Compatibility Test Suite
(CTS)

User Manual

Open Handset Alliance

Contents

1. Why build compatible Android devices?
2. How can | become compatible?
2.1. Comply with Android Compatibility Definition document
2.2. Pass the Compatibility Test Suite (CTS)
3. Running the automated CTS
3.1. Setting up your host machine
3.2. Storage requirements
3.3. Setting up your device
3.4. Copying media files to the device
3.5. Using the CTS
3.6. Selecting CTS plans
4. Interpreting the test results
5. CTS Verifier instructions
5.1. Test Preparation
5.1.1. Hardware requirements
5.1.2. Setup
5.2. CTS test procedure
5.3. Specific test requirements
5.3.1. USB Accessory
5.3.2. Camera field of view calibration
5.4. Exporting test reports
6. Release notes
7. Appendix: CTS Console command reference

More
devices

The Android
Mare users Ecosystem....

More
developers
& content

Users want a customizable device.

A mobile phone is a highly personal, always-on, always-present gateway to the Internet.
We haven't met a user yet who didn't want to customize it by extending its
functionality. That's why Android was designed as a robust platform for running
after-market applications.

Developers outnumber us all.

No device manufacturer can hope to write all the software that a person could
conceivably need. We need third-party developers to write the apps users want, so the
Android Open Source Project aims to make it as easy and open as possible for
developers to build apps.

Everyone needs a common ecosystem.

Every line of code developers write to work around a particular phone's bug is a line of
code that didn't add a new feature. The more compatible phones there are, the more
apps there will be. By building a fully compatible Android device, you benefit from the
huge pool of apps written for Android, while increasing the incentive for developers to
build more of those apps.

Android compatibility is free, and it's easy.

See the Android Compatibility program introduction for more information:

http://source.android.com/compatibility/index.html

2.1. Comply with Android Compatibility Definition document

To start, read the Android Compatibility overview, which describes the goals and
components of the program:
http://source.android.com/compatibility/overview.html

Then review the Android Compatibility Definition Document (CDD) for the requirements
of and policies associated with compatible devices:
http://source.android.com/compatibility/android-cdd.pdf

The CDD's role is to codify and clarify specific requirements, and eliminate ambiguity.
The CDD does not attempt to be comprehensive. Since Android is a single corpus of
open-source code, the code itself is the comprehensive "specification” of the platform
and its APls.

2.2. Pass the Compatibility Test Suite (CTS)

The Android Compatibility Test Suite (CTS) is a downloadable open-source testing
harness you can use as you develop your handset; for example, you could use the CTS
to do continuous self-testing during your development work.

For more about the CTS and the compatibility report that it generates, see the
Compatibility Test Suite introduction:
http://source.android.com/compatibility/cts-intro.html

For the latest instructions on using the CTS, visit the following link:
http://source.android.com/compatibility/android-cts-manual.pdf

http://source.android.com/compatibility/index.html
http://source.android.com/compatibility/overview.html
http://source.android.com/compatibility/android-cdd.pdf
http://source.android.com/compatibility/cts-intro.html
http://source.android.com/compatibility/android-cts-manual.pdf

3.1. Setting up your host machine
Note: the steps to configure and run CTS have changed in the 4.0 release.

Before running CTS, make sure you have a recent version of Android Debug Bridge (adb)
installed and the 'adb’ location added to the system path of your machine.

To install adb, download Android SDK tools, and set up an existing IDE:
http://developer.android.com/sdk/index.html#ExistingIDE
http://developer.android.com/sdk/installing/index.html

Ensure 'adb’ is in your system path:

export
PATH=SPATH: /home/myuser/android-sdk-linux x86/platform-too
1ls

3.2. Storage requirements

The CTS media stress tests require video clips to be on external storage (/sdcard). Most
of the clips are from Big Buck Bunny which is copyrighted by the Blender Foundation (
http://www.bigbuckbunny.org) under the Creative Commons Attribution 3.0 license:
http://creativecommons.org/licenses/by/3.0/

The required space depends on the maximum video playback resolution supported by
the device. By default, 176x144 and 480x360 SHOULD be supported. Note that the
video playback capabilities of the device under test will be checked via the
android.media.CamcorderProfile APIs.

Here are the storage requirements by maximum video playback resolution:
480x360: 91.4MB

720x480: 151.9MB

1280x720: 401.6MB

1920x1080: 1008.2MB

http://developer.android.com/sdk/index.html#ExistingIDE
http://developer.android.com/sdk/installing/index.html
http://www.google.com/url?q=http%3A%2F%2Fwww.bigbuckbunny.org%2F&sa=D&sntz=1&usg=AFQjCNGwqRcHyYAHNQKF9F_wVFIVTg01tQ
http://www.google.com/url?q=http%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F3.0%2F&sa=D&sntz=1&usg=AFQjCNEkGjDdGkHbUbUnDvbQE_Uk1F0AJQ

3.3.

Setting up your device

CTS should be executed on consumer (user build) devices only.

This section is important as not following these instructions will lead to test timeouts
and other failures:

1.

2.

w

10.

11

14.

15.

16.

Your device should be running a user build (Android 4.0 and later) from
source.android.com.

Set up your device per the Using Hardware Devices instructions on the Android
developer site:

http://developer.android.com/tools/device.html

Make sure your device has been flashed with a user build before you run CTS.
If the device has a memory card slot, make sure the device has an SD card
plugged in and the card is empty. Warning: CTS may modify/erase data on the SD
card plugged in to the device.

Do a factory data reset on the device (Settings > Storage > Factory data reset).
Warning: This will erase all user data from the device.

Make sure your device is set up with English (United States) as the language
(Settings > Language & input > Language).

Make sure the device is connected to a functioning Wi-Fi network (Settings >
Wi-Fi).

Make sure no lock pattern is set on the device (Settings > Security > Screen Lock
='None’).

Make sure the "USB Debugging” development option is checked (Settings >
Developer options > USB debugging).

Connect the host machine that will be used to test the device, and “Allow USB
debugging” for the computer's RSA key fingerprint.

. Make sure Settings > Developer options > Stay Awake is checked.
12.
13.

Make sure Settings > Developer options > Allow mock locations is checked.
Make sure the device is at the home screen at the start of CTS (by pressing the
home button).

Set up your device (or emulator) to run the accessibility tests per the Workflow
section of the CTS introduction:
http://source.android.com/compatibility/cts-intro.html#workflow

While a device is running tests, it must not be used for any other tasks and must
be kept in a stationary position (to avoid triggering sensor activity).

Do not press any keys on the device while CTS is running. Pressing keys or
touching the screen of a test device will interfere with the running tests and may
lead to test failures.

http://developer.android.com/tools/device.html
http://source.android.com/compatibility/cts-intro.html#workflow

3.4. Copying media files to the device

Follow these instructions to copy the media files to a device:

1.

2.
3.
4.

Download the android-cts-media-X.Y.zip file from
http://source.android.com/compatibility/downloads.html and unzip it.
Connect the device to the computer and check that adb can connect to it.
Navigate (cd) to the unzipped folder.
Use ‘chmod’ to change the file permissions like so:
chmod 544 copy media.sh
Run copy media.sh like so:
o To copy clips for just the default resolutions, run:
./copy media.sh
o To copy clips up to a resolution of 720x480, run:
./copy media.sh 720x480
o If you are not sure about the maximum resolution, try 1920x1080 so that all
files are copied.
o If there are multiple devices under adb, add the -s (serial) option to the end.
For example, to copy up to 720x480 to the device with serial 1234567, run:
./copy media.sh 720x480 -s 1234567

3.5. Using the CTS

To run a test plan:

Make sure you have at least one device connected. Launch the CTS console by
running the cts-tradefed script from the folder where the CTS package has been
unzipped, e.g.

$./android-cts/tools/cts-tradefed

You may start the default test plan (containing all of the test packages) by typing
run cts --plan CTS. This will kick off all the CTS tests required for compatibility.
Type list plans to see a list of test plans in the repository.Type list packages to
see a list of test packages in the repository.

See the CTS command reference or type help for a complete list of supported
commands.

Alternately, you can just run a CTS plan from the command line using
cts-tradefed run cts --plan <plan_name>

You should see test progress and results reported on the console.

http://source.android.com/compatibility/downloads.html

3.6. Selecting CTS plans
For this release the following test plans are available:

1. CTS- all tests and will run ~18,000 tests on your device. These tests are required
for compatibility. At this point performance tests are not part of this plan (this
will change for future CTS releases).

Signature - the signature verification of all public APIs

Android - tests for the android APIs

Java - tests for the Java core library

VM - tests for the Dalvik virtual machine

Performance - performance tests for your implementation.

oapr®d

These can be executed with the run cts command as mentioned earlier.

The test results are placed in the file:
$CTS ROOT/android-cts/repository/results/<start time>.zip

Inside the zip, the testResult.xml file contains the actual results -- open this file in any
web browser (HTML5 compatible browser recommended) to view the test results. It will
resemble the following screenshots.

Test Report for dream - HT851LZ01986

Device Information Test Summary
Device Make dream
Build model HT851LZ01986
Firmware Version 1.5
Firmware Build Number CUPCAKE Plan name CTS
Android Platform Version 3 Start time Wed Feb 11 15:20:53 PST 2009
Supported Locales en_US;es;en_US;zz_ZZ;en; End time Wed Feb 11 15:49:49 PST 2009
Screen size 320x480 Version 1.0
Phone number null
* dpi 180.62193
y dpi 181.96814 Tests Passed 1448
Touch finger Tests Failed 40
Navigation trackball Tests Timed out 1
Keypad qwerty Tests Not Executed 0
Network
IMEI 351676030149928
IMSI null

Test Summary by Package

Test Package | TestsPassed
android.tests.sigtest 171
android.app 32/35
android.content 163/ 167
android.database 18/18
android.graphics 489/ 499
android.location 19/19
android.net 29/30
android.os 75175
android.provider 10/10
android.text 147 /150
andrnir il 22139

The 'device information' section provides details about the device and the firmware
(make, model, firmware build, platform) and the hardware on the device (screen
resolution, keypad, screen type).

The details of the executed test plan are present in the 'test summary' section which
provides the CTS plan name and execution start and end times. It also presents an
aggregate summary of the number of tests that passed, failed, time out or could not be
executed.

The next section also provides a summary of tests passed per package.

Compatibility Test Package: android.widget

Test Result | Failure Details
Suite: android.widget.cts.
- AbsSeekBarTest
-- testConstructor pass
-- testAccessThumbOffset pass
- testSetThumb pass
- testOnTouchEvent pass
- testDrawableStateChanged pass
- testOnDraw pass
- testOnMeasure pass
- testVerifyDrawable fail junit.framework.AssertionFailedError at

android.widget.cts. AbsSeekBarTest testVerifyDrawable(AbsSeekBarTest. java:327)

— testOnSizeChanged pass
- testAndroidTestCaseSetupProperly pass
- ButtonTest
-- testConstructor pass
— testAndroidTestCaseSetupProperly pass
- ChronometerTest
-- testConstructor pass
-- testAccessBase pass
-- testAccessFormat pass
-- testOnDetachedFromWindow pass
- testOnWindowVisibilityChanged pass
- testStartAndStop pass
- CompoundButtonTest
-- testConstructor pass
-- testAccessChecked pass
- testSetOnCheckedChangeListener pass
- testToggle pass
- testPerformClick pass
- testDrawableStateChanged pass
- testSetButtonDrawableByDrawable pass
- testSetButtonDrawableByld pass
-- testOnCreateDrawableState pass
- testOnDraw pass

— tactArracelnetancraQtata nacc

This is followed by details of the the actual tests that were executed. The report lists
the test package, test suite, test case and the executed tests. It shows the result of the
test execution - pass, fail, timed out or not executed. In the event of a test failure
details are provided to help diagnose the cause.

Further, the stack trace of the failure is available in the XML file but is not included in
the report to ensure brevity - viewing the XML file with a text editor should provide
details of the test failure (search for the <Test> tag corresponding to the failed test and
look within it for the <StackTrace> tag).

The Android Compatibility Test Suite Verifier (CTS Verifier) is a supplement to the
Compatibility Test Suite (CTS). While CTS checks those APIs and functions that can

10

be automated, CTS Verifier provides tests for those APIs and functions that cannot be
tested on a stationary device without manual input (e.g. audio quality, touchscreen,
accelerometer, camera, etc).

5.1. Test Preparation

The device must have verified Android API compatibility by successfully passing the
Compatibility Test Suite.

5.1.1. Hardware requirements

e A Linux computer with USB 2.0 compatible port
e A second Android device with a known compatible Bluetooth, Wi-Fi direct and
NFC Host Card Emulation (HCE)\ implementation

5.1.2. Setup
e Install the Android SDK on the Linux computer:
http://developer.android.com/sdk/index.html
e Download the appropriate CTS Verifier.apk for the version of Android under test:
http://source.android.com/compatibility/downloads.html
e Install CTS Verifier.apk to the Device Under Test (DUT).

adb install -r CTS Verifier.apk

e Ensure that the device has its system data and time set correctly.

5.2. CTS test procedure

e After the CTS Verifier.apk has been installed, launch the CTS Verifier application:

11

http://developer.android.com/sdk/index.html
http://source.android.com/compatibility/downloads.html

E Shop

Calculator Calendar

i

Camera Contacts CTS Verifier

e Once opened, the CTS Verifier displays a list of all test sets available for manual
verification:

=is, CTS Verifier 4.4_r1

CAMERA

Camera FOV Calibration
Camera Formats
Camera Intents

Camera Orientation

CLOCK

Alarms and Timers Tests

DEVICE ADMINISTRATION

Policy Serialization Test

Screen Lock Test

FEATURES

Hardware/Software Feature Summary

Ao | !

12

e Each test contains a set of common elements (in some tests, Pass/Fail is
determined automatically):

o Info - a set of instructions to run the test. This will appear as a popup the
first time each test is opened or whenever the ‘Info’ button is pressed.

o Pass - If the DUT meets the test requirements per the instructions from
‘Info’, then select the Pass button.

o Fail - If the DUT does not meet the test requirements per the instructions
from ‘Info’, then select the Fail button.

.-.’ Audio Quality Verifier

Sound level check
Bias measurement
Overflow check

Gain linearity test
Spectrum shape test
Glitch test

Glitch test (7)

Cold recording latency

Warm recording latency

Calibrate Run All Results Clear

2 €

5.3. Specific test requirements

5.3.1. USB Accessory

In order to run the USB Accessory test, a Linux computer will be needed in order to run
the USB host program.

e Connect the DUT to a computer

e Execute the cts-usb-accessory program on the computer found in the CTS

13

Verifier package.
e A popup message will appear on the DUT. Select ‘OK’ and go into the USB
Accessory Test in the CTS Verifier application.

CTS Verifier

ajs,

Open CTS Verifier when this USB accessory is connected?

Use by default for this USB accessory

0K Cancel

e Console output similar to below will appear on the computer’s console.

14

out/host/linux-x86/cts-verifier/android-cts-verifier$
./cts-usb-accessory

CTS USB Accessory Tester

Found possible Android device (413c:2106) - attempting to switch to
accessory mode...

Failed to read protocol version

Found Android device in accessory mode (18dl1:2d01)...
[RECV] Message from Android device #0

[SENT] Message from Android accessory #0

[RECV] Message from Android device #1

[SENT] Message from Android accessory #1

[RECV] Message from Android device #2

[SENT] Message from Android accessory #2

[RECV] Message from Android device #3

[SENT] Message from Android accessory #3

[RECV] Message from Android device #4

[SENT] Message from Android accessory #4

[RECV] Message from Android device #5

[SENT] Message from Android accessory #5

[RECV] Message from Android device #6

[SENT] Message from Android accessory #6

[RECV] Message from Android device #7

[SENT] Message from Android accessory #7

[RECV] Message from Android device #8

[SENT] Message from Android accessory #8

[RECV] Message from Android device #9

[SENT] Message from Android accessory #9

[RECV] Message from Android device #10

[SENT] Message from Android accessory #10

5.3.2. Camera field of view calibration

This field of view calibration procedure is designed to be a quick way to determine the
device field of view with moderate accuracy.

Setup

Print the calibration-pattern.pdf target file and mount it on a rigid backing (Print on
11" x 17" or A3):
http://source.android.com/compatibility/calibration-pattern.pdf

Orient the camera device and the printed target as shown in the diagram below:

15

http://source.android.com/compatibility/calibration-pattern.pdf

Top down view

Device

Optical axis

100

Target
pattern

Perpendicular to/

the optical axis.
Aligned with the
target center line

cm

Measured from the
camera entrance pupil
to the target pattern

surface.

Setting the target width

[
<2 Ik »

Measure the distance between the solid lines on the target pattern in centimeters to

account for printing inaccuracies (~38 cm).

1. Start the calibration application.

2. Hit the setup button and select “Marker distance” to enter the distance.
3. Measure and enter the distance to the target pattern (~100 cm).
4. Hit the back button to return to the calibration preview.

Calibration process

Verify that the device and target are placed as shown in the figure and the correct
distances have been entered into the setup dialog.

The preview will display the image with a vertical line overlaid onto it. This line should
align with the center line of the target pattern. The transparent grid can be used with

16

the other vertical lines to ensure that the optical axis is orthogonal to the target.

e Select an image resolution to test from the selector at the bottom left.

e Tap the screen to take a photo and enter the calibration mode (described
below).

e Hit the back button and repeat for all supported image resolutions.

Calibration test (per resolution)

In the calibration mode, the photo will be displayed with two vertical lines overlaid
onto the image.

These lines should align with the vertical lines on the target pattern within a few pixels.
If they do not, then the reported field of view for that mode is inaccurate (assuming
the setup is correct).

Adjust the slider at the bottom of the screen until the overlay aligns with the target
pattern as closely as possible. The displayed field of view will be a close
approximation to the correct value when the overlay and the target pattern image are
aligned. The reported field of view should be within +/-1 degree of the calibration value.

5.4. Exporting test reports

e After all tests are completed, tap the MENU button from the CTS Verifier home
screen, and select “Export”.

‘n'rl“ CTS Verifier

Audio

Audio Quality Verifier

Device Administration

Policy Serialization Test

Screen Lock Test

e A path to the saved report will be displayed in pop-up (e.qg.
/mnt/sdcard/ctsVerifierReports/ctsVerifierReport-date-tim
e.zip). Record the path. Future releases of CTS Verifier will support reporting
directly from the device.

17

--i— CTS Verifier

Audio
Audio Quality Verifier

Device Administration

Policy Serialization Test

Screen Lock Test

Features

(

Report saved to: /mnt
ctsVerifierReport-201

Connect the device via USB to a computer with the SDK installed.
From the computer's SDK installation, run adb pull <CTS Verifier
report path>to download the report from the device.
o To download all reports run:
adb pull /mnt/sdcard/ctsVerifierReports/
o The name of the reports are time-stamped based on the DUT'’s system
time.
e To clearresults after they have been selected, select Menu -> Clear. This will
clear the Pass/Fail results.

e Note the CTS test harness has changed significantly in the Android 4.0 release.
Some new features have been added included support for sharding a CTS test run
onto multiple concurrent devices, as well as general faster performance.

e This CTS release contains approximately 18,000 tests that you can execute on
the device.

e Please make sure all steps in section 3.3 "Setting up your device” have been
followed before you kick off CTS. Not following these instructions may cause
tests to timeout or fail.

18

Host

help

help all

exit

Run

run cts

-plan <test_plan_name>

-- package/-p <test_package_name>
[-package/-p <test_package2>...]

--class/-c <class_name> [-method/-m
<test_method_name>

Display a summary of the most
commonly used commands.

display the complete list of available
commands

Gracefully exit the CTS console. Console
will close when all currently running tests
are finished

Run the specified tests and displays
progress information. One of --plan,
--package, -class or --continue-session-id
needs to be specified.

The CTS console can accept other
commands while tests are in progress.

If no devices are connected, the CTS host
will wait for a device to be connected
before starting tests.

If more than one device is connected,
CTS host will choose a device
automatically.

Run the specified test plan

Runs the specified test packages.

Runs the specified test class and/or

19

--continue-session-id

--shards <number_of_shards>

--serial/-s <devicelD>

List

list packages

list plans

list invocations

list commands

list results

list devices

method

Runs all not executed tests from
previous CTS session. The sessions
testResult.xml will be updated with the
new results.

Shard a CTS run into given number of
independent chunks, to run on multiple
devices in parallel.

Run CTS on the specific device

List all available test packages in the
repository.

Lists all available test plans in the
repository

Lists 'run’ commands currently being
executed on devices.

List all 'run’ commands currently in the
queue waiting to be assigned to devices

List CTS results currently stored in
repository

List currently connected devices and
their state.

'Available’ devices are functioning, idle
devices, available for running tests.

'Unavailable’ devices are devices visible
via adb, but are not responding to adb
commands and won't be allocated for
tests.

20

'Allocated’ devices are devices currently
running tests.

Add
add derivedplan -plan <plan_name> Create a plan derived from given result
~result/-r session.

[pass | fail | timeout | notExecuted]
[-session/-s <session_id>]

21

