blob: 68727bf8047f5bae67abc2a2aca26d819437192e [file] [log] [blame]
Carl Shapirod28668c2010-04-15 16:10:00 -07001/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <errno.h>
18#include <limits.h>
19#include <sys/mman.h>
20
21#include "Dalvik.h"
22#include "alloc/Heap.h"
23#include "alloc/HeapBitmap.h"
24#include "alloc/HeapInternal.h"
25#include "alloc/HeapSource.h"
26#include "alloc/Verify.h"
27#include "alloc/clz.h"
28
29/*
30 * A "mostly copying", generational, garbage collector.
31 *
32 * TODO: we allocate our own contiguous tract of page frames to back
33 * object allocations. To cooperate with other heaps active in the
34 * virtual machine we need to move the responsibility of allocating
35 * pages someplace outside of this code.
36 *
37 * The other major data structures that maintain the state of the heap
38 * are the block space table and the block queue.
39 *
40 * The block space table records the state of a block. We must track
41 * whether a block is:
42 *
43 * - Free or allocated in some space.
44 *
45 * - If the block holds part of a large object allocation, whether the
46 * block is the initial or a continued block of the allocation.
47 *
48 * - Whether the block is pinned, that is to say whether at least one
49 * object in the block must remain stationary. Only needed during a
50 * GC.
51 *
52 * - Which space the object belongs to. At present this means
53 * from-space or to-space.
54 *
55 * The block queue is used during garbage collection. Unlike Cheney's
56 * algorithm, from-space and to-space are not contiguous. Therefore,
57 * one cannot maintain the state of the copy with just two pointers.
58 * The block queue exists to thread lists of blocks from the various
59 * spaces together.
60 *
61 * Additionally, we record the free space frontier of the heap, as
62 * well as the address of the first object within a block, which is
63 * required to copy objects following a large object (not currently
64 * implemented). This is stored in the heap source structure. This
65 * should be moved elsewhere to support in-line allocations from Java
66 * threads.
67 *
68 * Allocation requests are satisfied by reserving storage from one or
69 * more contiguous blocks. Objects that are small enough to fit
70 * inside a block are packed together within a block. Objects that
71 * are larger than a block are allocated from contiguous sequences of
72 * blocks. When half the available blocks are filled, a garbage
73 * collection occurs. We "flip" spaces (exchange from- and to-space),
74 * copy live objects into to space, and perform pointer adjustment.
75 *
76 * Copying is made more complicated by the requirement that some
77 * objects must not be moved. This property is known as "pinning".
78 * These objects must be dealt with specially. We use Bartlett's
79 * scheme; blocks containing such objects are grayed (promoted) at the
Carl Shapiro952e84a2010-05-06 14:35:29 -070080 * start of a garbage collection. By virtue of this trick, tracing
Carl Shapirod28668c2010-04-15 16:10:00 -070081 * from the roots proceeds as usual but all objects on those pages are
82 * considered promoted and therefore not moved.
83 *
84 * TODO: there is sufficient information within the garbage collector
85 * to implement Attardi's scheme for evacuating unpinned objects from
86 * a page that is otherwise pinned. This would eliminate false
87 * retention caused by the large pinning granularity.
88 *
89 * We need a scheme for medium and large objects. Ignore that for
90 * now, we can return to this later.
91 *
92 * Eventually we need to worry about promoting objects out of the
93 * copy-collected heap (tenuring) into a less volatile space. Copying
94 * may not always be the best policy for such spaces. We should
95 * consider a variant of mark, sweep, compact.
96 *
97 * The block scheme allows us to use VM page faults to maintain a
98 * write barrier. Consider having a special leaf state for a page.
99 *
100 * Bibliography:
101 *
102 * C. J. Cheney. 1970. A non-recursive list compacting
103 * algorithm. CACM. 13-11 pp677--678.
104 *
105 * Joel F. Bartlett. 1988. Compacting Garbage Collection with
106 * Ambiguous Roots. Digital Equipment Corporation.
107 *
108 * Joel F. Bartlett. 1989. Mostly-Copying Garbage Collection Picks Up
109 * Generations and C++. Digital Equipment Corporation.
110 *
111 * G. May Yip. 1991. Incremental, Generational Mostly-Copying Garbage
112 * Collection in Uncooperative Environments. Digital Equipment
113 * Corporation.
114 *
115 * Giuseppe Attardi, Tito Flagella. 1994. A Customisable Memory
116 * Management Framework. TR-94-010
117 *
118 * Giuseppe Attardi, Tito Flagella, Pietro Iglio. 1998. A customisable
119 * memory management framework for C++. Software -- Practice and
120 * Experience. 28(11), 1143-1183.
121 *
122 */
123
124#define ARRAYSIZE(x) (sizeof(x) / sizeof(x[0]))
125
Carl Shapiro8bb533e2010-05-06 15:35:27 -0700126#if 0
Carl Shapirod28668c2010-04-15 16:10:00 -0700127#define LOG_ALLOC LOGI
Carl Shapiro8bb533e2010-05-06 15:35:27 -0700128#define LOG_PIN LOGI
129#define LOG_PROM LOGI
130#define LOG_REF LOGI
131#define LOG_SCAV LOGI
132#define LOG_TRAN LOGI
133#define LOG_VER LOGI
Carl Shapirod28668c2010-04-15 16:10:00 -0700134#else
Carl Shapiro8bb533e2010-05-06 15:35:27 -0700135#define LOG_ALLOC(...) ((void)0)
136#define LOG_PIN(...) ((void)0)
137#define LOG_PROM(...) ((void)0)
138#define LOG_REF(...) ((void)0)
139#define LOG_SCAV(...) ((void)0)
140#define LOG_TRAN(...) ((void)0)
141#define LOG_VER(...) ((void)0)
Carl Shapirod28668c2010-04-15 16:10:00 -0700142#endif
143
144static void enqueueBlock(HeapSource *heapSource, size_t block);
Carl Shapiro2396fda2010-05-03 20:14:14 -0700145static void scavengeReference(Object **obj);
Carl Shapiro952e84a2010-05-06 14:35:29 -0700146static bool toSpaceContains(const void *addr);
147static bool fromSpaceContains(const void *addr);
Carl Shapirod28668c2010-04-15 16:10:00 -0700148static size_t sumHeapBitmap(const HeapBitmap *bitmap);
Carl Shapiro2396fda2010-05-03 20:14:14 -0700149static size_t objectSize(const Object *obj);
Carl Shapiro952e84a2010-05-06 14:35:29 -0700150static void scavengeDataObject(Object *obj);
151static void scavengeBlockQueue(void);
Carl Shapirod28668c2010-04-15 16:10:00 -0700152
153/*
154 * We use 512-byte blocks.
155 */
156enum { BLOCK_SHIFT = 9 };
157enum { BLOCK_SIZE = 1 << BLOCK_SHIFT };
158
159/*
160 * Space identifiers, stored into the blockSpace array.
161 */
162enum {
163 BLOCK_FREE = 0,
164 BLOCK_FROM_SPACE = 1,
165 BLOCK_TO_SPACE = 2,
166 BLOCK_CONTINUED = 7
167};
168
169/*
170 * Alignment for all allocations, in bytes.
171 */
172enum { ALLOC_ALIGNMENT = 8 };
173
174/*
175 * Sentinel value for the queue end.
176 */
177#define QUEUE_TAIL (~(size_t)0)
178
179struct HeapSource {
180
181 /* The base address of backing store. */
182 u1 *blockBase;
183
184 /* Total number of blocks available for allocation. */
185 size_t totalBlocks;
186 size_t allocBlocks;
187
188 /*
189 * The scavenger work queue. Implemented as an array of index
190 * values into the queue.
191 */
192 size_t *blockQueue;
193
194 /*
195 * Base and limit blocks. Basically the shifted start address of
196 * the block. We convert blocks to a relative number when
197 * indexing in the block queue. TODO: make the block queue base
198 * relative rather than the index into the block queue.
199 */
200 size_t baseBlock, limitBlock;
201
202 size_t queueHead;
203 size_t queueTail;
204 size_t queueSize;
205
206 /* The space of the current block 0 (free), 1 or 2. */
207 char *blockSpace;
208
209 /* Start of free space in the current block. */
210 u1 *allocPtr;
211 /* Exclusive limit of free space in the current block. */
212 u1 *allocLimit;
213
214 HeapBitmap allocBits;
215
216 /*
Carl Shapirod28668c2010-04-15 16:10:00 -0700217 * The starting size of the heap. This value is the same as the
218 * value provided to the -Xms flag.
219 */
220 size_t minimumSize;
221
222 /*
223 * The maximum size of the heap. This value is the same as the
224 * -Xmx flag.
225 */
226 size_t maximumSize;
227
228 /*
229 * The current, committed size of the heap. At present, this is
230 * equivalent to the maximumSize.
231 */
232 size_t currentSize;
233
234 size_t bytesAllocated;
235};
236
237static unsigned long alignDown(unsigned long x, unsigned long n)
238{
239 return x & -n;
240}
241
242static unsigned long alignUp(unsigned long x, unsigned long n)
243{
244 return alignDown(x + (n - 1), n);
245}
246
247static void describeBlocks(const HeapSource *heapSource)
248{
249 size_t i;
250
251 for (i = 0; i < heapSource->totalBlocks; ++i) {
252 if ((i % 32) == 0) putchar('\n');
253 printf("%d ", heapSource->blockSpace[i]);
254 }
255 putchar('\n');
256}
257
258/*
259 * Virtual memory interface.
260 */
261
262static void *virtualAlloc(size_t length)
263{
264 void *addr;
265 int flags, prot;
266
267 flags = MAP_PRIVATE | MAP_ANONYMOUS;
268 prot = PROT_READ | PROT_WRITE;
269 addr = mmap(NULL, length, prot, flags, -1, 0);
270 if (addr == MAP_FAILED) {
271 LOGE_HEAP("mmap: %s", strerror(errno));
272 addr = NULL;
273 }
274 return addr;
275}
276
277static void virtualFree(void *addr, size_t length)
278{
279 int res;
280
281 assert(addr != NULL);
282 assert((uintptr_t)addr % SYSTEM_PAGE_SIZE == 0);
283 res = munmap(addr, length);
284 if (res == -1) {
285 LOGE_HEAP("munmap: %s", strerror(errno));
286 }
287}
288
289static int isValidAddress(const HeapSource *heapSource, const u1 *addr)
290{
291 size_t block;
292
293 block = (uintptr_t)addr >> BLOCK_SHIFT;
294 return heapSource->baseBlock <= block &&
295 heapSource->limitBlock > block;
296}
297
298/*
299 * Iterate over the block map looking for a contiguous run of free
300 * blocks.
301 */
302static void *allocateBlocks(HeapSource *heapSource, size_t blocks)
303{
304 void *addr;
305 size_t allocBlocks, totalBlocks;
306 size_t i, j;
307
308 allocBlocks = heapSource->allocBlocks;
309 totalBlocks = heapSource->totalBlocks;
310 /* Check underflow. */
311 assert(blocks != 0);
312 /* Check overflow. */
313 if (allocBlocks + blocks > totalBlocks / 2) {
314 return NULL;
315 }
316 /* Scan block map. */
317 for (i = 0; i < totalBlocks; ++i) {
318 /* Check fit. */
319 for (j = 0; j < blocks; ++j) { /* runs over totalBlocks */
320 if (heapSource->blockSpace[i+j] != BLOCK_FREE) {
321 break;
322 }
323 }
324 /* No fit? */
325 if (j != blocks) {
326 i += j;
327 continue;
328 }
329 /* Fit, allocate. */
330 heapSource->blockSpace[i] = BLOCK_TO_SPACE; /* why to-space? */
331 for (j = 1; j < blocks; ++j) {
332 heapSource->blockSpace[i+j] = BLOCK_CONTINUED;
333 }
334 heapSource->allocBlocks += blocks;
335 addr = &heapSource->blockBase[i*BLOCK_SIZE];
336 memset(addr, 0, blocks*BLOCK_SIZE);
337 /* Collecting? */
338 if (heapSource->queueHead != QUEUE_TAIL) {
339 LOG_ALLOC("allocateBlocks allocBlocks=%zu,block#=%zu", heapSource->allocBlocks, i);
340 /*
341 * This allocated was on behalf of the transporter when it
342 * shaded a white object gray. We enqueue the block so
343 * the scavenger can further shade the gray objects black.
344 */
345 enqueueBlock(heapSource, i);
346 }
347
348 return addr;
349 }
350 /* Insufficient space, fail. */
351 LOGE("Insufficient space, %zu blocks, %zu blocks allocated and %zu bytes allocated",
352 heapSource->totalBlocks,
353 heapSource->allocBlocks,
354 heapSource->bytesAllocated);
355 return NULL;
356}
357
358/* Converts an absolute address to a relative block number. */
359static size_t addressToBlock(const HeapSource *heapSource, const void *addr)
360{
361 assert(heapSource != NULL);
362 assert(isValidAddress(heapSource, addr));
363 return (((uintptr_t)addr) >> BLOCK_SHIFT) - heapSource->baseBlock;
364}
365
366/* Converts a relative block number to an absolute address. */
367static u1 *blockToAddress(const HeapSource *heapSource, size_t block)
368{
369 u1 *addr;
370
371 addr = (u1 *) (((uintptr_t) heapSource->baseBlock + block) * BLOCK_SIZE);
372 assert(isValidAddress(heapSource, addr));
373 return addr;
374}
375
376static void clearBlock(HeapSource *heapSource, size_t block)
377{
378 u1 *addr;
379 size_t i;
380
381 assert(heapSource != NULL);
382 assert(block < heapSource->totalBlocks);
383 addr = heapSource->blockBase + block*BLOCK_SIZE;
384 memset(addr, 0xCC, BLOCK_SIZE);
385 for (i = 0; i < BLOCK_SIZE; i += 8) {
386 dvmHeapBitmapClearObjectBit(&heapSource->allocBits, addr + i);
387 }
388}
389
390static void clearFromSpace(HeapSource *heapSource)
391{
392 size_t i, count;
393
394 assert(heapSource != NULL);
395 i = count = 0;
396 while (i < heapSource->totalBlocks) {
397 if (heapSource->blockSpace[i] != BLOCK_FROM_SPACE) {
398 ++i;
399 continue;
400 }
401 heapSource->blockSpace[i] = BLOCK_FREE;
402 clearBlock(heapSource, i);
403 ++i;
404 ++count;
405 while (i < heapSource->totalBlocks &&
406 heapSource->blockSpace[i] == BLOCK_CONTINUED) {
407 heapSource->blockSpace[i] = BLOCK_FREE;
408 clearBlock(heapSource, i);
409 ++i;
410 ++count;
411 }
412 }
Carl Shapiro8bb533e2010-05-06 15:35:27 -0700413 LOG_SCAV("freed %zu blocks (%zu bytes)", count, count*BLOCK_SIZE);
Carl Shapirod28668c2010-04-15 16:10:00 -0700414}
415
416/*
417 * Appends the given block to the block queue. The block queue is
418 * processed in-order by the scavenger.
419 */
420static void enqueueBlock(HeapSource *heapSource, size_t block)
421{
422 assert(heapSource != NULL);
423 assert(block < heapSource->totalBlocks);
424 if (heapSource->queueHead != QUEUE_TAIL) {
425 heapSource->blockQueue[heapSource->queueTail] = block;
426 } else {
427 heapSource->queueHead = block;
428 }
429 heapSource->blockQueue[block] = QUEUE_TAIL;
430 heapSource->queueTail = block;
431 ++heapSource->queueSize;
432}
433
434/*
435 * Grays all objects within the block corresponding to the given
436 * address.
437 */
438static void promoteBlockByAddr(HeapSource *heapSource, const void *addr)
439{
440 size_t block;
441
442 block = addressToBlock(heapSource, (const u1 *)addr);
443 if (heapSource->blockSpace[block] != BLOCK_TO_SPACE) {
Carl Shapiro8bb533e2010-05-06 15:35:27 -0700444 // LOG_PROM("promoting block %zu %d @ %p", block, heapSource->blockSpace[block], obj);
Carl Shapirod28668c2010-04-15 16:10:00 -0700445 heapSource->blockSpace[block] = BLOCK_TO_SPACE;
446 enqueueBlock(heapSource, block);
447 /* TODO(cshapiro): count continued blocks?*/
448 heapSource->allocBlocks += 1;
449 } else {
Carl Shapiro8bb533e2010-05-06 15:35:27 -0700450 // LOG_PROM("NOT promoting block %zu %d @ %p", block, heapSource->blockSpace[block], obj);
Carl Shapirod28668c2010-04-15 16:10:00 -0700451 }
452}
453
454GcHeap *dvmHeapSourceStartup(size_t startSize, size_t absoluteMaxSize)
455{
456 GcHeap* gcHeap;
457 HeapSource *heapSource;
458
459 assert(startSize <= absoluteMaxSize);
460
461 heapSource = malloc(sizeof(*heapSource));
462 assert(heapSource != NULL);
463 memset(heapSource, 0, sizeof(*heapSource));
464
465 heapSource->minimumSize = alignUp(startSize, BLOCK_SIZE);
466 heapSource->maximumSize = alignUp(absoluteMaxSize, BLOCK_SIZE);
467
468 heapSource->currentSize = heapSource->maximumSize;
469
470 /* Allocate underlying storage for blocks. */
471 heapSource->blockBase = virtualAlloc(heapSource->maximumSize);
472 assert(heapSource->blockBase != NULL);
473 heapSource->baseBlock = (uintptr_t) heapSource->blockBase >> BLOCK_SHIFT;
474 heapSource->limitBlock = ((uintptr_t) heapSource->blockBase + heapSource->maximumSize) >> BLOCK_SHIFT;
475
476 heapSource->allocBlocks = 0;
477 heapSource->totalBlocks = (heapSource->limitBlock - heapSource->baseBlock);
478
479 assert(heapSource->totalBlocks = heapSource->maximumSize / BLOCK_SIZE);
480
481 {
482 size_t size = sizeof(heapSource->blockQueue[0]);
483 heapSource->blockQueue = malloc(heapSource->totalBlocks*size);
484 assert(heapSource->blockQueue != NULL);
485 memset(heapSource->blockQueue, 0xCC, heapSource->totalBlocks*size);
486 heapSource->queueHead = QUEUE_TAIL;
487 }
488
489 /* Byte indicating space residence or free status of block. */
490 {
491 size_t size = sizeof(heapSource->blockSpace[0]);
492 heapSource->blockSpace = malloc(heapSource->totalBlocks*size);
493 assert(heapSource->blockSpace != NULL);
494 memset(heapSource->blockSpace, 0, heapSource->totalBlocks*size);
495 }
496
497 dvmHeapBitmapInit(&heapSource->allocBits,
498 heapSource->blockBase,
499 heapSource->maximumSize,
500 "blockBase");
501
502 /* Initialize allocation pointers. */
503 heapSource->allocPtr = allocateBlocks(heapSource, 1);
504 heapSource->allocLimit = heapSource->allocPtr + BLOCK_SIZE;
505
506 gcHeap = malloc(sizeof(*gcHeap));
507 assert(gcHeap != NULL);
508 memset(gcHeap, 0, sizeof(*gcHeap));
509 gcHeap->heapSource = heapSource;
510
511 return gcHeap;
512}
513
514/*
515 * Perform any required heap initializations after forking from the
516 * zygote process. This is a no-op for the time being. Eventually
517 * this will demarcate the shared region of the heap.
518 */
519bool dvmHeapSourceStartupAfterZygote(void)
520{
521 return true;
522}
523
524bool dvmHeapSourceStartupBeforeFork(void)
525{
526 assert(!"implemented");
527 return false;
528}
529
530void dvmHeapSourceShutdown(GcHeap **gcHeap)
531{
532 if (*gcHeap == NULL || (*gcHeap)->heapSource == NULL)
533 return;
Carl Shapiro88b00352010-05-19 17:38:33 -0700534 free((*gcHeap)->heapSource->blockQueue);
535 free((*gcHeap)->heapSource->blockSpace);
Carl Shapirod28668c2010-04-15 16:10:00 -0700536 virtualFree((*gcHeap)->heapSource->blockBase,
537 (*gcHeap)->heapSource->maximumSize);
538 free((*gcHeap)->heapSource);
539 (*gcHeap)->heapSource = NULL;
540 free(*gcHeap);
541 *gcHeap = NULL;
542}
543
544size_t dvmHeapSourceGetValue(enum HeapSourceValueSpec spec,
545 size_t perHeapStats[],
546 size_t arrayLen)
547{
548 HeapSource *heapSource;
549 size_t value;
550
551 heapSource = gDvm.gcHeap->heapSource;
552 switch (spec) {
553 case HS_EXTERNAL_BYTES_ALLOCATED:
554 value = 0;
555 break;
556 case HS_EXTERNAL_LIMIT:
557 value = 0;
558 break;
559 case HS_FOOTPRINT:
560 value = heapSource->maximumSize;
561 break;
562 case HS_ALLOWED_FOOTPRINT:
563 value = heapSource->maximumSize;
564 break;
565 case HS_BYTES_ALLOCATED:
566 value = heapSource->bytesAllocated;
567 break;
568 case HS_OBJECTS_ALLOCATED:
569 value = sumHeapBitmap(&heapSource->allocBits);
570 break;
571 default:
572 assert(!"implemented");
573 value = 0;
574 }
575 if (perHeapStats) {
576 *perHeapStats = value;
577 }
578 return value;
579}
580
581/*
582 * Performs a shallow copy of the allocation bitmap into the given
583 * vector of heap bitmaps.
584 */
585void dvmHeapSourceGetObjectBitmaps(HeapBitmap objBits[], HeapBitmap markBits[],
586 size_t numHeaps)
587{
588 assert(!"implemented");
589}
590
591HeapBitmap *dvmHeapSourceGetLiveBits(void)
592{
593 assert(!"implemented");
594 return NULL;
595}
596
597/*
598 * Allocate the specified number of bytes from the heap. The
599 * allocation cursor points into a block of free storage. If the
600 * given allocation fits in the remaining space of the block, we
601 * advance the cursor and return a pointer to the free storage. If
602 * the allocation cannot fit in the current block but is smaller than
603 * a block we request a new block and allocate from it instead. If
604 * the allocation is larger than a block we must allocate from a span
605 * of contiguous blocks.
606 */
607void *dvmHeapSourceAlloc(size_t length)
608{
609 HeapSource *heapSource;
610 unsigned char *addr;
611 size_t aligned, available, blocks;
612
613 heapSource = gDvm.gcHeap->heapSource;
614 assert(heapSource != NULL);
615 assert(heapSource->allocPtr != NULL);
616 assert(heapSource->allocLimit != NULL);
617
618 aligned = alignUp(length, ALLOC_ALIGNMENT);
619 available = heapSource->allocLimit - heapSource->allocPtr;
620
621 /* Try allocating inside the current block. */
622 if (aligned <= available) {
623 addr = heapSource->allocPtr;
624 heapSource->allocPtr += aligned;
625 heapSource->bytesAllocated += aligned;
626 dvmHeapBitmapSetObjectBit(&heapSource->allocBits, addr);
627 return addr;
628 }
629
630 /* Try allocating in a new block. */
631 if (aligned <= BLOCK_SIZE) {
632 addr = allocateBlocks(heapSource, 1);
633 if (addr != NULL) {
634 heapSource->allocLimit = addr + BLOCK_SIZE;
635 heapSource->allocPtr = addr + aligned;
636 heapSource->bytesAllocated += aligned;
637 dvmHeapBitmapSetObjectBit(&heapSource->allocBits, addr);
638 /* TODO(cshapiro): pad out the current block. */
639 }
640 return addr;
641 }
642
643 /* Try allocating in a span of blocks. */
644 blocks = alignUp(aligned, BLOCK_SIZE) / BLOCK_SIZE;
645
646 addr = allocateBlocks(heapSource, blocks);
647 /* Propagate failure upward. */
648 if (addr != NULL) {
649 heapSource->bytesAllocated += aligned;
650 dvmHeapBitmapSetObjectBit(&heapSource->allocBits, addr);
651 /* TODO(cshapiro): pad out free space in the last block. */
652 }
653 return addr;
654}
655
656void *dvmHeapSourceAllocAndGrow(size_t size)
657{
658 return dvmHeapSourceAlloc(size);
659}
660
661/* TODO: refactor along with dvmHeapSourceAlloc */
662void *allocateGray(size_t size)
663{
Carl Shapiro7800c092010-05-11 13:46:29 -0700664 HeapSource *heapSource;
665 void *addr;
666 size_t block;
667
Carl Shapiro952e84a2010-05-06 14:35:29 -0700668 /* TODO: add a check that we are in a GC. */
Carl Shapiro7800c092010-05-11 13:46:29 -0700669 heapSource = gDvm.gcHeap->heapSource;
670 addr = dvmHeapSourceAlloc(size);
Carl Shapiro703a2f32010-05-12 23:11:37 -0700671 assert(addr != NULL);
Carl Shapiro7800c092010-05-11 13:46:29 -0700672 block = addressToBlock(heapSource, (const u1 *)addr);
673 if (heapSource->queueHead == QUEUE_TAIL) {
674 /*
675 * Forcibly append the underlying block to the queue. This
676 * condition occurs when referents are transported following
677 * the initial trace.
678 */
679 enqueueBlock(heapSource, block);
680 LOG_PROM("forced promoting block %zu %d @ %p", block, heapSource->blockSpace[block], addr);
681 }
682 return addr;
Carl Shapirod28668c2010-04-15 16:10:00 -0700683}
684
685/*
686 * Returns true if the given address is within the heap and points to
687 * the header of a live object.
688 */
689bool dvmHeapSourceContains(const void *addr)
690{
691 HeapSource *heapSource;
692 HeapBitmap *bitmap;
693
694 heapSource = gDvm.gcHeap->heapSource;
695 bitmap = &heapSource->allocBits;
Carl Shapirodc1e4f12010-05-01 22:27:56 -0700696 if (!dvmHeapBitmapCoversAddress(bitmap, addr)) {
697 return false;
698 } else {
699 return dvmHeapBitmapIsObjectBitSet(bitmap, addr);
700 }
Carl Shapirod28668c2010-04-15 16:10:00 -0700701}
702
703bool dvmHeapSourceGetPtrFlag(const void *ptr, enum HeapSourcePtrFlag flag)
704{
705 assert(!"implemented");
706 return false;
707}
708
709size_t dvmHeapSourceChunkSize(const void *ptr)
710{
711 assert(!"implemented");
712 return 0;
713}
714
715size_t dvmHeapSourceFootprint(void)
716{
717 assert(!"implemented");
718 return 0;
719}
720
721/*
722 * Returns the "ideal footprint" which appears to be the number of
723 * bytes currently committed to the heap. This starts out at the
724 * start size of the heap and grows toward the maximum size.
725 */
726size_t dvmHeapSourceGetIdealFootprint(void)
727{
728 return gDvm.gcHeap->heapSource->currentSize;
729}
730
731float dvmGetTargetHeapUtilization(void)
732{
733 assert(!"implemented");
734 return 0.0f;
735}
736
737void dvmSetTargetHeapUtilization(float newTarget)
738{
739 assert(!"implemented");
740}
741
742size_t dvmMinimumHeapSize(size_t size, bool set)
743{
744 return gDvm.gcHeap->heapSource->minimumSize;
745}
746
747/*
748 * Expands the size of the heap after a collection. At present we
749 * commit the pages for maximum size of the heap so this routine is
750 * just a no-op. Eventually, we will either allocate or commit pages
751 * on an as-need basis.
752 */
753void dvmHeapSourceGrowForUtilization(void)
754{
755 /* do nothing */
756}
757
758void dvmHeapSourceTrim(size_t bytesTrimmed[], size_t arrayLen)
759{
760 /* do nothing */
761}
762
763void dvmHeapSourceWalk(void (*callback)(const void *chunkptr, size_t chunklen,
764 const void *userptr, size_t userlen,
765 void *arg),
766 void *arg)
767{
768 assert(!"implemented");
769}
770
771size_t dvmHeapSourceGetNumHeaps(void)
772{
773 return 1;
774}
775
776bool dvmTrackExternalAllocation(size_t n)
777{
Carl Shapiro528f3812010-05-18 14:16:26 -0700778 /* do nothing */
779 return true;
Carl Shapirod28668c2010-04-15 16:10:00 -0700780}
781
782void dvmTrackExternalFree(size_t n)
783{
Carl Shapiro528f3812010-05-18 14:16:26 -0700784 /* do nothing */
Carl Shapirod28668c2010-04-15 16:10:00 -0700785}
786
787size_t dvmGetExternalBytesAllocated(void)
788{
789 assert(!"implemented");
790 return 0;
791}
792
793void dvmHeapSourceFlip(void)
794{
795 HeapSource *heapSource;
796 size_t i;
797
798 heapSource = gDvm.gcHeap->heapSource;
799
800 /* Reset the block queue. */
801 heapSource->allocBlocks = 0;
802 heapSource->queueSize = 0;
803 heapSource->queueHead = QUEUE_TAIL;
804
Carl Shapirod28668c2010-04-15 16:10:00 -0700805 /* TODO(cshapiro): pad the current (prev) block. */
806
807 heapSource->allocPtr = NULL;
808 heapSource->allocLimit = NULL;
809
810 /* Whiten all allocated blocks. */
811 for (i = 0; i < heapSource->totalBlocks; ++i) {
812 if (heapSource->blockSpace[i] == BLOCK_TO_SPACE) {
813 heapSource->blockSpace[i] = BLOCK_FROM_SPACE;
814 }
815 }
816}
817
818static void room(size_t *alloc, size_t *avail, size_t *total)
819{
820 HeapSource *heapSource;
Carl Shapirod28668c2010-04-15 16:10:00 -0700821
822 heapSource = gDvm.gcHeap->heapSource;
823 *total = heapSource->totalBlocks*BLOCK_SIZE;
824 *alloc = heapSource->allocBlocks*BLOCK_SIZE;
825 *avail = *total - *alloc;
826}
827
828static bool isSpaceInternal(u1 *addr, int space)
829{
830 HeapSource *heapSource;
831 u1 *base, *limit;
832 size_t offset;
833 char space2;
834
835 heapSource = gDvm.gcHeap->heapSource;
836 base = heapSource->blockBase;
837 assert(addr >= base);
838 limit = heapSource->blockBase + heapSource->maximumSize;
839 assert(addr < limit);
840 offset = addr - base;
841 space2 = heapSource->blockSpace[offset >> BLOCK_SHIFT];
842 return space == space2;
843}
844
Carl Shapiro952e84a2010-05-06 14:35:29 -0700845static bool fromSpaceContains(const void *addr)
Carl Shapirod28668c2010-04-15 16:10:00 -0700846{
847 return isSpaceInternal((u1 *)addr, BLOCK_FROM_SPACE);
848}
849
Carl Shapiro952e84a2010-05-06 14:35:29 -0700850static bool toSpaceContains(const void *addr)
Carl Shapirod28668c2010-04-15 16:10:00 -0700851{
852 return isSpaceInternal((u1 *)addr, BLOCK_TO_SPACE);
853}
854
855/*
856 * Notifies the collector that the object at the given address must
857 * remain stationary during the current collection.
858 */
859static void pinObject(const Object *obj)
860{
861 promoteBlockByAddr(gDvm.gcHeap->heapSource, obj);
862}
863
Carl Shapirod28668c2010-04-15 16:10:00 -0700864static size_t sumHeapBitmap(const HeapBitmap *bitmap)
865{
Carl Shapirod28668c2010-04-15 16:10:00 -0700866 size_t i, sum;
867
868 sum = 0;
869 for (i = 0; i < bitmap->bitsLen >> 2; ++i) {
870 sum += dvmClzImpl(bitmap->bits[i]);
871 }
872 return sum;
873}
874
875/*
876 * Miscellaneous functionality.
877 */
878
879static int isForward(const void *addr)
880{
881 return (uintptr_t)addr & 0x1;
882}
883
884static void setForward(const void *toObj, void *fromObj)
885{
886 *(unsigned long *)fromObj = (uintptr_t)toObj | 0x1;
887}
888
889static void* getForward(const void *fromObj)
890{
891 return (void *)((uintptr_t)fromObj & ~0x1);
892}
893
894/* Beware, uses the same encoding as a forwarding pointers! */
895static int isPermanentString(const StringObject *obj) {
896 return (uintptr_t)obj & 0x1;
897}
898
899static void* getPermanentString(const StringObject *obj)
900{
901 return (void *)((uintptr_t)obj & ~0x1);
902}
903
904
905/*
906 * Scavenging and transporting routines follow. A transporter grays
907 * an object. A scavenger blackens an object. We define these
908 * routines for each fundamental object type. Dispatch is performed
909 * in scavengeObject.
910 */
911
912/*
Carl Shapiro2396fda2010-05-03 20:14:14 -0700913 * Class object scavenging.
Carl Shapirod28668c2010-04-15 16:10:00 -0700914 */
Carl Shapiro2396fda2010-05-03 20:14:14 -0700915static void scavengeClassObject(ClassObject *obj)
Carl Shapirod28668c2010-04-15 16:10:00 -0700916{
Carl Shapirod28668c2010-04-15 16:10:00 -0700917 int i;
918
Carl Shapiro8bb533e2010-05-06 15:35:27 -0700919 LOG_SCAV("scavengeClassObject(obj=%p)", obj);
Carl Shapiro2396fda2010-05-03 20:14:14 -0700920 assert(obj != NULL);
Carl Shapirod28668c2010-04-15 16:10:00 -0700921 assert(obj->obj.clazz != NULL);
922 assert(obj->obj.clazz->descriptor != NULL);
923 assert(!strcmp(obj->obj.clazz->descriptor, "Ljava/lang/Class;"));
924 assert(obj->descriptor != NULL);
Carl Shapiro8bb533e2010-05-06 15:35:27 -0700925 LOG_SCAV("scavengeClassObject: descriptor='%s',vtableCount=%zu",
926 obj->descriptor, obj->vtableCount);
Carl Shapiro703a2f32010-05-12 23:11:37 -0700927 /* Delegate class object and instance field scavenging. */
928 scavengeDataObject((Object *)obj);
Carl Shapirod28668c2010-04-15 16:10:00 -0700929 /* Scavenge the array element class object. */
930 if (IS_CLASS_FLAG_SET(obj, CLASS_ISARRAY)) {
931 scavengeReference((Object **)(void *)&obj->elementClass);
932 }
933 /* Scavenge the superclass. */
934 scavengeReference((Object **)(void *)&obj->super);
935 /* Scavenge the class loader. */
936 scavengeReference(&obj->classLoader);
937 /* Scavenge static fields. */
938 for (i = 0; i < obj->sfieldCount; ++i) {
939 char ch = obj->sfields[i].field.signature[0];
940 if (ch == '[' || ch == 'L') {
941 scavengeReference((Object **)(void *)&obj->sfields[i].value.l);
942 }
943 }
944 /* Scavenge interface class objects. */
945 for (i = 0; i < obj->interfaceCount; ++i) {
946 scavengeReference((Object **) &obj->interfaces[i]);
947 }
Carl Shapirod28668c2010-04-15 16:10:00 -0700948}
949
950/*
951 * Array object scavenging.
952 */
Carl Shapirod28668c2010-04-15 16:10:00 -0700953static size_t scavengeArrayObject(ArrayObject *array)
954{
955 size_t i, length;
956
Carl Shapiro8bb533e2010-05-06 15:35:27 -0700957 LOG_SCAV("scavengeArrayObject(array=%p)", array);
Carl Shapirod28668c2010-04-15 16:10:00 -0700958 /* Scavenge the class object. */
Carl Shapiro952e84a2010-05-06 14:35:29 -0700959 assert(toSpaceContains(array));
Carl Shapirod28668c2010-04-15 16:10:00 -0700960 assert(array != NULL);
961 assert(array->obj.clazz != NULL);
962 scavengeReference((Object **) array);
963 length = dvmArrayObjectSize(array);
964 /* Scavenge the array contents. */
965 if (IS_CLASS_FLAG_SET(array->obj.clazz, CLASS_ISOBJECTARRAY)) {
966 Object **contents = (Object **)array->contents;
967 for (i = 0; i < array->length; ++i) {
968 scavengeReference(&contents[i]);
969 }
970 }
971 return length;
972}
973
974/*
975 * Reference object scavenging.
976 */
977
Carl Shapiro952e84a2010-05-06 14:35:29 -0700978static int getReferenceFlags(const Object *obj)
Carl Shapirod28668c2010-04-15 16:10:00 -0700979{
980 int flags;
981
982 flags = CLASS_ISREFERENCE |
983 CLASS_ISWEAKREFERENCE |
984 CLASS_ISPHANTOMREFERENCE;
Carl Shapiro952e84a2010-05-06 14:35:29 -0700985 return GET_CLASS_FLAG_GROUP(obj->clazz, flags);
Carl Shapirod28668c2010-04-15 16:10:00 -0700986}
987
Carl Shapiro952e84a2010-05-06 14:35:29 -0700988static int isSoftReference(const Object *obj)
Carl Shapirod28668c2010-04-15 16:10:00 -0700989{
990 return getReferenceFlags(obj) == CLASS_ISREFERENCE;
991}
992
Carl Shapiro952e84a2010-05-06 14:35:29 -0700993static int isWeakReference(const Object *obj)
Carl Shapirod28668c2010-04-15 16:10:00 -0700994{
995 return getReferenceFlags(obj) & CLASS_ISWEAKREFERENCE;
996}
997
Carl Shapiro952e84a2010-05-06 14:35:29 -0700998static bool isPhantomReference(const Object *obj)
Carl Shapirod28668c2010-04-15 16:10:00 -0700999{
1000 return getReferenceFlags(obj) & CLASS_ISPHANTOMREFERENCE;
1001}
1002
Carl Shapiro952e84a2010-05-06 14:35:29 -07001003/*
1004 * Returns true if the reference was registered with a reference queue
1005 * but has not yet been appended to it.
1006 */
1007static bool isReferenceEnqueuable(const Object *ref)
Carl Shapirod28668c2010-04-15 16:10:00 -07001008{
Carl Shapiro952e84a2010-05-06 14:35:29 -07001009 Object *queue, *queueNext;
Carl Shapirod28668c2010-04-15 16:10:00 -07001010
Carl Shapiro952e84a2010-05-06 14:35:29 -07001011 queue = dvmGetFieldObject(ref, gDvm.offJavaLangRefReference_queue);
1012 queueNext = dvmGetFieldObject(ref, gDvm.offJavaLangRefReference_queueNext);
1013 if (queue == NULL || queueNext != NULL) {
1014 /*
1015 * There is no queue, or the reference has already
1016 * been enqueued. The Reference.enqueue() method
1017 * will do nothing even if we call it.
1018 */
1019 return false;
Carl Shapirod28668c2010-04-15 16:10:00 -07001020 }
Carl Shapiro952e84a2010-05-06 14:35:29 -07001021
1022 /*
1023 * We need to call enqueue(), but if we called it from
1024 * here we'd probably deadlock. Schedule a call.
1025 */
1026 return true;
1027}
1028
1029/*
1030 * Schedules a reference to be appended to its reference queue.
1031 */
1032static void enqueueReference(const Object *ref)
1033{
1034 LargeHeapRefTable **table;
1035 Object *op;
1036
1037 assert(((uintptr_t)ref & 3) == 0);
1038 assert((WORKER_ENQUEUE & ~3) == 0);
1039 assert(dvmGetFieldObject(ref, gDvm.offJavaLangRefReference_queue) != NULL);
1040 assert(dvmGetFieldObject(ref, gDvm.offJavaLangRefReference_queueNext) == NULL);
1041 /*
1042 * Set the enqueue bit in the bottom of the pointer. Assumes that
1043 * objects are 8-byte aligned.
1044 *
1045 * Note that we are adding the *Reference* (which is by definition
1046 * already black at this point) to this list; we're not adding the
1047 * referent (which has already been cleared).
1048 */
1049 table = &gDvm.gcHeap->referenceOperations;
1050 op = (Object *)((uintptr_t)ref | WORKER_ENQUEUE);
1051 if (!dvmHeapAddRefToLargeTable(table, op)) {
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001052 LOGE("no room for any more reference operations");
Carl Shapiro952e84a2010-05-06 14:35:29 -07001053 dvmAbort();
1054 }
1055}
1056
1057/*
1058 * Sets the referent field of a reference object to NULL.
1059 */
1060static void clearReference(Object *obj)
1061{
1062 dvmSetFieldObject(obj, gDvm.offJavaLangRefReference_referent, NULL);
1063}
1064
1065/*
1066 * Clears reference objects with white referents.
1067 */
1068void clearWhiteReferences(Object **list)
1069{
1070 size_t referentOffset, vmDataOffset;
1071 bool doSignal;
1072
1073 vmDataOffset = gDvm.offJavaLangRefReference_vmData;
1074 referentOffset = gDvm.offJavaLangRefReference_referent;
1075 doSignal = false;
1076 while (*list != NULL) {
1077 Object *ref = *list;
1078 JValue *field = dvmFieldPtr(ref, referentOffset);
1079 Object *referent = field->l;
1080 *list = dvmGetFieldObject(ref, vmDataOffset);
1081 assert(referent != NULL);
1082 if (isForward(referent->clazz)) {
1083 field->l = referent = getForward(referent->clazz);
1084 continue;
1085 }
1086 if (fromSpaceContains(referent)) {
1087 /* Referent is white, clear it. */
1088 clearReference(ref);
1089 if (isReferenceEnqueuable(ref)) {
1090 enqueueReference(ref);
1091 doSignal = true;
1092 }
1093 }
1094 }
1095 /*
1096 * If we cleared a reference with a reference queue we must notify
1097 * the heap worker to append the reference.
1098 */
1099 if (doSignal) {
1100 dvmSignalHeapWorker(false);
1101 }
1102 assert(*list == NULL);
1103}
1104
1105/*
1106 * Blackens referents subject to the soft reference preservation
1107 * policy.
1108 */
1109void preserveSoftReferences(Object **list)
1110{
1111 Object *ref;
1112 Object *prev, *next;
1113 size_t referentOffset, vmDataOffset;
1114 unsigned counter;
1115 bool white;
1116
1117 vmDataOffset = gDvm.offJavaLangRefReference_vmData;
1118 referentOffset = gDvm.offJavaLangRefReference_referent;
1119 counter = 0;
1120 prev = next = NULL;
1121 ref = *list;
1122 while (ref != NULL) {
1123 JValue *field = dvmFieldPtr(ref, referentOffset);
1124 Object *referent = field->l;
1125 next = dvmGetFieldObject(ref, vmDataOffset);
1126 assert(referent != NULL);
1127 if (isForward(referent->clazz)) {
1128 /* Referent is black. */
1129 field->l = referent = getForward(referent->clazz);
1130 white = false;
1131 } else {
1132 white = fromSpaceContains(referent);
1133 }
1134 if (!white && ((++counter) & 1)) {
1135 /* Referent is white and biased toward saving, gray it. */
1136 scavengeReference((Object **)(void *)&field->l);
1137 white = true;
1138 }
1139 if (white) {
1140 /* Referent is black, unlink it. */
1141 if (prev != NULL) {
1142 dvmSetFieldObject(ref, vmDataOffset, NULL);
1143 dvmSetFieldObject(prev, vmDataOffset, next);
1144 }
1145 } else {
1146 /* Referent is white, skip over it. */
1147 prev = ref;
1148 }
1149 ref = next;
1150 }
1151 /*
1152 * Restart the trace with the newly gray references added to the
1153 * root set.
1154 */
1155 scavengeBlockQueue();
1156}
1157
1158void processFinalizableReferences(void)
1159{
1160 HeapRefTable newPendingRefs;
1161 LargeHeapRefTable *finRefs = gDvm.gcHeap->finalizableRefs;
1162 Object **ref;
1163 Object **lastRef;
1164 size_t totalPendCount;
1165
1166 /*
1167 * All strongly, reachable objects are black.
1168 * Any white finalizable objects need to be finalized.
1169 */
1170
1171 /* Create a table that the new pending refs will
1172 * be added to.
1173 */
1174 if (!dvmHeapInitHeapRefTable(&newPendingRefs, 128)) {
1175 //TODO: mark all finalizable refs and hope that
1176 // we can schedule them next time. Watch out,
1177 // because we may be expecting to free up space
1178 // by calling finalizers.
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001179 LOG_REF("no room for pending finalizations\n");
Carl Shapiro952e84a2010-05-06 14:35:29 -07001180 dvmAbort();
1181 }
1182
1183 /*
1184 * Walk through finalizableRefs and move any white references to
1185 * the list of new pending refs.
1186 */
1187 totalPendCount = 0;
1188 while (finRefs != NULL) {
1189 Object **gapRef;
1190 size_t newPendCount = 0;
1191
1192 gapRef = ref = finRefs->refs.table;
1193 lastRef = finRefs->refs.nextEntry;
1194 while (ref < lastRef) {
1195 if (fromSpaceContains(*ref)) {
1196 if (!dvmHeapAddToHeapRefTable(&newPendingRefs, *ref)) {
1197 //TODO: add the current table and allocate
1198 // a new, smaller one.
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001199 LOG_REF("no room for any more pending finalizations: %zd\n",
Carl Shapiro952e84a2010-05-06 14:35:29 -07001200 dvmHeapNumHeapRefTableEntries(&newPendingRefs));
1201 dvmAbort();
1202 }
1203 newPendCount++;
1204 } else {
1205 /* This ref is black, so will remain on finalizableRefs.
1206 */
1207 if (newPendCount > 0) {
1208 /* Copy it up to fill the holes.
1209 */
1210 *gapRef++ = *ref;
1211 } else {
1212 /* No holes yet; don't bother copying.
1213 */
1214 gapRef++;
1215 }
1216 }
1217 ref++;
1218 }
1219 finRefs->refs.nextEntry = gapRef;
1220 //TODO: if the table is empty when we're done, free it.
1221 totalPendCount += newPendCount;
1222 finRefs = finRefs->next;
1223 }
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001224 LOG_REF("%zd finalizers triggered.\n", totalPendCount);
Carl Shapiro952e84a2010-05-06 14:35:29 -07001225 if (totalPendCount == 0) {
1226 /* No objects required finalization.
1227 * Free the empty temporary table.
1228 */
1229 dvmClearReferenceTable(&newPendingRefs);
1230 return;
1231 }
1232
1233 /* Add the new pending refs to the main list.
1234 */
1235 if (!dvmHeapAddTableToLargeTable(&gDvm.gcHeap->pendingFinalizationRefs,
1236 &newPendingRefs))
1237 {
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001238 LOG_REF("can't insert new pending finalizations\n");
Carl Shapiro952e84a2010-05-06 14:35:29 -07001239 dvmAbort();
1240 }
1241
1242 //TODO: try compacting the main list with a memcpy loop
1243
1244 /* Blacken the refs we just moved; we don't want them or their
1245 * children to get swept yet.
1246 */
1247 ref = newPendingRefs.table;
1248 lastRef = newPendingRefs.nextEntry;
1249 assert(ref < lastRef);
1250 HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_FINALIZING, 0);
1251 while (ref < lastRef) {
1252 scavengeReference(ref);
1253 ref++;
1254 }
1255 HPROF_CLEAR_GC_SCAN_STATE();
1256 scavengeBlockQueue();
1257 dvmSignalHeapWorker(false);
Carl Shapirod28668c2010-04-15 16:10:00 -07001258}
1259
Carl Shapirod28668c2010-04-15 16:10:00 -07001260/*
1261 * If a reference points to from-space and has been forwarded, we snap
1262 * the pointer to its new to-space address. If the reference points
1263 * to an unforwarded from-space address we must enqueue the reference
1264 * for later processing. TODO: implement proper reference processing
1265 * and move the referent scavenging elsewhere.
1266 */
Carl Shapiro952e84a2010-05-06 14:35:29 -07001267static void scavengeReferenceObject(Object *obj)
Carl Shapirod28668c2010-04-15 16:10:00 -07001268{
Carl Shapiro952e84a2010-05-06 14:35:29 -07001269 Object *referent;
1270 Object **queue;
1271 size_t referentOffset, vmDataOffset;
1272
Carl Shapirod28668c2010-04-15 16:10:00 -07001273 assert(obj != NULL);
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001274 LOG_SCAV("scavengeReferenceObject(obj=%p),'%s'", obj, obj->clazz->descriptor);
Carl Shapiro2396fda2010-05-03 20:14:14 -07001275 scavengeDataObject(obj);
Carl Shapiro952e84a2010-05-06 14:35:29 -07001276 referentOffset = gDvm.offJavaLangRefReference_referent;
1277 referent = dvmGetFieldObject(obj, referentOffset);
1278 if (referent == NULL || toSpaceContains(referent)) {
1279 return;
Carl Shapirod28668c2010-04-15 16:10:00 -07001280 }
Carl Shapiro952e84a2010-05-06 14:35:29 -07001281 if (isSoftReference(obj)) {
1282 queue = &gDvm.gcHeap->softReferences;
1283 } else if (isWeakReference(obj)) {
1284 queue = &gDvm.gcHeap->weakReferences;
1285 } else {
1286 assert(isPhantomReference(obj));
1287 queue = &gDvm.gcHeap->phantomReferences;
1288 }
1289 vmDataOffset = gDvm.offJavaLangRefReference_vmData;
Carl Shapiro7800c092010-05-11 13:46:29 -07001290 dvmSetFieldObject(obj, vmDataOffset, *queue);
Carl Shapiro952e84a2010-05-06 14:35:29 -07001291 *queue = obj;
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001292 LOG_SCAV("scavengeReferenceObject: enqueueing %p", obj);
Carl Shapirod28668c2010-04-15 16:10:00 -07001293}
1294
1295/*
1296 * Data object scavenging.
1297 */
Carl Shapiro952e84a2010-05-06 14:35:29 -07001298static void scavengeDataObject(Object *obj)
Carl Shapirod28668c2010-04-15 16:10:00 -07001299{
1300 ClassObject *clazz;
Carl Shapirod28668c2010-04-15 16:10:00 -07001301 int i;
1302
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001303 // LOG_SCAV("scavengeDataObject(obj=%p)", obj);
Carl Shapirod28668c2010-04-15 16:10:00 -07001304 assert(obj != NULL);
Carl Shapiro952e84a2010-05-06 14:35:29 -07001305 assert(obj->clazz != NULL);
1306 assert(obj->clazz->objectSize != 0);
1307 assert(toSpaceContains(obj));
Carl Shapirod28668c2010-04-15 16:10:00 -07001308 /* Scavenge the class object. */
Carl Shapiro952e84a2010-05-06 14:35:29 -07001309 clazz = obj->clazz;
Carl Shapirod28668c2010-04-15 16:10:00 -07001310 scavengeReference((Object **) obj);
Carl Shapirod28668c2010-04-15 16:10:00 -07001311 /* Scavenge instance fields. */
1312 if (clazz->refOffsets != CLASS_WALK_SUPER) {
1313 size_t refOffsets = clazz->refOffsets;
1314 while (refOffsets != 0) {
1315 size_t rshift = CLZ(refOffsets);
1316 size_t offset = CLASS_OFFSET_FROM_CLZ(rshift);
1317 Object **ref = (Object **)((u1 *)obj + offset);
1318 scavengeReference(ref);
1319 refOffsets &= ~(CLASS_HIGH_BIT >> rshift);
1320 }
1321 } else {
1322 for (; clazz != NULL; clazz = clazz->super) {
1323 InstField *field = clazz->ifields;
1324 for (i = 0; i < clazz->ifieldRefCount; ++i, ++field) {
1325 size_t offset = field->byteOffset;
1326 Object **ref = (Object **)((u1 *)obj + offset);
1327 scavengeReference(ref);
1328 }
1329 }
1330 }
Carl Shapiro2396fda2010-05-03 20:14:14 -07001331}
1332
1333static Object *transportObject(const Object *fromObj)
1334{
1335 Object *toObj;
1336 size_t allocSize, copySize;
1337
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001338 LOG_TRAN("transportObject(fromObj=%p) allocBlocks=%zu",
Carl Shapiro2396fda2010-05-03 20:14:14 -07001339 fromObj,
1340 gDvm.gcHeap->heapSource->allocBlocks);
1341 assert(fromObj != NULL);
Carl Shapiro952e84a2010-05-06 14:35:29 -07001342 assert(fromSpaceContains(fromObj));
Carl Shapiro2396fda2010-05-03 20:14:14 -07001343 allocSize = copySize = objectSize(fromObj);
1344 if (LW_HASH_STATE(fromObj->lock) != LW_HASH_STATE_UNHASHED) {
1345 /*
1346 * The object has been hashed or hashed and moved. We must
1347 * reserve an additional word for a hash code.
1348 */
1349 allocSize += sizeof(u4);
1350 }
1351 if (LW_HASH_STATE(fromObj->lock) == LW_HASH_STATE_HASHED_AND_MOVED) {
1352 /*
1353 * The object has its hash code allocated. Ensure the hash
1354 * code is copied along with the instance data.
1355 */
1356 copySize += sizeof(u4);
1357 }
1358 /* TODO(cshapiro): don't copy, re-map large data objects. */
1359 assert(copySize <= allocSize);
1360 toObj = allocateGray(allocSize);
1361 assert(toObj != NULL);
Carl Shapiro952e84a2010-05-06 14:35:29 -07001362 assert(toSpaceContains(toObj));
Carl Shapiro2396fda2010-05-03 20:14:14 -07001363 memcpy(toObj, fromObj, copySize);
1364 if (LW_HASH_STATE(fromObj->lock) == LW_HASH_STATE_HASHED) {
1365 /*
1366 * The object has had its hash code exposed. Append it to the
1367 * instance and set a bit so we know to look for it there.
1368 */
1369 *(u4 *)(((char *)toObj) + copySize) = (u4)fromObj >> 3;
1370 toObj->lock |= LW_HASH_STATE_HASHED_AND_MOVED << LW_HASH_STATE_SHIFT;
1371 }
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001372 LOG_TRAN("transportObject: from %p/%zu to %p/%zu (%zu,%zu) %s",
1373 fromObj, addressToBlock(gDvm.gcHeap->heapSource,fromObj),
1374 toObj, addressToBlock(gDvm.gcHeap->heapSource,toObj),
1375 copySize, allocSize, copySize < allocSize ? "DIFFERENT" : "");
Carl Shapiro2396fda2010-05-03 20:14:14 -07001376 return toObj;
Carl Shapirod28668c2010-04-15 16:10:00 -07001377}
1378
1379/*
1380 * Generic reference scavenging.
1381 */
1382
1383/*
1384 * Given a reference to an object, the scavenge routine will gray the
1385 * reference. Any objects pointed to by the scavenger object will be
1386 * transported to new space and a forwarding pointer will be installed
1387 * in the header of the object.
1388 */
1389
1390/*
1391 * Blacken the given pointer. If the pointer is in from space, it is
1392 * transported to new space. If the object has a forwarding pointer
1393 * installed it has already been transported and the referent is
1394 * snapped to the new address.
1395 */
Carl Shapiro2396fda2010-05-03 20:14:14 -07001396static void scavengeReference(Object **obj)
Carl Shapirod28668c2010-04-15 16:10:00 -07001397{
1398 ClassObject *clazz;
Carl Shapiro2396fda2010-05-03 20:14:14 -07001399 Object *fromObj, *toObj;
Carl Shapirod28668c2010-04-15 16:10:00 -07001400
1401 assert(obj);
1402
Carl Shapiro2396fda2010-05-03 20:14:14 -07001403 if (*obj == NULL) return;
Carl Shapirod28668c2010-04-15 16:10:00 -07001404
1405 assert(dvmIsValidObject(*obj));
1406
1407 /* The entire block is black. */
Carl Shapiro952e84a2010-05-06 14:35:29 -07001408 if (toSpaceContains(*obj)) {
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001409 LOG_SCAV("scavengeReference skipping pinned object @ %p", *obj);
Carl Shapiro2396fda2010-05-03 20:14:14 -07001410 return;
Carl Shapirod28668c2010-04-15 16:10:00 -07001411 }
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001412 LOG_SCAV("scavengeReference(*obj=%p)", *obj);
Carl Shapirod28668c2010-04-15 16:10:00 -07001413
Carl Shapiro952e84a2010-05-06 14:35:29 -07001414 assert(fromSpaceContains(*obj));
Carl Shapirod28668c2010-04-15 16:10:00 -07001415
1416 clazz = (*obj)->clazz;
1417
1418 if (isForward(clazz)) {
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001419 // LOG_SCAV("forwarding %p @ %p to %p", *obj, obj, (void *)((uintptr_t)clazz & ~0x1));
Carl Shapirod28668c2010-04-15 16:10:00 -07001420 *obj = (Object *)getForward(clazz);
Carl Shapiro2396fda2010-05-03 20:14:14 -07001421 return;
Carl Shapirod28668c2010-04-15 16:10:00 -07001422 }
Carl Shapiro2396fda2010-05-03 20:14:14 -07001423 fromObj = *obj;
1424 if (clazz == NULL) {
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001425 // LOG_SCAV("scavangeReference %p has a NULL class object", fromObj);
Carl Shapiro2396fda2010-05-03 20:14:14 -07001426 assert(!"implemented");
1427 toObj = NULL;
1428 } else if (clazz == gDvm.unlinkedJavaLangClass) {
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001429 // LOG_SCAV("scavangeReference %p is an unlinked class object", fromObj);
Carl Shapiro2396fda2010-05-03 20:14:14 -07001430 assert(!"implemented");
1431 toObj = NULL;
1432 } else {
1433 toObj = transportObject(fromObj);
1434 }
1435 setForward(toObj, fromObj);
1436 *obj = (Object *)toObj;
Carl Shapirod28668c2010-04-15 16:10:00 -07001437}
1438
Carl Shapirod28668c2010-04-15 16:10:00 -07001439/*
1440 * Generic object scavenging.
1441 */
Carl Shapiro2396fda2010-05-03 20:14:14 -07001442static void scavengeObject(Object *obj)
Carl Shapirod28668c2010-04-15 16:10:00 -07001443{
1444 ClassObject *clazz;
Carl Shapirod28668c2010-04-15 16:10:00 -07001445
1446 assert(obj != NULL);
Carl Shapiro952e84a2010-05-06 14:35:29 -07001447 assert(obj->clazz != NULL);
1448 assert(!((uintptr_t)obj->clazz & 0x1));
1449 assert(obj->clazz != gDvm.unlinkedJavaLangClass);
Carl Shapirod28668c2010-04-15 16:10:00 -07001450 clazz = obj->clazz;
Carl Shapirod28668c2010-04-15 16:10:00 -07001451 if (clazz == gDvm.classJavaLangClass) {
Carl Shapiro2396fda2010-05-03 20:14:14 -07001452 scavengeClassObject((ClassObject *)obj);
Carl Shapirod28668c2010-04-15 16:10:00 -07001453 } else if (IS_CLASS_FLAG_SET(clazz, CLASS_ISARRAY)) {
Carl Shapiro2396fda2010-05-03 20:14:14 -07001454 scavengeArrayObject((ArrayObject *)obj);
Carl Shapirod28668c2010-04-15 16:10:00 -07001455 } else if (IS_CLASS_FLAG_SET(clazz, CLASS_ISREFERENCE)) {
Carl Shapiro952e84a2010-05-06 14:35:29 -07001456 scavengeReferenceObject(obj);
Carl Shapirod28668c2010-04-15 16:10:00 -07001457 } else {
Carl Shapiro952e84a2010-05-06 14:35:29 -07001458 scavengeDataObject(obj);
Carl Shapirod28668c2010-04-15 16:10:00 -07001459 }
Carl Shapirod28668c2010-04-15 16:10:00 -07001460}
1461
1462/*
1463 * External root scavenging routines.
1464 */
1465
1466static void scavengeHashTable(HashTable *table)
1467{
1468 HashEntry *entry;
1469 void *obj;
1470 int i;
1471
1472 if (table == NULL) {
1473 return;
1474 }
1475 dvmHashTableLock(table);
1476 for (i = 0; i < table->tableSize; ++i) {
1477 entry = &table->pEntries[i];
1478 obj = entry->data;
1479 if (obj == NULL || obj == HASH_TOMBSTONE) {
1480 continue;
1481 }
1482 scavengeReference((Object **)(void *)&entry->data);
1483 }
1484 dvmHashTableUnlock(table);
1485}
1486
1487static void pinHashTableEntries(HashTable *table)
1488{
1489 HashEntry *entry;
1490 void *obj;
1491 int i;
1492
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001493 LOG_PIN(">>> pinHashTableEntries(table=%p)", table);
Carl Shapirod28668c2010-04-15 16:10:00 -07001494 if (table == NULL) {
1495 return;
1496 }
1497 dvmHashTableLock(table);
1498 for (i = 0; i < table->tableSize; ++i) {
1499 entry = &table->pEntries[i];
1500 obj = entry->data;
1501 if (obj == NULL || obj == HASH_TOMBSTONE) {
1502 continue;
1503 }
1504 pinObject(entry->data);
1505 }
1506 dvmHashTableUnlock(table);
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001507 LOG_PIN("<<< pinHashTableEntries(table=%p)", table);
Carl Shapirod28668c2010-04-15 16:10:00 -07001508}
1509
1510static void pinPrimitiveClasses(void)
1511{
1512 size_t length;
1513 size_t i;
1514
1515 length = ARRAYSIZE(gDvm.primitiveClass);
1516 for (i = 0; i < length; i++) {
1517 if (gDvm.primitiveClass[i] != NULL) {
1518 pinObject((Object *)gDvm.primitiveClass[i]);
1519 }
1520 }
1521}
1522
1523/*
1524 * Scavenge interned strings. Permanent interned strings will have
1525 * been pinned and are therefore ignored. Non-permanent strings that
1526 * have been forwarded are snapped. All other entries are removed.
1527 */
1528static void scavengeInternedStrings(void)
1529{
1530 HashTable *table;
1531 HashEntry *entry;
1532 Object *obj;
1533 int i;
1534
1535 table = gDvm.internedStrings;
1536 if (table == NULL) {
1537 return;
1538 }
1539 dvmHashTableLock(table);
1540 for (i = 0; i < table->tableSize; ++i) {
1541 entry = &table->pEntries[i];
1542 obj = (Object *)entry->data;
1543 if (obj == NULL || obj == HASH_TOMBSTONE) {
1544 continue;
1545 } else if (!isPermanentString((StringObject *)obj)) {
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001546 // LOG_SCAV("entry->data=%p", entry->data);
1547 LOG_SCAV(">>> string obj=%p", entry->data);
Carl Shapirod28668c2010-04-15 16:10:00 -07001548 /* TODO(cshapiro): detach white string objects */
1549 scavengeReference((Object **)(void *)&entry->data);
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001550 LOG_SCAV("<<< string obj=%p", entry->data);
Carl Shapirod28668c2010-04-15 16:10:00 -07001551 }
1552 }
1553 dvmHashTableUnlock(table);
1554}
1555
1556static void pinInternedStrings(void)
1557{
1558 HashTable *table;
1559 HashEntry *entry;
1560 Object *obj;
1561 int i;
1562
1563 table = gDvm.internedStrings;
1564 if (table == NULL) {
1565 return;
1566 }
1567 dvmHashTableLock(table);
1568 for (i = 0; i < table->tableSize; ++i) {
1569 entry = &table->pEntries[i];
1570 obj = (Object *)entry->data;
1571 if (obj == NULL || obj == HASH_TOMBSTONE) {
1572 continue;
1573 } else if (isPermanentString((StringObject *)obj)) {
1574 obj = (Object *)getPermanentString((StringObject*)obj);
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001575 LOG_PROM(">>> pin string obj=%p", obj);
Carl Shapirod28668c2010-04-15 16:10:00 -07001576 pinObject(obj);
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001577 LOG_PROM("<<< pin string obj=%p", obj);
Carl Shapirod28668c2010-04-15 16:10:00 -07001578 }
1579 }
1580 dvmHashTableUnlock(table);
1581}
1582
Carl Shapirod28668c2010-04-15 16:10:00 -07001583/*
1584 * At present, reference tables contain references that must not be
1585 * moved by the collector. Instead of scavenging each reference in
1586 * the table we pin each referenced object.
1587 */
Carl Shapiro583d64c2010-05-04 10:44:47 -07001588static void pinReferenceTable(const ReferenceTable *table)
Carl Shapirod28668c2010-04-15 16:10:00 -07001589{
1590 Object **entry;
Carl Shapirod28668c2010-04-15 16:10:00 -07001591
1592 assert(table != NULL);
1593 assert(table->table != NULL);
1594 assert(table->nextEntry != NULL);
1595 for (entry = table->table; entry < table->nextEntry; ++entry) {
1596 assert(entry != NULL);
1597 assert(!isForward(*entry));
1598 pinObject(*entry);
1599 }
1600}
1601
Carl Shapiro7800c092010-05-11 13:46:29 -07001602static void scavengeLargeHeapRefTable(LargeHeapRefTable *table, bool stripLowBits)
Carl Shapirod28668c2010-04-15 16:10:00 -07001603{
Carl Shapirod28668c2010-04-15 16:10:00 -07001604 for (; table != NULL; table = table->next) {
Carl Shapiro7800c092010-05-11 13:46:29 -07001605 Object **ref = table->refs.table;
1606 for (; ref < table->refs.nextEntry; ++ref) {
1607 if (stripLowBits) {
1608 Object *obj = (Object *)((uintptr_t)*ref & ~3);
1609 scavengeReference(&obj);
1610 *ref = (Object *)((uintptr_t)obj | ((uintptr_t)*ref & 3));
1611 } else {
1612 scavengeReference(ref);
Carl Shapirod28668c2010-04-15 16:10:00 -07001613 }
Carl Shapiro7800c092010-05-11 13:46:29 -07001614 }
1615 }
1616}
1617
Carl Shapirod28668c2010-04-15 16:10:00 -07001618/* This code was copied from Thread.c */
1619static void scavengeThreadStack(Thread *thread)
1620{
1621 const u4 *framePtr;
1622#if WITH_EXTRA_GC_CHECKS > 1
1623 bool first = true;
1624#endif
1625
1626 framePtr = (const u4 *)thread->curFrame;
1627 while (framePtr != NULL) {
1628 const StackSaveArea *saveArea;
1629 const Method *method;
1630
1631 saveArea = SAVEAREA_FROM_FP(framePtr);
1632 method = saveArea->method;
Carl Shapiro583d64c2010-05-04 10:44:47 -07001633 if (method != NULL && !dvmIsNativeMethod(method)) {
Carl Shapirod28668c2010-04-15 16:10:00 -07001634#ifdef COUNT_PRECISE_METHODS
1635 /* the GC is running, so no lock required */
1636 if (dvmPointerSetAddEntry(gDvm.preciseMethods, method))
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001637 LOG_SCAV("PGC: added %s.%s %p\n",
1638 method->clazz->descriptor, method->name, method);
Carl Shapirod28668c2010-04-15 16:10:00 -07001639#endif
1640#if WITH_EXTRA_GC_CHECKS > 1
1641 /*
1642 * May also want to enable the memset() in the "invokeMethod"
1643 * goto target in the portable interpreter. That sets the stack
1644 * to a pattern that makes referring to uninitialized data
1645 * very obvious.
1646 */
1647
1648 if (first) {
1649 /*
1650 * First frame, isn't native, check the "alternate" saved PC
1651 * as a sanity check.
1652 *
1653 * It seems like we could check the second frame if the first
1654 * is native, since the PCs should be the same. It turns out
1655 * this doesn't always work. The problem is that we could
1656 * have calls in the sequence:
1657 * interp method #2
1658 * native method
1659 * interp method #1
1660 *
1661 * and then GC while in the native method after returning
1662 * from interp method #2. The currentPc on the stack is
1663 * for interp method #1, but thread->currentPc2 is still
1664 * set for the last thing interp method #2 did.
1665 *
1666 * This can also happen in normal execution:
1667 * - sget-object on not-yet-loaded class
1668 * - class init updates currentPc2
1669 * - static field init is handled by parsing annotations;
1670 * static String init requires creation of a String object,
1671 * which can cause a GC
1672 *
1673 * Essentially, any pattern that involves executing
1674 * interpreted code and then causes an allocation without
1675 * executing instructions in the original method will hit
1676 * this. These are rare enough that the test still has
1677 * some value.
1678 */
1679 if (saveArea->xtra.currentPc != thread->currentPc2) {
1680 LOGW("PGC: savedPC(%p) != current PC(%p), %s.%s ins=%p\n",
1681 saveArea->xtra.currentPc, thread->currentPc2,
1682 method->clazz->descriptor, method->name, method->insns);
1683 if (saveArea->xtra.currentPc != NULL)
1684 LOGE(" pc inst = 0x%04x\n", *saveArea->xtra.currentPc);
1685 if (thread->currentPc2 != NULL)
1686 LOGE(" pc2 inst = 0x%04x\n", *thread->currentPc2);
1687 dvmDumpThread(thread, false);
1688 }
1689 } else {
1690 /*
1691 * It's unusual, but not impossible, for a non-first frame
1692 * to be at something other than a method invocation. For
1693 * example, if we do a new-instance on a nonexistent class,
1694 * we'll have a lot of class loader activity on the stack
1695 * above the frame with the "new" operation. Could also
1696 * happen while we initialize a Throwable when an instruction
1697 * fails.
1698 *
1699 * So there's not much we can do here to verify the PC,
1700 * except to verify that it's a GC point.
1701 */
1702 }
1703 assert(saveArea->xtra.currentPc != NULL);
1704#endif
1705
1706 const RegisterMap* pMap;
1707 const u1* regVector;
1708 int i;
1709
1710 Method* nonConstMethod = (Method*) method; // quiet gcc
1711 pMap = dvmGetExpandedRegisterMap(nonConstMethod);
1712
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001713 //LOG_SCAV("PGC: %s.%s\n", method->clazz->descriptor, method->name);
Carl Shapirod28668c2010-04-15 16:10:00 -07001714
1715 if (pMap != NULL) {
1716 /* found map, get registers for this address */
1717 int addr = saveArea->xtra.currentPc - method->insns;
1718 regVector = dvmRegisterMapGetLine(pMap, addr);
1719 /*
1720 if (regVector == NULL) {
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001721 LOG_SCAV("PGC: map but no entry for %s.%s addr=0x%04x\n",
1722 method->clazz->descriptor, method->name, addr);
Carl Shapirod28668c2010-04-15 16:10:00 -07001723 } else {
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001724 LOG_SCAV("PGC: found map for %s.%s 0x%04x (t=%d)\n",
1725 method->clazz->descriptor, method->name, addr,
1726 thread->threadId);
Carl Shapirod28668c2010-04-15 16:10:00 -07001727 }
1728 */
1729 } else {
1730 /*
1731 * No map found. If precise GC is disabled this is
1732 * expected -- we don't create pointers to the map data even
1733 * if it's present -- but if it's enabled it means we're
1734 * unexpectedly falling back on a conservative scan, so it's
1735 * worth yelling a little.
1736 */
1737 if (gDvm.preciseGc) {
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001738 LOG_SCAV("PGC: no map for %s.%s\n", method->clazz->descriptor, method->name);
Carl Shapirod28668c2010-04-15 16:10:00 -07001739 }
1740 regVector = NULL;
1741 }
Carl Shapirod28668c2010-04-15 16:10:00 -07001742 if (regVector == NULL) {
Carl Shapiro88b00352010-05-19 17:38:33 -07001743 /*
1744 * There are no roots to scavenge. Skip over the entire frame.
1745 */
1746 framePtr += method->registersSize;
Carl Shapirod28668c2010-04-15 16:10:00 -07001747 } else {
1748 /*
1749 * Precise scan. v0 is at the lowest address on the
1750 * interpreted stack, and is the first bit in the register
1751 * vector, so we can walk through the register map and
1752 * memory in the same direction.
1753 *
1754 * A '1' bit indicates a live reference.
1755 */
1756 u2 bits = 1 << 1;
1757 for (i = method->registersSize - 1; i >= 0; i--) {
Carl Shapirod28668c2010-04-15 16:10:00 -07001758 u4 rval = *framePtr;
1759
1760 bits >>= 1;
1761 if (bits == 1) {
1762 /* set bit 9 so we can tell when we're empty */
1763 bits = *regVector++ | 0x0100;
1764 LOGVV("loaded bits: 0x%02x\n", bits & 0xff);
1765 }
1766
1767 if (rval != 0 && (bits & 0x01) != 0) {
1768 /*
1769 * Non-null, register marked as live reference. This
1770 * should always be a valid object.
1771 */
1772#if WITH_EXTRA_GC_CHECKS > 0
1773 if ((rval & 0x3) != 0 || !dvmIsValidObject((Object*) rval)) {
1774 /* this is very bad */
1775 LOGE("PGC: invalid ref in reg %d: 0x%08x\n",
1776 method->registersSize-1 - i, rval);
1777 } else
1778#endif
1779 {
1780
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001781 // LOG_SCAV("stack reference %u@%p", *framePtr, framePtr);
Carl Shapirod28668c2010-04-15 16:10:00 -07001782 /* dvmMarkObjectNonNull((Object *)rval); */
1783 scavengeReference((Object **) framePtr);
1784 }
1785 } else {
1786 /*
1787 * Null or non-reference, do nothing at all.
1788 */
1789#if WITH_EXTRA_GC_CHECKS > 1
1790 if (dvmIsValidObject((Object*) rval)) {
1791 /* this is normal, but we feel chatty */
1792 LOGD("PGC: ignoring valid ref in reg %d: 0x%08x\n",
1793 method->registersSize-1 - i, rval);
1794 }
1795#endif
1796 }
1797 ++framePtr;
1798 }
1799 dvmReleaseRegisterMapLine(pMap, regVector);
1800 }
1801 }
Carl Shapiro952e84a2010-05-06 14:35:29 -07001802 /* else this is a break frame and there is nothing to gray, or
Carl Shapirod28668c2010-04-15 16:10:00 -07001803 * this is a native method and the registers are just the "ins",
1804 * copied from various registers in the caller's set.
1805 */
1806
1807#if WITH_EXTRA_GC_CHECKS > 1
1808 first = false;
1809#endif
1810
1811 /* Don't fall into an infinite loop if things get corrupted.
1812 */
1813 assert((uintptr_t)saveArea->prevFrame > (uintptr_t)framePtr ||
1814 saveArea->prevFrame == NULL);
1815 framePtr = saveArea->prevFrame;
1816 }
1817}
1818
1819static void scavengeThread(Thread *thread)
1820{
1821 assert(thread->status != THREAD_RUNNING ||
1822 thread->isSuspended ||
1823 thread == dvmThreadSelf());
1824
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001825 // LOG_SCAV("scavengeThread(thread=%p)", thread);
Carl Shapirod28668c2010-04-15 16:10:00 -07001826
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001827 // LOG_SCAV("Scavenging threadObj=%p", thread->threadObj);
Carl Shapirod28668c2010-04-15 16:10:00 -07001828 scavengeReference(&thread->threadObj);
1829
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001830 // LOG_SCAV("Scavenging exception=%p", thread->exception);
Carl Shapirod28668c2010-04-15 16:10:00 -07001831 scavengeReference(&thread->exception);
1832
1833 scavengeThreadStack(thread);
1834}
1835
1836static void scavengeThreadList(void)
1837{
1838 Thread *thread;
1839
1840 dvmLockThreadList(dvmThreadSelf());
1841 thread = gDvm.threadList;
1842 while (thread) {
1843 scavengeThread(thread);
1844 thread = thread->next;
1845 }
1846 dvmUnlockThreadList();
1847}
1848
Carl Shapiro88b00352010-05-19 17:38:33 -07001849static void pinThreadStack(const Thread *thread)
Carl Shapiro583d64c2010-05-04 10:44:47 -07001850{
1851 const u4 *framePtr;
1852 const StackSaveArea *saveArea;
Carl Shapiro88b00352010-05-19 17:38:33 -07001853 Method *method;
Carl Shapiro583d64c2010-05-04 10:44:47 -07001854 const char *shorty;
1855 Object *obj;
1856 int i;
1857
1858 saveArea = NULL;
1859 framePtr = (const u4 *)thread->curFrame;
1860 for (; framePtr != NULL; framePtr = saveArea->prevFrame) {
1861 saveArea = SAVEAREA_FROM_FP(framePtr);
Carl Shapiro88b00352010-05-19 17:38:33 -07001862 method = (Method *)saveArea->method;
Carl Shapiro583d64c2010-05-04 10:44:47 -07001863 if (method != NULL && dvmIsNativeMethod(method)) {
1864 /*
Carl Shapiro88b00352010-05-19 17:38:33 -07001865 * This is native method, pin its arguments.
1866 *
Carl Shapiro952e84a2010-05-06 14:35:29 -07001867 * For purposes of graying references, we don't need to do
Carl Shapiro583d64c2010-05-04 10:44:47 -07001868 * anything here, because all of the native "ins" were copied
1869 * from registers in the caller's stack frame and won't be
1870 * changed (an interpreted method can freely use registers
1871 * with parameters like any other register, but natives don't
1872 * work that way).
1873 *
1874 * However, we need to ensure that references visible to
1875 * native methods don't move around. We can do a precise scan
1876 * of the arguments by examining the method signature.
1877 */
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001878 LOG_PIN("+++ native scan %s.%s\n",
1879 method->clazz->descriptor, method->name);
Carl Shapiro583d64c2010-05-04 10:44:47 -07001880 assert(method->registersSize == method->insSize);
1881 if (!dvmIsStaticMethod(method)) {
1882 /* grab the "this" pointer */
1883 obj = (Object *)*framePtr++;
1884 if (obj == NULL) {
1885 /*
1886 * This can happen for the "fake" entry frame inserted
1887 * for threads created outside the VM. There's no actual
1888 * call so there's no object. If we changed the fake
1889 * entry method to be declared "static" then this
1890 * situation should never occur.
1891 */
1892 } else {
1893 assert(dvmIsValidObject(obj));
1894 pinObject(obj);
1895 }
1896 }
1897 shorty = method->shorty+1; // skip return value
1898 for (i = method->registersSize - 1; i >= 0; i--, framePtr++) {
1899 switch (*shorty++) {
1900 case 'L':
1901 obj = (Object *)*framePtr;
1902 if (obj != NULL) {
1903 assert(dvmIsValidObject(obj));
1904 pinObject(obj);
1905 }
1906 break;
1907 case 'D':
1908 case 'J':
1909 framePtr++;
1910 break;
1911 default:
1912 /* 32-bit non-reference value */
1913 obj = (Object *)*framePtr; // debug, remove
1914 if (dvmIsValidObject(obj)) { // debug, remove
1915 /* if we see a lot of these, our scan might be off */
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001916 LOG_PIN("+++ did NOT pin obj %p\n", obj);
Carl Shapiro583d64c2010-05-04 10:44:47 -07001917 }
1918 break;
1919 }
1920 }
Carl Shapiro88b00352010-05-19 17:38:33 -07001921 } else if (method != NULL && !dvmIsNativeMethod(method)) {
1922 const RegisterMap* pMap = dvmGetExpandedRegisterMap(method);
1923 const u1* regVector = NULL;
1924
1925 LOGI("conservative : %s.%s\n", method->clazz->descriptor, method->name);
1926
1927 if (pMap != NULL) {
1928 int addr = saveArea->xtra.currentPc - method->insns;
1929 regVector = dvmRegisterMapGetLine(pMap, addr);
1930 }
1931 if (regVector == NULL) {
1932 /*
1933 * No register info for this frame, conservatively pin.
1934 */
1935 for (i = 0; i < method->registersSize; ++i) {
1936 u4 regValue = framePtr[i];
1937 if (regValue != 0 && (regValue & 0x3) == 0 && dvmIsValidObject((Object *)regValue)) {
1938 pinObject((Object *)regValue);
1939 }
1940 }
1941 }
Carl Shapiro583d64c2010-05-04 10:44:47 -07001942 }
1943 /*
1944 * Don't fall into an infinite loop if things get corrupted.
1945 */
1946 assert((uintptr_t)saveArea->prevFrame > (uintptr_t)framePtr ||
1947 saveArea->prevFrame == NULL);
1948 }
1949}
1950
1951static void pinThread(const Thread *thread)
Carl Shapirod28668c2010-04-15 16:10:00 -07001952{
1953 assert(thread != NULL);
1954 assert(thread->status != THREAD_RUNNING ||
1955 thread->isSuspended ||
1956 thread == dvmThreadSelf());
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001957 LOG_PIN("pinThread(thread=%p)", thread);
Carl Shapirod28668c2010-04-15 16:10:00 -07001958
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001959 LOG_PIN("Pin native method arguments");
Carl Shapiro88b00352010-05-19 17:38:33 -07001960 pinThreadStack(thread);
Carl Shapiro583d64c2010-05-04 10:44:47 -07001961
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001962 LOG_PIN("Pin internalLocalRefTable");
Carl Shapirod28668c2010-04-15 16:10:00 -07001963 pinReferenceTable(&thread->internalLocalRefTable);
1964
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001965 LOG_PIN("Pin jniLocalRefTable");
Carl Shapirod28668c2010-04-15 16:10:00 -07001966 pinReferenceTable(&thread->jniLocalRefTable);
1967
1968 /* Can the check be pushed into the promote routine? */
1969 if (thread->jniMonitorRefTable.table) {
Carl Shapiro8bb533e2010-05-06 15:35:27 -07001970 LOG_PIN("Pin jniMonitorRefTable");
Carl Shapirod28668c2010-04-15 16:10:00 -07001971 pinReferenceTable(&thread->jniMonitorRefTable);
1972 }
1973}
1974
1975static void pinThreadList(void)
1976{
1977 Thread *thread;
1978
1979 dvmLockThreadList(dvmThreadSelf());
1980 thread = gDvm.threadList;
1981 while (thread) {
1982 pinThread(thread);
1983 thread = thread->next;
1984 }
1985 dvmUnlockThreadList();
1986}
1987
1988/*
1989 * Heap block scavenging.
1990 */
1991
1992/*
1993 * Scavenge objects in the current block. Scavenging terminates when
1994 * the pointer reaches the highest address in the block or when a run
1995 * of zero words that continues to the highest address is reached.
1996 */
1997static void scavengeBlock(HeapSource *heapSource, size_t block)
1998{
1999 u1 *cursor;
2000 u1 *end;
2001 size_t size;
2002
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002003 LOG_SCAV("scavengeBlock(heapSource=%p,block=%zu)", heapSource, block);
Carl Shapirod28668c2010-04-15 16:10:00 -07002004
2005 assert(heapSource != NULL);
2006 assert(block < heapSource->totalBlocks);
2007 assert(heapSource->blockSpace[block] == BLOCK_TO_SPACE);
2008
2009 cursor = blockToAddress(heapSource, block);
2010 end = cursor + BLOCK_SIZE;
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002011 LOG_SCAV("scavengeBlock start=%p, end=%p", cursor, end);
Carl Shapirod28668c2010-04-15 16:10:00 -07002012
2013 /* Parse and scavenge the current block. */
2014 size = 0;
2015 while (cursor < end) {
2016 u4 word = *(u4 *)cursor;
2017 if (word != 0) {
Carl Shapiro2396fda2010-05-03 20:14:14 -07002018 scavengeObject((Object *)cursor);
2019 size = objectSize((Object *)cursor);
Carl Shapirod28668c2010-04-15 16:10:00 -07002020 size = alignUp(size, ALLOC_ALIGNMENT);
2021 cursor += size;
2022 } else if (word == 0 && cursor == (u1 *)gDvm.unlinkedJavaLangClass) {
2023 size = sizeof(ClassObject);
2024 cursor += size;
2025 } else {
2026 /* Check for padding. */
2027 while (*(u4 *)cursor == 0) {
2028 cursor += 4;
2029 if (cursor == end) break;
2030 }
2031 /* Punt if something went wrong. */
2032 assert(cursor == end);
2033 }
2034 }
2035}
2036
Carl Shapiro2396fda2010-05-03 20:14:14 -07002037static size_t objectSize(const Object *obj)
Carl Shapirod28668c2010-04-15 16:10:00 -07002038{
2039 size_t size;
2040
Carl Shapiro2396fda2010-05-03 20:14:14 -07002041 assert(obj != NULL);
2042 assert(obj->clazz != NULL);
Carl Shapirod28668c2010-04-15 16:10:00 -07002043 if (obj->clazz == gDvm.classJavaLangClass ||
2044 obj->clazz == gDvm.unlinkedJavaLangClass) {
2045 size = dvmClassObjectSize((ClassObject *)obj);
2046 } else if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISARRAY)) {
2047 size = dvmArrayObjectSize((ArrayObject *)obj);
2048 } else {
Carl Shapiro2396fda2010-05-03 20:14:14 -07002049 assert(obj->clazz->objectSize != 0);
Carl Shapirod28668c2010-04-15 16:10:00 -07002050 size = obj->clazz->objectSize;
2051 }
Carl Shapiro2396fda2010-05-03 20:14:14 -07002052 if (LW_HASH_STATE(obj->lock) == LW_HASH_STATE_HASHED_AND_MOVED) {
2053 size += sizeof(u4);
2054 }
Carl Shapirod28668c2010-04-15 16:10:00 -07002055 return size;
2056}
2057
2058static void verifyBlock(HeapSource *heapSource, size_t block)
2059{
2060 u1 *cursor;
2061 u1 *end;
2062 size_t size;
2063
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002064 // LOG_VER("verifyBlock(heapSource=%p,block=%zu)", heapSource, block);
Carl Shapirod28668c2010-04-15 16:10:00 -07002065
2066 assert(heapSource != NULL);
2067 assert(block < heapSource->totalBlocks);
2068 assert(heapSource->blockSpace[block] == BLOCK_TO_SPACE);
2069
2070 cursor = blockToAddress(heapSource, block);
2071 end = cursor + BLOCK_SIZE;
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002072 // LOG_VER("verifyBlock start=%p, end=%p", cursor, end);
Carl Shapirod28668c2010-04-15 16:10:00 -07002073
2074 /* Parse and scavenge the current block. */
2075 size = 0;
2076 while (cursor < end) {
2077 u4 word = *(u4 *)cursor;
2078 if (word != 0) {
2079 dvmVerifyObject((Object *)cursor);
2080 size = objectSize((Object *)cursor);
2081 size = alignUp(size, ALLOC_ALIGNMENT);
2082 cursor += size;
2083 } else if (word == 0 && cursor == (u1 *)gDvm.unlinkedJavaLangClass) {
2084 size = sizeof(ClassObject);
2085 cursor += size;
2086 } else {
2087 /* Check for padding. */
2088 while (*(unsigned long *)cursor == 0) {
2089 cursor += 4;
2090 if (cursor == end) break;
2091 }
2092 /* Punt if something went wrong. */
2093 assert(cursor == end);
2094 }
2095 }
2096}
2097
2098static void describeBlockQueue(const HeapSource *heapSource)
2099{
2100 size_t block, count;
2101 char space;
2102
2103 block = heapSource->queueHead;
2104 count = 0;
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002105 LOG_SCAV(">>> describeBlockQueue(heapSource=%p)", heapSource);
Carl Shapirod28668c2010-04-15 16:10:00 -07002106 /* Count the number of blocks enqueued. */
2107 while (block != QUEUE_TAIL) {
2108 block = heapSource->blockQueue[block];
2109 ++count;
2110 }
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002111 LOG_SCAV("blockQueue %zu elements, enqueued %zu",
Carl Shapirod28668c2010-04-15 16:10:00 -07002112 count, heapSource->queueSize);
2113 block = heapSource->queueHead;
2114 while (block != QUEUE_TAIL) {
2115 space = heapSource->blockSpace[block];
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002116 LOG_SCAV("block=%zu@%p,space=%zu", block, blockToAddress(heapSource,block), space);
Carl Shapirod28668c2010-04-15 16:10:00 -07002117 block = heapSource->blockQueue[block];
2118 }
2119
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002120 LOG_SCAV("<<< describeBlockQueue(heapSource=%p)", heapSource);
Carl Shapirod28668c2010-04-15 16:10:00 -07002121}
2122
2123/*
2124 * Blackens promoted objects.
2125 */
2126static void scavengeBlockQueue(void)
2127{
2128 HeapSource *heapSource;
2129 size_t block;
2130
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002131 LOG_SCAV(">>> scavengeBlockQueue()");
Carl Shapirod28668c2010-04-15 16:10:00 -07002132 heapSource = gDvm.gcHeap->heapSource;
2133 describeBlockQueue(heapSource);
2134 while (heapSource->queueHead != QUEUE_TAIL) {
2135 block = heapSource->queueHead;
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002136 LOG_SCAV("Dequeueing block %zu\n", block);
Carl Shapirod28668c2010-04-15 16:10:00 -07002137 scavengeBlock(heapSource, block);
2138 heapSource->queueHead = heapSource->blockQueue[block];
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002139 LOG_SCAV("New queue head is %zu\n", heapSource->queueHead);
Carl Shapirod28668c2010-04-15 16:10:00 -07002140 }
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002141 LOG_SCAV("<<< scavengeBlockQueue()");
Carl Shapirod28668c2010-04-15 16:10:00 -07002142}
2143
2144/*
2145 * Scan the block list and verify all blocks that are marked as being
2146 * in new space. This should be parametrized so we can invoke this
2147 * routine outside of the context of a collection.
2148 */
2149static void verifyNewSpace(void)
2150{
2151 HeapSource *heapSource;
2152 size_t i;
2153 size_t c0, c1, c2, c7;
2154
2155 c0 = c1 = c2 = c7 = 0;
2156 heapSource = gDvm.gcHeap->heapSource;
2157 for (i = 0; i < heapSource->totalBlocks; ++i) {
2158 switch (heapSource->blockSpace[i]) {
2159 case BLOCK_FREE: ++c0; break;
2160 case BLOCK_TO_SPACE: ++c1; break;
2161 case BLOCK_FROM_SPACE: ++c2; break;
2162 case BLOCK_CONTINUED: ++c7; break;
2163 default: assert(!"reached");
2164 }
2165 }
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002166 LOG_VER("Block Demographics: "
2167 "Free=%zu,ToSpace=%zu,FromSpace=%zu,Continued=%zu",
2168 c0, c1, c2, c7);
Carl Shapirod28668c2010-04-15 16:10:00 -07002169 for (i = 0; i < heapSource->totalBlocks; ++i) {
2170 if (heapSource->blockSpace[i] != BLOCK_TO_SPACE) {
2171 continue;
2172 }
2173 verifyBlock(heapSource, i);
2174 }
2175}
2176
2177static void scavengeGlobals(void)
2178{
2179 scavengeReference((Object **)(void *)&gDvm.classJavaLangClass);
2180 scavengeReference((Object **)(void *)&gDvm.classJavaLangClassArray);
2181 scavengeReference((Object **)(void *)&gDvm.classJavaLangError);
2182 scavengeReference((Object **)(void *)&gDvm.classJavaLangObject);
2183 scavengeReference((Object **)(void *)&gDvm.classJavaLangObjectArray);
2184 scavengeReference((Object **)(void *)&gDvm.classJavaLangRuntimeException);
2185 scavengeReference((Object **)(void *)&gDvm.classJavaLangString);
2186 scavengeReference((Object **)(void *)&gDvm.classJavaLangThread);
2187 scavengeReference((Object **)(void *)&gDvm.classJavaLangVMThread);
2188 scavengeReference((Object **)(void *)&gDvm.classJavaLangThreadGroup);
2189 scavengeReference((Object **)(void *)&gDvm.classJavaLangThrowable);
2190 scavengeReference((Object **)(void *)&gDvm.classJavaLangStackTraceElement);
2191 scavengeReference((Object **)(void *)&gDvm.classJavaLangStackTraceElementArray);
2192 scavengeReference((Object **)(void *)&gDvm.classJavaLangAnnotationAnnotationArray);
2193 scavengeReference((Object **)(void *)&gDvm.classJavaLangAnnotationAnnotationArrayArray);
2194 scavengeReference((Object **)(void *)&gDvm.classJavaLangReflectAccessibleObject);
2195 scavengeReference((Object **)(void *)&gDvm.classJavaLangReflectConstructor);
2196 scavengeReference((Object **)(void *)&gDvm.classJavaLangReflectConstructorArray);
2197 scavengeReference((Object **)(void *)&gDvm.classJavaLangReflectField);
2198 scavengeReference((Object **)(void *)&gDvm.classJavaLangReflectFieldArray);
2199 scavengeReference((Object **)(void *)&gDvm.classJavaLangReflectMethod);
2200 scavengeReference((Object **)(void *)&gDvm.classJavaLangReflectMethodArray);
2201 scavengeReference((Object **)(void *)&gDvm.classJavaLangReflectProxy);
2202 scavengeReference((Object **)(void *)&gDvm.classJavaLangExceptionInInitializerError);
2203 scavengeReference((Object **)(void *)&gDvm.classJavaLangRefReference);
2204 scavengeReference((Object **)(void *)&gDvm.classJavaNioReadWriteDirectByteBuffer);
2205 scavengeReference((Object **)(void *)&gDvm.classJavaSecurityAccessController);
2206 scavengeReference((Object **)(void *)&gDvm.classOrgApacheHarmonyLangAnnotationAnnotationFactory);
2207 scavengeReference((Object **)(void *)&gDvm.classOrgApacheHarmonyLangAnnotationAnnotationMember);
2208 scavengeReference((Object **)(void *)&gDvm.classOrgApacheHarmonyLangAnnotationAnnotationMemberArray);
2209 scavengeReference((Object **)(void *)&gDvm.classOrgApacheHarmonyNioInternalDirectBuffer);
2210 scavengeReference((Object **)(void *)&gDvm.classArrayBoolean);
2211 scavengeReference((Object **)(void *)&gDvm.classArrayChar);
2212 scavengeReference((Object **)(void *)&gDvm.classArrayFloat);
2213 scavengeReference((Object **)(void *)&gDvm.classArrayDouble);
2214 scavengeReference((Object **)(void *)&gDvm.classArrayByte);
2215 scavengeReference((Object **)(void *)&gDvm.classArrayShort);
2216 scavengeReference((Object **)(void *)&gDvm.classArrayInt);
2217 scavengeReference((Object **)(void *)&gDvm.classArrayLong);
2218}
2219
2220void describeHeap(void)
2221{
2222 HeapSource *heapSource;
2223
2224 heapSource = gDvm.gcHeap->heapSource;
2225 describeBlocks(heapSource);
2226}
2227
2228/*
2229 * The collection interface. Collection has a few distinct phases.
2230 * The first is flipping AKA condemning AKA whitening the heap. The
2231 * second is to promote all objects which are pointed to by pinned or
2232 * ambiguous references. The third phase is tracing from the stacks,
2233 * registers and various globals. Lastly, a verification of the heap
2234 * is performed. The last phase should be optional.
2235 */
2236void dvmScavengeRoots(void) /* Needs a new name badly */
2237{
Carl Shapirod28668c2010-04-15 16:10:00 -07002238 GcHeap *gcHeap;
2239
2240 {
2241 size_t alloc, unused, total;
2242
2243 room(&alloc, &unused, &total);
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002244 LOG_SCAV("BEFORE GC: %zu alloc, %zu free, %zu total.",
2245 alloc, unused, total);
Carl Shapirod28668c2010-04-15 16:10:00 -07002246 }
2247
2248 gcHeap = gDvm.gcHeap;
2249 dvmHeapSourceFlip();
2250
2251 /*
2252 * Promote blocks with stationary objects.
2253 */
Carl Shapirod28668c2010-04-15 16:10:00 -07002254 pinThreadList();
Carl Shapirod28668c2010-04-15 16:10:00 -07002255 pinReferenceTable(&gDvm.jniGlobalRefTable);
Carl Shapirod28668c2010-04-15 16:10:00 -07002256 pinReferenceTable(&gDvm.jniPinRefTable);
Carl Shapirod28668c2010-04-15 16:10:00 -07002257 pinReferenceTable(&gcHeap->nonCollectableRefs);
Carl Shapirod28668c2010-04-15 16:10:00 -07002258 pinHashTableEntries(gDvm.loadedClasses);
Carl Shapirod28668c2010-04-15 16:10:00 -07002259 pinPrimitiveClasses();
Carl Shapirod28668c2010-04-15 16:10:00 -07002260 pinInternedStrings();
2261
2262 // describeBlocks(gcHeap->heapSource);
2263
2264 /*
2265 * Create first, open new-space page right here.
2266 */
2267
2268 /* Reset allocation to an unallocated block. */
2269 gDvm.gcHeap->heapSource->allocPtr = allocateBlocks(gDvm.gcHeap->heapSource, 1);
2270 gDvm.gcHeap->heapSource->allocLimit = gDvm.gcHeap->heapSource->allocPtr + BLOCK_SIZE;
2271 /*
2272 * Hack: promote the empty block allocated above. If the
2273 * promotions that occurred above did not actually gray any
2274 * objects, the block queue may be empty. We must force a
2275 * promotion to be safe.
2276 */
2277 promoteBlockByAddr(gDvm.gcHeap->heapSource, gDvm.gcHeap->heapSource->allocPtr);
2278
2279 /*
2280 * Scavenge blocks and relocate movable objects.
2281 */
2282
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002283 LOG_SCAV("Scavenging gDvm.threadList");
Carl Shapirod28668c2010-04-15 16:10:00 -07002284 scavengeThreadList();
2285
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002286 LOG_SCAV("Scavenging gDvm.gcHeap->referenceOperations");
Carl Shapiro7800c092010-05-11 13:46:29 -07002287 scavengeLargeHeapRefTable(gcHeap->referenceOperations, true);
Carl Shapirod28668c2010-04-15 16:10:00 -07002288
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002289 LOG_SCAV("Scavenging gDvm.gcHeap->pendingFinalizationRefs");
Carl Shapiro7800c092010-05-11 13:46:29 -07002290 scavengeLargeHeapRefTable(gcHeap->pendingFinalizationRefs, false);
Carl Shapirod28668c2010-04-15 16:10:00 -07002291
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002292 LOG_SCAV("Scavenging random global stuff");
Carl Shapirod28668c2010-04-15 16:10:00 -07002293 scavengeReference(&gDvm.outOfMemoryObj);
2294 scavengeReference(&gDvm.internalErrorObj);
2295 scavengeReference(&gDvm.noClassDefFoundErrorObj);
2296
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002297 LOG_SCAV("Scavenging gDvm.dbgRegistry");
Carl Shapirod28668c2010-04-15 16:10:00 -07002298 scavengeHashTable(gDvm.dbgRegistry);
2299
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002300 // LOG_SCAV("Scavenging gDvm.internedString");
Carl Shapirod28668c2010-04-15 16:10:00 -07002301 scavengeInternedStrings();
2302
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002303 LOG_SCAV("Root scavenge has completed.");
Carl Shapirod28668c2010-04-15 16:10:00 -07002304
2305 scavengeBlockQueue();
2306
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002307 LOG_SCAV("Re-snap global class pointers.");
Carl Shapirod28668c2010-04-15 16:10:00 -07002308 scavengeGlobals();
2309
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002310 LOG_SCAV("New space scavenge has completed.");
Carl Shapirod28668c2010-04-15 16:10:00 -07002311
2312 /*
Carl Shapiro952e84a2010-05-06 14:35:29 -07002313 * Process reference objects in strength order.
2314 */
2315
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002316 LOG_REF("Processing soft references...");
Carl Shapiro952e84a2010-05-06 14:35:29 -07002317 preserveSoftReferences(&gDvm.gcHeap->softReferences);
2318 clearWhiteReferences(&gDvm.gcHeap->softReferences);
2319
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002320 LOG_REF("Processing weak references...");
Carl Shapiro952e84a2010-05-06 14:35:29 -07002321 clearWhiteReferences(&gDvm.gcHeap->weakReferences);
2322
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002323 LOG_REF("Finding finalizations...");
Carl Shapiro952e84a2010-05-06 14:35:29 -07002324 processFinalizableReferences();
2325
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002326 LOG_REF("Processing f-reachable soft references...");
Carl Shapiro952e84a2010-05-06 14:35:29 -07002327 clearWhiteReferences(&gDvm.gcHeap->softReferences);
2328
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002329 LOG_REF("Processing f-reachable weak references...");
Carl Shapiro952e84a2010-05-06 14:35:29 -07002330 clearWhiteReferences(&gDvm.gcHeap->weakReferences);
2331
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002332 LOG_REF("Processing phantom references...");
Carl Shapiro952e84a2010-05-06 14:35:29 -07002333 clearWhiteReferences(&gDvm.gcHeap->phantomReferences);
2334
2335 /*
Carl Shapirod28668c2010-04-15 16:10:00 -07002336 * Verify the stack and heap.
2337 */
Carl Shapirof5718252010-05-11 20:55:13 -07002338 dvmVerifyRoots();
Carl Shapirod28668c2010-04-15 16:10:00 -07002339 verifyNewSpace();
2340
Carl Shapirod28668c2010-04-15 16:10:00 -07002341 //describeBlocks(gcHeap->heapSource);
2342
2343 clearFromSpace(gcHeap->heapSource);
2344
2345 {
2346 size_t alloc, rem, total;
2347
2348 room(&alloc, &rem, &total);
Carl Shapiro8bb533e2010-05-06 15:35:27 -07002349 LOG_SCAV("AFTER GC: %zu alloc, %zu free, %zu total.", alloc, rem, total);
Carl Shapirod28668c2010-04-15 16:10:00 -07002350 }
2351}
2352
2353/*
2354 * Interface compatibility routines.
2355 */
2356
2357void dvmClearWhiteRefs(Object **list)
2358{
Carl Shapiro952e84a2010-05-06 14:35:29 -07002359 /* do nothing */
Carl Shapirod28668c2010-04-15 16:10:00 -07002360 assert(*list == NULL);
2361}
2362
2363void dvmHandleSoftRefs(Object **list)
2364{
Carl Shapiro952e84a2010-05-06 14:35:29 -07002365 /* do nothing */
Carl Shapirod28668c2010-04-15 16:10:00 -07002366 assert(*list == NULL);
2367}
2368
2369bool dvmHeapBeginMarkStep(GcMode mode)
2370{
2371 /* do nothing */
2372 return true;
2373}
2374
2375void dvmHeapFinishMarkStep(void)
2376{
2377 /* do nothing */
2378}
2379
2380void dvmHeapMarkRootSet(void)
2381{
2382 /* do nothing */
2383}
2384
2385void dvmHeapScanMarkedObjects(void)
2386{
2387 dvmScavengeRoots();
2388}
2389
2390void dvmHeapScheduleFinalizations(void)
2391{
2392 /* do nothing */
2393}
2394
2395void dvmHeapSweepUnmarkedObjects(GcMode mode, int *numFreed, size_t *sizeFreed)
2396{
Carl Shapiro703a2f32010-05-12 23:11:37 -07002397 *numFreed = 0;
2398 *sizeFreed = 0;
Carl Shapirod28668c2010-04-15 16:10:00 -07002399 /* do nothing */
2400}
2401
2402void dvmMarkObjectNonNull(const Object *obj)
2403{
2404 assert(!"implemented");
2405}