", vdst, vsrc, typel, typeh);
+    }
+}
+
+/*
+ * Implement "move-result".  Copy the category-1 value from the result
+ * register to another register, and reset the result register.
+ *
+ * We can't just call copyRegister1 with an altered insnRegCount,
+ * because that would affect the test on "vdst" as well.
+ */
+static void copyResultRegister1(RegType* insnRegs, const int insnRegCount,
+    u4 vdst, TypeCategory cat, bool* pOkay)
+{
+    RegType type;
+    u4 vsrc;
+
+    vsrc = RESULT_REGISTER(insnRegCount);
+    type = getRegisterType(insnRegs, insnRegCount + kExtraRegs, vsrc, pOkay);
+    if (*pOkay)
+        checkTypeCategory(type, cat, pOkay);
+    if (*pOkay) {
+        setRegisterType(insnRegs, insnRegCount, vdst, type, pOkay);
+        insnRegs[vsrc] = kRegTypeUnknown;
+    }
+
+    if (!*pOkay) {
+        LOG_VFY("VFY: copyRes1 v%u<-v%u cat=%d type=%d\n",
+            vdst, vsrc, cat, type);
+    }
+}
+
+/*
+ * Implement "move-result-wide".  Copy the category-2 value from the result
+ * register to another register, and reset the result register.
+ *
+ * We can't just call copyRegister2 with an altered insnRegCount,
+ * because that would affect the test on "vdst" as well.
+ */
+static void copyResultRegister2(RegType* insnRegs, const int insnRegCount,
+    u4 vdst, bool* pOkay)
+{
+    RegType typel, typeh;
+    u4 vsrc;
+
+    vsrc = RESULT_REGISTER(insnRegCount);
+    typel = getRegisterType(insnRegs, insnRegCount + kExtraRegs, vsrc, pOkay);
+    typeh = getRegisterType(insnRegs, insnRegCount + kExtraRegs, vsrc+1, pOkay);
+    if (*pOkay) {
+        checkTypeCategory(typel, kTypeCategory2, pOkay);
+        checkWidePair(typel, typeh, pOkay);
+    }
+    if (*pOkay) {
+        setRegisterType(insnRegs, insnRegCount, vdst, typel, pOkay);
+        insnRegs[vsrc] = kRegTypeUnknown;
+        insnRegs[vsrc+1] = kRegTypeUnknown;
+    }
+
+    if (!*pOkay) {
+        LOG_VFY("VFY: copyRes2 v%u<-v%u type=%d/%d\n",
+            vdst, vsrc, typel, typeh);
+    }
+}
+
+/*
+ * Verify types for a simple two-register instruction (e.g. "neg-int").
+ * "dstType" is stored into vA, and "srcType" is verified against vB.
+ */
+static void checkUnop(RegType* insnRegs, const int insnRegCount,
+    DecodedInstruction* pDecInsn, RegType dstType, RegType srcType,
+    bool* pOkay)
+{
+    verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vB, srcType, pOkay);
+    setRegisterType(insnRegs, insnRegCount, pDecInsn->vA, dstType, pOkay);
+}
+
+/*
+ * We're performing an operation like "and-int/2addr" that can be
+ * performed on booleans as well as integers.  We get no indication of
+ * boolean-ness, but we can infer it from the types of the arguments.
+ *
+ * Assumes we've already validated reg1/reg2.
+ *
+ * Returns true if both args are Boolean, Zero, or One.
+ */
+static bool upcastBooleanOp(RegType* insnRegs, const int insnRegCount,
+    u4 reg1, u4 reg2)
+{
+    RegType type1, type2;
+
+    type1 = insnRegs[reg1];
+    type2 = insnRegs[reg2];
+
+    if ((type1 == kRegTypeBoolean || type1 == kRegTypeZero ||
+            type1 == kRegTypeOne) &&
+        (type2 == kRegTypeBoolean || type2 == kRegTypeZero ||
+            type2 == kRegTypeOne))
+    {
+        return true;
+    }
+    return false;
+}
+
+/*
+ * Verify types for A two-register instruction with a literal constant
+ * (e.g. "add-int/lit8").  "dstType" is stored into vA, and "srcType" is
+ * verified against vB.
+ *
+ * If "checkBooleanOp" is set, we use the constant value in vC.
+ */
+static void checkLitop(RegType* insnRegs, const int insnRegCount,
+    DecodedInstruction* pDecInsn, RegType dstType, RegType srcType,
+    bool checkBooleanOp, bool* pOkay)
+{
+    verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vB, srcType, pOkay);
+    if (*pOkay && checkBooleanOp) {
+        assert(dstType == kRegTypeInteger);
+        /* check vB with the call, then check the constant manually */
+        if (upcastBooleanOp(insnRegs, insnRegCount, pDecInsn->vB, pDecInsn->vB)
+            && (pDecInsn->vC == 0 || pDecInsn->vC == 1))
+        {
+            dstType = kRegTypeBoolean;
+        }
+    }
+    setRegisterType(insnRegs, insnRegCount, pDecInsn->vA, dstType, pOkay);
+}
+
+/*
+ * Verify types for a simple three-register instruction (e.g. "add-int").
+ * "dstType" is stored into vA, and "srcType1"/"srcType2" are verified
+ * against vB/vC.
+ */
+static void checkBinop(RegType* insnRegs, const int insnRegCount,
+    DecodedInstruction* pDecInsn, RegType dstType, RegType srcType1,
+    RegType srcType2, bool checkBooleanOp, bool* pOkay)
+{
+    verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vB, srcType1, pOkay);
+    verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vC, srcType2, pOkay);
+    if (*pOkay && checkBooleanOp) {
+        assert(dstType == kRegTypeInteger);
+        if (upcastBooleanOp(insnRegs, insnRegCount, pDecInsn->vB, pDecInsn->vC))
+            dstType = kRegTypeBoolean;
+    }
+    setRegisterType(insnRegs, insnRegCount, pDecInsn->vA, dstType, pOkay);
+}
+
+/*
+ * Verify types for a binary "2addr" operation.  "srcType1"/"srcType2"
+ * are verified against vA/vB, then "dstType" is stored into vA.
+ */
+static void checkBinop2addr(RegType* insnRegs, const int insnRegCount,
+    DecodedInstruction* pDecInsn, RegType dstType, RegType srcType1,
+    RegType srcType2, bool checkBooleanOp, bool* pOkay)
+{
+    verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vA, srcType1, pOkay);
+    verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vB, srcType2, pOkay);
+    if (*pOkay && checkBooleanOp) {
+        assert(dstType == kRegTypeInteger);
+        if (upcastBooleanOp(insnRegs, insnRegCount, pDecInsn->vA, pDecInsn->vB))
+            dstType = kRegTypeBoolean;
+    }
+    setRegisterType(insnRegs, insnRegCount, pDecInsn->vA, dstType, pOkay);
+}
+
+
+/*
+ * ===========================================================================
+ *      Register merge
+ * ===========================================================================
+ */
+
+/*
+ * Compute the "class depth" of a class.  This is the distance from the
+ * class to the top of the tree, chasing superclass links.  java.lang.Object
+ * has a class depth of 0.
+ */
+static int getClassDepth(ClassObject* clazz)
+{
+    int depth = 0;
+
+    while (clazz->super != NULL) {
+        clazz = clazz->super;
+        depth++;
+    }
+    return depth;
+}
+
+/*
+ * Given two classes, walk up the superclass tree to find a common
+ * ancestor.  (Called from findCommonSuperclass().)
+ *
+ * TODO: consider caching the class depth in the class object so we don't
+ * have to search for it here.
+ */
+static ClassObject* digForSuperclass(ClassObject* c1, ClassObject* c2)
+{
+    int depth1, depth2;
+
+    depth1 = getClassDepth(c1);
+    depth2 = getClassDepth(c2);
+
+    if (gDebugVerbose) {
+        LOGVV("COMMON: %s(%d) + %s(%d)\n",
+            c1->descriptor, depth1, c2->descriptor, depth2);
+    }
+
+    /* pull the deepest one up */
+    if (depth1 > depth2) {
+        while (depth1 > depth2) {
+            c1 = c1->super;
+            depth1--;
+        }
+    } else {
+        while (depth2 > depth1) {
+            c2 = c2->super;
+            depth2--;
+        }
+    }
+
+    /* walk up in lock-step */
+    while (c1 != c2) {
+        c1 = c1->super;
+        c2 = c2->super;
+
+        assert(c1 != NULL && c2 != NULL);
+    }
+
+    if (gDebugVerbose) {
+        LOGVV("      : --> %s\n", c1->descriptor);
+    }
+    return c1;
+}
+
+/*
+ * Merge two array classes.  We can't use the general "walk up to the
+ * superclass" merge because the superclass of an array is always Object.
+ * We want String[] + Integer[] = Object[].  This works for higher dimensions
+ * as well, e.g. String[][] + Integer[][] = Object[][].
+ *
+ * If Foo1 and Foo2 are subclasses of Foo, Foo1[] + Foo2[] = Foo[].
+ *
+ * If Class implements Type, Class[] + Type[] = Type[].
+ *
+ * If the dimensions don't match, we want to convert to an array of Object
+ * with the least dimension, e.g. String[][] + String[][][][] = Object[][].
+ *
+ * This gets a little awkward because we may have to ask the VM to create
+ * a new array type with the appropriate element and dimensions.  However, we
+ * shouldn't be doing this often.
+ */
+static ClassObject* findCommonArraySuperclass(ClassObject* c1, ClassObject* c2)
+{
+    ClassObject* arrayClass = NULL;
+    ClassObject* commonElem;
+    int i, numDims;
+
+    assert(c1->arrayDim > 0);
+    assert(c2->arrayDim > 0);
+
+    if (c1->arrayDim == c2->arrayDim) {
+        //commonElem = digForSuperclass(c1->elementClass, c2->elementClass);
+        commonElem = findCommonSuperclass(c1->elementClass, c2->elementClass);
+        numDims = c1->arrayDim;
+    } else {
+        if (c1->arrayDim < c2->arrayDim)
+            numDims = c1->arrayDim;
+        else
+            numDims = c2->arrayDim;
+        commonElem = c1->super;     // == java.lang.Object
+    }
+
+    /* walk from the element to the (multi-)dimensioned array type */
+    for (i = 0; i < numDims; i++) {
+        arrayClass = dvmFindArrayClassForElement(commonElem);
+        commonElem = arrayClass;
+    }
+
+    LOGVV("ArrayMerge '%s' + '%s' --> '%s'\n",
+        c1->descriptor, c2->descriptor, arrayClass->descriptor);
+    return arrayClass;
+}
+
+/*
+ * Find the first common superclass of the two classes.  We're not
+ * interested in common interfaces.
+ *
+ * The easiest way to do this for concrete classes is to compute the "class
+ * depth" of each, move up toward the root of the deepest one until they're
+ * at the same depth, then walk both up to the root until they match.
+ *
+ * If both classes are arrays of non-primitive types, we need to merge
+ * based on array depth and element type.
+ *
+ * If one class is an interface, we check to see if the other class/interface
+ * (or one of its predecessors) implements the interface.  If so, we return
+ * the interface; otherwise, we return Object.
+ *
+ * NOTE: we continue the tradition of "lazy interface handling".  To wit,
+ * suppose we have three classes:
+ *   One implements Fancy, Free
+ *   Two implements Fancy, Free
+ *   Three implements Free
+ * where Fancy and Free are unrelated interfaces.  The code requires us
+ * to merge One into Two.  Ideally we'd use a common interface, which
+ * gives us a choice between Fancy and Free, and no guidance on which to
+ * use.  If we use Free, we'll be okay when Three gets merged in, but if
+ * we choose Fancy, we're hosed.  The "ideal" solution is to create a
+ * set of common interfaces and carry that around, merging further references
+ * into it.  This is a pain.  The easy solution is to simply boil them
+ * down to Objects and let the runtime invokeinterface call fail, which
+ * is what we do.
+ */
+static ClassObject* findCommonSuperclass(ClassObject* c1, ClassObject* c2)
+{
+    assert(!dvmIsPrimitiveClass(c1) && !dvmIsPrimitiveClass(c2));
+
+    if (c1 == c2)
+        return c1;
+
+    if (dvmIsInterfaceClass(c1) && dvmImplements(c2, c1)) {
+        if (gDebugVerbose)
+            LOGVV("COMMON/I1: %s + %s --> %s\n",
+                c1->descriptor, c2->descriptor, c1->descriptor);
+        return c1;
+    }
+    if (dvmIsInterfaceClass(c2) && dvmImplements(c1, c2)) {
+        if (gDebugVerbose)
+            LOGVV("COMMON/I2: %s + %s --> %s\n",
+                c1->descriptor, c2->descriptor, c2->descriptor);
+        return c2;
+    }
+
+    if (dvmIsArrayClass(c1) && dvmIsArrayClass(c2) &&
+        !dvmIsPrimitiveClass(c1->elementClass) &&
+        !dvmIsPrimitiveClass(c2->elementClass))
+    {
+        return findCommonArraySuperclass(c1, c2);
+    }
+
+    return digForSuperclass(c1, c2);
+}
+
+/*
+ * Merge two RegType values.
+ *
+ * Sets "*pChanged" to "true" if the result doesn't match "type1".
+ */
+static RegType mergeTypes(RegType type1, RegType type2, bool* pChanged)
+{
+    RegType result;
+
+    /*
+     * Check for trivial case so we don't have to hit memory.
+     */
+    if (type1 == type2)
+        return type1;
+
+    /*
+     * Use the table if we can, and reject any attempts to merge something
+     * from the table with a reference type.
+     *
+     * The uninitialized table entry at index zero *will* show up as a
+     * simple kRegTypeUninit value.  Since this cannot be merged with
+     * anything but itself, the rules do the right thing.
+     */
+    if (type1 < kRegTypeMAX) {
+        if (type2 < kRegTypeMAX) {
+            result = gDvmMergeTab[type1][type2];
+        } else {
+            /* simple + reference == conflict, usually */
+            if (type1 == kRegTypeZero)
+                result = type2;
+            else
+                result = kRegTypeConflict;
+        }
+    } else {
+        if (type2 < kRegTypeMAX) {
+            /* reference + simple == conflict, usually */
+            if (type2 == kRegTypeZero)
+                result = type1;
+            else
+                result = kRegTypeConflict;
+        } else {
+            /* merging two references */
+            if (regTypeIsUninitReference(type1) ||
+                regTypeIsUninitReference(type2))
+            {
+                /* can't merge uninit with anything but self */
+                result = kRegTypeConflict;
+            } else {
+                ClassObject* clazz1 = regTypeInitializedReferenceToClass(type1);
+                ClassObject* clazz2 = regTypeInitializedReferenceToClass(type2);
+                ClassObject* mergedClass;
+
+                mergedClass = findCommonSuperclass(clazz1, clazz2);
+                assert(mergedClass != NULL);
+                result = regTypeFromClass(mergedClass);
+            }
+        }
+    }
+
+    if (result != type1)
+        *pChanged = true;
+    return result;
+}
+
+/*
+ * Control can transfer to "nextInsn".
+ *
+ * Merge the registers from "workRegs" into "regTypes" at "nextInsn", and
+ * set the "changed" flag on the target address if the registers have changed.
+ */
+static void updateRegisters(const Method* meth, InsnFlags* insnFlags,
+    RegisterTable* regTable, int nextInsn, const RegType* workRegs)
+{
+    RegType* targetRegs = getRegisterLine(regTable, nextInsn);
+    const int insnRegCount = meth->registersSize;
+
+#if 0
+    if (!dvmInsnIsBranchTarget(insnFlags, nextInsn)) {
+        LOGE("insnFlags[0x%x]=0x%08x\n", nextInsn, insnFlags[nextInsn]);
+        LOGE(" In %s.%s %s\n",
+            meth->clazz->descriptor, meth->name, meth->descriptor);
+        assert(false);
+    }
+#endif
+
+    if (!dvmInsnIsVisitedOrChanged(insnFlags, nextInsn)) {
+        /*
+         * We haven't processed this instruction before, and we haven't
+         * touched the registers here, so there's nothing to "merge".  Copy
+         * the registers over and mark it as changed.  (This is the only
+         * way a register can transition out of "unknown", so this is not
+         * just an optimization.)
+         */
+        LOGVV("COPY into 0x%04x\n", nextInsn);
+        copyRegisters(targetRegs, workRegs, insnRegCount + kExtraRegs);
+        dvmInsnSetChanged(insnFlags, nextInsn, true);
+    } else {
+        if (gDebugVerbose) {
+            LOGVV("MERGE into 0x%04x\n", nextInsn);
+            //dumpRegTypes(meth, insnFlags, targetRegs, 0, "targ", NULL, 0);
+            //dumpRegTypes(meth, insnFlags, workRegs, 0, "work", NULL, 0);
+        }
+        /* merge registers, set Changed only if different */
+        bool changed = false;
+        int i;
+
+        for (i = 0; i < insnRegCount + kExtraRegs; i++) {
+            targetRegs[i] = mergeTypes(targetRegs[i], workRegs[i], &changed);
+        }
+
+        if (gDebugVerbose) {
+            //LOGI(" RESULT (changed=%d)\n", changed);
+            //dumpRegTypes(meth, insnFlags, targetRegs, 0, "rslt", NULL, 0);
+        }
+
+        if (changed)
+            dvmInsnSetChanged(insnFlags, nextInsn, true);
+    }
+}
+
+
+/*
+ * ===========================================================================
+ *      Utility functions
+ * ===========================================================================
+ */
+
+/*
+ * Look up an instance field, specified by "fieldIdx", that is going to be
+ * accessed in object "objType".  This resolves the field and then verifies
+ * that the class containing the field is an instance of the reference in
+ * "objType".
+ *
+ * It is possible for "objType" to be kRegTypeZero, meaning that we might
+ * have a null reference.  This is a runtime problem, so we allow it,
+ * skipping some of the type checks.
+ *
+ * In general, "objType" must be an initialized reference.  However, we
+ * allow it to be uninitialized if this is an "<init>" method and the field
+ * is declared within the "objType" class.
+ *
+ * Returns an InstField on success, returns NULL and sets "*pOkay" to false
+ * on failure.
+ */
+static InstField* getInstField(const Method* meth,
+    const UninitInstanceMap* uninitMap, RegType objType, int fieldIdx,
+    bool* pOkay)
+{
+    InstField* instField = NULL;
+    ClassObject* objClass;
+    bool mustBeLocal = false;
+
+    if (!regTypeIsReference(objType)) {
+        LOG_VFY("VFY: attempt to access field of non-reference type %d\n",
+            objType);
+        *pOkay = false;
+        goto bail;
+    }
+
+    instField = dvmOptResolveInstField(meth->clazz, fieldIdx);
+    if (instField == NULL) {
+        LOG_VFY("VFY: unable to resolve instance field %u\n", fieldIdx);
+        *pOkay = false;
+        goto bail;
+    }
+
+    if (objType == kRegTypeZero)
+        goto bail;
+
+    /*
+     * Access to fields in uninitialized objects is allowed if this is
+     * the <init> method for the object and the field in question is
+     * declared by this class.
+     */
+    objClass = regTypeReferenceToClass(objType, uninitMap);
+    assert(objClass != NULL);
+    if (regTypeIsUninitReference(objType)) {
+        if (!isInitMethod(meth) || meth->clazz != objClass) {
+            LOG_VFY("VFY: attempt to access field via uninitialized ref\n");
+            *pOkay = false;
+            goto bail;
+        }
+        mustBeLocal = true;
+    }
+
+    if (!dvmInstanceof(objClass, instField->field.clazz)) {
+        LOG_VFY("VFY: invalid field access (field %s.%s, through %s ref)\n",
+                instField->field.clazz->descriptor, instField->field.name,
+                objClass->descriptor);
+        *pOkay = false;
+        goto bail;
+    }
+
+    if (mustBeLocal) {
+        /* for uninit ref, make sure it's defined by this class, not super */
+        if (instField < objClass->ifields ||
+            instField >= objClass->ifields + objClass->ifieldCount)
+        {
+            LOG_VFY("VFY: invalid constructor field access (field %s in %s)\n",
+                    instField->field.name, objClass->descriptor);
+            *pOkay = false;
+            goto bail;
+        }
+    }
+
+bail:
+    return instField;
+}
+
+/*
+ * Look up a static field.
+ *
+ * Returns a StaticField on success, returns NULL and sets "*pOkay" to false
+ * on failure.
+ */
+static StaticField* getStaticField(const Method* meth, int fieldIdx,
+    bool* pOkay)
+{
+    StaticField* staticField;
+
+    staticField = dvmOptResolveStaticField(meth->clazz, fieldIdx);
+    if (staticField == NULL) {
+        DexFile* pDexFile = meth->clazz->pDvmDex->pDexFile;
+        const DexFieldId* pFieldId;
+
+        pFieldId = dexGetFieldId(pDexFile, fieldIdx);
+
+        LOG_VFY("VFY: unable to resolve static field %u (%s) in %s\n", fieldIdx,
+            dexStringById(pDexFile, pFieldId->nameIdx),
+            dexStringByTypeIdx(pDexFile, pFieldId->classIdx));
+
+        *pOkay = false;
+        goto bail;
+    }
+
+bail:
+    return staticField;
+}
+
+/*
+ * If "field" is marked "final", make sure this is the either <clinit>
+ * or <init> as appropriate.
+ *
+ * Sets "*pOkay" to false on failure.
+ */
+static void checkFinalFieldAccess(const Method* meth, const Field* field,
+    bool* pOkay)
+{
+    if (!dvmIsFinalField(field))
+        return;
+
+    /* make sure we're in the same class */
+    if (meth->clazz != field->clazz) {
+        LOG_VFY_METH(meth, "VFY: can't modify final field %s.%s\n",
+            field->clazz->descriptor, field->name);
+        *pOkay = false;
+        return;
+    }
+
+    /*
+     * The EMMA code coverage tool generates a static method that
+     * modifies a private static final field.  The method is only
+     * called by <clinit>, so the code is reasonable if not quite
+     * kosher.  (Attempting to *compile* code that does something
+     * like that will earn you a quick thumbs-down from javac.)
+     *
+     * The verifier in another popular VM doesn't complain about this,
+     * so we're going to allow classes to modify their own static
+     * final fields outside of class initializers.  Further testing
+     * showed that modifications to instance fields are also allowed.
+     */
+#if 0
+    /* make sure we're in the right kind of constructor */
+    if (dvmIsStaticField(field)) {
+        if (!isClassInitMethod(meth)) {
+            LOG_VFY_METH(meth,
+                "VFY: can't modify final static field outside <clinit>\n");
+            *pOkay = false;
+        }
+    } else {
+        if (!isInitMethod(meth)) {
+            LOG_VFY_METH(meth,
+                "VFY: can't modify final field outside <init>\n");
+            *pOkay = false;
+        }
+    }
+#endif
+}
+
+/*
+ * Make sure that the register type is suitable for use as an array index.
+ *
+ * Sets "*pOkay" to false if not.
+ */
+static void checkArrayIndexType(const Method* meth, RegType regType,
+    bool* pOkay)
+{
+    if (*pOkay) {
+        /*
+         * The 1nr types are interchangeable at this level.  We could
+         * do something special if we can definitively identify it as a
+         * float, but there's no real value in doing so.
+         */
+        checkTypeCategory(regType, kTypeCategory1nr, pOkay);
+        if (!*pOkay) {
+            LOG_VFY_METH(meth, "Invalid reg type for array index (%d)\n",
+                regType);
+        }
+    }
+}
+
+/*
+ * Check constraints on constructor return.  Specifically, make sure that
+ * the "this" argument got initialized.
+ *
+ * The "this" argument to <init> uses code offset kUninitThisArgAddr, which
+ * puts it at the start of the list in slot 0.  If we see a register with
+ * an uninitialized slot 0 reference, we know it somehow didn't get
+ * initialized.
+ *
+ * Returns "true" if all is well.
+ */
+static bool checkConstructorReturn(const Method* meth, const RegType* insnRegs,
+    const int insnRegCount)
+{
+    int i;
+
+    if (!isInitMethod(meth))
+        return true;
+
+    RegType uninitThis = regTypeFromUninitIndex(kUninitThisArgSlot);
+
+    for (i = 0; i < insnRegCount; i++) {
+        if (insnRegs[i] == uninitThis) {
+            LOG_VFY("VFY: <init> returning without calling superclass init\n");
+            return false;
+        }
+    }
+    return true;
+}
+
+/*
+ * Verify that the target instruction is not "move-exception".  It's important
+ * that the only way to execute a move-exception is as the first instruction
+ * of an exception handler.
+ *
+ * Returns "true" if all is well, "false" if the target instruction is
+ * move-exception.
+ */
+static bool checkMoveException(const Method* meth, int insnIdx,
+    const char* logNote)
+{
+    assert(insnIdx >= 0 && insnIdx < (int)dvmGetMethodInsnsSize(meth));
+
+    if ((meth->insns[insnIdx] & 0xff) == OP_MOVE_EXCEPTION) {
+        LOG_VFY("VFY: invalid use of move-exception\n");
+        return false;
+    }
+    return true;
+}
+
+/*
+ * For the "move-exception" instruction at "insnIdx", which must be at an
+ * exception handler address, determine the first common superclass of
+ * all exceptions that can land here.  (For javac output, we're probably
+ * looking at multiple spans of bytecode covered by one "try" that lands
+ * at an exception-specific "catch", but in general the handler could be
+ * shared for multiple exceptions.)
+ *
+ * Returns NULL if no matching exception handler can be found, or if the
+ * exception is not a subclass of Throwable.
+ */
+static ClassObject* getCaughtExceptionType(const Method* meth, int insnIdx)
+{
+    const DexCode* pCode;
+    DexFile* pDexFile;
+    ClassObject* commonSuper = NULL;
+    u4 handlersSize;
+    u4 offset;
+    u4 i;
+
+    pDexFile = meth->clazz->pDvmDex->pDexFile;
+    pCode = dvmGetMethodCode(meth);
+
+    if (pCode->triesSize != 0) {
+        handlersSize = dexGetHandlersSize(pCode);
+        offset = dexGetFirstHandlerOffset(pCode);
+    } else {
+        handlersSize = 0;
+        offset = 0;
+    }
+
+    for (i = 0; i < handlersSize; i++) {
+        DexCatchIterator iterator;
+        dexCatchIteratorInit(&iterator, pCode, offset);
+
+        for (;;) {
+            const DexCatchHandler* handler = dexCatchIteratorNext(&iterator);
+
+            if (handler == NULL) {
+                break;
+            }
+
+            if (handler->address == (u4) insnIdx) {
+                ClassObject* clazz;
+
+                if (handler->typeIdx == kDexNoIndex)
+                    clazz = gDvm.classJavaLangThrowable;
+                else
+                    clazz = dvmOptResolveClass(meth->clazz, handler->typeIdx);
+
+                if (clazz == NULL) {
+                    LOG_VFY("VFY: unable to resolve exception class %u (%s)\n",
+                        handler->typeIdx,
+                        dexStringByTypeIdx(pDexFile, handler->typeIdx));
+                } else {
+                    if (commonSuper == NULL)
+                        commonSuper = clazz;
+                    else
+                        commonSuper = findCommonSuperclass(clazz, commonSuper);
+                }
+            }
+        }
+
+        offset = dexCatchIteratorGetEndOffset(&iterator, pCode);
+    }
+
+    if (commonSuper == NULL) {
+        LOG_VFY_METH(meth,
+            "VFY: unable to find exception handler at addr 0x%x\n", insnIdx);
+    }
+
+    return commonSuper;
+}
+
+/*
+ * Initialize the RegisterTable.
+ *
+ * Every instruction address can have a different set of information about
+ * what's in which register, but for verification purposes we only need to
+ * store it at branch target addresses (because we merge into that).
+ *
+ * By zeroing out the storage we are effectively initializing the register
+ * information to kRegTypeUnknown.
+ */
+static bool initRegisterTable(const Method* meth, const InsnFlags* insnFlags,
+    RegisterTable* regTable, RegisterTrackingMode trackRegsFor)
+{
+    const int insnsSize = dvmGetMethodInsnsSize(meth);
+    int i;
+
+    regTable->insnRegCountPlus = meth->registersSize + kExtraRegs;
+    regTable->addrRegs = (RegType**) calloc(insnsSize, sizeof(RegType*));
+    if (regTable->addrRegs == NULL)
+        return false;
+
+    assert(insnsSize > 0);
+
+    /*
+     * "All" means "every address that holds the start of an instruction".
+     * "Branches" and "GcPoints" mean just those addresses.
+     *
+     * "GcPoints" fills about half the addresses, "Branches" about 15%.
+     */
+    int interestingCount = 0;
+    //int insnCount = 0;
+
+    for (i = 0; i < insnsSize; i++) {
+        bool interesting;
+
+        switch (trackRegsFor) {
+        case kTrackRegsAll:
+            interesting = dvmInsnIsOpcode(insnFlags, i);
+            break;
+        case kTrackRegsGcPoints:
+            interesting = dvmInsnIsGcPoint(insnFlags, i) ||
+                          dvmInsnIsBranchTarget(insnFlags, i);
+            break;
+        case kTrackRegsBranches:
+            interesting = dvmInsnIsBranchTarget(insnFlags, i);
+            break;
+        default:
+            dvmAbort();
+            return false;
+        }
+
+        if (interesting)
+            interestingCount++;
+
+        /* count instructions, for display only */
+        //if (dvmInsnIsOpcode(insnFlags, i))
+        //    insnCount++;
+    }
+
+    regTable->regAlloc = (RegType*)
+        calloc(regTable->insnRegCountPlus * interestingCount, sizeof(RegType));
+    if (regTable->regAlloc == NULL)
+        return false;
+
+    RegType* regPtr = regTable->regAlloc;
+    for (i = 0; i < insnsSize; i++) {
+        bool interesting;
+
+        switch (trackRegsFor) {
+        case kTrackRegsAll:
+            interesting = dvmInsnIsOpcode(insnFlags, i);
+            break;
+        case kTrackRegsGcPoints:
+            interesting = dvmInsnIsGcPoint(insnFlags, i) ||
+                          dvmInsnIsBranchTarget(insnFlags, i);
+            break;
+        case kTrackRegsBranches:
+            interesting = dvmInsnIsBranchTarget(insnFlags, i);
+            break;
+        default:
+            dvmAbort();
+            return false;
+        }
+
+        if (interesting) {
+            regTable->addrRegs[i] = regPtr;
+            regPtr += regTable->insnRegCountPlus;
+        }
+    }
+
+    //LOGD("Tracking registers for %d, total %d of %d(%d) (%d%%)\n",
+    //    TRACK_REGS_FOR, interestingCount, insnCount, insnsSize,
+    //    (interestingCount*100) / insnCount);
+
+    assert(regPtr - regTable->regAlloc ==
+        regTable->insnRegCountPlus * interestingCount);
+    assert(regTable->addrRegs[0] != NULL);
+    return true;
+}
+
+
+/*
+ * Verify that the arguments in a filled-new-array instruction are valid.
+ *
+ * "resClass" is the class refered to by pDecInsn->vB.
+ */
+static void verifyFilledNewArrayRegs(const Method* meth,
+    const RegType* insnRegs, const int insnRegCount,
+    const DecodedInstruction* pDecInsn, ClassObject* resClass, bool isRange,
+    bool* pOkay)
+{
+    u4 argCount = pDecInsn->vA;
+    RegType expectedType;
+    PrimitiveType elemType;
+    unsigned int ui;
+
+    assert(dvmIsArrayClass(resClass));
+    elemType = resClass->elementClass->primitiveType;
+    if (elemType == PRIM_NOT) {
+        expectedType = regTypeFromClass(resClass->elementClass);
+    } else {
+        expectedType = primitiveTypeToRegType(elemType);
+    }
+    //LOGI("filled-new-array: %s -> %d\n", resClass->descriptor, expectedType);
+
+    /*
+     * Verify each register.  If "argCount" is bad, verifyRegisterType()
+     * will run off the end of the list and fail.  It's legal, if silly,
+     * for argCount to be zero.
+     */
+    for (ui = 0; ui < argCount; ui++) {
+        u4 getReg;
+
+        if (isRange)
+            getReg = pDecInsn->vC + ui;
+        else
+            getReg = pDecInsn->arg[ui];
+
+        verifyRegisterType(insnRegs, insnRegCount, getReg, expectedType, pOkay);
+        if (!*pOkay) {
+            LOG_VFY("VFY: filled-new-array arg %u(%u) not valid\n", ui, getReg);
+            return;
+        }
+    }
+}
+
+
+/*
+ * ===========================================================================
+ *      Entry point and driver loop
+ * ===========================================================================
+ */
+
+/*
+ * Entry point for the detailed code-flow analysis.
+ */
+bool dvmVerifyCodeFlow(const Method* meth, InsnFlags* insnFlags,
+    UninitInstanceMap* uninitMap)
+{
+    bool result = false;
+    const int insnsSize = dvmGetMethodInsnsSize(meth);
+    const u2* insns = meth->insns;
+    const bool generateRegisterMap = gDvm.generateRegisterMaps;
+    int i, offset;
+    bool isConditional;
+    RegisterTable regTable;
+
+    memset(&regTable, 0, sizeof(regTable));
+
+#ifndef NDEBUG
+    checkMergeTab();     // only need to do this if table gets updated
+#endif
+
+    /*
+     * We rely on these for verification of const-class, const-string,
+     * and throw instructions.  Make sure we have them.
+     */
+    if (gDvm.classJavaLangClass == NULL)
+        gDvm.classJavaLangClass =
+            dvmFindSystemClassNoInit("Ljava/lang/Class;");
+    if (gDvm.classJavaLangString == NULL)
+        gDvm.classJavaLangString =
+            dvmFindSystemClassNoInit("Ljava/lang/String;");
+    if (gDvm.classJavaLangThrowable == NULL)
+        gDvm.classJavaLangThrowable =
+            dvmFindSystemClassNoInit("Ljava/lang/Throwable;");
+    if (gDvm.classJavaLangObject == NULL)
+        gDvm.classJavaLangObject =
+            dvmFindSystemClassNoInit("Ljava/lang/Object;");
+
+    if (meth->registersSize * insnsSize > 2*1024*1024) {
+        /* should probably base this on actual memory requirements */
+        LOG_VFY_METH(meth,
+            "VFY: arbitrarily rejecting large method (regs=%d count=%d)\n",
+            meth->registersSize, insnsSize);
+        goto bail;
+    }
+
+    /*
+     * Create register lists, and initialize them to "Unknown".  If we're
+     * also going to create the register map, we need to retain the
+     * register lists for a larger set of addresses.
+     */
+    if (!initRegisterTable(meth, insnFlags, &regTable,
+            generateRegisterMap ? kTrackRegsGcPoints : kTrackRegsBranches))
+        goto bail;
+
+    /*
+     * Initialize the types of the registers that correspond to the
+     * method arguments.  We can determine this from the method signature.
+     */
+    if (!setTypesFromSignature(meth, regTable.addrRegs[0], uninitMap))
+        goto bail;
+
+    /*
+     * Run the verifier.
+     */
+    if (!doCodeVerification(meth, insnFlags, &regTable, uninitMap))
+        goto bail;
+
+    /*
+     * Generate a register map.
+     */
+    if (generateRegisterMap) {
+        RegisterMap* pMap;
+        VerifierData vd;
+
+        vd.method = meth;
+        vd.insnsSize = insnsSize;
+        vd.insnRegCount = meth->registersSize;
+        vd.insnFlags = insnFlags;
+        vd.addrRegs = regTable.addrRegs;
+        
+        pMap = dvmGenerateRegisterMapV(&vd);
+        if (pMap != NULL) {
+            /*
+             * Tuck it into the Method struct.  It will either get used
+             * directly or, if we're in dexopt, will be packed up and
+             * appended to the DEX file.
+             */
+            dvmSetRegisterMap((Method*)meth, pMap);
+        }
+    }
+
+    /*
+     * Success.
+     */
+    result = true;
+
+bail:
+    free(regTable.addrRegs);
+    free(regTable.regAlloc);
+    return result;
+}
+
+/*
+ * Grind through the instructions.
+ *
+ * The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit
+ * on the first instruction, process it (setting additional "changed" bits),
+ * and repeat until there are no more.
+ *
+ * v3 4.11.1.1
+ * - (N/A) operand stack is always the same size
+ * - operand stack [registers] contain the correct types of values
+ * - local variables [registers] contain the correct types of values
+ * - methods are invoked with the appropriate arguments
+ * - fields are assigned using values of appropriate types
+ * - opcodes have the correct type values in operand registers
+ * - there is never an uninitialized class instance in a local variable in
+ *   code protected by an exception handler (operand stack is okay, because
+ *   the operand stack is discarded when an exception is thrown) [can't
+ *   know what's a local var w/o the debug info -- should fall out of
+ *   register typing]
+ *
+ * v3 4.11.1.2
+ * - execution cannot fall off the end of the code
+ *
+ * (We also do many of the items described in the "static checks" sections,
+ * because it's easier to do them here.)
+ *
+ * We need an array of RegType values, one per register, for every
+ * instruction.  In theory this could become quite large -- up to several
+ * megabytes for a monster function.  For self-preservation we reject
+ * anything that requires more than a certain amount of memory.  (Typical
+ * "large" should be on the order of 4K code units * 8 registers.)  This
+ * will likely have to be adjusted.
+ *
+ *
+ * The spec forbids backward branches when there's an uninitialized reference
+ * in a register.  The idea is to prevent something like this:
+ *   loop:
+ *     move r1, r0
+ *     new-instance r0, MyClass
+ *     ...
+ *     if-eq rN, loop  // once
+ *   initialize r0
+ *
+ * This leaves us with two different instances, both allocated by the
+ * same instruction, but only one is initialized.  The scheme outlined in
+ * v3 4.11.1.4 wouldn't catch this, so they work around it by preventing
+ * backward branches.  We achieve identical results without restricting
+ * code reordering by specifying that you can't execute the new-instance
+ * instruction if a register contains an uninitialized instance created
+ * by that same instrutcion.
+ */
+static bool doCodeVerification(const Method* meth, InsnFlags* insnFlags,
+    RegisterTable* regTable, UninitInstanceMap* uninitMap)
+{
+    const int insnsSize = dvmGetMethodInsnsSize(meth);
+    const u2* insns = meth->insns;
+    RegType workRegs[meth->registersSize + kExtraRegs];
+    bool result = false;
+    bool debugVerbose = false;
+    int insnIdx, startGuess, prevAddr;
+
+    /*
+     * Begin by marking the first instruction as "changed".
+     */
+    dvmInsnSetChanged(insnFlags, 0, true);
+
+    if (doVerboseLogging(meth)) {
+        IF_LOGI() {
+            char* desc = dexProtoCopyMethodDescriptor(&meth->prototype);
+            LOGI("Now verifying: %s.%s %s (ins=%d regs=%d)\n",
+                meth->clazz->descriptor, meth->name, desc,
+                meth->insSize, meth->registersSize);
+            LOGI(" ------ [0    4    8    12   16   20   24   28   32   36\n");
+            free(desc);
+        }
+        debugVerbose = true;
+        gDebugVerbose = true;
+    } else {
+        gDebugVerbose = false;
+    }
+
+    startGuess = 0;
+
+    /*
+     * Continue until no instructions are marked "changed".
+     */
+    while (true) {
+        /*
+         * Find the first marked one.  Use "startGuess" as a way to find
+         * one quickly.
+         */
+        for (insnIdx = startGuess; insnIdx < insnsSize; insnIdx++) {
+            if (dvmInsnIsChanged(insnFlags, insnIdx))
+                break;
+        }
+
+        if (insnIdx == insnsSize) {
+            if (startGuess != 0) {
+                /* try again, starting from the top */
+                startGuess = 0;
+                continue;
+            } else {
+                /* all flags are clear */
+                break;
+            }
+        }
+
+        /*
+         * We carry the working set of registers from instruction to
+         * instruction.  If this address can be the target of a branch
+         * (or throw) instruction, or if we're skipping around chasing
+         * "changed" flags, we need to load the set of registers from
+         * the table.
+         *
+         * Because we always prefer to continue on to the next instruction,
+         * we should never have a situation where we have a stray
+         * "changed" flag set on an instruction that isn't a branch target.
+         */
+        if (dvmInsnIsBranchTarget(insnFlags, insnIdx)) {
+            RegType* insnRegs = getRegisterLine(regTable, insnIdx);
+            assert(insnRegs != NULL);
+            copyRegisters(workRegs, insnRegs, meth->registersSize + kExtraRegs);
+
+            if (debugVerbose) {
+                dumpRegTypes(meth, insnFlags, workRegs, insnIdx, NULL,uninitMap,
+                    SHOW_REG_DETAILS);
+            }
+
+        } else {
+            if (debugVerbose) {
+                dumpRegTypes(meth, insnFlags, workRegs, insnIdx, NULL,uninitMap,
+                    SHOW_REG_DETAILS);
+            }
+
+#ifndef NDEBUG
+            /*
+             * Sanity check: retrieve the stored register line (assuming
+             * a full table) and make sure it actually matches.
+             */
+            RegType* insnRegs = getRegisterLine(regTable, insnIdx);
+            if (insnRegs != NULL &&
+                compareRegisters(workRegs, insnRegs,
+                    meth->registersSize + kExtraRegs) != 0)
+            {
+                char* desc = dexProtoCopyMethodDescriptor(&meth->prototype);
+                LOG_VFY("HUH? workRegs diverged in %s.%s %s\n",
+                        meth->clazz->descriptor, meth->name, desc);
+                free(desc);
+                dumpRegTypes(meth, insnFlags, workRegs, 0, "work",
+                    uninitMap, DRT_SHOW_REF_TYPES | DRT_SHOW_LOCALS);
+                dumpRegTypes(meth, insnFlags, insnRegs, 0, "insn",
+                    uninitMap, DRT_SHOW_REF_TYPES | DRT_SHOW_LOCALS);
+            }
+#endif
+        }
+
+        //LOGI("process %s.%s %s %d\n",
+        //    meth->clazz->descriptor, meth->name, meth->descriptor, insnIdx);
+        if (!verifyInstruction(meth, insnFlags, regTable, workRegs, insnIdx,
+                uninitMap, &startGuess))
+        {
+            //LOGD("+++ %s bailing at %d\n", meth->name, insnIdx);
+            goto bail;
+        }
+
+#if 0
+        {
+            static const int gcMask = kInstrCanBranch | kInstrCanSwitch |
+                                      kInstrCanThrow | kInstrCanReturn;
+            OpCode opCode = *(meth->insns + insnIdx) & 0xff;
+            int flags = dexGetInstrFlags(gDvm.instrFlags, opCode);
+
+            /* 8, 16, 32, or 32*n -bit regs */
+            int regWidth = (meth->registersSize + 7) / 8;
+            if (regWidth == 3)
+                regWidth = 4;
+            if (regWidth > 4) {
+                regWidth = ((regWidth + 3) / 4) * 4;
+                if (false) {
+                    LOGW("WOW: %d regs -> %d  %s.%s\n",
+                        meth->registersSize, regWidth,
+                        meth->clazz->descriptor, meth->name);
+                    //x = true;
+                }
+            }
+
+            if ((flags & gcMask) != 0) {
+                /* this is a potential GC point */
+                gDvm__gcInstr++;
+
+                if (insnsSize < 256)
+                    gDvm__gcData += 1;
+                else
+                    gDvm__gcData += 2;
+                gDvm__gcData += regWidth;
+            }
+            gDvm__gcSimpleData += regWidth;
+
+            gDvm__totalInstr++;
+        }
+#endif
+
+        /*
+         * Clear "changed" and mark as visited.
+         */
+        dvmInsnSetVisited(insnFlags, insnIdx, true);
+        dvmInsnSetChanged(insnFlags, insnIdx, false);
+    }
+
+    if (DEAD_CODE_SCAN) {
+        /*
+         * Scan for dead code.  There's nothing "evil" about dead code, but it
+         * indicates a flaw somewhere down the line, possibly in the verifier.
+         */
+        int deadStart = -1;
+        for (insnIdx = 0; insnIdx < insnsSize;
+            insnIdx += dvmInsnGetWidth(insnFlags, insnIdx))
+        {
+            /*
+             * Switch-statement data doesn't get "visited" by scanner.  It
+             * may or may not be preceded by a padding NOP.
+             */
+            int instr = meth->insns[insnIdx];
+            if (instr == kPackedSwitchSignature ||
+                instr == kSparseSwitchSignature ||
+                instr == kArrayDataSignature ||
+                (instr == OP_NOP &&
+                 (meth->insns[insnIdx+1] == kPackedSwitchSignature ||
+                  meth->insns[insnIdx+1] == kSparseSwitchSignature ||
+                  meth->insns[insnIdx+1] == kArrayDataSignature)))
+            {
+                dvmInsnSetVisited(insnFlags, insnIdx, true);
+            }
+
+            if (!dvmInsnIsVisited(insnFlags, insnIdx)) {
+                if (deadStart < 0)
+                    deadStart = insnIdx;
+            } else if (deadStart >= 0) {
+                IF_LOGD() {
+                    char* desc =
+                        dexProtoCopyMethodDescriptor(&meth->prototype);
+                    LOGD("VFY: dead code 0x%04x-%04x in %s.%s %s\n",
+                        deadStart, insnIdx-1,
+                        meth->clazz->descriptor, meth->name, desc);
+                    free(desc);
+                }
+
+                deadStart = -1;
+            }
+        }
+        if (deadStart >= 0) {
+            IF_LOGD() {
+                char* desc = dexProtoCopyMethodDescriptor(&meth->prototype);
+                LOGD("VFY: dead code 0x%04x-%04x in %s.%s %s\n",
+                    deadStart, insnIdx-1,
+                    meth->clazz->descriptor, meth->name, desc);
+                free(desc);
+            }
+        }
+    }
+
+    result = true;
+
+bail:
+    return result;
+}
+
+
+/*
+ * Perform verification for a single instruction.
+ *
+ * This requires fully decoding the instruction to determine the effect
+ * it has on registers.
+ *
+ * Finds zero or more following instructions and sets the "changed" flag
+ * if execution at that point needs to be (re-)evaluated.  Register changes
+ * are merged into "regTypes" at the target addresses.  Does not set or
+ * clear any other flags in "insnFlags".
+ */
+static bool verifyInstruction(const Method* meth, InsnFlags* insnFlags,
+    RegisterTable* regTable, RegType* workRegs, int insnIdx,
+    UninitInstanceMap* uninitMap, int* pStartGuess)
+{
+    const int insnsSize = dvmGetMethodInsnsSize(meth);
+    const u2* insns = meth->insns + insnIdx;
+    bool result = false;
+
+    /*
+     * Once we finish decoding the instruction, we need to figure out where
+     * we can go from here.  There are three possible ways to transfer
+     * control to another statement:
+     *
+     * (1) Continue to the next instruction.  Applies to all but
+     *     unconditional branches, method returns, and exception throws.
+     * (2) Branch to one or more possible locations.  Applies to branches
+     *     and switch statements.
+     * (3) Exception handlers.  Applies to any instruction that can
+     *     throw an exception that is handled by an encompassing "try"
+     *     block.  (We simplify this to be any instruction that can
+     *     throw any exception.)
+     *
+     * We can also return, in which case there is no successor instruction
+     * from this point.
+     *
+     * The behavior can be determined from the InstrFlags.
+     */
+
+    const DexFile* pDexFile = meth->clazz->pDvmDex->pDexFile;
+    RegType entryRegs[meth->registersSize + kExtraRegs];
+    ClassObject* resClass;
+    const char* className;
+    int branchTarget = 0;
+    const int insnRegCount = meth->registersSize;
+    RegType tmpType;
+    DecodedInstruction decInsn;
+    bool justSetResult = false;
+    bool okay = true;
+
+#ifndef NDEBUG
+    memset(&decInsn, 0x81, sizeof(decInsn));
+#endif
+    dexDecodeInstruction(gDvm.instrFormat, insns, &decInsn);
+
+    const int nextFlags = dexGetInstrFlags(gDvm.instrFlags, decInsn.opCode);
+
+    /*
+     * Make a copy of the previous register state.  If the instruction
+     * throws an exception, we merge *this* into the destination rather
+     * than workRegs, because we don't want the result from the "successful"
+     * code path (e.g. a check-cast that "improves" a type) to be visible
+     * to the exception handler.
+     */
+    if ((nextFlags & kInstrCanThrow) != 0 && dvmInsnIsInTry(insnFlags, insnIdx))
+    {
+        copyRegisters(entryRegs, workRegs, meth->registersSize + kExtraRegs);
+    } else {
+#ifndef NDEBUG
+        memset(entryRegs, 0xdd,
+            (meth->registersSize + kExtraRegs) * sizeof(RegType));
+#endif
+    }
+
+    switch (decInsn.opCode) {
+    case OP_NOP:
+        /*
+         * A "pure" NOP has no effect on anything.  Data tables start with
+         * a signature that looks like a NOP; if we see one of these in
+         * the course of executing code then we have a problem.
+         */
+        if (decInsn.vA != 0) {
+            LOG_VFY("VFY: encountered data table in instruction stream\n");
+            okay = false;
+        }
+        break;
+
+    case OP_MOVE:
+    case OP_MOVE_FROM16:
+    case OP_MOVE_16:
+        copyRegister1(workRegs, insnRegCount, decInsn.vA, decInsn.vB,
+            kTypeCategory1nr, &okay);
+        break;
+    case OP_MOVE_WIDE:
+    case OP_MOVE_WIDE_FROM16:
+    case OP_MOVE_WIDE_16:
+        copyRegister2(workRegs, insnRegCount, decInsn.vA, decInsn.vB, &okay);
+        break;
+    case OP_MOVE_OBJECT:
+    case OP_MOVE_OBJECT_FROM16:
+    case OP_MOVE_OBJECT_16:
+        copyRegister1(workRegs, insnRegCount, decInsn.vA, decInsn.vB,
+            kTypeCategoryRef, &okay);
+        break;
+
+    /*
+     * The move-result instructions copy data out of a "pseudo-register"
+     * with the results from the last method invocation.  In practice we
+     * might want to hold the result in an actual CPU register, so the
+     * Dalvik spec requires that these only appear immediately after an
+     * invoke or filled-new-array.
+     *
+     * These calls invalidate the "result" register.  (This is now
+     * redundant with the reset done below, but it can make the debug info
+     * easier to read in some cases.)
+     */
+    case OP_MOVE_RESULT:
+        copyResultRegister1(workRegs, insnRegCount, decInsn.vA,
+            kTypeCategory1nr, &okay);
+        break;
+    case OP_MOVE_RESULT_WIDE:
+        copyResultRegister2(workRegs, insnRegCount, decInsn.vA, &okay);
+        break;
+    case OP_MOVE_RESULT_OBJECT:
+        copyResultRegister1(workRegs, insnRegCount, decInsn.vA,
+            kTypeCategoryRef, &okay);
+        break;
+
+    case OP_MOVE_EXCEPTION:
+        /*
+         * This statement can only appear as the first instruction in an
+         * exception handler (though not all exception handlers need to
+         * have one of these).  We verify that as part of extracting the
+         * exception type from the catch block list.
+         *
+         * "resClass" will hold the closest common superclass of all
+         * exceptions that can be handled here.
+         */
+        resClass = getCaughtExceptionType(meth, insnIdx);
+        if (resClass == NULL) {
+            okay = false;
+        } else {
+            setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                regTypeFromClass(resClass), &okay);
+        }
+        break;
+
+    case OP_RETURN_VOID:
+        okay = checkConstructorReturn(meth, workRegs, insnRegCount);
+        if (okay && getMethodReturnType(meth) != kRegTypeUnknown) {
+            LOG_VFY("VFY: return-void not expected\n");
+            okay = false;
+        }
+        break;
+    case OP_RETURN:
+        okay = checkConstructorReturn(meth, workRegs, insnRegCount);
+        if (okay) {
+            /* check the method signature */
+            RegType returnType = getMethodReturnType(meth);
+            checkTypeCategory(returnType, kTypeCategory1nr, &okay);
+            if (!okay)
+                LOG_VFY("VFY: return-32 not expected\n");
+
+            /* check the register contents */
+            returnType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+                &okay);
+            checkTypeCategory(returnType, kTypeCategory1nr, &okay);
+            if (!okay)
+                LOG_VFY("VFY: return-32 on invalid register v%d\n", decInsn.vA);
+        }
+        break;
+    case OP_RETURN_WIDE:
+        okay = checkConstructorReturn(meth, workRegs, insnRegCount);
+        if (okay) {
+            RegType returnType, returnTypeHi;
+
+            /* check the method signature */
+            returnType = getMethodReturnType(meth);
+            checkTypeCategory(returnType, kTypeCategory2, &okay);
+            if (!okay)
+                LOG_VFY("VFY: return-wide not expected\n");
+
+            /* check the register contents */
+            returnType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+                &okay);
+            returnTypeHi = getRegisterType(workRegs, insnRegCount,
+                decInsn.vA +1, &okay);
+            if (okay) {
+                checkTypeCategory(returnType, kTypeCategory2, &okay);
+                checkWidePair(returnType, returnTypeHi, &okay);
+            }
+            if (!okay) {
+                LOG_VFY("VFY: return-wide on invalid register pair v%d\n",
+                    decInsn.vA);
+            }
+        }
+        break;
+    case OP_RETURN_OBJECT:
+        okay = checkConstructorReturn(meth, workRegs, insnRegCount);
+        if (okay) {
+            RegType returnType = getMethodReturnType(meth);
+            checkTypeCategory(returnType, kTypeCategoryRef, &okay);
+            if (!okay) {
+                LOG_VFY("VFY: return-object not expected\n");
+                break;
+            }
+
+            /* returnType is the *expected* return type, not register value */
+            assert(returnType != kRegTypeZero);
+            assert(!regTypeIsUninitReference(returnType));
+
+            /*
+             * Verify that the reference in vAA is an instance of the type
+             * in "returnType".  The Zero type is allowed here.  If the
+             * method is declared to return an interface, then any
+             * initialized reference is acceptable.
+             *
+             * Note getClassFromRegister fails if the register holds an
+             * uninitialized reference, so we do not allow them to be
+             * returned.
+             */
+            ClassObject* declClass;
+
+            declClass = regTypeInitializedReferenceToClass(returnType);
+            resClass = getClassFromRegister(workRegs, insnRegCount,
+                            decInsn.vA, &okay);
+            if (!okay)
+                break;
+            if (resClass != NULL) {
+                if (!dvmIsInterfaceClass(declClass) &&
+                    !dvmInstanceof(resClass, declClass))
+                {
+                    LOG_VFY("VFY: returning %s, declared %s\n",
+                            resClass->descriptor, declClass->descriptor);
+                    okay = false;
+                    break;
+                }
+            }
+        }
+        break;
+
+    case OP_CONST_4:
+    case OP_CONST_16:
+    case OP_CONST:
+        /* could be boolean, int, float, or a null reference */
+        setRegisterType(workRegs, insnRegCount, decInsn.vA,
+            dvmDetermineCat1Const((s4)decInsn.vB), &okay);
+        break;
+    case OP_CONST_HIGH16:
+        /* could be boolean, int, float, or a null reference */
+        setRegisterType(workRegs, insnRegCount, decInsn.vA,
+            dvmDetermineCat1Const((s4) decInsn.vB << 16), &okay);
+        break;
+    case OP_CONST_WIDE_16:
+    case OP_CONST_WIDE_32:
+    case OP_CONST_WIDE:
+    case OP_CONST_WIDE_HIGH16:
+        /* could be long or double; default to long and allow conversion */
+        setRegisterType(workRegs, insnRegCount, decInsn.vA,
+            kRegTypeLongLo, &okay);
+        break;
+    case OP_CONST_STRING:
+    case OP_CONST_STRING_JUMBO:
+        assert(gDvm.classJavaLangString != NULL);
+        setRegisterType(workRegs, insnRegCount, decInsn.vA,
+            regTypeFromClass(gDvm.classJavaLangString), &okay);
+        break;
+    case OP_CONST_CLASS:
+        assert(gDvm.classJavaLangClass != NULL);
+        /* make sure we can resolve the class; access check is important */
+        resClass = dvmOptResolveClass(meth->clazz, decInsn.vB);
+        if (resClass == NULL) {
+            const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB);
+            dvmLogUnableToResolveClass(badClassDesc, meth);
+            LOG_VFY("VFY: unable to resolve const-class %d (%s) in %s\n",
+                decInsn.vB, badClassDesc, meth->clazz->descriptor);
+            okay = false;
+        } else {
+            setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                regTypeFromClass(gDvm.classJavaLangClass), &okay);
+        }
+        break;
+
+    case OP_MONITOR_ENTER:
+    case OP_MONITOR_EXIT:
+        tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &okay);
+        if (okay && !regTypeIsReference(tmpType)) {
+            LOG_VFY("VFY: monitor op on non-object\n");
+            okay = false;
+        }
+        break;
+
+    case OP_CHECK_CAST:
+        /*
+         * If this instruction succeeds, we will promote register vA to
+         * the type in vB.  (This could be a demotion -- not expected, so
+         * we don't try to address it.)
+         *
+         * If it fails, an exception is thrown, which we deal with later
+         * by ignoring the update to decInsn.vA when branching to a handler.
+         */
+        resClass = dvmOptResolveClass(meth->clazz, decInsn.vB);
+        if (resClass == NULL) {
+            const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB);
+            dvmLogUnableToResolveClass(badClassDesc, meth);
+            LOG_VFY("VFY: unable to resolve check-cast %d (%s) in %s\n",
+                decInsn.vB, badClassDesc, meth->clazz->descriptor);
+            okay = false;
+        } else {
+            RegType origType;
+
+            origType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+                        &okay);
+            if (!okay)
+                break;
+            if (!regTypeIsReference(origType)) {
+                LOG_VFY("VFY: check-cast on non-reference in v%u\n",decInsn.vA);
+                okay = false;
+                break;
+            }
+            setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                regTypeFromClass(resClass), &okay);
+        }
+        break;
+    case OP_INSTANCE_OF:
+        /* make sure we're checking a reference type */
+        tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vB, &okay);
+        if (!okay)
+            break;
+        if (!regTypeIsReference(tmpType)) {
+            LOG_VFY("VFY: vB not a reference (%d)\n", tmpType);
+            okay = false;
+            break;
+        }
+
+        /* make sure we can resolve the class; access check is important */
+        resClass = dvmOptResolveClass(meth->clazz, decInsn.vC);
+        if (resClass == NULL) {
+            const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vC);
+            dvmLogUnableToResolveClass(badClassDesc, meth);
+            LOG_VFY("VFY: unable to resolve instanceof %d (%s) in %s\n",
+                decInsn.vC, badClassDesc, meth->clazz->descriptor);
+            okay = false;
+        } else {
+            /* result is boolean */
+            setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                kRegTypeBoolean, &okay);
+        }
+        break;
+
+    case OP_ARRAY_LENGTH:
+        resClass = getClassFromRegister(workRegs, insnRegCount,
+                        decInsn.vB, &okay);
+        if (!okay)
+            break;
+        if (resClass != NULL && !dvmIsArrayClass(resClass)) {
+            LOG_VFY("VFY: array-length on non-array\n");
+            okay = false;
+            break;
+        }
+        setRegisterType(workRegs, insnRegCount, decInsn.vA, kRegTypeInteger,
+            &okay);
+        break;
+
+    case OP_NEW_INSTANCE:
+        /*
+         * We can check for interface and abstract classes here, but we
+         * can't reject them.  We can ask the optimizer to replace the
+         * instructions with a magic "always throw InstantiationError"
+         * instruction.  (Not enough bytes to sub in a method call.)
+         */
+        resClass = dvmOptResolveClass(meth->clazz, decInsn.vB);
+        if (resClass == NULL) {
+            const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB);
+            dvmLogUnableToResolveClass(badClassDesc, meth);
+            LOG_VFY("VFY: unable to resolve new-instance %d (%s) in %s\n",
+                decInsn.vB, badClassDesc, meth->clazz->descriptor);
+            okay = false;
+        } else {
+            RegType uninitType;
+
+            /* add resolved class to uninit map if not already there */
+            int uidx = dvmSetUninitInstance(uninitMap, insnIdx, resClass);
+            assert(uidx >= 0);
+            uninitType = regTypeFromUninitIndex(uidx);
+
+            /*
+             * Any registers holding previous allocations from this address
+             * that have not yet been initialized must be marked invalid.
+             */
+            markUninitRefsAsInvalid(workRegs, insnRegCount, uninitMap,
+                uninitType);
+
+            /* add the new uninitialized reference to the register ste */
+            setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                uninitType, &okay);
+        }
+        break;
+    case OP_NEW_ARRAY:
+        resClass = dvmOptResolveClass(meth->clazz, decInsn.vC);
+        if (resClass == NULL) {
+            const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vC);
+            dvmLogUnableToResolveClass(badClassDesc, meth);
+            LOG_VFY("VFY: unable to resolve new-array %d (%s) in %s\n",
+                decInsn.vC, badClassDesc, meth->clazz->descriptor);
+            okay = false;
+        } else if (!dvmIsArrayClass(resClass)) {
+            LOG_VFY("VFY: new-array on non-array class\n");
+            okay = false;
+        } else {
+            /* make sure "size" register is valid type */
+            verifyRegisterType(workRegs, insnRegCount, decInsn.vB,
+                kRegTypeInteger, &okay);
+            /* set register type to array class */
+            setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                regTypeFromClass(resClass), &okay);
+        }
+        break;
+    case OP_FILLED_NEW_ARRAY:
+    case OP_FILLED_NEW_ARRAY_RANGE:
+        resClass = dvmOptResolveClass(meth->clazz, decInsn.vB);
+        if (resClass == NULL) {
+            const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB);
+            dvmLogUnableToResolveClass(badClassDesc, meth);
+            LOG_VFY("VFY: unable to resolve filled-array %d (%s) in %s\n",
+                decInsn.vB, badClassDesc, meth->clazz->descriptor);
+            okay = false;
+        } else if (!dvmIsArrayClass(resClass)) {
+            LOG_VFY("VFY: filled-new-array on non-array class\n");
+            okay = false;
+        } else {
+            bool isRange = (decInsn.opCode == OP_FILLED_NEW_ARRAY_RANGE);
+
+            /* check the arguments to the instruction */
+            verifyFilledNewArrayRegs(meth, workRegs, insnRegCount, &decInsn,
+                resClass, isRange, &okay);
+            /* filled-array result goes into "result" register */
+            setResultRegisterType(workRegs, insnRegCount,
+                regTypeFromClass(resClass), &okay);
+            justSetResult = true;
+        }
+        break;
+
+    case OP_CMPL_FLOAT:
+    case OP_CMPG_FLOAT:
+        verifyRegisterType(workRegs, insnRegCount, decInsn.vB, kRegTypeFloat,
+            &okay);
+        verifyRegisterType(workRegs, insnRegCount, decInsn.vC, kRegTypeFloat,
+            &okay);
+        setRegisterType(workRegs, insnRegCount, decInsn.vA, kRegTypeBoolean,
+            &okay);
+        break;
+    case OP_CMPL_DOUBLE:
+    case OP_CMPG_DOUBLE:
+        verifyRegisterType(workRegs, insnRegCount, decInsn.vB, kRegTypeDoubleLo,
+            &okay);
+        verifyRegisterType(workRegs, insnRegCount, decInsn.vC, kRegTypeDoubleLo,
+            &okay);
+        setRegisterType(workRegs, insnRegCount, decInsn.vA, kRegTypeBoolean,
+            &okay);
+        break;
+    case OP_CMP_LONG:
+        verifyRegisterType(workRegs, insnRegCount, decInsn.vB, kRegTypeLongLo,
+            &okay);
+        verifyRegisterType(workRegs, insnRegCount, decInsn.vC, kRegTypeLongLo,
+            &okay);
+        setRegisterType(workRegs, insnRegCount, decInsn.vA, kRegTypeBoolean,
+            &okay);
+        break;
+
+    case OP_THROW:
+        resClass = getClassFromRegister(workRegs, insnRegCount,
+                        decInsn.vA, &okay);
+        if (okay && resClass != NULL) {
+            if (!dvmInstanceof(resClass, gDvm.classJavaLangThrowable)) {
+                LOG_VFY("VFY: thrown class %s not instanceof Throwable\n",
+                        resClass->descriptor);
+                okay = false;
+            }
+        }
+        break;
+
+    case OP_GOTO:
+    case OP_GOTO_16:
+    case OP_GOTO_32:
+        /* no effect on or use of registers */
+        break;
+
+    case OP_PACKED_SWITCH:
+    case OP_SPARSE_SWITCH:
+        /* verify that vAA is an integer, or can be converted to one */
+        verifyRegisterType(workRegs, insnRegCount, decInsn.vA,
+            kRegTypeInteger, &okay);
+        break;
+
+    case OP_FILL_ARRAY_DATA:
+        {
+            RegType valueType;
+            const u2 *arrayData;
+            u2 elemWidth;
+
+            /* Similar to the verification done for APUT */
+            resClass = getClassFromRegister(workRegs, insnRegCount,
+                            decInsn.vA, &okay);
+            if (!okay)
+                break;
+
+            /* resClass can be null if the reg type is Zero */
+            if (resClass == NULL)
+                break;
+
+            if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 ||
+                resClass->elementClass->primitiveType == PRIM_NOT ||
+                resClass->elementClass->primitiveType == PRIM_VOID)
+            {
+                LOG_VFY("VFY: invalid fill-array-data on %s\n",
+                        resClass->descriptor);
+                okay = false;
+                break;
+            }
+
+            valueType = primitiveTypeToRegType(
+                                    resClass->elementClass->primitiveType);
+            assert(valueType != kRegTypeUnknown);
+
+            /*
+             * Now verify if the element width in the table matches the element
+             * width declared in the array
+             */
+            arrayData = insns + (insns[1] | (((s4)insns[2]) << 16));
+            if (arrayData[0] != kArrayDataSignature) {
+                LOG_VFY("VFY: invalid magic for array-data\n");
+                okay = false;
+                break;
+            }
+
+            switch (resClass->elementClass->primitiveType) {
+                case PRIM_BOOLEAN:
+                case PRIM_BYTE:
+                     elemWidth = 1;
+                     break;
+                case PRIM_CHAR:
+                case PRIM_SHORT:
+                     elemWidth = 2;
+                     break;
+                case PRIM_FLOAT:
+                case PRIM_INT:
+                     elemWidth = 4;
+                     break;
+                case PRIM_DOUBLE:
+                case PRIM_LONG:
+                     elemWidth = 8;
+                     break;
+                default:
+                     elemWidth = 0;
+                     break;
+            }
+
+            /*
+             * Since we don't compress the data in Dex, expect to see equal
+             * width of data stored in the table and expected from the array
+             * class.
+             */
+            if (arrayData[1] != elemWidth) {
+                LOG_VFY("VFY: array-data size mismatch (%d vs %d)\n",
+                        arrayData[1], elemWidth);
+                okay = false;
+            }
+        }
+        break;
+
+    case OP_IF_EQ:
+    case OP_IF_NE:
+        {
+            RegType type1, type2;
+            bool tmpResult;
+
+            type1 = getRegisterType(workRegs, insnRegCount, decInsn.vA, &okay);
+            type2 = getRegisterType(workRegs, insnRegCount, decInsn.vB, &okay);
+            if (!okay)
+                break;
+
+            /* both references? */
+            if (regTypeIsReference(type1) && regTypeIsReference(type2))
+                break;
+
+            /* both category-1nr? */
+            checkTypeCategory(type1, kTypeCategory1nr, &okay);
+            checkTypeCategory(type2, kTypeCategory1nr, &okay);
+            if (!okay) {
+                LOG_VFY("VFY: args to if-eq/if-ne must both be refs or cat1\n");
+                break;
+            }
+        }
+        break;
+    case OP_IF_LT:
+    case OP_IF_GE:
+    case OP_IF_GT:
+    case OP_IF_LE:
+        tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &okay);
+        if (!okay)
+            break;
+        checkTypeCategory(tmpType, kTypeCategory1nr, &okay);
+        if (!okay) {
+            LOG_VFY("VFY: args to 'if' must be cat-1nr\n");
+            break;
+        }
+        tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vB,&okay);
+        if (!okay)
+            break;
+        checkTypeCategory(tmpType, kTypeCategory1nr, &okay);
+        if (!okay) {
+            LOG_VFY("VFY: args to 'if' must be cat-1nr\n");
+            break;
+        }
+        break;
+    case OP_IF_EQZ:
+    case OP_IF_NEZ:
+        tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &okay);
+        if (!okay)
+            break;
+        if (regTypeIsReference(tmpType))
+            break;
+        checkTypeCategory(tmpType, kTypeCategory1nr, &okay);
+        if (!okay)
+            LOG_VFY("VFY: expected cat-1 arg to if\n");
+        break;
+    case OP_IF_LTZ:
+    case OP_IF_GEZ:
+    case OP_IF_GTZ:
+    case OP_IF_LEZ:
+        tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &okay);
+        if (!okay)
+            break;
+        checkTypeCategory(tmpType, kTypeCategory1nr, &okay);
+        if (!okay)
+            LOG_VFY("VFY: expected cat-1 arg to if\n");
+        break;
+
+    case OP_AGET:
+        tmpType = kRegTypeInteger;
+        goto aget_1nr_common;
+    case OP_AGET_BOOLEAN:
+        tmpType = kRegTypeBoolean;
+        goto aget_1nr_common;
+    case OP_AGET_BYTE:
+        tmpType = kRegTypeByte;
+        goto aget_1nr_common;
+    case OP_AGET_CHAR:
+        tmpType = kRegTypeChar;
+        goto aget_1nr_common;
+    case OP_AGET_SHORT:
+        tmpType = kRegTypeShort;
+        goto aget_1nr_common;
+aget_1nr_common:
+        {
+            RegType srcType, indexType;
+
+            indexType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+                            &okay);
+            checkArrayIndexType(meth, indexType, &okay);
+            if (!okay)
+                break;
+
+            resClass = getClassFromRegister(workRegs, insnRegCount,
+                            decInsn.vB, &okay);
+            if (!okay)
+                break;
+            if (resClass != NULL) {
+                /* verify the class */
+                if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 ||
+                    resClass->elementClass->primitiveType == PRIM_NOT)
+                {
+                    LOG_VFY("VFY: invalid aget-1nr target %s\n",
+                        resClass->descriptor);
+                    okay = false;
+                    break;
+                }
+
+                /* make sure array type matches instruction */
+                srcType = primitiveTypeToRegType(
+                                        resClass->elementClass->primitiveType);
+
+                if (!checkFieldArrayStore1nr(tmpType, srcType)) {
+                    LOG_VFY("VFY: invalid aget-1nr, array type=%d with"
+                            " inst type=%d (on %s)\n",
+                        srcType, tmpType, resClass->descriptor);
+                    okay = false;
+                    break;
+                }
+
+            }
+            setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                tmpType, &okay);
+        }
+        break;
+
+    case OP_AGET_WIDE:
+        {
+            RegType dstType, indexType;
+
+            indexType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+                            &okay);
+            checkArrayIndexType(meth, indexType, &okay);
+            if (!okay)
+                break;
+
+            resClass = getClassFromRegister(workRegs, insnRegCount,
+                            decInsn.vB, &okay);
+            if (!okay)
+                break;
+            if (resClass != NULL) {
+                /* verify the class */
+                if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 ||
+                    resClass->elementClass->primitiveType == PRIM_NOT)
+                {
+                    LOG_VFY("VFY: invalid aget-wide target %s\n",
+                        resClass->descriptor);
+                    okay = false;
+                    break;
+                }
+
+                /* try to refine "dstType" */
+                switch (resClass->elementClass->primitiveType) {
+                case PRIM_LONG:
+                    dstType = kRegTypeLongLo;
+                    break;
+                case PRIM_DOUBLE:
+                    dstType = kRegTypeDoubleLo;
+                    break;
+                default:
+                    LOG_VFY("VFY: invalid aget-wide on %s\n",
+                        resClass->descriptor);
+                    dstType = kRegTypeUnknown;
+                    okay = false;
+                    break;
+                }
+            } else {
+                /*
+                 * Null array ref; this code path will fail at runtime.  We
+                 * know this is either long or double, and we don't really
+                 * discriminate between those during verification, so we
+                 * call it a long.
+                 */
+                dstType = kRegTypeLongLo;
+            }
+            setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                dstType, &okay);
+        }
+        break;
+
+    case OP_AGET_OBJECT:
+        {
+            RegType dstType, indexType;
+
+            indexType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+                            &okay);
+            checkArrayIndexType(meth, indexType, &okay);
+            if (!okay)
+                break;
+
+            /* get the class of the array we're pulling an object from */
+            resClass = getClassFromRegister(workRegs, insnRegCount,
+                            decInsn.vB, &okay);
+            if (!okay)
+                break;
+            if (resClass != NULL) {
+                ClassObject* elementClass;
+
+                assert(resClass != NULL);
+                if (!dvmIsArrayClass(resClass)) {
+                    LOG_VFY("VFY: aget-object on non-array class\n");
+                    okay = false;
+                    break;
+                }
+                assert(resClass->elementClass != NULL);
+
+                /*
+                 * Find the element class.  resClass->elementClass indicates
+                 * the basic type, which won't be what we want for a
+                 * multi-dimensional array.
+                 */
+                if (resClass->descriptor[1] == '[') {
+                    assert(resClass->arrayDim > 1);
+                    elementClass = dvmFindArrayClass(&resClass->descriptor[1],
+                                        resClass->classLoader);
+                } else if (resClass->descriptor[1] == 'L') {
+                    assert(resClass->arrayDim == 1);
+                    elementClass = resClass->elementClass;
+                } else {
+                    LOG_VFY("VFY: aget-object on non-ref array class (%s)\n",
+                        resClass->descriptor);
+                    okay = false;
+                    break;
+                }
+
+                dstType = regTypeFromClass(elementClass);
+            } else {
+                /*
+                 * The array reference is NULL, so the current code path will
+                 * throw an exception.  For proper merging with later code
+                 * paths, and correct handling of "if-eqz" tests on the
+                 * result of the array get, we want to treat this as a null
+                 * reference.
+                 */
+                dstType = kRegTypeZero;
+            }
+            setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                dstType, &okay);
+        }
+        break;
+    case OP_APUT:
+        tmpType = kRegTypeInteger;
+        goto aput_1nr_common;
+    case OP_APUT_BOOLEAN:
+        tmpType = kRegTypeBoolean;
+        goto aput_1nr_common;
+    case OP_APUT_BYTE:
+        tmpType = kRegTypeByte;
+        goto aput_1nr_common;
+    case OP_APUT_CHAR:
+        tmpType = kRegTypeChar;
+        goto aput_1nr_common;
+    case OP_APUT_SHORT:
+        tmpType = kRegTypeShort;
+        goto aput_1nr_common;
+aput_1nr_common:
+        {
+            RegType srcType, dstType, indexType;
+
+            indexType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+                            &okay);
+            checkArrayIndexType(meth, indexType, &okay);
+            if (!okay)
+                break;
+
+            /* make sure the source register has the correct type */
+            srcType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+                            &okay);
+            if (!canConvertTo1nr(srcType, tmpType)) {
+                LOG_VFY("VFY: invalid reg type %d on aput instr (need %d)\n",
+                    srcType, tmpType);
+                okay = false;
+                break;
+            }
+
+            resClass = getClassFromRegister(workRegs, insnRegCount,
+                            decInsn.vB, &okay);
+            if (!okay)
+                break;
+
+            /* resClass can be null if the reg type is Zero */
+            if (resClass == NULL)
+                break;
+
+            if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 ||
+                resClass->elementClass->primitiveType == PRIM_NOT)
+            {
+                LOG_VFY("VFY: invalid aput-1nr on %s\n", resClass->descriptor);
+                okay = false;
+                break;
+            }
+
+            /* verify that instruction matches array */
+            dstType = primitiveTypeToRegType(
+                                    resClass->elementClass->primitiveType);
+            assert(dstType != kRegTypeUnknown);
+
+            if (!checkFieldArrayStore1nr(tmpType, dstType)) {
+                LOG_VFY("VFY: invalid aput-1nr on %s (inst=%d dst=%d)\n",
+                        resClass->descriptor, tmpType, dstType);
+                okay = false;
+                break;
+            }
+        }
+        break;
+    case OP_APUT_WIDE:
+        tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+                        &okay);
+        checkArrayIndexType(meth, tmpType, &okay);
+        if (!okay)
+            break;
+
+        tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &okay);
+        if (okay) {
+            RegType typeHi =
+                getRegisterType(workRegs, insnRegCount, decInsn.vA+1, &okay);
+            checkTypeCategory(tmpType, kTypeCategory2, &okay);
+            checkWidePair(tmpType, typeHi, &okay);
+        }
+        if (!okay)
+            break;
+
+        resClass = getClassFromRegister(workRegs, insnRegCount,
+                        decInsn.vB, &okay);
+        if (!okay)
+            break;
+        if (resClass != NULL) {
+            /* verify the class and try to refine "dstType" */
+            if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 ||
+                resClass->elementClass->primitiveType == PRIM_NOT)
+            {
+                LOG_VFY("VFY: invalid aput-wide on %s\n",
+                        resClass->descriptor);
+                okay = false;
+                break;
+            }
+
+            switch (resClass->elementClass->primitiveType) {
+            case PRIM_LONG:
+            case PRIM_DOUBLE:
+                /* these are okay */
+                break;
+            default:
+                LOG_VFY("VFY: invalid aput-wide on %s\n",
+                        resClass->descriptor);
+                okay = false;
+                break;
+            }
+        }
+        break;
+    case OP_APUT_OBJECT:
+        tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+                        &okay);
+        checkArrayIndexType(meth, tmpType, &okay);
+        if (!okay)
+            break;
+
+        /* get the ref we're storing; Zero is okay, Uninit is not */
+        resClass = getClassFromRegister(workRegs, insnRegCount,
+                        decInsn.vA, &okay);
+        if (!okay)
+            break;
+        if (resClass != NULL) {
+            ClassObject* arrayClass;
+            ClassObject* elementClass;
+
+            /*
+             * Get the array class.  If the array ref is null, we won't
+             * have type information (and we'll crash at runtime with a
+             * null pointer exception).
+             */
+            arrayClass = getClassFromRegister(workRegs, insnRegCount,
+                            decInsn.vB, &okay);
+
+            if (arrayClass != NULL) {
+                /* see if the array holds a compatible type */
+                if (!dvmIsArrayClass(arrayClass)) {
+                    LOG_VFY("VFY: invalid aput-object on %s\n",
+                            arrayClass->descriptor);
+                    okay = false;
+                    break;
+                }
+
+                /*
+                 * Find the element class.  resClass->elementClass indicates
+                 * the basic type, which won't be what we want for a
+                 * multi-dimensional array.
+                 *
+                 * All we want to check here is that the element type is a
+                 * reference class.  We *don't* check instanceof here, because
+                 * you can still put a String into a String[] after the latter
+                 * has been cast to an Object[].
+                 */
+                if (arrayClass->descriptor[1] == '[') {
+                    assert(arrayClass->arrayDim > 1);
+                    elementClass = dvmFindArrayClass(&arrayClass->descriptor[1],
+                                        arrayClass->classLoader);
+                } else {
+                    assert(arrayClass->arrayDim == 1);
+                    elementClass = arrayClass->elementClass;
+                }
+                if (elementClass->primitiveType != PRIM_NOT) {
+                    LOG_VFY("VFY: invalid aput-object of %s into %s\n",
+                            resClass->descriptor, arrayClass->descriptor);
+                    okay = false;
+                    break;
+                }
+            }
+        }
+        break;
+
+    case OP_IGET:
+        tmpType = kRegTypeInteger;
+        goto iget_1nr_common;
+    case OP_IGET_BOOLEAN:
+        tmpType = kRegTypeBoolean;
+        goto iget_1nr_common;
+    case OP_IGET_BYTE:
+        tmpType = kRegTypeByte;
+        goto iget_1nr_common;
+    case OP_IGET_CHAR:
+        tmpType = kRegTypeChar;
+        goto iget_1nr_common;
+    case OP_IGET_SHORT:
+        tmpType = kRegTypeShort;
+        goto iget_1nr_common;
+iget_1nr_common:
+        {
+            ClassObject* fieldClass;
+            InstField* instField;
+            RegType objType, fieldType;
+
+            objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+                        &okay);
+            if (!okay)
+                break;
+            instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+                            &okay);
+            if (!okay)
+                break;
+
+            /* make sure the field's type is compatible with expectation */
+            fieldType = primSigCharToRegType(instField->field.signature[0]);
+            if (fieldType == kRegTypeUnknown ||
+                !checkFieldArrayStore1nr(tmpType, fieldType))
+            {
+                LOG_VFY("VFY: invalid iget-1nr of %s.%s (inst=%d field=%d)\n",
+                        instField->field.clazz->descriptor,
+                        instField->field.name, tmpType, fieldType);
+                okay = false;
+                break;
+            }
+
+            setRegisterType(workRegs, insnRegCount, decInsn.vA, tmpType, &okay);
+        }
+        break;
+    case OP_IGET_WIDE:
+        {
+            RegType dstType;
+            ClassObject* fieldClass;
+            InstField* instField;
+            RegType objType;
+
+            objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+                        &okay);
+            if (!okay)
+                break;
+            instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+                            &okay);
+            if (!okay)
+                break;
+            /* check the type, which should be prim */
+            switch (instField->field.signature[0]) {
+            case 'D':
+                dstType = kRegTypeDoubleLo;
+                break;
+            case 'J':
+                dstType = kRegTypeLongLo;
+                break;
+            default:
+                LOG_VFY("VFY: invalid iget-wide of %s.%s\n",
+                        instField->field.clazz->descriptor,
+                        instField->field.name);
+                dstType = kRegTypeUnknown;
+                okay = false;
+                break;
+            }
+            if (okay) {
+                setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                    dstType, &okay);
+            }
+        }
+        break;
+    case OP_IGET_OBJECT:
+        {
+            ClassObject* fieldClass;
+            InstField* instField;
+            RegType objType;
+
+            objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+                        &okay);
+            if (!okay)
+                break;
+            instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+                            &okay);
+            if (!okay)
+                break;
+            fieldClass = getFieldClass(meth, &instField->field);
+            if (fieldClass == NULL) {
+                /* class not found or primitive type */
+                LOG_VFY("VFY: unable to recover field class from '%s'\n",
+                    instField->field.signature);
+                okay = false;
+                break;
+            }
+            if (okay) {
+                assert(!dvmIsPrimitiveClass(fieldClass));
+                setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                    regTypeFromClass(fieldClass), &okay);
+            }
+        }
+        break;
+    case OP_IPUT:
+        tmpType = kRegTypeInteger;
+        goto iput_1nr_common;
+    case OP_IPUT_BOOLEAN:
+        tmpType = kRegTypeBoolean;
+        goto iput_1nr_common;
+    case OP_IPUT_BYTE:
+        tmpType = kRegTypeByte;
+        goto iput_1nr_common;
+    case OP_IPUT_CHAR:
+        tmpType = kRegTypeChar;
+        goto iput_1nr_common;
+    case OP_IPUT_SHORT:
+        tmpType = kRegTypeShort;
+        goto iput_1nr_common;
+iput_1nr_common:
+        {
+            RegType srcType, fieldType, objType;
+            ClassObject* fieldClass;
+            InstField* instField;
+
+            /* make sure the source register has the correct type */
+            srcType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+                        &okay);
+            if (!canConvertTo1nr(srcType, tmpType)) {
+                LOG_VFY("VFY: invalid reg type %d on iput instr (need %d)\n",
+                    srcType, tmpType);
+                okay = false;
+                break;
+            }
+
+            objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+                        &okay);
+            if (!okay)
+                break;
+            instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+                            &okay);
+            if (!okay)
+                break;
+            checkFinalFieldAccess(meth, &instField->field, &okay);
+            if (!okay)
+                break;
+
+            /* get type of field we're storing into */
+            fieldType = primSigCharToRegType(instField->field.signature[0]);
+            if (fieldType == kRegTypeUnknown ||
+                !checkFieldArrayStore1nr(tmpType, fieldType))
+            {
+                LOG_VFY("VFY: invalid iput-1nr of %s.%s (inst=%d field=%d)\n",
+                        instField->field.clazz->descriptor,
+                        instField->field.name, tmpType, fieldType);
+                okay = false;
+                break;
+            }
+        }
+        break;
+    case OP_IPUT_WIDE:
+        tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &okay);
+        if (okay) {
+            RegType typeHi =
+                getRegisterType(workRegs, insnRegCount, decInsn.vA+1, &okay);
+            checkTypeCategory(tmpType, kTypeCategory2, &okay);
+            checkWidePair(tmpType, typeHi, &okay);
+        }
+        if (okay) {
+            ClassObject* fieldClass;
+            InstField* instField;
+            RegType objType;
+
+            objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+                        &okay);
+            if (!okay)
+                break;
+            instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+                            &okay);
+            if (!okay)
+                break;
+            checkFinalFieldAccess(meth, &instField->field, &okay);
+            if (!okay)
+                break;
+
+            /* check the type, which should be prim */
+            switch (instField->field.signature[0]) {
+            case 'D':
+            case 'J':
+                /* these are okay (and interchangeable) */
+                break;
+            default:
+                LOG_VFY("VFY: invalid iput-wide of %s.%s\n",
+                        instField->field.clazz->descriptor,
+                        instField->field.name);
+                okay = false;
+                break;
+            }
+        }
+        break;
+    case OP_IPUT_OBJECT:
+        {
+            ClassObject* fieldClass;
+            ClassObject* valueClass;
+            InstField* instField;
+            RegType objType, valueType;
+
+            objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+                        &okay);
+            if (!okay)
+                break;
+            instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+                            &okay);
+            if (!okay)
+                break;
+            checkFinalFieldAccess(meth, &instField->field, &okay);
+            if (!okay)
+                break;
+
+            fieldClass = getFieldClass(meth, &instField->field);
+            if (fieldClass == NULL) {
+                LOG_VFY("VFY: unable to recover field class from '%s'\n",
+                    instField->field.signature);
+                okay = false;
+                break;
+            }
+
+            valueType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+                        &okay);
+            if (!okay)
+                break;
+            if (!regTypeIsReference(valueType)) {
+                LOG_VFY("VFY: storing non-ref v%d into ref field '%s' (%s)\n",
+                        decInsn.vA, instField->field.name,
+                        fieldClass->descriptor);
+                okay = false;
+                break;
+            }
+            if (valueType != kRegTypeZero) {
+                valueClass = regTypeInitializedReferenceToClass(valueType);
+                if (valueClass == NULL) {
+                    LOG_VFY("VFY: storing uninit ref v%d into ref field\n",
+                        decInsn.vA);
+                    okay = false;
+                    break;
+                }
+                /* allow if field is any interface or field is base class */
+                if (!dvmIsInterfaceClass(fieldClass) &&
+                    !dvmInstanceof(valueClass, fieldClass))
+                {
+                    LOG_VFY("VFY: storing type '%s' into field type '%s' (%s.%s)\n",
+                            valueClass->descriptor, fieldClass->descriptor,
+                            instField->field.clazz->descriptor,
+                            instField->field.name);
+                    okay = false;
+                    break;
+                }
+            }
+        }
+        break;
+
+    case OP_SGET:
+        tmpType = kRegTypeInteger;
+        goto sget_1nr_common;
+    case OP_SGET_BOOLEAN:
+        tmpType = kRegTypeBoolean;
+        goto sget_1nr_common;
+    case OP_SGET_BYTE:
+        tmpType = kRegTypeByte;
+        goto sget_1nr_common;
+    case OP_SGET_CHAR:
+        tmpType = kRegTypeChar;
+        goto sget_1nr_common;
+    case OP_SGET_SHORT:
+        tmpType = kRegTypeShort;
+        goto sget_1nr_common;
+sget_1nr_common:
+        {
+            StaticField* staticField;
+            RegType fieldType;
+
+            staticField = getStaticField(meth, decInsn.vB, &okay);
+            if (!okay)
+                break;
+
+            /*
+             * Make sure the field's type is compatible with expectation.
+             * We can get ourselves into trouble if we mix & match loads
+             * and stores with different widths, so rather than just checking
+             * "canConvertTo1nr" we require that the field types have equal
+             * widths.  (We can't generally require an exact type match,
+             * because e.g. "int" and "float" are interchangeable.)
+             */
+            fieldType = primSigCharToRegType(staticField->field.signature[0]);
+            if (!checkFieldArrayStore1nr(tmpType, fieldType)) {
+                LOG_VFY("VFY: invalid sget-1nr of %s.%s (inst=%d actual=%d)\n",
+                    staticField->field.clazz->descriptor,
+                    staticField->field.name, tmpType, fieldType);
+                okay = false;
+                break;
+            }
+
+            setRegisterType(workRegs, insnRegCount, decInsn.vA, tmpType, &okay);
+        }
+        break;
+    case OP_SGET_WIDE:
+        {
+            StaticField* staticField;
+            RegType dstType;
+
+            staticField = getStaticField(meth, decInsn.vB, &okay);
+            if (!okay)
+                break;
+            /* check the type, which should be prim */
+            switch (staticField->field.signature[0]) {
+            case 'D':
+                dstType = kRegTypeDoubleLo;
+                break;
+            case 'J':
+                dstType = kRegTypeLongLo;
+                break;
+            default:
+                LOG_VFY("VFY: invalid sget-wide of %s.%s\n",
+                        staticField->field.clazz->descriptor,
+                        staticField->field.name);
+                dstType = kRegTypeUnknown;
+                okay = false;
+                break;
+            }
+            if (okay) {
+                setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                    dstType, &okay);
+            }
+        }
+        break;
+    case OP_SGET_OBJECT:
+        {
+            StaticField* staticField;
+            ClassObject* fieldClass;
+
+            staticField = getStaticField(meth, decInsn.vB, &okay);
+            if (!okay)
+                break;
+            fieldClass = getFieldClass(meth, &staticField->field);
+            if (fieldClass == NULL) {
+                LOG_VFY("VFY: unable to recover field class from '%s'\n",
+                    staticField->field.signature);
+                okay = false;
+                break;
+            }
+            if (dvmIsPrimitiveClass(fieldClass)) {
+                LOG_VFY("VFY: attempt to get prim field with sget-object\n");
+                okay = false;
+                break;
+            }
+            setRegisterType(workRegs, insnRegCount, decInsn.vA,
+                regTypeFromClass(fieldClass), &okay);
+        }
+        break;
+    case OP_SPUT:
+        tmpType = kRegTypeInteger;
+        goto sput_1nr_common;
+    case OP_SPUT_BOOLEAN:
+        tmpType = kRegTypeBoolean;
+        goto sput_1nr_common;
+    case OP_SPUT_BYTE:
+        tmpType = kRegTypeByte;
+        goto sput_1nr_common;
+    case OP_SPUT_CHAR:
+        tmpType = kRegTypeChar;
+        goto sput_1nr_common;
+    case OP_SPUT_SHORT:
+        tmpType = kRegTypeShort;
+        goto sput_1nr_common;
+sput_1nr_common:
+        {
+            RegType srcType, fieldType;
+            StaticField* staticField;
+
+            /* make sure the source register has the correct type */
+            srcType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+                        &okay);
+            if (!canConvertTo1nr(srcType, tmpType)) {
+                LOG_VFY("VFY: invalid reg type %d on iput instr (need %d)\n",
+                    srcType, tmpType);
+                okay = false;
+                break;
+            }
+
+            staticField = getStaticField(meth, decInsn.vB, &okay);
+            if (!okay)
+                break;
+            checkFinalFieldAccess(meth, &staticField->field, &okay);
+            if (!okay)
+                break;
+
+            /*
+             * Get type of field we're storing into.  We know that the
+             * contents of the register match the instruction, but we also
+             * need to ensure that the instruction matches the field type.
+             * Using e.g. sput-short to write into a 32-bit integer field
+             * can lead to trouble if we do 16-bit writes.
+             */
+            fieldType = primSigCharToRegType(staticField->field.signature[0]);
+            if (!checkFieldArrayStore1nr(tmpType, fieldType)) {
+                LOG_VFY("VFY: invalid sput-1nr of %s.%s (inst=%d actual=%d)\n",
+                    staticField->field.clazz->descriptor,
+                    staticField->field.name, tmpType, fieldType);
+                okay = false;
+                break;
+            }
+        }
+        break;
+    case OP_SPUT_WIDE:
+        tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &okay);
+        if (okay) {
+            RegType typeHi =
+                getRegisterType(workRegs, insnRegCount, decInsn.vA+1, &okay);
+            checkTypeCategory(tmpType, kTypeCategory2, &okay);
+            checkWidePair(tmpType, typeHi, &okay);
+        }
+        if (okay) {
+            StaticField* staticField;
+
+            staticField = getStaticField(meth, decInsn.vB, &okay);
+            if (!okay)
+                break;
+            checkFinalFieldAccess(meth, &staticField->field, &okay);
+            if (!okay)
+                break;
+
+            /* check the type, which should be prim */
+            switch (staticField->field.signature[0]) {
+            case 'D':
+            case 'J':
+                /* these are okay */
+                break;
+            default:
+                LOG_VFY("VFY: invalid sput-wide of %s.%s\n",
+                        staticField->field.clazz->descriptor,
+                        staticField->field.name);
+                okay = false;
+                break;
+            }
+        }
+        break;
+    case OP_SPUT_OBJECT:
+        {
+            ClassObject* fieldClass;
+            ClassObject* valueClass;
+            StaticField* staticField;
+            RegType valueType;
+
+            staticField = getStaticField(meth, decInsn.vB, &okay);
+            if (!okay)
+                break;
+            checkFinalFieldAccess(meth, &staticField->field, &okay);
+            if (!okay)
+                break;
+
+            fieldClass = getFieldClass(meth, &staticField->field);
+            if (fieldClass == NULL) {
+                LOG_VFY("VFY: unable to recover field class from '%s'\n",
+                    staticField->field.signature);
+                okay = false;
+                break;
+            }
+
+            valueType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+                        &okay);
+            if (!okay)
+                break;
+            if (!regTypeIsReference(valueType)) {
+                LOG_VFY("VFY: storing non-ref v%d into ref field '%s' (%s)\n",
+                        decInsn.vA, staticField->field.name,
+                        fieldClass->descriptor);
+                okay = false;
+                break;
+            }
+            if (valueType != kRegTypeZero) {
+                valueClass = regTypeInitializedReferenceToClass(valueType);
+                if (valueClass == NULL) {
+                    LOG_VFY("VFY: storing uninit ref v%d into ref field\n",
+                        decInsn.vA);
+                    okay = false;
+                    break;
+                }
+                /* allow if field is any interface or field is base class */
+                if (!dvmIsInterfaceClass(fieldClass) &&
+                    !dvmInstanceof(valueClass, fieldClass))
+                {
+                    LOG_VFY("VFY: storing type '%s' into field type '%s' (%s.%s)\n",
+                            valueClass->descriptor, fieldClass->descriptor,
+                            staticField->field.clazz->descriptor,
+                            staticField->field.name);
+                    okay = false;
+                    break;
+                }
+            }
+        }
+        break;
+
+    case OP_INVOKE_VIRTUAL:
+    case OP_INVOKE_VIRTUAL_RANGE:
+    case OP_INVOKE_SUPER:
+    case OP_INVOKE_SUPER_RANGE:
+        {
+            Method* calledMethod;
+            RegType returnType;
+            bool isRange;
+            bool isSuper;
+
+            isRange =  (decInsn.opCode == OP_INVOKE_VIRTUAL_RANGE ||
+                        decInsn.opCode == OP_INVOKE_SUPER_RANGE);
+            isSuper =  (decInsn.opCode == OP_INVOKE_SUPER ||
+                        decInsn.opCode == OP_INVOKE_SUPER_RANGE);
+
+            calledMethod = verifyInvocationArgs(meth, workRegs, insnRegCount,
+                            &decInsn, uninitMap, METHOD_VIRTUAL, isRange,
+                            isSuper, &okay);
+            if (!okay)
+                break;
+            returnType = getMethodReturnType(calledMethod);
+            setResultRegisterType(workRegs, insnRegCount, returnType, &okay);
+            justSetResult = true;
+        }
+        break;
+    case OP_INVOKE_DIRECT:
+    case OP_INVOKE_DIRECT_RANGE:
+        {
+            RegType returnType;
+            Method* calledMethod;
+            bool isRange;
+
+            isRange =  (decInsn.opCode == OP_INVOKE_DIRECT_RANGE);
+            calledMethod = verifyInvocationArgs(meth, workRegs, insnRegCount,
+                            &decInsn, uninitMap, METHOD_DIRECT, isRange,
+                            false, &okay);
+            if (!okay)
+                break;
+
+            /*
+             * Some additional checks when calling <init>.  We know from
+             * the invocation arg check that the "this" argument is an
+             * instance of calledMethod->clazz.  Now we further restrict
+             * that to require that calledMethod->clazz is the same as
+             * this->clazz or this->super, allowing the latter only if
+             * the "this" argument is the same as the "this" argument to
+             * this method (which implies that we're in <init> ourselves).
+             */
+            if (isInitMethod(calledMethod)) {
+                RegType thisType;
+                thisType = getInvocationThis(workRegs, insnRegCount,
+                            &decInsn, &okay);
+                if (!okay)
+                    break;
+
+                /* no null refs allowed (?) */
+                if (thisType == kRegTypeZero) {
+                    LOG_VFY("VFY: unable to initialize null ref\n");
+                    okay = false;
+                    break;
+                }
+
+                ClassObject* thisClass;
+
+                thisClass = regTypeReferenceToClass(thisType, uninitMap);
+                assert(thisClass != NULL);
+
+                /* must be in same class or in superclass */
+                if (calledMethod->clazz == thisClass->super) {
+                    if (thisClass != meth->clazz) {
+                        LOG_VFY("VFY: invoke-direct <init> on super only "
+                            "allowed for 'this' in <init>");
+                        okay = false;
+                        break;
+                    }
+                }  else if (calledMethod->clazz != thisClass) {
+                    LOG_VFY("VFY: invoke-direct <init> must be on current "
+                            "class or super\n");
+                    okay = false;
+                    break;
+                }
+
+                /* arg must be an uninitialized reference */
+                if (!regTypeIsUninitReference(thisType)) {
+                    LOG_VFY("VFY: can only initialize the uninitialized\n");
+                    okay = false;
+                    break;
+                }
+
+                /*
+                 * Replace the uninitialized reference with an initialized
+                 * one, and clear the entry in the uninit map.  We need to
+                 * do this for all registers that have the same object
+                 * instance in them, not just the "this" register.
+                 */
+                int uidx = regTypeToUninitIndex(thisType);
+                markRefsAsInitialized(workRegs, insnRegCount, uninitMap,
+                    thisType, &okay);
+                if (!okay)
+                    break;
+            }
+            returnType = getMethodReturnType(calledMethod);
+            setResultRegisterType(workRegs, insnRegCount,
+                returnType, &okay);
+            justSetResult = true;
+        }
+        break;
+    case OP_INVOKE_STATIC:
+    case OP_INVOKE_STATIC_RANGE:
+        {
+            RegType returnType;
+            Method* calledMethod;
+            bool isRange;
+
+            isRange =  (decInsn.opCode == OP_INVOKE_STATIC_RANGE);
+            calledMethod = verifyInvocationArgs(meth, workRegs, insnRegCount,
+                            &decInsn, uninitMap, METHOD_STATIC, isRange,
+                            false, &okay);
+            if (!okay)
+                break;
+
+            returnType = getMethodReturnType(calledMethod);
+            setResultRegisterType(workRegs, insnRegCount, returnType, &okay);
+            justSetResult = true;
+        }
+        break;
+    case OP_INVOKE_INTERFACE:
+    case OP_INVOKE_INTERFACE_RANGE:
+        {
+            RegType /*thisType,*/ returnType;
+            Method* absMethod;
+            bool isRange;
+
+            isRange =  (decInsn.opCode == OP_INVOKE_INTERFACE_RANGE);
+            absMethod = verifyInvocationArgs(meth, workRegs, insnRegCount,
+                            &decInsn, uninitMap, METHOD_INTERFACE, isRange,
+                            false, &okay);
+            if (!okay)
+                break;
+
+#if 0       /* can't do this here, fails on dalvik test 052-verifier-fun */
+            /*
+             * Get the type of the "this" arg, which should always be an
+             * interface class.  Because we don't do a full merge on
+             * interface classes, this might have reduced to Object.
+             */
+            thisType = getInvocationThis(workRegs, insnRegCount,
+                        &decInsn, &okay);
+            if (!okay)
+                break;
+
+            if (thisType == kRegTypeZero) {
+                /* null pointer always passes (and always fails at runtime) */
+            } else {
+                ClassObject* thisClass;
+
+                thisClass = regTypeInitializedReferenceToClass(thisType);
+                if (thisClass == NULL) {
+                    LOG_VFY("VFY: interface call on uninitialized\n");
+                    okay = false;
+                    break;
+                }
+
+                /*
+                 * Either "thisClass" needs to be the interface class that
+                 * defined absMethod, or absMethod's class needs to be one
+                 * of the interfaces implemented by "thisClass".  (Or, if
+                 * we couldn't complete the merge, this will be Object.)
+                 */
+                if (thisClass != absMethod->clazz &&
+                    thisClass != gDvm.classJavaLangObject &&
+                    !dvmImplements(thisClass, absMethod->clazz))
+                {
+                    LOG_VFY("VFY: unable to match absMethod '%s' with %s interfaces\n",
+                            absMethod->name, thisClass->descriptor);
+                    okay = false;
+                    break;
+                }
+            }
+#endif
+
+            /*
+             * We don't have an object instance, so we can't find the
+             * concrete method.  However, all of the type information is
+             * in the abstract method, so we're good.
+             */
+            returnType = getMethodReturnType(absMethod);
+            setResultRegisterType(workRegs, insnRegCount, returnType, &okay);
+            justSetResult = true;
+        }
+        break;
+
+    case OP_NEG_INT:
+    case OP_NOT_INT:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeInteger, &okay);
+        break;
+    case OP_NEG_LONG:
+    case OP_NOT_LONG:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeLongLo, kRegTypeLongLo, &okay);
+        break;
+    case OP_NEG_FLOAT:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeFloat, kRegTypeFloat, &okay);
+        break;
+    case OP_NEG_DOUBLE:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeDoubleLo, kRegTypeDoubleLo, &okay);
+        break;
+    case OP_INT_TO_LONG:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeLongLo, kRegTypeInteger, &okay);
+        break;
+    case OP_INT_TO_FLOAT:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeFloat, kRegTypeInteger, &okay);
+        break;
+    case OP_INT_TO_DOUBLE:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeDoubleLo, kRegTypeInteger, &okay);
+        break;
+    case OP_LONG_TO_INT:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeLongLo, &okay);
+        break;
+    case OP_LONG_TO_FLOAT:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeFloat, kRegTypeLongLo, &okay);
+        break;
+    case OP_LONG_TO_DOUBLE:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeDoubleLo, kRegTypeLongLo, &okay);
+        break;
+    case OP_FLOAT_TO_INT:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeFloat, &okay);
+        break;
+    case OP_FLOAT_TO_LONG:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeLongLo, kRegTypeFloat, &okay);
+        break;
+    case OP_FLOAT_TO_DOUBLE:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeDoubleLo, kRegTypeFloat, &okay);
+        break;
+    case OP_DOUBLE_TO_INT:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeDoubleLo, &okay);
+        break;
+    case OP_DOUBLE_TO_LONG:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeLongLo, kRegTypeDoubleLo, &okay);
+        break;
+    case OP_DOUBLE_TO_FLOAT:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeFloat, kRegTypeDoubleLo, &okay);
+        break;
+    case OP_INT_TO_BYTE:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeByte, kRegTypeInteger, &okay);
+        break;
+    case OP_INT_TO_CHAR:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeChar, kRegTypeInteger, &okay);
+        break;
+    case OP_INT_TO_SHORT:
+        checkUnop(workRegs, insnRegCount, &decInsn,
+            kRegTypeShort, kRegTypeInteger, &okay);
+        break;
+
+    case OP_ADD_INT:
+    case OP_SUB_INT:
+    case OP_MUL_INT:
+    case OP_REM_INT:
+    case OP_DIV_INT:
+    case OP_SHL_INT:
+    case OP_SHR_INT:
+    case OP_USHR_INT:
+        checkBinop(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, false, &okay);
+        break;
+    case OP_AND_INT:
+    case OP_OR_INT:
+    case OP_XOR_INT:
+        checkBinop(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, true, &okay);
+        break;
+    case OP_ADD_LONG:
+    case OP_SUB_LONG:
+    case OP_MUL_LONG:
+    case OP_DIV_LONG:
+    case OP_REM_LONG:
+    case OP_AND_LONG:
+    case OP_OR_LONG:
+    case OP_XOR_LONG:
+        checkBinop(workRegs, insnRegCount, &decInsn,
+            kRegTypeLongLo, kRegTypeLongLo, kRegTypeLongLo, false, &okay);
+        break;
+    case OP_SHL_LONG:
+    case OP_SHR_LONG:
+    case OP_USHR_LONG:
+        /* shift distance is Int, making these different from other binops */
+        checkBinop(workRegs, insnRegCount, &decInsn,
+            kRegTypeLongLo, kRegTypeLongLo, kRegTypeInteger, false, &okay);
+        break;
+    case OP_ADD_FLOAT:
+    case OP_SUB_FLOAT:
+    case OP_MUL_FLOAT:
+    case OP_DIV_FLOAT:
+    case OP_REM_FLOAT:
+        checkBinop(workRegs, insnRegCount, &decInsn,
+            kRegTypeFloat, kRegTypeFloat, kRegTypeFloat, false, &okay);
+        break;
+    case OP_ADD_DOUBLE:
+    case OP_SUB_DOUBLE:
+    case OP_MUL_DOUBLE:
+    case OP_DIV_DOUBLE:
+    case OP_REM_DOUBLE:
+        checkBinop(workRegs, insnRegCount, &decInsn,
+            kRegTypeDoubleLo, kRegTypeDoubleLo, kRegTypeDoubleLo, false, &okay);
+        break;
+    case OP_ADD_INT_2ADDR:
+    case OP_SUB_INT_2ADDR:
+    case OP_MUL_INT_2ADDR:
+    case OP_REM_INT_2ADDR:
+    case OP_SHL_INT_2ADDR:
+    case OP_SHR_INT_2ADDR:
+    case OP_USHR_INT_2ADDR:
+        checkBinop2addr(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, false, &okay);
+        break;
+    case OP_AND_INT_2ADDR:
+    case OP_OR_INT_2ADDR:
+    case OP_XOR_INT_2ADDR:
+        checkBinop2addr(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, true, &okay);
+        break;
+    case OP_DIV_INT_2ADDR:
+        checkBinop2addr(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, false, &okay);
+        break;
+    case OP_ADD_LONG_2ADDR:
+    case OP_SUB_LONG_2ADDR:
+    case OP_MUL_LONG_2ADDR:
+    case OP_DIV_LONG_2ADDR:
+    case OP_REM_LONG_2ADDR:
+    case OP_AND_LONG_2ADDR:
+    case OP_OR_LONG_2ADDR:
+    case OP_XOR_LONG_2ADDR:
+        checkBinop2addr(workRegs, insnRegCount, &decInsn,
+            kRegTypeLongLo, kRegTypeLongLo, kRegTypeLongLo, false, &okay);
+        break;
+    case OP_SHL_LONG_2ADDR:
+    case OP_SHR_LONG_2ADDR:
+    case OP_USHR_LONG_2ADDR:
+        checkBinop2addr(workRegs, insnRegCount, &decInsn,
+            kRegTypeLongLo, kRegTypeLongLo, kRegTypeInteger, false, &okay);
+        break;
+    case OP_ADD_FLOAT_2ADDR:
+    case OP_SUB_FLOAT_2ADDR:
+    case OP_MUL_FLOAT_2ADDR:
+    case OP_DIV_FLOAT_2ADDR:
+    case OP_REM_FLOAT_2ADDR:
+        checkBinop2addr(workRegs, insnRegCount, &decInsn,
+            kRegTypeFloat, kRegTypeFloat, kRegTypeFloat, false, &okay);
+        break;
+    case OP_ADD_DOUBLE_2ADDR:
+    case OP_SUB_DOUBLE_2ADDR:
+    case OP_MUL_DOUBLE_2ADDR:
+    case OP_DIV_DOUBLE_2ADDR:
+    case OP_REM_DOUBLE_2ADDR:
+        checkBinop2addr(workRegs, insnRegCount, &decInsn,
+            kRegTypeDoubleLo, kRegTypeDoubleLo, kRegTypeDoubleLo, false, &okay);
+        break;
+    case OP_ADD_INT_LIT16:
+    case OP_RSUB_INT:
+    case OP_MUL_INT_LIT16:
+    case OP_DIV_INT_LIT16:
+    case OP_REM_INT_LIT16:
+        checkLitop(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeInteger, false, &okay);
+        break;
+    case OP_AND_INT_LIT16:
+    case OP_OR_INT_LIT16:
+    case OP_XOR_INT_LIT16:
+        checkLitop(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeInteger, true, &okay);
+        break;
+    case OP_ADD_INT_LIT8:
+    case OP_RSUB_INT_LIT8:
+    case OP_MUL_INT_LIT8:
+    case OP_DIV_INT_LIT8:
+    case OP_REM_INT_LIT8:
+    case OP_SHL_INT_LIT8:
+    case OP_SHR_INT_LIT8:
+    case OP_USHR_INT_LIT8:
+        checkLitop(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeInteger, false, &okay);
+        break;
+    case OP_AND_INT_LIT8:
+    case OP_OR_INT_LIT8:
+    case OP_XOR_INT_LIT8:
+        checkLitop(workRegs, insnRegCount, &decInsn,
+            kRegTypeInteger, kRegTypeInteger, true, &okay);
+        break;
+
+
+    /*
+     * Verifying "quickened" instructions is tricky, because we have
+     * discarded the original field/method information.  The byte offsets
+     * and vtable indices only have meaning in the context of an object
+     * instance.
+     *
+     * If a piece of code declares a local reference variable, assigns
+     * null to it, and then issues a virtual method call on it, we
+     * cannot evaluate the method call during verification.  This situation
+     * isn't hard to handle, since we know the call will always result in an
+     * NPE, and the arguments and return value don't matter.  Any code that
+     * depends on the result of the method call is inaccessible, so the
+     * fact that we can't fully verify anything that comes after the bad
+     * call is not a problem.
+     *
+     * We must also consider the case of multiple code paths, only some of
+     * which involve a null reference.  We can completely verify the method
+     * if we sidestep the results of executing with a null reference.
+     * For example, if on the first pass through the code we try to do a
+     * virtual method invocation through a null ref, we have to skip the
+     * method checks and have the method return a "wildcard" type (which
+     * merges with anything to become that other thing).  The move-result
+     * will tell us if it's a reference, single-word numeric, or double-word
+     * value.  We continue to perform the verification, and at the end of
+     * the function any invocations that were never fully exercised are
+     * marked as null-only.
+     *
+     * We would do something similar for the field accesses.  The field's
+     * type, once known, can be used to recover the width of short integers.
+     * If the object reference was null, the field-get returns the "wildcard"
+     * type, which is acceptable for any operation.
+     */
+    case OP_EXECUTE_INLINE:
+    case OP_INVOKE_DIRECT_EMPTY:
+    case OP_IGET_QUICK:
+    case OP_IGET_WIDE_QUICK:
+    case OP_IGET_OBJECT_QUICK:
+    case OP_IPUT_QUICK:
+    case OP_IPUT_WIDE_QUICK:
+    case OP_IPUT_OBJECT_QUICK:
+    case OP_INVOKE_VIRTUAL_QUICK:
+    case OP_INVOKE_VIRTUAL_QUICK_RANGE:
+    case OP_INVOKE_SUPER_QUICK:
+    case OP_INVOKE_SUPER_QUICK_RANGE:
+        okay = false;
+        break;
+
+    /* these should never appear */
+    case OP_UNUSED_3E:
+    case OP_UNUSED_3F:
+    case OP_UNUSED_40:
+    case OP_UNUSED_41:
+    case OP_UNUSED_42:
+    case OP_UNUSED_43:
+    case OP_UNUSED_73:
+    case OP_UNUSED_79:
+    case OP_UNUSED_7A:
+    case OP_UNUSED_E3:
+    case OP_UNUSED_E4:
+    case OP_UNUSED_E5:
+    case OP_UNUSED_E6:
+    case OP_UNUSED_E7:
+    case OP_UNUSED_E8:
+    case OP_UNUSED_E9:
+    case OP_UNUSED_EA:
+    case OP_UNUSED_EB:
+    case OP_UNUSED_EC:
+    case OP_UNUSED_ED:
+    case OP_UNUSED_EF:
+    case OP_UNUSED_F1:
+    case OP_UNUSED_FC:
+    case OP_UNUSED_FD:
+    case OP_UNUSED_FE:
+    case OP_UNUSED_FF:
+        okay = false;
+        break;
+
+    /*
+     * DO NOT add a "default" clause here.  Without it the compiler will
+     * complain if an instruction is missing (which is desirable).
+     */
+    }
+
+    if (!okay) {
+        LOG_VFY_METH(meth, "VFY:  rejecting opcode 0x%02x at 0x%04x\n",
+            decInsn.opCode, insnIdx);
+        goto bail;
+    }
+
+    /*
+     * If we didn't just set the result register, clear it out.  This
+     * ensures that you can only use "move-result" immediately after the
+     * result is set.
+     */
+    if (!justSetResult) {
+        int reg = RESULT_REGISTER(insnRegCount);
+        workRegs[reg] = workRegs[reg+1] = kRegTypeUnknown;
+    }
+
+    /*
+     * Handle "continue".  Tag the next consecutive instruction.
+     */
+    if ((nextFlags & kInstrCanContinue) != 0) {
+        int insnWidth = dvmInsnGetWidth(insnFlags, insnIdx);
+        if (insnIdx+insnWidth >= insnsSize) {
+            LOG_VFY_METH(meth,
+                "VFY: execution can walk off end of code area (from 0x%x)\n",
+                insnIdx);
+            goto bail;
+        }
+
+        /*
+         * The only way to get to a move-exception instruction is to get
+         * thrown there.  Make sure the next instruction isn't one.
+         */
+        if (!checkMoveException(meth, insnIdx+insnWidth, "next"))
+            goto bail;
+
+        /*
+         * We want to update the registers and set the "changed" flag on the
+         * next instruction (if necessary).  We may not be storing register
+         * changes for all addresses, so for non-branch targets we just
+         * compare "entry" vs. "work" to see if we've changed anything.
+         */
+        if (getRegisterLine(regTable, insnIdx+insnWidth) != NULL) {
+            updateRegisters(meth, insnFlags, regTable, insnIdx+insnWidth,
+                workRegs);
+        } else {
+            /* if not yet visited, or regs were updated, set "changed" */
+            if (!dvmInsnIsVisited(insnFlags, insnIdx+insnWidth) ||
+                compareRegisters(workRegs, entryRegs,
+                    insnRegCount + kExtraRegs) != 0)
+            {
+                dvmInsnSetChanged(insnFlags, insnIdx+insnWidth, true);
+            }
+        }
+    }
+
+    /*
+     * Handle "branch".  Tag the branch target.
+     *
+     * NOTE: instructions like OP_EQZ provide information about the state
+     * of the register when the branch is taken or not taken.  For example,
+     * somebody could get a reference field, check it for zero, and if the
+     * branch is taken immediately store that register in a boolean field
+     * since the value is known to be zero.  We do not currently account for
+     * that, and will reject the code.
+     */
+    if ((nextFlags & kInstrCanBranch) != 0) {
+        bool isConditional;
+
+        if (!dvmGetBranchTarget(meth, insnFlags, insnIdx, &branchTarget,
+                &isConditional))
+        {
+            /* should never happen after static verification */
+            LOG_VFY_METH(meth, "VFY: bad branch at %d\n", insnIdx);
+            goto bail;
+        }
+        assert(isConditional || (nextFlags & kInstrCanContinue) == 0);
+        assert(!isConditional || (nextFlags & kInstrCanContinue) != 0);
+
+        if (!checkMoveException(meth, insnIdx+branchTarget, "branch"))
+            goto bail;
+
+        updateRegisters(meth, insnFlags, regTable, insnIdx+branchTarget,
+            workRegs);
+    }
+
+    /*
+     * Handle "switch".  Tag all possible branch targets.
+     *
+     * We've already verified that the table is structurally sound, so we
+     * just need to walk through and tag the targets.
+     */
+    if ((nextFlags & kInstrCanSwitch) != 0) {
+        int offsetToSwitch = insns[1] | (((s4)insns[2]) << 16);
+        const u2* switchInsns = insns + offsetToSwitch;
+        int switchCount = switchInsns[1];
+        int offsetToTargets, targ;
+
+        if ((*insns & 0xff) == OP_PACKED_SWITCH) {
+            /* 0=sig, 1=count, 2/3=firstKey */
+            offsetToTargets = 4;
+        } else {
+            /* 0=sig, 1=count, 2..count*2 = keys */
+            assert((*insns & 0xff) == OP_SPARSE_SWITCH);
+            offsetToTargets = 2 + 2*switchCount;
+        }
+
+        /* verify each switch target */
+        for (targ = 0; targ < switchCount; targ++) {
+            int offset, absOffset;
+
+            /* offsets are 32-bit, and only partly endian-swapped */
+            offset = switchInsns[offsetToTargets + targ*2] |
+                     (((s4) switchInsns[offsetToTargets + targ*2 +1]) << 16);
+            absOffset = insnIdx + offset;
+
+            assert(absOffset >= 0 && absOffset < insnsSize);
+
+            if (!checkMoveException(meth, absOffset, "switch"))
+                goto bail;
+
+            updateRegisters(meth, insnFlags, regTable, absOffset, workRegs);
+        }
+    }
+
+    /*
+     * Handle instructions that can throw and that are sitting in a
+     * "try" block.  (If they're not in a "try" block when they throw,
+     * control transfers out of the method.)
+     */
+    if ((nextFlags & kInstrCanThrow) != 0 && dvmInsnIsInTry(insnFlags, insnIdx))
+    {
+        DexFile* pDexFile = meth->clazz->pDvmDex->pDexFile;
+        const DexCode* pCode = dvmGetMethodCode(meth);
+        DexCatchIterator iterator;
+
+        if (dexFindCatchHandler(&iterator, pCode, insnIdx)) {
+            for (;;) {
+                DexCatchHandler* handler = dexCatchIteratorNext(&iterator);
+
+                if (handler == NULL) {
+                    break;
+                }
+
+                /* note we use entryRegs, not workRegs */
+                updateRegisters(meth, insnFlags, regTable, handler->address,
+                    entryRegs);
+            }
+        }
+    }
+
+    /*
+     * Update startGuess.  Advance to the next instruction of that's
+     * possible, otherwise use the branch target if one was found.  If
+     * neither of those exists we're in a return or throw; leave startGuess
+     * alone and let the caller sort it out.
+     */
+    if ((nextFlags & kInstrCanContinue) != 0) {
+        *pStartGuess = insnIdx + dvmInsnGetWidth(insnFlags, insnIdx);
+    } else if ((nextFlags & kInstrCanBranch) != 0) {
+        /* we're still okay if branchTarget is zero */
+        *pStartGuess = insnIdx + branchTarget;
+    }
+
+    assert(*pStartGuess >= 0 && *pStartGuess < insnsSize &&
+        dvmInsnGetWidth(insnFlags, *pStartGuess) != 0);
+
+    result = true;
+
+bail:
+    return result;
+}
+
+/*
+ * callback function used in dumpRegTypes to print local vars
+ * valid at a given address.
+ */
+static void logLocalsCb(void *cnxt, u2 reg, u4 startAddress, u4 endAddress,
+        const char *name, const char *descriptor,
+        const char *signature)
+{
+    int addr = *((int *)cnxt);
+
+    if (addr >= (int) startAddress && addr < (int) endAddress)
+    {
+        LOGI("        %2d: '%s' %s\n", reg, name, descriptor);
+    }
+}
+
+/*
+ * Dump the register types for the specifed address to the log file.
+ */
+static void dumpRegTypes(const Method* meth, const InsnFlags* insnFlags,
+    const RegType* addrRegs, int addr, const char* addrName,
+    const UninitInstanceMap* uninitMap, int displayFlags)
+{
+    int regCount = meth->registersSize;
+    int fullRegCount = regCount + kExtraRegs;
+    bool branchTarget = dvmInsnIsBranchTarget(insnFlags, addr);
+    int i;
+
+    assert(addr >= 0 && addr < (int) dvmGetMethodInsnsSize(meth));
+
+    int regCharSize = fullRegCount + (fullRegCount-1)/4 + 2 +1;
+    char regChars[regCharSize +1];
+    memset(regChars, ' ', regCharSize);
+    regChars[0] = '[';
+    if (regCount == 0)
+        regChars[1] = ']';
+    else
+        regChars[1 + (regCount-1) + (regCount-1)/4 +1] = ']';
+    regChars[regCharSize] = '\0';
+
+    //const RegType* addrRegs = getRegisterLine(regTable, addr);
+
+    for (i = 0; i < regCount + kExtraRegs; i++) {
+        char tch;
+
+        switch (addrRegs[i]) {
+        case kRegTypeUnknown:       tch = '.';  break;
+        case kRegTypeConflict:      tch = 'X';  break;
+        case kRegTypeFloat:         tch = 'F';  break;
+        case kRegTypeZero:          tch = '0';  break;
+        case kRegTypeOne:           tch = '1';  break;
+        case kRegTypeBoolean:       tch = 'Z';  break;
+        case kRegTypePosByte:       tch = 'b';  break;
+        case kRegTypeByte:          tch = 'B';  break;
+        case kRegTypePosShort:      tch = 's';  break;
+        case kRegTypeShort:         tch = 'S';  break;
+        case kRegTypeChar:          tch = 'C';  break;
+        case kRegTypeInteger:       tch = 'I';  break;
+        case kRegTypeLongLo:        tch = 'J';  break;
+        case kRegTypeLongHi:        tch = 'j';  break;
+        case kRegTypeDoubleLo:      tch = 'D';  break;
+        case kRegTypeDoubleHi:      tch = 'd';  break;
+        default:
+            if (regTypeIsReference(addrRegs[i])) {
+                if (regTypeIsUninitReference(addrRegs[i]))
+                    tch = 'U';
+                else
+                    tch = 'L';
+            } else {
+                tch = '*';
+                assert(false);
+            }
+            break;
+        }
+
+        if (i < regCount)
+            regChars[1 + i + (i/4)] = tch;
+        else
+            regChars[1 + i + (i/4) + 2] = tch;
+    }
+
+    if (addr == 0 && addrName != NULL)
+        LOGI("%c%s %s\n", branchTarget ? '>' : ' ', addrName, regChars);
+    else
+        LOGI("%c0x%04x %s\n", branchTarget ? '>' : ' ', addr, regChars);
+
+    if (displayFlags & DRT_SHOW_REF_TYPES) {
+        for (i = 0; i < regCount + kExtraRegs; i++) {
+            if (regTypeIsReference(addrRegs[i]) && addrRegs[i] != kRegTypeZero)
+            {
+                ClassObject* clazz;
+
+                clazz = regTypeReferenceToClass(addrRegs[i], uninitMap);
+                assert(dvmValidateObject((Object*)clazz));
+                if (i < regCount) {
+                    LOGI("        %2d: 0x%08x %s%s\n",
+                        i, addrRegs[i],
+                        regTypeIsUninitReference(addrRegs[i]) ? "[U]" : "",
+                        clazz->descriptor);
+                } else {
+                    LOGI("        RS: 0x%08x %s%s\n",
+                        addrRegs[i],
+                        regTypeIsUninitReference(addrRegs[i]) ? "[U]" : "",
+                        clazz->descriptor);
+                }
+            }
+        }
+    }
+    if (displayFlags & DRT_SHOW_LOCALS) {
+        dexDecodeDebugInfo(meth->clazz->pDvmDex->pDexFile,
+                dvmGetMethodCode(meth),
+                meth->clazz->descriptor,
+                meth->prototype.protoIdx,
+                meth->accessFlags,
+                NULL, logLocalsCb, &addr);
+    }
+}
+