
Android 4.0 Compatibility Definition
Revision 2
Last updated: January 25, 2012

Copyright © 2011, Google Inc. All rights reserved.
compatibility@android.com

Table of Contents
1. Introduction
2. Resources
3. Software

3.1. Managed API Compatibility
3.2. Soft API Compatibility

3.2.1. Permissions
3.2.2. Build Parameters
3.2.3. Intent Compatibility

3.2.3.1. Core Application Intents
3.2.3.2. Intent Overrides
3.2.3.3. Intent Namespaces
3.2.3.4. Broadcast Intents

3.3. Native API Compatibility
3.3.1 Application Binary Interfaces

3.4. Web Compatibility
3.4.1. WebView Compatibility
3.4.2. Browser Compatibility

3.5. API Behavioral Compatibility
3.6. API Namespaces
3.7. Virtual Machine Compatibility
3.8. User Interface Compatibility

3.8.1. Widgets
3.8.2. Notifications
3.8.3. Search
3.8.4. Toasts
3.8.5. Themes
3.8.6. Live Wallpapers
3.8.7. Recent Application Display
3.8.8. Input Management Settings

3.9 Device Administration
3.10 Accessibility
3.11 Text-to-Speech

4. Application Packaging Compatibility
5. Multimedia Compatibility

5.1. Media Codecs
5.2. Video Encoding
5.3. Audio Recording
5.4. Audio Latency
5.5. Network Protocols

6. Developer Tool Compatibility
7. Hardware Compatibility

7.1. Display and Graphics
7.1.1. Screen Configuration
7.1.2. Display Metrics
7.1.3. Screen Orientation
7.1.4. 2D and 3D Graphics Accleration
7.1.5. Legacy Application Compatibility Mode
7.1.6. Screen Types
7.1.7. Screen Technology

7.2. Input Devices
7.2.1. Keyboard
7.2.2. Non-touch Navigation
7.2.3. Navigation keys
7.2.4. Touchscreen input

7.3. Sensors
7.3.1. Accelerometer
7.3.2. Magnetometer
7.3.3. GPS
7.3.4. Gyroscope

7.3.5. Barometer
7.3.6. Thermometer
7.3.7. Photometer
7.3.8. Proximity Sensor

7.4. Data Connectivity
7.4.1. Telephony
7.4.2. IEEE 802.11 (WiFi)
7.4.3. Bluetooth
7.4.4. Near-Field Communications
7.4.5. Minimum Network Capability

7.5. Cameras
7.5.1. Rear-Facing Camera
7.5.2. Front-Facing Camera
7.5.3. Camera API Behavior
7.5.4. Camera Orientation

7.6. Memory and Storage
7.6.1. Minimum Memory and Storage
7.6.2. Application Shared Storage

7.7. USB
8. Performance Compatibility
9. Security Model Compatibility

9.1. Permissions
9.2. UID and Process Isolation
9.3. Filesystem Permissions
9.4. Alternate Execution Environments

10. Software Compatibility Testing
10.1. Compatibility Test Suite
10.2. CTS Verifier
10.3. Reference Applications

11. Updatable Software
12. Contact Us
Appendix A - Bluetooth Test Procedure

1. Introduction
This document enumerates the requirements that must be met in order for devices to be compatible with Android 4.0.

The use of "must", "must not", "required", "shall", "shall not", "should", "should not", "recommended", "may" and
"optional" is per the IETF standard defined in RFC2119 [Resources, 1].

As used in this document, a "device implementer" or "implementer" is a person or organization developing a
hardware/software solution running Android 4.0. A "device implementation" or "implementation" is the
hardware/software solution so developed.

To be considered compatible with Android 4.0, device implementations MUST meet the requirements presented in
this Compatibility Definition, including any documents incorporated via reference.

Where this definition or the software tests described in Section 10 is silent, ambiguous, or incomplete, it is the
responsibility of the device implementer to ensure compatibility with existing implementations.

For this reason, the Android Open Source Project [Resources, 3] is both the reference and preferred implementation
of Android. Device implementers are strongly encouraged to base their implementations to the greatest extent
possible on the "upstream" source code available from the Android Open Source Project. While some components
can hypothetically be replaced with alternate implementations this practice is strongly discouraged, as passing the
software tests will become substantially more difficult. It is the implementer's responsibility to ensure full behavioral
compatibility with the standard Android implementation, including and beyond the Compatibility Test Suite. Finally,
note that certain component substitutions and modifications are explicitly forbidden by this document.

2. Resources
1. IETF RFC2119 Requirement Levels: http://www.ietf.org/rfc/rfc2119.txt
2. Android Compatibility Program Overview: http://source.android.com/compatibility/index.html
3. Android Open Source Project: http://source.android.com/
4. API definitions and documentation: http://developer.android.com/reference/packages.html
5. Android Permissions reference: http://developer.android.com/reference/android/Manifest.permission.html
6. android.os.Build reference: http://developer.android.com/reference/android/os/Build.html
7. Android 4.0 allowed version strings: http://source.android.com/compatibility/4.0/versions.html
8. Renderscript: http://developer.android.com/guide/topics/graphics/renderscript.html
9. Hardware Acceleration: http://developer.android.com/guide/topics/graphics/hardware-accel.html

10. android.webkit.WebView class: http://developer.android.com/reference/android/webkit/WebView.html
11. HTML5: http://www.whatwg.org/specs/web-apps/current-work/multipage/
12. HTML5 offline capabilities: http://dev.w3.org/html5/spec/Overview.html#offline
13. HTML5 video tag: http://dev.w3.org/html5/spec/Overview.html#video
14. HTML5/W3C geolocation API: http://www.w3.org/TR/geolocation-API/
15. HTML5/W3C webdatabase API: http://www.w3.org/TR/webdatabase/
16. HTML5/W3C IndexedDB API: http://www.w3.org/TR/IndexedDB/
17. Dalvik Virtual Machine specification: available in the Android source code, at dalvik/docs
18. AppWidgets: http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
19. Notifications: http://developer.android.com/guide/topics/ui/notifiers/notifications.html
20. Application Resources: http://code.google.com/android/reference/available-resources.html
21. Status Bar icon style guide: http://developer.android.com/guide/practices/ui_guideline

/icon_design.html#statusbarstructure
22. Search Manager: http://developer.android.com/reference/android/app/SearchManager.html
23. Toasts: http://developer.android.com/reference/android/widget/Toast.html
24. Themes: http://developer.android.com/guide/topics/ui/themes.html
25. R.style class: http://developer.android.com/reference/android/R.style.html
26. Live Wallpapers: http://developer.android.com/resources/articles/live-wallpapers.html
27. Android Device Administration: http://developer.android.com/guide/topics/admin/device-admin.html
28. android.app.admin.DevicePolicyManager class:

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
29. Android Accessibility Service APIs:

http://developer.android.com/reference/android/accessibilityservice/package-summary.html
30. Android Accessibility APIs: http://developer.android.com/reference/android/view/accessibility/package-

summary.html
31. Eyes Free project: http://code.google.com/p/eyes-free
32. Text-To-Speech APIs: http://developer.android.com/reference/android/speech/tts/package-summary.html
33. Reference tool documentation (for adb, aapt, ddms):

http://developer.android.com/guide/developing/tools/index.html
34. Android apk file description: http://developer.android.com/guide/topics/fundamentals.html
35. Manifest files: http://developer.android.com/guide/topics/manifest/manifest-intro.html
36. Monkey testing tool: http://developer.android.com/guide/developing/tools/monkey.html
37. Android android.content.pm.PackageManager class and Hardware Features List:

http://developer.android.com/reference/android/content/pm/PackageManager.html
38. Supporting Multiple Screens: http://developer.android.com/guide/practices/screens_support.html
39. android.util.DisplayMetrics: http://developer.android.com/reference/android/util/DisplayMetrics.html
40. android.content.res.Configuration: http://developer.android.com/reference/android/content/res/Configuration.html

41. android.hardware.SensorEvent: http://developer.android.com/reference/android/hardware/SensorEvent.html
42. Bluetooth API: http://developer.android.com/reference/android/bluetooth/package-summary.html
43. NDEF Push Protocol: http://source.android.com/compatibility/ndef-push-protocol.pdf
44. MIFARE MF1S503X: http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
45. MIFARE MF1S703X: http://www.nxp.com/documents/data_sheet/MF1S703x.pdf
46. MIFARE MF0ICU1: http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf
47. MIFARE MF0ICU2: http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf
48. MIFARE AN130511: http://www.nxp.com/documents/application_note/AN130511.pdf
49. MIFARE AN130411: http://www.nxp.com/documents/application_note/AN130411.pdf
50. Camera orientation API:

http://developer.android.com/reference/android/hardware/Camera.html#setDisplayOrientation(int)
51. android.hardware.Camera: http://developer.android.com/reference/android/hardware/Camera.html
52. Android Open Accessories: http://developer.android.com/guide/topics/usb/accessory.html
53. USB Host API: http://developer.android.com/guide/topics/usb/host.html
54. Android Security and Permissions reference: http://developer.android.com/guide/topics/security/security.html
55. Apps for Android: http://code.google.com/p/apps-for-android
56. android.app.DownloadManager class:

http://developer.android.com/reference/android/app/DownloadManager.html
57. Android File Transfer: http://www.android.com/filetransfer
58. Android Media Formats: http://developer.android.com/guide/appendix/media-formats.html
59. HTTP Live Streaming Draft Protocol: http://tools.ietf.org/html/draft-pantos-http-live-streaming-03

Many of these resources are derived directly or indirectly from the Android 4.0 SDK, and will be functionally identical
to the information in that SDK's documentation. In any cases where this Compatibility Definition or the Compatibility
Test Suite disagrees with the SDK documentation, the SDK documentation is considered authoritative. Any technical
details provided in the references included above are considered by inclusion to be part of this Compatibility
Definition.

3. Software
3.1. Managed API Compatibility

The managed (Dalvik-based) execution environment is the primary vehicle for Android applications. The Android
application programming interface (API) is the set of Android platform interfaces exposed to applications running in
the managed VM environment. Device implementations MUST provide complete implementations, including all
documented behaviors, of any documented API exposed by the Android 4.0 SDK [Resources, 4].

Device implementations MUST NOT omit any managed APIs, alter API interfaces or signatures, deviate from the
documented behavior, or include no-ops, except where specifically allowed by this Compatibility Definition.

This Compatibility Definition permits some types of hardware for which Android includes APIs to be omitted by device
implementations. In such cases, the APIs MUST still be present and behave in a reasonable way. See Section 7 for
specific requirements for this scenario.

3.2. Soft API Compatibility

In addition to the managed APIs from Section 3.1, Android also includes a significant runtime-only "soft" API, in the
form of such things such as Intents, permissions, and similar aspects of Android applications that cannot be enforced
at application compile time.

3.2.1. Permissions

Device implementers MUST support and enforce all permission constants as documented by the Permission
reference page [Resources, 5]. Note that Section 10 lists additional requirements related to the Android security
model.

3.2.3. Build Parameters

The Android APIs include a number of constants on the android.os.Build class [Resources, 6] that are intended to
describe the current device. To provide consistent, meaningful values across device implementations, the table below
includes additional restrictions on the formats of these values to which device implementations MUST conform.

Parameter Comments

android.os.Build.VERSION.RELEASE
The version of the currently-executing Android system, in human-readable format. This field MUST have
one of the string values defined in [Resources, 7].

android.os.Build.VERSION.SDK
The version of the currently-executing Android system, in a format accessible to third-party application
code. For Android 4.0.1 - 4.0.2, this field MUST have the integer value 14. For Android 4.0.3 or greater,
this field MUST have the integer value 15.

android.os.Build.VERSION.SDK_INT
The version of the currently-executing Android system, in a format accessible to third-party application
code. For Android 4.0.1 - 4.0.2, this field MUST have the integer value 14. For Android 4.0.3 or greater,
this field MUST have the integer value 15.

android.os.Build.VERSION.INCREMENTAL

A value chosen by the device implementer designating the specific build of the currently-executing
Android system, in human-readable format. This value MUST NOT be re-used for different builds made
available to end users. A typical use of this field is to indicate which build number or source-control
change identifier was used to generate the build. There are no requirements on the specific format of this
field, except that it MUST NOT be null or the empty string ("").

android.os.Build.BOARD

A value chosen by the device implementer identifying the specific internal hardware used by the device,
in human-readable format. A possible use of this field is to indicate the specific revision of the board
powering the device. The value of this field MUST be encodable as 7-bit ASCII and match the regular
expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.BRAND

A value chosen by the device implementer identifying the name of the company, organization, individual,
etc. who produced the device, in human-readable format. A possible use of this field is to indicate the
OEM and/or carrier who sold the device. The value of this field MUST be encodable as 7-bit ASCII and
match the regular expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.CPU_ABI
The name of the instruction set (CPU type + ABI convention) of native code. See Section 3.3: Native API
Compatibility.

android.os.Build.CPU_ABI2
The name of the second instruction set (CPU type + ABI convention) of native code. See Section 3.3:
Native API Compatibility.

android.os.Build.DEVICE
A value chosen by the device implementer identifying the specific configuration or revision of the body
(sometimes called "industrial design") of the device. The value of this field MUST be encodable as 7-bit
ASCII and match the regular expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.FINGERPRINT

A string that uniquely identifies this build. It SHOULD be reasonably human-readable. It MUST follow this
template:
$(BRAND)/$(PRODUCT)/$(DEVICE):$(VERSION.RELEASE)/$(ID)/$(VERSION.INCREMENTAL):$(TYPE)/$(TAGS)
For example:
acme/mydevice/generic:4.0/IRK77/3359:userdebug/test-keys
The fingerprint MUST NOT include whitespace characters. If other fields included in the template above
have whitespace characters, they MUST be replaced in the build fingerprint with another character, such
as the underscore ("_") character. The value of this field MUST be encodable as 7-bit ASCII.

android.os.Build.HARDWARE
The name of the hardware (from the kernel command line or /proc). It SHOULD be reasonably human-
readable. The value of this field MUST be encodable as 7-bit ASCII and match the regular expression
"^[a-zA-Z0-9.,_-]+$".

android.os.Build.HOST
A string that uniquely identifies the host the build was built on, in human readable format. There are no
requirements on the specific format of this field, except that it MUST NOT be null or the empty string ("").

android.os.Build.ID

An identifier chosen by the device implementer to refer to a specific release, in human readable format.
This field can be the same as android.os.Build.VERSION.INCREMENTAL, but SHOULD be a value
sufficiently meaningful for end users to distinguish between software builds. The value of this field MUST
be encodable as 7-bit ASCII and match the regular expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.MANUFACTURER
The trade name of the Original Equipment Manufacturer (OEM) of the product. There are no requirements
on the specific format of this field, except that it MUST NOT be null or the empty string ("").

android.os.Build.MODEL

A value chosen by the device implementer containing the name of the device as known to the end user.
This SHOULD be the same name under which the device is marketed and sold to end users. There are
no requirements on the specific format of this field, except that it MUST NOT be null or the empty string
("").

android.os.Build.PRODUCT

A value chosen by the device implementer containing the development name or code name of the
product (SKU). MUST be human-readable, but is not necessarily intended for view by end users. The
value of this field MUST be encodable as 7-bit ASCII and match the regular expression "^[a-zA-Z0-
9.,_-]+$".

android.os.Build.SERIAL
A hardware serial number, if available. The value of this field MUST be encodable as 7-bit ASCII and
match the regular expression "^([a-zA-Z0-9]{0,20})$".

android.os.Build.TAGS
A comma-separated list of tags chosen by the device implementer that further distinguish the build. For
example, "unsigned,debug". The value of this field MUST be encodable as 7-bit ASCII and match the
regular expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.TIME A value representing the timestamp of when the build occurred.

android.os.Build.TYPE

A value chosen by the device implementer specifying the runtime configuration of the build. This field
SHOULD have one of the values corresponding to the three typical Android runtime configurations:
"user", "userdebug", or "eng". The value of this field MUST be encodable as 7-bit ASCII and match the
regular expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.USER
A name or user ID of the user (or automated user) that generated the build. There are no requirements on
the specific format of this field, except that it MUST NOT be null or the empty string ("").

3.2.3. Intent Compatibility

Device implementations MUST honor Android's loose-coupling Intent system, as described in the sections below. By
"honored", it is meant that the device implementer MUST provide an Android Activity or Service that specifies a

matching Intent filter and binds to and implements correct behavior for each specified Intent pattern.

3.2.3.1. Core Application Intents

The Android upstream project defines a number of core applications, such as contacts, calendar, photo gallery, music
player, and so on. Device implementers MAY replace these applications with alternative versions.

However, any such alternative versions MUST honor the same Intent patterns provided by the upstream project. For
example, if a device contains an alternative music player, it must still honor the Intent pattern issued by third-party
applications to pick a song.

The following applications are considered core Android system applications:

Desk Clock
Browser
Calendar
Contacts
Gallery
GlobalSearch
Launcher
Music
Settings

The core Android system applications include various Activity, or Service components that are considered "public".
That is, the attribute "android:exported" may be absent, or may have the value "true".

For every Activity or Service defined in one of the core Android system apps that is not marked as non-public via an
android:exported attribute with the value "false", device implementations MUST include a compontent of the same
type implementing the same Intent filter patterns as the core Android system app.

In other words, a device implementation MAY replace core Android system apps; however, if it does, the device
implementation MUST support all Intent patterns defined by each core Android system app being replaced.

3.2.3.2. Intent Overrides

As Android is an extensible platform, device implementations MUST allow each Intent pattern referenced in Section
3.2.3.2 to be overridden by third-party applications. The upstream Android open source implementation allows this by
default; device implementers MUST NOT attach special privileges to system applications' use of these Intent patterns,
or prevent third-party applications from binding to and assuming control of these patterns. This prohibition specifically
includes but is not limited to disabling the "Chooser" user interface which allows the user to select between multiple
applications which all handle the same Intent pattern.

3.2.3.3. Intent Namespaces

Device implementations MUST NOT include any Android component that honors any new Intent or Broadcast Intent
patterns using an ACTION, CATEGORY, or other key string in the android.* or com.android.* namespace. Device
implementers MUST NOT include any Android components that honor any new Intent or Broadcast Intent patterns
using an ACTION, CATEGORY, or other key string in a package space belonging to another organization. Device
implementers MUST NOT alter or extend any of the Intent patterns used by the core apps listed in Section 3.2.3.1.
Device implementations MAY include Intent patterns using namespaces clearly and obviously associated with their
own organization.

This prohibition is analogous to that specified for Java language classes in Section 3.6.

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain Intents to notify them of changes in the hardware or
software environment. Android-compatible devices MUST broadcast the public broadcast Intents in response to
appropriate system events. Broadcast Intents are described in the SDK documentation.

3.3. Native API Compatibility

3.3.1 Application Binary Interfaces

Managed code running in Dalvik can call into native code provided in the application .apk file as an ELF .so file
compiled for the appropriate device hardware architecture. As native code is highly dependent on the underlying
processor technology, Android defines a number of Application Binary Interfaces (ABIs) in the Android NDK, in the file
docs/CPU-ARCH-ABIS.txt. If a device implementation is compatible with one or more defined ABIs, it SHOULD
implement compatibility with the Android NDK, as below.

If a device implementation includes support for an Android ABI, it:

MUST include support for code running in the managed environment to call into native code, using the standard
Java Native Interface (JNI) semantics.
MUST be source-compatible (i.e. header compatible) and binary-compatible (for the ABI) with each required
library in the list below

MUST accurately report the native Application Binary Interface (ABI) supported by the device, via the
android.os.Build.CPU_ABI API
MUST report only those ABIs documented in the latest version of the Android NDK, in the file docs/CPU-ARCH-
ABIS.txt
SHOULD be built using the source code and header files available in the upstream Android open source project

The following native code APIs MUST be available to apps that include native code:

libc (C library)
libm (math library)
Minimal support for C++
JNI interface
liblog (Android logging)
libz (Zlib compression)
libdl (dynamic linker)
libGLESv1_CM.so (OpenGL ES 1.0)
libGLESv2.so (OpenGL ES 2.0)
libEGL.so (native OpenGL surface management)
libjnigraphics.so
libOpenSLES.so (OpenSL ES 1.0.1 audio support)
libOpenMAXAL.so (OpenMAX AL 1.0.1 support)
libandroid.so (native Android activity support)
Support for OpenGL, as described below

Note that future releases of the Android NDK may introduce support for additional ABIs. If a device implementation is
not compatible with an existing predefined ABI, it MUST NOT report support for any ABI at all.

Native code compatibility is challenging. For this reason, it should be repeated that device implementers are VERY
strongly encouraged to use the upstream implementations of the libraries listed above to help ensure compatibility.

3.4. Web Compatibility

3.4.1. WebView Compatibility

The Android Open Source implementation uses the WebKit rendering engine to implement the
android.webkit.WebView. Because it is not feasible to develop a comprehensive test suite for a web rendering
system, device implementers MUST use the specific upstream build of WebKit in the WebView implementation.
Specifically:

Device implementations' android.webkit.WebView implementations MUST be based on the 534.30 WebKit
build from the upstream Android Open Source tree for Android 4.0. This build includes a specific set of
functionality and security fixes for the WebView. Device implementers MAY include customizations to the
WebKit implementation; however, any such customizations MUST NOT alter the behavior of the WebView,
including rendering behavior.
The user agent string reported by the WebView MUST be in this format:
Mozilla/5.0 (Linux; U; Android $(VERSION); $(LOCALE); $(MODEL) Build/$(BUILD)) AppleWebKit/534.30
(KHTML, like Gecko) Version/4.0 Mobile Safari/534.30

The value of the $(VERSION) string MUST be the same as the value for
android.os.Build.VERSION.RELEASE
The value of the $(LOCALE) string SHOULD follow the ISO conventions for country code and language,
and SHOULD refer to the current configured locale of the device
The value of the $(MODEL) string MUST be the same as the value for android.os.Build.MODEL
The value of the $(BUILD) string MUST be the same as the value for android.os.Build.ID

The WebView component SHOULD include support for as much of HTML5 [Resources, 11] as possible. Minimally,
device implementations MUST support each of these APIs associated with HTML5 in the WebView:

application cache/offline operation [Resources, 12]
the <video> tag [Resources, 13]
geolocation [Resources, 14]

Additionally, device implementations MUST support the HTML5/W3C webstorage API [Resources, 15], and SHOULD
support the HTML5/W3C IndexedDB API [Resources, 16]. Note that as the web development standards bodies are
transitioning to favor IndexedDB over webstorage, IndexedDB is expected to become a required component in a
future version of Android.

HTML5 APIs, like all JavaScript APIs, MUST be disabled by default in a WebView, unless the developer explicitly
enables them via the usual Android APIs.

3.4.2. Browser Compatibility

Device implementations MUST include a standalone Browser application for general user web browsing. The
standalone Browser MAY be based on a browser technology other than WebKit. However, even if an alternate
Browser application is used, the android.webkit.WebView component provided to third-party applications MUST be
based on WebKit, as described in Section 3.4.1.

Implementations MAY ship a custom user agent string in the standalone Browser application.

The standalone Browser application (whether based on the upstream WebKit Browser application or a third-party
replacement) SHOULD include support for as much of HTML5 [Resources, 11] as possible. Minimally, device
implementations MUST support each of these APIs associated with HTML5:

application cache/offline operation [Resources, 12]
the <video> tag [Resources, 13]
geolocation [Resources, 14]

Additionally, device implementations MUST support the HTML5/W3C webstorage API [Resources, 15], and SHOULD
support the HTML5/W3C IndexedDB API [Resources, 16]. Note that as the web development standards bodies are
transitioning to favor IndexedDB over webstorage, IndexedDB is expected to become a required component in a
future version of Android.

3.5. API Behavioral Compatibility

The behaviors of each of the API types (managed, soft, native, and web) must be consistent with the preferred
implementation of the upstream Android open source project [Resources, 3]. Some specific areas of compatibility are:

Devices MUST NOT change the behavior or semantics of a standard Intent
Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of system component (such as
Service, Activity, ContentProvider, etc.)
Devices MUST NOT change the semantics of a standard permission

The above list is not comprehensive. The Compatibility Test Suite (CTS) tests significant portions of the platform for
behavioral compatibility, but not all. It is the responsibility of the implementer to ensure behavioral compatibility with
the Android Open Source Project. For this reason, device implementers SHOULD use the source code available via
the Android Open Source Project where possible, rather than re-implement significant parts of the system.

3.6. API Namespaces

Android follows the package and class namespace conventions defined by the Java programming language. To
ensure compatibility with third-party applications, device implementers MUST NOT make any prohibited modifications
(see below) to these package namespaces:

java.*
javax.*
sun.*
android.*
com.android.*

Prohibited modifications include:

Device implementations MUST NOT modify the publicly exposed APIs on the Android platform by changing any
method or class signatures, or by removing classes or class fields.
Device implementers MAY modify the underlying implementation of the APIs, but such modifications MUST
NOT impact the stated behavior and Java-language signature of any publicly exposed APIs.
Device implementers MUST NOT add any publicly exposed elements (such as classes or interfaces, or fields or
methods to existing classes or interfaces) to the APIs above.

A "publicly exposed element" is any construct which is not decorated with the "@hide" marker as used in the
upstream Android source code. In other words, device implementers MUST NOT expose new APIs or alter existing
APIs in the namespaces noted above. Device implementers MAY make internal-only modifications, but those
modifications MUST NOT be advertised or otherwise exposed to developers.

Device implementers MAY add custom APIs, but any such APIs MUST NOT be in a namespace owned by or referring
to another organization. For instance, device implementers MUST NOT add APIs to the com.google.* or similar
namespace; only Google may do so. Similarly, Google MUST NOT add APIs to other companies' namespaces.
Additionally, if a device implementation includes custom APIs outside the standard Android namespace, those APIs
MUST be packaged in an Android shared library so that only apps that explicitly use them (via the <uses-library>
mechanism) are affected by the increased memory usage of such APIs.

If a device implementer proposes to improve one of the package namespaces above (such as by adding useful new
functionality to an existing API, or adding a new API), the implementer SHOULD visit source.android.com and begin
the process for contributing changes and code, according to the information on that site.

Note that the restrictions above correspond to standard conventions for naming APIs in the Java programming
language; this section simply aims to reinforce those conventions and make them binding through inclusion in this
compatibility definition.

3.7. Virtual Machine Compatibility

Device implementations MUST support the full Dalvik Executable (DEX) bytecode specification and Dalvik Virtual
Machine semantics [Resources, 17].

Device implementations MUST configure Dalvik to allocate memory in accordance with the upstream Android
platform, and as specified by the following table. (See Section 7.1.1 for screen size and screen density definitions.)

Note that memory values specified below are considered minimum values, and device implementations MAY allocate
more memory per application.

Screen Size Screen Density Application Memory

small / normal / large ldpi / mdpi 16MB

small / normal / large tvdpi / hdpi 32MB

small / normal / large xhdpi 64MB

xlarge mdpi 32MB

xlarge tvdpi / hdpi 64MB

xlarge xhdpi 128MB

3.8. User Interface Compatibility

3.8.1. Widgets

Android defines a component type and corresponding API and lifecycle that allows applications to expose an
"AppWidget" to the end user [Resources, 18]. The Android Open Source reference release includes a Launcher
application that includes user interface affordances allowing the user to add, view, and remove AppWidgets from the
home screen.

Device implementations MAY substitute an alternative to the reference Launcher (i.e. home screen). Alternative
Launchers SHOULD include built-in support for AppWidgets, and expose user interface affordances to add,
configure, view, and remove AppWidgets directly within the Launcher. Alternative Launchers MAY omit these user
interface elements; however, if they are omitted, the device implementation MUST provide a separate application
accessible from the Launcher that allows users to add, configure, view, and remove AppWidgets.

Device implementations MUST be capable of rendering widgets that are 4 x 4 in the standard grid size. (See the App
Widget Design Guidelines in the Android SDK documentation [Resources, 18] for details.

3.8.2. Notifications

Android includes APIs that allow developers to notify users of notable events [Resources, 19], using hardware and
software features of the device.

Some APIs allow applications to perform notifications or attract attention using hardware, specifically sound, vibration,
and light. Device implementations MUST support notifications that use hardware features, as described in the SDK
documentation, and to the extent possible with the device implementation hardware. For instance, if a device
implementation includes a vibrator, it MUST correctly implement the vibration APIs. If a device implementation lacks
hardware, the corresponding APIs MUST be implemented as no-ops. Note that this behavior is further detailed in
Section 7.

Additionally, the implementation MUST correctly render all resources (icons, sound files, etc.) provided for in the APIs
[Resources, 20], or in the Status/System Bar icon style guide [Resources, 21]. Device implementers MAY provide an
alternative user experience for notifications than that provided by the reference Android Open Source implementation;
however, such alternative notification systems MUST support existing notification resources, as above.

Android 4.0 includes support for rich notifications, such as interactive Views for ongoing notifications. Device
implementations MUST properly display and execute rich notifications, as documented in the Android APIs.

3.8.3. Search

Android includes APIs [Resources, 22] that allow developers to incorporate search into their applications, and expose
their application's data into the global system search. Generally speaking, this functionality consists of a single,
system-wide user interface that allows users to enter queries, displays suggestions as users type, and displays
results. The Android APIs allow developers to reuse this interface to provide search within their own apps, and allow
developers to supply results to the common global search user interface.

Device implementations MUST include a single, shared, system-wide search user interface capable of real-time
suggestions in response to user input. Device implementations MUST implement the APIs that allow developers to
reuse this user interface to provide search within their own applications. Device implementations MUST implement
the APIs that allow third-party applications to add suggestions to the search box when it is run in global search mode.
If no third-party applications are installed that make use of this functionality, the default behavior SHOULD be to
display web search engine results and suggestions.

3.8.4. Toasts

Applications can use the "Toast" API (defined in [Resources, 23]) to display short non-modal strings to the end user,
that disappear after a brief period of time. Device implementations MUST display Toasts from applications to end
users in some high-visibility manner.

3.8.5. Themes

Android provides "themes" as a mechanism for applications to apply styles across an entire Activity or application.
Android 3.0 introduced a new "Holo" or "holographic" theme as a set of defined styles for application developers to
use if they want to match the Holo theme look and feel as defined by the Android SDK [Resources, 24]. Device
implementations MUST NOT alter any of the Holo theme attributes exposed to applications [Resources, 25].

Android 4.0 introduces a new "Device Default" theme as a set of defined styles for application developers to use if
they want to match the look and feel of the device theme as defined by the device implementer. Device
implementations MAY modify the DeviceDefault theme attributes exposed to applications [Resources, 25].

3.8.6. Live Wallpapers

Android defines a component type and corresponding API and lifecycle that allows applications to expose one or
more "Live Wallpapers" to the end user [Resources, 26]. Live Wallpapers are animations, patterns, or similar images
with limited input capabilities that display as a wallpaper, behind other applications.

Hardware is considered capable of reliably running live wallpapers if it can run all live wallpapers, with no limitations
on functionality, at a reasonable framerate with no adverse affects on other applications. If limitations in the hardware
cause wallpapers and/or applications to crash, malfunction, consume excessive CPU or battery power, or run at
unacceptably low frame rates, the hardware is considered incapable of running live wallpaper. As an example, some
live wallpapers may use an Open GL 1.0 or 2.0 context to render their content. Live wallpaper will not run reliably on
hardware that does not support multiple OpenGL contexts because the live wallpaper use of an OpenGL context may
conflict with other applications that also use an OpenGL context.

Device implementations capable of running live wallpapers reliably as described above SHOULD implement live
wallpapers. Device implementations determined to not run live wallpapers reliably as described above MUST NOT
implement live wallpapers.

3.8.7. Recent Application Display

The upstream Android 4.0 source code includes a user interface for displaying recent applications using a thumbnail
image of the application's graphical state at the moment the user last left the application. Device implementations
MAY alter or eliminate this user interface; however, a future version of Android is planned to make more extensive use
of this functionality. Device implementations are strongly encouraged to use the upstream Android 4.0 user interface
(or a similar thumbnail-based interface) for recent applications, or else they may not be compatible with a future
version of Android.

3.8.8. Input Management Settings

Android 4.0 includes support for Input Management Engines. The Android 4.0 APIs allow custom app IMEs to specify
user-tunable settings. Device implementations MUST include a way for the user to access IME settings at all times
when an IME that provides such user settings is displayed.

3.9 Device Administration

Android 4.0 includes features that allow security-aware applications to perform device administration functions at the
system level, such as enforcing password policies or performing remote wipe, through the Android Device
Administration API [Resources, 27]. Device implementations MUST provide an implementation of the
DevicePolicyManager class [Resources, 28], and SHOULD support the full range of device administration policies
defined in the Android SDK documentation [Resources, 27].

If device implementations do not support the full range of device administration policies, they MUST NOT allow
device administration applications to be enabled. Specifically, if a device does not support all device administration
policies, the device implementation MUST respond to the
android.app.admin.DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN intent, but MUST dislpay a message notifying
the user that the device does not support device administration.

3.10 Accessibility

Android 4.0 provides an accessibility layer that helps users with disabilities to navigate their devices more easily. In
addition, Android 4.0 provides platform APIs that enable accessibility service implementations to receive callbacks for
user and system events and generate alternate feedback mechanisms, such as text-to-speech, haptic feedback, and
trackball/d-pad navigation [Resources, 29]. Device implementations MUST provide an implementation of the Android
accessibility framework consistent with the default Android implementation. Specifically, device implementations
MUST meet the following requirements.

Device implementations MUST support third party accessibility service implementations through the
android.accessibilityservice APIs [Resources, 30].
Device implementations MUST generate AccessibilityEvents and deliver these events to all registered
AccessibilityService implementations in a manner consistent with the default Android implementation.
Device implementations MUST provide a user-accessible mechanism to enable and disable accessibility
services, and MUST display this interface in response to the
android.provider.Settings.ACTION_ACCESSIBILITY_SETTINGS intent.

Additionally, device implementations SHOULD provide an implementation of an accessibility service on the device,
and SHOULD provide a mechanism for users to enable the accessibility service during device setup. An open source
implementation of an accessibility service is available from the Eyes Free project [Resources, 31].

3.11 Text-to-Speech

Android 4.0 includes APIs that allow applications to make use of text-to-speech (TTS) services, and allows service
providers to provide implementations of TTS services [Resources, 32]. Device implementations MUST meet these
requirements related to the Android TTS framework:

Device implementations MUST support the Android TTS framework APIs and SHOULD include a TTS engine
supporting the languages available on the device. Note that the upstream Android open source software
includes a full-featured TTS engine implementation.
Device implementations MUST support installation of third-party TTS engines.
Device implementations MUST provide a user-accessible interface that allows users to select a TTS engine for
use at the system level.

4. Application Packaging Compatibility
Device implementations MUST install and run Android ".apk" files as generated by the "aapt" tool included in the
official Android SDK [Resources, 33].

Devices implementations MUST NOT extend either the .apk [Resources, 34], Android Manifest [Resources, 35],
Dalvik bytecode [Resources, 17], or renderscript bytecode formats in such a way that would prevent those files from
installing and running correctly on other compatible devices. Device implementers SHOULD use the reference
upstream implementation of Dalvik, and the reference implementation's package management system.

5. Multimedia Compatibility
Device implementations MUST include at least one form of audio output, such as speakers, headphone jack, external
speaker connection, etc.

5.1. Media Codecs

Device implementations MUST support the core media formats specified in the Android SDK documentation
[Resources, 58] except where explicitly permitted in this document. Specifically, device implementations MUST
support the media formats, encoders, decoders, file types and container formats defined in the tables below. All of
these codecs are provided as software implementations in the preferred Android implementation from the Android
Open Source Project.

Please note that neither Google nor the Open Handset Alliance make any representation that these codecs
are unencumbered by third-party patents. Those intending to use this source code in hardware or software
products are advised that implementations of this code, including in open source software or shareware, may
require patent licenses from the relevant patent holders.

Note that these tables do not list specific bitrate requirements for most video codecs because current device
hardware does not necessarily support bitrates that map exactly to the required bitrates specified by the relevant
standards. Instead, device implementations SHOULD support the highest bitrate practical on the hardware, up to the
limits defined by the specifications.

Type
Format /
Codec

Encoder Decoder Details
File Type(s) /

Container Formats

Audio

AAC
LC/LTP

REQUIRED
Required for device

implementations that include

microphone hardware and define

android.hardware.microphone.

REQUIRED

Mono/Stereo content in
any combination of
standard bit rates up to
160 kbps and sampling
rates from 8 to 48kHz

3GPP (.3gp)
MPEG-4
(.mp4, .m4a)
ADTS raw
AAC (.aac,
decode in
Android
3.1+,
encode in
Android
4.0+, ADIF
not
supported)
MPEG-TS
(.ts, not
seekable,
Android
3.0+)

HE-AACv1
(AAC+)

 REQUIRED

HE-AACv2
(enhanced
AAC+)

 REQUIRED

AMR-NB

REQUIRED
Required for device

implementations that include

microphone hardware and define

android.hardware.microphone.

REQUIRED
4.75 to 12.2 kbps
sampled @ 8kHz

3GPP (.3gp)

AMR-WB

REQUIRED
Required for device

implementations that include

microphone hardware and define

android.hardware.microphone.

REQUIRED
9 rates from 6.60 kbit/s
to 23.85 kbit/s sampled
@ 16kHz

3GPP (.3gp)

FLAC
REQUIRED
(Android 3.1+)

Mono/Stereo (no
multichannel). Sample
rates up to 48 kHz (but
up to 44.1 kHz is
recommended on
devices with 44.1 kHz
output, as the 48 to 44.1
kHz downsampler does
not include a low-pass
filter). 16-bit
recommended; no
dither applied for 24-bit.

FLAC (.flac) only

MP3 REQUIRED

Mono/Stereo 8-
320Kbps constant
(CBR) or variable bit-
rate (VBR)

MP3 (.mp3)

MIDI REQUIRED

MIDI Type 0 and 1. DLS
Version 1 and 2. XMF
and Mobile XMF.
Support for ringtone
formats RTTTL/RTX,
OTA, and iMelody

Type 0 and
1 (.mid,
.xmf, .mxmf)
RTTTL/RTX
(.rtttl, .rtx)
OTA (.ota)
iMelody
(.imy)

Vorbis REQUIRED
Ogg (.ogg)
Matroska
(.mkv)

PCM/WAVE REQUIRED
8- and 16-bit linear
PCM (rates up to limit
of hardware)

WAVE (.wav)

JPEG REQUIRED REQUIRED Base+progressive JPEG (.jpg)

GIF REQUIRED GIF (.gif)

Image PNG REQUIRED REQUIRED PNG (.png)

BMP REQUIRED BMP (.bmp)

WEBP REQUIRED REQUIRED WebP (.webp)

Video

H.263

REQUIRED
Required for device

implementations that include

camera hardware and define

android.hardware.camera or

android.hardware.camera.front.

REQUIRED
3GPP (.3gp)
MPEG-4
(.mp4)

H.264 AVC

REQUIRED
Required for device

implementations that include

camera hardware and define

android.hardware.camera or

android.hardware.camera.front.

REQUIRED Baseline Profile (BP)

3GPP (.3gp)
MPEG-4
(.mp4)
MPEG-TS
(.ts, AAC
audio only,
not
seekable,
Android
3.0+)

MPEG-4
SP

 REQUIRED 3GPP (.3gp)

VP8
REQUIRED

(Android

2.3.3+)

WebM (.webm)
and Matroska
(.mkv, Android
4.0+)

5.2 Video Encoding

Android device implementations that include a rear-facing camera and declare android.hardware.camera SHOULD
support the following video encoding profiles.

 SD (Low quality) SD (High quality) HD (When supported by hardware)

Video codec H.264 Baseline Profile H.264 Baseline Profile H.264 Baseline Profile

Video resolution 176 x 144 px 480 x 360 px 1280 x 720 px

Video frame rate 12 fps 30 fps 30 fps

Video bitrate 56 Kbps 500 Kbps or higher 2 Mbps or higher

Audio codec AAC-LC AAC-LC AAC-LC

Audio channels 1 (mono) 2 (stereo) 2 (stereo)

Audio bitrate 24 Kbps 128 Kbps 192 Kbps

5.3. Audio Recording

When an application has used the android.media.AudioRecord API to start recording an audio stream, device
implementations that include microphone hardware and declare android.hardware.microphone MUST sample and
record audio with each of these behaviors:

The device SHOULD exhibit approximately flat amplitude versus frequency characteristics; specifically, ±3 dB,
from 100 Hz to 4000 Hz
Audio input sensitivity SHOULD be set such that a 90 dB sound power level (SPL) source at 1000 Hz yields
RMS of 2500 for 16-bit samples.
PCM amplitude levels SHOULD linearly track input SPL changes over at least a 30 dB range from -18 dB to
+12 dB re 90 dB SPL at the microphone.
Total harmonic distortion SHOULD be less than 1% from 100 Hz to 4000 Hz at 90 dB SPL input level.

In addition to the above recording specifications, when an application has started recording an audio stream using the
android.media.MediaRecorder.AudioSource.VOICE_RECOGNITION audio source:

Noise reduction processing, if present, MUST be disabled.
Automatic gain control, if present, MUST be disabled.

Note: while some of the requirements outlined above are stated as "SHOULD" for Android 4.0, the Compatibility
Definition for a future version is planned to change these to "MUST". That is, these requirements are optional in
Android 4.0 but will be required by a future version. Existing and new devices that run Android 4.0 are very strongly
encouraged to meet these requirements in Android 4.0, or they will not be able to attain Android compatibility
when upgraded to the future version.

5.4. Audio Latency

Audio latency is broadly defined as the interval between when an application requests an audio playback or record
operation, and when the device implementation actually begins the operation. Many classes of applications rely on
short latencies, to achieve real-time effects such sound effects or VOIP communication. Device implementations that
include microphone hardware and declare android.hardware.microphone SHOULD meet all audio latency
requirements outlined in this section. See Section 7 for details on the conditions under which microphone hardware
may be omitted by device implementations.

For the purposes of this section:

"cold output latency" is defined to be the interval between when an application requests audio playback and
when sound begins playing, when the audio system has been idle and powered down prior to the request
"warm output latency" is defined to be the interval between when an application requests audio playback and
when sound begins playing, when the audio system has been recently used but is currently idle (that is, silent)
"continuous output latency" is defined to be the interval between when an application issues a sample to be
played and when the speaker physically plays the corresponding sound, while the device is currently playing
back audio
"cold input latency" is defined to be the interval between when an application requests audio recording and
when the first sample is delivered to the application via its callback, when the audio system and microphone has
been idle and powered down prior to the request
"continuous input latency" is defined to be when an ambient sound occurs and when the sample corresponding
to that sound is delivered to a recording application via its callback, while the device is in recording mode

Using the above definitions, device implementations SHOULD exhibit each of these properties:

cold output latency of 100 milliseconds or less
warm output latency of 10 milliseconds or less
continuous output latency of 45 milliseconds or less
cold input latency of 100 milliseconds or less
continuous input latency of 50 milliseconds or less

Note: while the requirements outlined above are stated as "SHOULD" for Android 4.0, the Compatibility Definition for
a future version is planned to change these to "MUST". That is, these requirements are optional in Android 4.0 but will
be required by a future version. Existing and new devices that run Android 4.0 are very strongly encouraged to
meet these requirements in Android 4.0, or they will not be able to attain Android compatibility when upgraded to
the future version.

If a device implementation meets the requirements of this section, it MAY report support for low-latency audio, by
reporting the feature "android.hardware.audio.low-latency" via the android.content.pm.PackageManager class.
[Resources, 37] Conversely, if the device implementation does not meet these requirements it MUST NOT report
support for low-latency audio.

5.5. Network Protocols

Devices MUST support the media network protocols for audio and video playback as specified in the Android SDK
documentation [Resources, 58]. Specifically, devices MUST support the following media network protocols:

RTSP (RTP, SDP)
HTTP(S) progressive streaming
HTTP(S) Live Streaming draft protocol, Version 3 [Resources, 59]

6. Developer Tool Compatibility
Device implementations MUST support the Android Developer Tools provided in the Android SDK. Specifically,
Android-compatible devices MUST be compatible with:

Android Debug Bridge (known as adb) [Resources, 33]
Device implementations MUST support all adb functions as documented in the Android SDK. The device-side
adb daemon MUST be inactive by default, and there MUST be a user-accessible mechanism to turn on the
Android Debug Bridge.
Dalvik Debug Monitor Service (known as ddms) [Resources, 33]
Device implementations MUST support all ddms features as documented in the Android SDK. As ddms uses adb,
support for ddms SHOULD be inactive by default, but MUST be supported whenever the user has activated the
Android Debug Bridge, as above.
Monkey [Resources, 36]
Device implementations MUST include the Monkey framework, and make it available for applications to use.

Most Linux-based systems and Apple Macintosh systems recognize Android devices using the standard Android SDK
tools, without additional support; however Microsoft Windows systems typically require a driver for new Android
devices. (For instance, new vendor IDs and sometimes new device IDs require custom USB drivers for Windows
systems.) If a device implementation is unrecognized by the adb tool as provided in the standard Android SDK, device
implementers MUST provide Windows drivers allowing developers to connect to the device using the adb protocol.
These drivers MUST be provided for Windows XP, Windows Vista, and Windows 7, in both 32-bit and 64-bit versions.

7. Hardware Compatibility
If a device includes a particular hardware component that has a corresponding API for third-party developers, the
device implementation MUST implement that API as described in the Android SDK documentation. If an API in the
SDK interacts with a hardware component that is stated to be optional and the device implementation does not
possess that component:

complete class definitions (as documented by the SDK) for the component's APIs MUST still be present
the API's behaviors MUST be implemented as no-ops in some reasonable fashion
API methods MUST return null values where permitted by the SDK documentation
API methods MUST return no-op implementations of classes where null values are not permitted by the SDK
documentation
API methods MUST NOT throw exceptions not documented by the SDK documentation

A typical example of a scenario where these requirements apply is the telephony API: even on non-phone devices,
these APIs must be implemented as reasonable no-ops.

Device implementations MUST accurately report accurate hardware configuration information via the
getSystemAvailableFeatures() and hasSystemFeature(String) methods on the
android.content.pm.PackageManager class. [Resources, 37]

7.1. Display and Graphics

Android 4.0 includes facilities that automatically adjust application assets and UI layouts appropriately for the device,
to ensure that third-party applications run well on a variety of hardware configurations [Resources, 38]. Devices
MUST properly implement these APIs and behaviors, as detailed in this section.

The units referenced by the requirements in this section are defined as follows:

"Physical diagonal size" is the distance in inches between two opposing corners of the illuminated portion of the
display.
"dpi" (meaning "dots per inch") is the number of pixels encompassed by a linear horizontal or vertical span of
1". Where dpi values are listed, both horizontal and vertical dpi must fall within the range.
"Aspect ratio" is the ratio of the longer dimension of the screen to the shorter dimension. For example, a display
of 480x854 pixels would be 854 / 480 = 1.779, or roughly "16:9".
A "density-independent pixel" or ("dp") is the virtual pixel unit normalized to a 160 dpi screen, calculated as:
pixels = dps * (density / 160).

7.1.1. Screen Configuration

Screen Size

The Android UI framework supports a variety of different screen sizes, and allows applications to query the device
screen size (aka "screen layout") via android.content.res.Configuration.screenLayout with the
SCREENLAYOUT_SIZE_MASK. Device implementations MUST report the correct screen size as defined in the Android
SDK documentation [Resources, 38] and determined by the upstream Android platform. Specifically, device
implementations must report the correct screen size according to the following logical density-independent pixel (dp)
screen dimensions.

Devices MUST have screen sizes of at least 426 dp x 320 dp ('small')
Devices that report screen size 'normal' MUST have screen sizes of at least 470 dp x 320 dp
Devices that report screen size 'large' MUST have screen sizes of at least 640 dp x 480 dp
Devices that report screen size 'xlarge' MUST have screen sizes of at least 960 dp x 720 dp

In addition, devices MUST have screen sizes of at least 2.5 inches in physical diagonal size.

Devices MUST NOT change their reported screen size at any time.

Applications optionally indicate which screen sizes they support via the <supports-screens> attribute in the
AndroidManifest.xml file. Device implementations MUST correctly honor applications' stated support for small,
normal, large, and xlarge screens, as described in the Android SDK documentation.

Screen Aspect Ratio

The aspect ratio MUST be between 1.3333 (4:3) and 1.85 (16:9).

Screen Density

The Android UI framework defines a set of standard logical densities to help application developers target application
resources. Device implementations MUST report one of the following logical Android framework densities through the
android.util.DisplayMetrics APIs, and MUST execute applications at this standard density.

120 dpi, known as 'ldpi'
160 dpi, known as 'mdpi'
213 dpi, known as 'tvdpi'
240 dpi, known as 'hdpi'

320 dpi, known as 'xhdpi'

Device implementations SHOULD define the standard Android framework density that is numerically closest to the
physical density of the screen, unless that logical density pushes the reported screen size below the minimum
supported. If the standard Android framework density that is numerically closest to the physical density results in a
screen size that is smaller than the smallest supported compatible screen size (320 dp width), device
implementations SHOULD report the next lowest standard Android framework density.

7.1.2. Display Metrics

Device implementations MUST report correct values for all display metrics defined in android.util.DisplayMetrics
[Resources, 38].

7.1.3. Screen Orientation

Devices MUST support dynamic orientation by applications to either portrait or landscape screen orientation. That is,
the device must respect the application's request for a specific screen orientation. Device implementations MAY
select either portrait or landscape orientation as the default.

Devices MUST report the correct value for the device's current orientation, whenever queried via the
android.content.res.Configuration.orientation, android.view.Display.getOrientation(), or other APIs.

Devices MUST NOT change the reported screen size or density when changing orientation.

Devices MUST report which screen orientations they support (android.hardware.screen.portrait and/or
android.hardware.screen.landscape) and MUST report at least one supported orientation. For example, a device
with a fixed-orientation landscape screen, such as a television or laptop, MUST only report
android.hardware.screen.landscape.

7.1.4. 2D and 3D Graphics Acceleration

Device implementations MUST support both OpenGL ES 1.0 and 2.0, as embodied and detailed in the Android SDK
documentations. Device implementations MUST also support Android Renderscript, as detailed in the Android SDK
documentation [Resources, 8].

Device implementations MUST also correctly identify themselves as supporting OpenGL ES 1.0 and 2.0. That is:

The managed APIs (such as via the GLES10.getString() method) MUST report support for OpenGL ES 1.0 and
2.0
The native C/C++ OpenGL APIs (that is, those available to apps via libGLES_v1CM.so, libGLES_v2.so, or
libEGL.so) MUST report support for OpenGL ES 1.0 and 2.0.

Device implementations MAY implement any desired OpenGL ES extensions. However, device implementations
MUST report via the OpenGL ES managed and native APIs all extension strings that they do support, and conversely
MUST NOT report extension strings that they do not support.

Note that Android 4.0 includes support for applications to optionally specify that they require specific OpenGL texture
compression formats. These formats are typically vendor-specific. Device implementations are not required by
Android 4.0 to implement any specific texture compression format. However, they SHOULD accurately report any
texture compression formats that they do support, via the getString() method in the OpenGL API.

Android 3.0 introduced a mechanism for applications to declare that they wanted to enable hardware acceleration for
2D graphics at the Application, Activity, Window or View level through the use of a manifest tag
android:hardwareAccelerated or direct API calls [Resources, 9].

In Android 4.0, device implementations MUST enable hardware acceleration by default, and MUST disable hardware
acceleration if the developer so requests by setting android:hardwareAccelerated="false" or disabling hardware
acceleration directly through the Android View APIs.

In addition, device implementations MUST exhibit behavior consistent with the Android SDK documentation on
hardware acceleration [Resources, 9].

Android 4.0 includes a TextureView object that lets developers directly integrate hardware-accelerated OpenGL ES
textures as rendering targets in a UI hierarchy. Device implementations MUST support the TextureView API, and
MUST exhibit consistent behavior with the upstream Android implementation.

7.1.5. Legacy Application Compatibility Mode

Android 4.0 specifies a "compatibility mode" in which the framework operates in an 'normal' screen size equivalent
(320dp width) mode for the benefit of legacy applications not developed for old versions of Android that pre-date
screen-size independence. Device implementations MUST include support for legacy application compatibility mode
as implemented by the upstream Android open source code. That is, device implementations MUST NOT alter the
triggers or thresholds at which compatibility mode is activated, and MUST NOT alter the behavior of the compatibility
mode itself.

7.1.6. Screen Types

Device implementation screens are classified as one of two types:

Fixed-pixel display implementations: the screen is a single panel that supports only a single pixel width and
height. Typically the screen is physically integrated with the device. Examples include mobile phones, tablets,
and so on.
Variable-pixel display implementations: the device implementation either has no embedded screen and
includes a video output port such as VGA or HDMI for display, or has an embedded screen that can change
pixel dimensions. Examples include televisions, set-top boxes, and so on.

Fixed-Pixel Device Implementations

Fixed-pixel device implementations MAY use screens of any pixel dimensions, provided that they meet the
requirements defined this Compatibility Definition.

Fixed-pixel implementations MAY include a video output port for use with an external display. However, if that display
is ever used for running apps, the device MUST meet the following requirements:

The device MUST report the same screen configuration and display metrics, as detailed in Sections 7.1.1 and
7.1.2, as the fixed-pixel display.
The device MUST report the same logical density as the fixed-pixel display.
The device MUST report screen dimensions that are the same as, or very close to, the fixed-pixel display.

For example, a tablet that is 7" diagonal size with a 1024x600 pixel resolution is considered a fixed-pixel large mdpi
display implementation. If it contains a video output port that displays at 720p or 1080p, the device implementation
MUST scale the output so that applications are only executed in a large mdpi window, regardless of whether the
fixed-pixel display or video output port is in use.

Variable-Pixel Device Implementations

Variable-pixel device implementations MUST support one or both of 1280x720, or 1920x1080 (that is, 720p or
1080p). Device implementations with variable-pixel displays MUST NOT support any other screen configuration or
mode. Device implementations with variable-pixel screens MAY change screen configuration or mode at runtime or
boot-time. For example, a user of a set-top box may replace a 720p display with a 1080p display, and the device
implementation may adjust accordingly.

Additionally, variable-pixel device implementations MUST report the following configuration buckets for these pixel
dimensions:

1280x720 (also known as 720p): 'large' screen size, 'tvdpi' (213 dpi) density
1920x1080 (also known as 1080p): 'large' screen size, 'xhdpi' (320 dpi) density

For clarity, device implementations with variable pixel dimensions are restricted to 720p or 1080p in Android 4.0, and
MUST be configured to report screen size and density buckets as noted above.

7.1.7. Screen Technology

The Android platform includes APIs that allow applications to render rich graphics to the display. Devices MUST
support all of these APIs as defined by the Android SDK unless specifically allowed in this document. Specifically:

Devices MUST support displays capable of rendering 16-bit color graphics and SHOULD support displays
capable of 24-bit color graphics.
Devices MUST support displays capable of rendering animations.
The display technology used MUST have a pixel aspect ratio (PAR) between 0.9 and 1.1. That is, the pixel
aspect ratio MUST be near square (1.0) with a 10% tolerance.

7.2. Input Devices

7.2.1. Keyboard

Device implementations:

MUST include support for the Input Management Framework (which allows third party developers to create
Input Management Engines - i.e. soft keyboard) as detailed at http://developer.android.com
MUST provide at least one soft keyboard implementation (regardless of whether a hard keyboard is present)
MAY include additional soft keyboard implementations
MAY include a hardware keyboard
MUST NOT include a hardware keyboard that does not match one of the formats specified in
android.content.res.Configuration.keyboard [Resources, 39] (that is, QWERTY, or 12-key)

7.2.2. Non-touch Navigation

Device implementations:

MAY omit a non-touch navigation option (that is, may omit a trackball, d-pad, or wheel)
MUST report the correct value for android.content.res.Configuration.navigation [Resources, 39]
MUST provide a reasonable alternative user interface mechanism for the selection and editing of text,
compatible with Input Management Engines. The upstream Android open source software includes a selection

mechanism suitable for use with devices that lack non-touch navigation inputs.

7.2.3. Navigation keys

The Home, Menu and Back functions are essential to the Android navigation paradigm. Device implementations
MUST make these functions available to the user at all times when running applications. These functions MAY be
implemented via dedicated physical buttons (such as mechanical or capacitive touch buttons), or MAY be
implemented using dedicated software keys, gestures, touch panel, etc. Android 4.0 supports both implementations.

Device implementations MAY use a distinct portion of the screen to display the navigation keys, but if so, MUST meet
these requirements:

Device implementation navigation keys MUST use a distinct portion of the screen, not available to applications,
and MUST NOT obscure or otherwise interfere with the portion of the screen available to applications.
Device implementations MUST make available a portion of the display to applications that meets the
requirements defined in Section 7.1.1.
Device implementations MUST display the navigation keys when applications do not specify a system UI mode,
or specify SYSTEM_UI_FLAG_VISIBLE.
Device implementations MUST present the navigation keys in an unobtrusive "low profile" (eg. dimmed) mode
when applications specify SYSTEM_UI_FLAG_LOW_PROFILE.
Device implementations MUST hide the navigation keys when applications specify
SYSTEM_UI_FLAG_HIDE_NAVIGATION.
Device implementation MUST present a Menu key to applications when targetSdkVersion < 10 and SHOULD
NOT present a Menu key when the targetSdkVersion >= 10.

7.2.4. Touchscreen input

Device implementations:

MUST have a pointer input system of some kind (either mouse-like, or touch)
MAY have a touchscreen of any modality (such as capacitive or resistive)
SHOULD support fully independently tracked pointers, if a touchscreen supports multiple pointers
MUST report the value of android.content.res.Configuration [Resources, 39] reflecting corresponding to the
type of the specific touchscreen on the device

Device implementations MUST report the correct feature corresponding to the type of input used. Note that Android
4.0 includes the feature android.hardware.faketouch, which corresponds to a high-fidelity non-touch (that is, pointer-
based) input device such as a mouse or trackpad that can adequately emulate touch-based input (including basic
gesture support), and indicates that the device supports an emulated subset of touchscreen functionality. Device
implementations that include a touchscreen (single-touch or better) MUST also report android.hardware.faketouch.
Device implementations that do not include a touchscreen (and rely on a pointer device only) MUST NOT report any
touchscreen feature, and MUST report only android.hardware.faketouch.

7.2.5. Microphone

Device implementations MAY omit a microphone. However, if a device implementation omits a microphone, it MUST
NOT report the android.hardware.microphone feature constant, and must implement the audio recording API as no-
ops, per Section 7. Conversely, device implementations that do possess a microphone:

MUST report the android.hardware.microphone feature constant
SHOULD meet the audio quality requirements in Section 5.3
SHOULD meet the audio latency requirements in Section 5.4

7.3. Sensors

Android 4.0 includes APIs for accessing a variety of sensor types. Devices implementations generally MAY omit
these sensors, as provided for in the following subsections. If a device includes a particular sensor type that has a
corresponding API for third-party developers, the device implementation MUST implement that API as described in
the Android SDK documentation. For example, device implementations:

MUST accurately report the presence or absence of sensors per the android.content.pm.PackageManager
class. [Resources, 37]
MUST return an accurate list of supported sensors via the SensorManager.getSensorList() and similar
methods
MUST behave reasonably for all other sensor APIs (for example, by returning true or false as appropriate when
applications attempt to register listeners, not calling sensor listeners when the corresponding sensors are not
present; etc.)
MUST report all sensor measurements using the relevant International System of Units (i.e. metric) values for
each sensor type as defined in the Android SDK documentation [Resources, 41]

The list above is not comprehensive; the documented behavior of the Android SDK is to be considered authoritative.

Some sensor types are synthetic, meaning they can be derived from data provided by one or more other sensors.
(Examples include the orientation sensor, and the linear acceleration sensor.) Device implementations SHOULD
implement these sensor types, when they include the prerequisite physical sensors.

The Android 4.0 APIs introduce a notion of a "streaming" sensor, which is one that returns data continuously, rather
than only when the data changes. Device implementations MUST continuously provide periodic data samples for any
API indicated by the Android 4.0 SDK documentation to be a streaming sensor.

7.3.1. Accelerometer

Device implementations SHOULD include a 3-axis accelerometer. If a device implementation does include a 3-axis
accelerometer, it:

MUST be able to deliver events at 50 Hz or greater
MUST comply with the Android sensor coordinate system as detailed in the Android APIs (see [Resources, 41])
MUST be capable of measuring from freefall up to twice gravity (2g) or more on any three-dimensional vector
MUST have 8-bits of accuracy or more
MUST have a standard deviation no greater than 0.05 m/s^2

7.3.2. Magnetometer

Device implementations SHOULD include a 3-axis magnetometer (i.e. compass.) If a device does include a 3-axis
magnetometer, it:

MUST be able to deliver events at 10 Hz or greater
MUST comply with the Android sensor coordinate system as detailed in the Android APIs (see [Resources, 41]).
MUST be capable of sampling a range of field strengths adequate to cover the geomagnetic field
MUST have 8-bits of accuracy or more
MUST have a standard deviation no greater than 0.5 µT

7.3.3. GPS

Device implementations SHOULD include a GPS receiver. If a device implementation does include a GPS receiver, it
SHOULD include some form of "assisted GPS" technique to minimize GPS lock-on time.

7.3.4. Gyroscope

Device implementations SHOULD include a gyroscope (i.e. angular change sensor.) Devices SHOULD NOT include
a gyroscope sensor unless a 3-axis accelerometer is also included. If a device implementation includes a gyroscope,
it:

MUST be temperature compensated
MUST be capable of measuring orientation changes up to 5.5*Pi radians/second (that is, approximately 1,000
degrees per second)
MUST be able to deliver events at 100 Hz or greater
MUST have 12-bits of accuracy or more
MUST have a variance no greater than 1e-7 rad^2 / s^2 per Hz (variance per Hz, or rad^2 / s). The variance is
allowed to vary with the sampling rate, but must be constrained by this value. In other words, if you measure the
variance of the gyro at 1 Hz sampling rate it should be no greater than 1e-7 rad^2/s^2.
MUST have timestamps as close to when the hardware event happened as possible. The constant latency must
be removed.

7.3.5. Barometer

Device implementations MAY include a barometer (i.e. ambient air pressure sensor.) If a device implementation
includes a barometer, it:

MUST be able to deliver events at 5 Hz or greater
MUST have adequate precision to enable estimating altitude

7.3.7. Thermometer

Device implementations MAY but SHOULD NOT include a thermometer (i.e. temperature sensor.) If a device
implementation does include a thermometer, it MUST measure the temperature of the device CPU. It MUST NOT
measure any other temperature. (Note that this sensor type is deprecated in the Android 4.0 APIs.)

7.3.7. Photometer

Device implementations MAY include a photometer (i.e. ambient light sensor.)

7.3.8. Proximity Sensor

Device implementations MAY include a proximity sensor. If a device implementation does include a proximity sensor,
it MUST measure the proximity of an object in the same direction as the screen. That is, the proximity sensor MUST
be oriented to detect objects close to the screen, as the primary intent of this sensor type is to detect a phone in use
by the user. If a device implementation includes a proximity sensor with any other orientation, it MUST NOT be
accessible through this API. If a device implementation has a proximity sensor, it MUST be have 1-bit of accuracy or
more.

7.4. Data Connectivity

7.4.1. Telephony

"Telephony" as used by the Android 4.0 APIs and this document refers specifically to hardware related to placing
voice calls and sending SMS messages via a GSM or CDMA network. While these voice calls may or may not be
packet-switched, they are for the purposes of Android 4.0 considered independent of any data connectivity that may
be implemented using the same network. In other words, the Android "telephony" functionality and APIs refer
specifically to voice calls and SMS; for instance, device implementations that cannot place calls or send/receive SMS
messages MUST NOT report the "android.hardware.telephony" feature or any sub-features, regardless of whether
they use a cellular network for data connectivity.

Android 4.0 MAY be used on devices that do not include telephony hardware. That is, Android 4.0 is compatible with
devices that are not phones. However, if a device implementation does include GSM or CDMA telephony, it MUST
implement full support for the API for that technology. Device implementations that do not include telephony
hardware MUST implement the full APIs as no-ops.

7.4.2. IEEE 802.11 (WiFi)

Android 4.0 device implementations SHOULD include support for one or more forms of 802.11 (b/g/a/n, etc.) If a
device implementation does include support for 802.11, it MUST implement the corresponding Android API.

7.4.3. Bluetooth

Device implementations SHOULD include a Bluetooth transceiver. Device implementations that do include a
Bluetooth transceiver MUST enable the RFCOMM-based Bluetooth API as described in the SDK documentation
[Resources, 42]. Device implementations SHOULD implement relevant Bluetooth profiles, such as A2DP, AVRCP,
OBEX, etc. as appropriate for the device.

The Compatibility Test Suite includes cases that cover basic operation of the Android RFCOMM Bluetooth API.
However, since Bluetooth is a communications protocol between devices, it cannot be fully tested by unit tests
running on a single device. Consequently, device implementations MUST also pass the human-driven Bluetooth test
procedure described in Appendix A.

7.4.4. Near-Field Communications

Device implementations SHOULD include a transceiver and related hardware for Near-Field Communications (NFC).
If a device implementation does include NFC hardware, then it:

MUST report the android.hardware.nfc feature from the
android.content.pm.PackageManager.hasSystemFeature() method. [Resources, 37]
MUST be capable of reading and writing NDEF messages via the following NFC standards:

MUST be capable of acting as an NFC Forum reader/writer (as defined by the NFC Forum technical
specification NFCForum-TS-DigitalProtocol-1.0) via the following NFC standards:

NfcA (ISO14443-3A)
NfcB (ISO14443-3B)
NfcF (JIS 6319-4)
IsoDep (ISO 14443-4)
NFC Forum Tag Types 1, 2, 3, 4 (defined by the NFC Forum)

SHOULD be capable of reading and writing NDEF messages via the following NFC standards. Note that while
the NFC standards below are stated as "SHOULD" for Android 4.0, the Compatibility Definition for a future
version is planned to change these to "MUST". That is, these stanards are optional in Android 4.0 but will be
required in future versions. Existing and new devices that run Android 4.0 are very strongly encouraged to
meet these requirements in Android 4.0 so they will be able to upgrade to the future platform releases.

NfcV (ISO 15693)
MUST be capable of transmitting and receiving data via the following peer-to-peer standards and protocols:

ISO 18092
LLCP 1.0 (defined by the NFC Forum)
SDP 1.0 (defined by the NFC Forum)
NDEF Push Protocol [Resources, 43]
SNEP 1.0 (defined by the NFC Forum)

MUST include support for Android Beam:
MUST implement the SNEP default server. Valid NDEF messages received by the default SNEP server
MUST be dispatched to applications using the android.nfc.ACTION_NDEF_DISCOVERED intent.
Disabling Android Beam in settings MUST NOT disable dispatch of incoming NDEF message.
MUST implement the NPP server. Messages received by the NPP server MUST be processed the same
way as the SNEP default server.
MUST implement a SNEP client and attempt to send outbound P2P NDEF to the default SNEP server
when Android Beam is enabled. If no default SNEP server is found then the client MUST attempt to send
to an NPP server.
MUST allow foreground activities to set the outbound P2P NDEF message using
android.nfc.NfcAdapter.setNdefPushMessage, and
android.nfc.NfcAdapter.setNdefPushMessageCallback, and
android.nfc.NfcAdapter.enableForegroundNdefPush.

SHOULD use a gesture or on-screen confirmation, such as 'Touch to Beam', before sending outbound
P2P NDEF messages.
SHOULD enable Android Beam by default

MUST poll for all supported technologies while in NFC discovery mode.
SHOULD be in NFC discovery mode while the device is awake with the screen active and the lock-screen
unlocked.

(Note that publicly available links are not available for the JIS, ISO, and NFC Forum specifications cited above.)

Additionally, device implementations MAY include reader/writer support for the following MIFARE technologies.

MIFARE Classic (NXP MF1S503x [Resources, 44], MF1S703x [Resources, 44])
MIFARE Ultralight (NXP MF0ICU1 [Resources, 46], MF0ICU2 [Resources, 46])
NDEF on MIFARE Classic (NXP AN130511 [Resources, 48], AN130411 [Resources, 49])

Note that Android 4.0 includes APIs for these MIFARE types. If a device implementation supports MIFARE in the
reader/writer role, it:

MUST implement the corresponding Android APIs as documented by the Android SDK
MUST report the feature com.nxp.mifare from the android.content.pm.PackageManager.hasSystemFeature()
method. [Resources, 37] Note that this is not a standard Android feature, and as such does not appear as a
constant on the PackageManager class.
MUST NOT implement the corresponding Android APIs nor report the com.nxp.mifare feature unless it also
implements general NFC support as described in this section

If a device implementation does not include NFC hardware, it MUST NOT declare the android.hardware.nfc feature
from the android.content.pm.PackageManager.hasSystemFeature() method [Resources, 37], and MUST implement
the Android 4.0 NFC API as a no-op.

As the classes android.nfc.NdefMessage and android.nfc.NdefRecord represent a protocol-independent data
representation format, device implementations MUST implement these APIs even if they do not include support for
NFC or declare the android.hardware.nfc feature.

7.4.5. Minimum Network Capability

Device implementations MUST include support for one or more forms of data networking. Specifically, device
implementations MUST include support for at least one data standard capable of 200Kbit/sec or greater. Examples of
technologies that satisfy this requirement include EDGE, HSPA, EV-DO, 802.11g, Ethernet, etc.

Device implementations where a physical networking standard (such as Ethernet) is the primary data connection
SHOULD also include support for at least one common wireless data standard, such as 802.11 (WiFi).

Devices MAY implement more than one form of data connectivity.

7.5. Cameras

Device implementations SHOULD include a rear-facing camera, and MAY include a front-facing camera. A rear-facing
camera is a camera located on the side of the device opposite the display; that is, it images scenes on the far side of
the device, like a traditional camera. A front-facing camera is a camera located on the same side of the device as the
display; that is, a camera typically used to image the user, such as for video conferencing and similar applications.

7.5.1. Rear-Facing Camera

Device implementations SHOULD include a rear-facing camera. If a device implementation includes a rear-facing
camera, it:

MUST have a resolution of at least 2 megapixels
SHOULD have either hardware auto-focus, or software auto-focus implemented in the camera driver
(transparent to application software)
MAY have fixed-focus or EDOF (extended depth of field) hardware
MAY include a flash. If the Camera includes a flash, the flash lamp MUST NOT be lit while an
android.hardware.Camera.PreviewCallback instance has been registered on a Camera preview surface, unless
the application has explicitly enabled the flash by enabling the FLASH_MODE_AUTO or FLASH_MODE_ON attributes of a
Camera.Parameters object. Note that this constraint does not apply to the device's built-in system camera
application, but only to third-party applications using Camera.PreviewCallback.

7.5.2. Front-Facing Camera

Device implementations MAY include a front-facing camera. If a device implementation includes a front-facing
camera, it:

MUST have a resolution of at least VGA (that is, 640x480 pixels)
MUST NOT use a front-facing camera as the default for the Camera API. That is, the camera API in Android 4.0
has specific support for front-facing cameras, and device implementations MUST NOT configure the API to to
treat a front-facing camera as the default rear-facing camera, even if it is the only camera on the device.
MAY include features (such as auto-focus, flash, etc.) available to rear-facing cameras as described in Section

7.5.1.
MUST horizontally reflect (i.e. mirror) the stream displayed by an app in a CameraPreview, as follows:

If the device implementation is capable of being rotated by user (such as automatically via an
accelerometer or manually via user input), the camera preview MUST be mirrored horizontally relative to
the device's current orientation.
If the current application has explicitly requested that the Camera display be rotated via a call to the
android.hardware.Camera.setDisplayOrientation() [Resources, 50] method, the camera preview MUST
be mirrored horizontally relative to the orientation specified by the application.
Otherwise, the preview MUST be mirrored along the device's default horizontal axis.

MUST mirror the image displayed by the postview in the same manner as the camera preview image stream. (If
the device implementation does not support postview, this requirement obviously does not apply.)
MUST NOT mirror the final captured still image or video streams returned to application callbacks or committed
to media storage

7.5.3. Camera API Behavior

Device implementations MUST implement the following behaviors for the camera-related APIs, for both front- and
rear-facing cameras:

1. If an application has never called android.hardware.Camera.Parameters.setPreviewFormat(int), then the
device MUST use android.hardware.PixelFormat.YCbCr_420_SP for preview data provided to application
callbacks.

2. If an application registers an android.hardware.Camera.PreviewCallback instance and the system calls the
onPreviewFrame() method when the preview format is YCbCr_420_SP, the data in the byte[] passed into
onPreviewFrame() must further be in the NV21 encoding format. That is, NV21 MUST be the default.

3. Device implementations MUST support the YV12 format (as denoted by the
android.graphics.ImageFormat.YV12 constant) for camera previews for both front- and rear-facing cameras.
(The hardware video decoder and camera may use any native pixel format, but the device implementation
MUST support conversion to YV12.)

Device implementations MUST implement the full Camera API included in the Android 4.0 SDK documentation
[Resources, 51]), regardless of whether the device includes hardware autofocus or other capabilities. For instance,
cameras that lack autofocus MUST still call any registered android.hardware.Camera.AutoFocusCallback instances
(even though this has no relevance to a non-autofocus camera.) Note that this does apply to front-facing cameras; for
instance, even though most front-facing cameras do not support autofocus, the API callbacks must still be "faked" as
described.

Device implementations MUST recognize and honor each parameter name defined as a constant on the
android.hardware.Camera.Parameters class, if the underlying hardware supports the feature. If the device hardware
does not support a feature, the API must behave as documented. Conversely, Device implementations MUST NOT
honor or recognize string constants passed to the android.hardware.Camera.setParameters() method other than
those documented as constants on the android.hardware.Camera.Parameters. That is, device implementations
MUST support all standard Camera parameters if the hardware allows, and MUST NOT support custom Camera
parameter types.

Device implementations MUST broadcast the Camera.ACTION_NEW_PICTURE intent whenever a new picture is taken by
the camera and the entry of the picture has been added to the media store.

Device implementations MUST broadcast the Camera.ACTION_NEW_VIDEO intent whenever a new video is recorded by
the camera and the entry of the picture has been added to the media store.

7.5.4. Camera Orientation

Both front- and rear-facing cameras, if present, MUST be oriented so that the long dimension of the camera aligns
with the screen's long dimention. That is, when the device is held in the landscape orientation, cameras MUST
capture images in the landscape orientation. This applies regardless of the device's natural orientation; that is, it
applies to landscape-primary devices as well as portrait-primary devices.

7.6. Memory and Storage

7.6.1. Minimum Memory and Storage

Device implementations MUST have at least 340MB of memory available to the kernel and userspace. The 340MB
MUST be in addition to any memory dedicated to hardware components such as radio, video, and so on that is not
under the kernel's control.

Device implementations MUST have at least 350MB of non-volatile storage available for application private data.
That is, the /data partition MUST be at least 350MB.

The Android APIs include a Download Manager that applications may use to download data files [Resources, 56].
The device implementation of the Download Manager MUST be capable of downloading individual files of at least
100MB in size to the default "cache" location.

7.6.2. Application Shared Storage

Device implementations MUST offer shared storage for applications. The shared storage provided MUST be at least
1GB in size.

Device implementations MUST be configured with shared storage mounted by default, "out of the box". If the shared
storage is not mounted on the Linux path /sdcard, then the device MUST include a Linux symbolic link from /sdcard
to the actual mount point.

Device implementations MUST enforce as documented the android.permission.WRITE_EXTERNAL_STORAGE
permission on this shared storage. Shared storage MUST otherwise be writable by any application that obtains that
permission.

Device implementations MAY have hardware for user-accessible removable storage, such as a Secure Digital card.
Alternatively, device implementations MAY allocate internal (non-removable) storage as shared storage for apps.

Regardless of the form of shared storage used, device implementations MUST provide some mechanism to access
the contents of shared storage from a host computer, such as USB mass storage (UMS) or Media Transfer Protocol
(MTP). Device implementations MAY use USB mass storage, but SHOULD use Media Transfer Protocol. If the device
implementation supports Media Transfer Protocol:

The device implementation SHOULD be compatible with the reference Android MTP host, Android File Transfer
[Resources, 57].
The device implementation SHOULD report a USB device class of 0x00.
The device implementation SHOULD report a USB interface name of 'MTP'.

If the device implementation lacks USB ports, it MUST provide a host computer with access to the contents of shared
storage by some other means, such as a network file system.

It is illustrative to consider two common examples. If a device implementation includes an SD card slot to satisfy the
shared storage requirement, a FAT-formatted SD card 1GB in size or larger MUST be included with the device as sold
to users, and MUST be mounted by default. Alternatively, if a device implementation uses internal fixed storage to
satisfy this requirement, that storage MUST be 1GB in size or larger and mounted on /sdcard (or /sdcard MUST be a
symbolic link to the physical location if it is mounted elsewhere.)

Device implementations that include multiple shared storage paths (such as both an SD card slot and shared internal
storage) SHOULD modify the core applications such as the media scanner and ContentProvider to transparently
support files placed in both locations.

7.7. USB

Device implementations SHOULD include a USB client port, and SHOULD include a USB host port.

If a device implementation includes a USB client port:

the port MUST be connectable to a USB host with a standard USB-A port
the port SHOULD use the micro USB form factor on the device side
it MUST allow a host connected to the device to access the contents of the shared storage volume using either
USB mass storage or Media Transfer Protocol
it MUST implement the Android Open Accessory API and specification as documented in the Android SDK
documentation, and MUST declare support for the hardware feature android.hardware.usb.accessory
[Resources, 51]

If a device implementation includes a USB host port:

it MAY use a non-standard port form factor, but if so MUST ship with a cable or cables adapting the port to
standard USB-A
it MUST implement the Android USB host API as documented in the Android SDK, and MUST declare support
for the hardware feature android.hardware.usb.host [Resources, 52]

Device implementations MUST implement the Android Debug Bridge. If a device implementation omits a USB client
port, it MUST implement the Android Debug Bridge via local-area network (such as Ethernet or 802.11)

8. Performance Compatibility
Device implementations MUST meet the key performance metrics of an Android 4.0 compatible device defined in the
table below:

Metric Performance Threshold Comments

Application
Launch Time

The following applications should
launch within the specified time.

Browser: less than 1300ms
Contacts: less than 700ms
Settings: less than 700ms

The launch time is measured as the total time to
complete loading the default activity for the application,
including the time it takes to start the Linux process,
load the Android package into the Dalvik VM, and call
onCreate.

When multiple applications have been

Simultaneous
Applications

launched, re-launching an already-
running application after it has been
launched must take less than the
original launch time.

9. Security Model Compatibility
Device implementations MUST implement a security model consistent with the Android platform security model as
defined in Security and Permissions reference document in the APIs [Resources, 54] in the Android developer
documentation. Device implementations MUST support installation of self-signed applications without requiring any
additional permissions/certificates from any third parties/authorities. Specifically, compatible devices MUST support
the security mechanisms described in the follow sub-sections.

9.1. Permissions

Device implementations MUST support the Android permissions model as defined in the Android developer
documentation [Resources, 54]. Specifically, implementations MUST enforce each permission defined as described
in the SDK documentation; no permissions may be omitted, altered, or ignored. Implementations MAY add additional
permissions, provided the new permission ID strings are not in the android.* namespace.

9.2. UID and Process Isolation

Device implementations MUST support the Android application sandbox model, in which each application runs as a
unique Unix-style UID and in a separate process. Device implementations MUST support running multiple
applications as the same Linux user ID, provided that the applications are properly signed and constructed, as
defined in the Security and Permissions reference [Resources, 54].

9.3. Filesystem Permissions

Device implementations MUST support the Android file access permissions model as defined in as defined in the
Security and Permissions reference [Resources, 54].

9.4. Alternate Execution Environments

Device implementations MAY include runtime environments that execute applications using some other software or
technology than the Dalvik virtual machine or native code. However, such alternate execution environments MUST
NOT compromise the Android security model or the security of installed Android applications, as described in this
section.

Alternate runtimes MUST themselves be Android applications, and abide by the standard Android security model, as
described elsewhere in Section 9.

Alternate runtimes MUST NOT be granted access to resources protected by permissions not requested in the
runtime's AndroidManifest.xml file via the <uses-permission> mechanism.

Alternate runtimes MUST NOT permit applications to make use of features protected by Android permissions
restricted to system applications.

Alternate runtimes MUST abide by the Android sandbox model. Specifically:

Alternate runtimes SHOULD install apps via the PackageManager into separate Android sandboxes (that is,
Linux user IDs, etc.)
Alternate runtimes MAY provide a single Android sandbox shared by all applications using the alternate runtime.
Alternate runtimes and installed applications using an alternate runtime MUST NOT reuse the sandbox of any
other app installed on the device, except through the standard Android mechanisms of shared user ID and
signing certificate
Alternate runtimes MUST NOT launch with, grant, or be granted access to the sandboxes corresponding to
other Android applications.

Alternate runtimes MUST NOT be launched with, be granted, or grant to other applications any privileges of the
superuser (root), or of any other user ID.

The .apk files of alternate runtimes MAY be included in the system image of a device implementation, but MUST be
signed with a key distinct from the key used to sign other applications included with the device implementation.

When installing applications, alternate runtimes MUST obtain user consent for the Android permissions used by the
application. That is, if an application needs to make use of a device resource for which there is a corresponding
Android permission (such as Camera, GPS, etc.), the alternate runtime MUST inform the user that the application will
be able to access that resource. If the runtime environment does not record application capabilities in this manner, the
runtime environment MUST list all permissions held by the runtime itself when installing any application using that
runtime.

10. Software Compatibility Testing
Device implementations MUST pass all tests described in this section.

However, note that no software test package is fully comprehensive. For this reason, device implementers are very
strongly encouraged to make the minimum number of changes as possible to the reference and preferred
implementation of Android 4.0 available from the Android Open Source Project. This will minimize the risk of
introducing bugs that create incompatibilities requiring rework and potential device updates.

10.1. Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite (CTS) [Resources, 2] available from the
Android Open Source Project, using the final shipping software on the device. Additionally, device implementers
SHOULD use the reference implementation in the Android Open Source tree as much as possible, and MUST ensure
compatibility in cases of ambiguity in CTS and for any reimplementations of parts of the reference source code.

The CTS is designed to be run on an actual device. Like any software, the CTS may itself contain bugs. The CTS will
be versioned independently of this Compatibility Definition, and multiple revisions of the CTS may be released for
Android 4.0. Device implementations MUST pass the latest CTS version available at the time the device software is
completed.

10.2. CTS Verifier

Device implementations MUST correctly execute all applicable cases in the CTS Verifier. The CTS Verifier is
included with the Compatibility Test Suite, and is intended to be run by a human operator to test functionality that
cannot be tested by an automated system, such as correct functioning of a camera and sensors.

The CTS Verifier has tests for many kinds of hardware, including some hardware that is optional. Device
implementations MUST pass all tests for hardware which they possess; for instance, if a device possesses an
accelerometer, it MUST correctly execute the Accelerometer test case in the CTS Verifier. Test cases for features
noted as optional by this Compatibility Definition Document MAY be skipped or omitted.

Every device and every build MUST correctly run the CTS Verifier, as noted above. However, since many builds are
very similar, device implementers are not expected to explicitly run the CTS Verifier on builds that differ only in trivial
ways. Specifically, device implementations that differ from an implementation that has passed the CTS Verfier only by
the set of included locales, branding, etc. MAY omit the CTS Verifier test.

10.3. Reference Applications

Device implementers MUST test implementation compatibility using the following open source applications:

The "Apps for Android" applications [Resources, 55].
Replica Island (available in Android Market)

Each app above MUST launch and behave correctly on the implementation, for the implementation to be considered
compatible.

11. Updatable Software
Device implementations MUST include a mechanism to replace the entirety of the system software. The mechanism
need not perform "live" upgrades - that is, a device restart MAY be required.

Any method can be used, provided that it can replace the entirety of the software preinstalled on the device. For
instance, any of the following approaches will satisfy this requirement:

Over-the-air (OTA) downloads with offline update via reboot
"Tethered" updates over USB from a host PC
"Offline" updates via a reboot and update from a file on removable storage

The update mechanism used MUST support updates without wiping user data. That is, the update mechanism MUST
preserve application private data and application shared data. Note that the upstream Android software includes an
update mechanism that satisfies this requirement.

If an error is found in a device implementation after it has been released but within its reasonable product lifetime that
is determined in consultation with the Android Compatibility Team to affect the compatibility of third-party applications,
the device implementer MUST correct the error via a software update available that can be applied per the
mechanism just described.

12. Contact Us
You can contact the document authors at compatibility@android.com for clarifications and to bring up any issues that
you think the document does not cover.

Appendix A - Bluetooth Test Procedure
The Compatibility Test Suite includes cases that cover basic operation of the Android RFCOMM Bluetooth API.
However, since Bluetooth is a communications protocol between devices, it cannot be fully tested by unit tests
running on a single device. Consequently, device implementations MUST also pass the human-operated Bluetooth
test procedure described below.

The test procedure is based on the BluetoothChat sample app included in the Android open source project tree. The
procedure requires two devices:

a candidate device implementation running the software build to be tested
a separate device implementation already known to be compatible, and of a model from the device
implementation being tested - that is, a "known good" device implementation

The test procedure below refers to these devices as the "candidate" and "known good" devices, respectively.

Setup and Installation

1. Build BluetoothChat.apk via 'make samples' from an Android source code tree.
2. Install BluetoothChat.apk on the known-good device.
3. Install BluetoothChat.apk on the candidate device.

Test Bluetooth Control by Apps

1. Launch BluetoothChat on the candidate device, while Bluetooth is disabled.
2. Verify that the candidate device either turns on Bluetooth, or prompts the user with a dialog to turn on Bluetooth.

Test Pairing and Communication

1. Launch the Bluetooth Chat app on both devices.
2. Make the known-good device discoverable from within BluetoothChat (using the Menu).
3. On the candidate device, scan for Bluetooth devices from within BluetoothChat (using the Menu) and pair with

the known-good device.
4. Send 10 or more messages from each device, and verify that the other device receives them correctly.
5. Close the BluetoothChat app on both devices by pressing Home.
6. Unpair each device from the other, using the device Settings app.

Test Pairing and Communication in the Reverse Direction

1. Launch the Bluetooth Chat app on both devices.
2. Make the candidate device discoverable from within BluetoothChat (using the Menu).
3. On the known-good device, scan for Bluetooth devices from within BluetoothChat (using the Menu) and pair

with the candidate device.
4. Send 10 or messages from each device, and verify that the other device receives them correctly.
5. Close the Bluetooth Chat app on both devices by pressing Back repeatedly to get to the Launcher.

Test Re-Launches

1. Re-launch the Bluetooth Chat app on both devices.
2. Send 10 or messages from each device, and verify that the other device receives them correctly.

Note: the above tests have some cases which end a test section by using Home, and some using Back. These tests
are not redundant and are not optional: the objective is to verify that the Bluetooth API and stack works correctly both
when Activities are explicitly terminated (via the user pressing Back, which calls finish()), and implicitly sent to
background (via the user pressing Home.) Each test sequence MUST be performed as described.

