blob: 2eefc7bfb5b655c2d77ddccffc62cda52a54b7ad [file] [log] [blame]
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
//
// The Google C++ Testing Framework (Google Test)
//
// This header file declares functions and macros used internally by
// Google Test. They are subject to change without notice.
#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
#include <gtest/internal/gtest-port.h>
#ifdef GTEST_OS_LINUX
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#endif // GTEST_OS_LINUX
#include <iomanip> // NOLINT
#include <limits> // NOLINT
#include <gtest/internal/gtest-string.h>
#include <gtest/internal/gtest-filepath.h>
// Due to C++ preprocessor weirdness, we need double indirection to
// concatenate two tokens when one of them is __LINE__. Writing
//
// foo ## __LINE__
//
// will result in the token foo__LINE__, instead of foo followed by
// the current line number. For more details, see
// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
#define GTEST_CONCAT_TOKEN(foo, bar) GTEST_CONCAT_TOKEN_IMPL(foo, bar)
#define GTEST_CONCAT_TOKEN_IMPL(foo, bar) foo ## bar
// Google Test defines the testing::Message class to allow construction of
// test messages via the << operator. The idea is that anything
// streamable to std::ostream can be streamed to a testing::Message.
// This allows a user to use his own types in Google Test assertions by
// overloading the << operator.
//
// util/gtl/stl_logging-inl.h overloads << for STL containers. These
// overloads cannot be defined in the std namespace, as that will be
// undefined behavior. Therefore, they are defined in the global
// namespace instead.
//
// C++'s symbol lookup rule (i.e. Koenig lookup) says that these
// overloads are visible in either the std namespace or the global
// namespace, but not other namespaces, including the testing
// namespace which Google Test's Message class is in.
//
// To allow STL containers (and other types that has a << operator
// defined in the global namespace) to be used in Google Test assertions,
// testing::Message must access the custom << operator from the global
// namespace. Hence this helper function.
//
// Note: Jeffrey Yasskin suggested an alternative fix by "using
// ::operator<<;" in the definition of Message's operator<<. That fix
// doesn't require a helper function, but unfortunately doesn't
// compile with MSVC.
template <typename T>
inline void GTestStreamToHelper(std::ostream* os, const T& val) {
*os << val;
}
namespace testing {
// Forward declaration of classes.
class Message; // Represents a failure message.
class TestCase; // A collection of related tests.
class TestPartResult; // Result of a test part.
class TestInfo; // Information about a test.
class UnitTest; // A collection of test cases.
class UnitTestEventListenerInterface; // Listens to Google Test events.
class AssertionResult; // Result of an assertion.
namespace internal {
struct TraceInfo; // Information about a trace point.
class ScopedTrace; // Implements scoped trace.
class TestInfoImpl; // Opaque implementation of TestInfo
class TestResult; // Result of a single Test.
class UnitTestImpl; // Opaque implementation of UnitTest
template <typename E> class List; // A generic list.
template <typename E> class ListNode; // A node in a generic list.
// A secret type that Google Test users don't know about. It has no
// definition on purpose. Therefore it's impossible to create a
// Secret object, which is what we want.
class Secret;
// Two overloaded helpers for checking at compile time whether an
// expression is a null pointer literal (i.e. NULL or any 0-valued
// compile-time integral constant). Their return values have
// different sizes, so we can use sizeof() to test which version is
// picked by the compiler. These helpers have no implementations, as
// we only need their signatures.
//
// Given IsNullLiteralHelper(x), the compiler will pick the first
// version if x can be implicitly converted to Secret*, and pick the
// second version otherwise. Since Secret is a secret and incomplete
// type, the only expression a user can write that has type Secret* is
// a null pointer literal. Therefore, we know that x is a null
// pointer literal if and only if the first version is picked by the
// compiler.
char IsNullLiteralHelper(Secret* p);
char (&IsNullLiteralHelper(...))[2]; // NOLINT
// A compile-time bool constant that is true if and only if x is a
// null pointer literal (i.e. NULL or any 0-valued compile-time
// integral constant).
#ifdef __SYMBIAN32__ // Symbian
// Passing non-POD classes through ellipsis (...) crashes the ARM compiler.
// The Nokia Symbian compiler tries to instantiate a copy constructor for
// objects passed through ellipsis (...), failing for uncopyable objects.
// Hence we define this to false (and lose support for NULL detection).
#define GTEST_IS_NULL_LITERAL(x) false
#else // ! __SYMBIAN32__
#define GTEST_IS_NULL_LITERAL(x) \
(sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
#endif // __SYMBIAN32__
// Appends the user-supplied message to the Google-Test-generated message.
String AppendUserMessage(const String& gtest_msg,
const Message& user_msg);
// A helper class for creating scoped traces in user programs.
class ScopedTrace {
public:
// The c'tor pushes the given source file location and message onto
// a trace stack maintained by Google Test.
ScopedTrace(const char* file, int line, const Message& message);
// The d'tor pops the info pushed by the c'tor.
//
// Note that the d'tor is not virtual in order to be efficient.
// Don't inherit from ScopedTrace!
~ScopedTrace();
private:
GTEST_DISALLOW_COPY_AND_ASSIGN(ScopedTrace);
} GTEST_ATTRIBUTE_UNUSED; // A ScopedTrace object does its job in its
// c'tor and d'tor. Therefore it doesn't
// need to be used otherwise.
// Converts a streamable value to a String. A NULL pointer is
// converted to "(null)". When the input value is a ::string,
// ::std::string, ::wstring, or ::std::wstring object, each NUL
// character in it is replaced with "\\0".
// Declared here but defined in gtest.h, so that it has access
// to the definition of the Message class, required by the ARM
// compiler.
template <typename T>
String StreamableToString(const T& streamable);
// Formats a value to be used in a failure message.
#ifdef __SYMBIAN32__
// These are needed as the Nokia Symbian Compiler cannot decide between
// const T& and const T* in a function template. The Nokia compiler _can_
// decide between class template specializations for T and T*, so a
// tr1::type_traits-like is_pointer works, and we can overload on that.
// This overload makes sure that all pointers (including
// those to char or wchar_t) are printed as raw pointers.
template <typename T>
inline String FormatValueForFailureMessage(internal::true_type dummy,
T* pointer) {
return StreamableToString(static_cast<const void*>(pointer));
}
template <typename T>
inline String FormatValueForFailureMessage(internal::false_type dummy,
const T& value) {
return StreamableToString(value);
}
template <typename T>
inline String FormatForFailureMessage(const T& value) {
return FormatValueForFailureMessage(
typename internal::is_pointer<T>::type(), value);
}
#else
template <typename T>
inline String FormatForFailureMessage(const T& value) {
return StreamableToString(value);
}
// This overload makes sure that all pointers (including
// those to char or wchar_t) are printed as raw pointers.
template <typename T>
inline String FormatForFailureMessage(T* pointer) {
return StreamableToString(static_cast<const void*>(pointer));
}
#endif // __SYMBIAN32__
// These overloaded versions handle narrow and wide characters.
String FormatForFailureMessage(char ch);
String FormatForFailureMessage(wchar_t wchar);
// When this operand is a const char* or char*, and the other operand
// is a ::std::string or ::string, we print this operand as a C string
// rather than a pointer. We do the same for wide strings.
// This internal macro is used to avoid duplicated code.
#define GTEST_FORMAT_IMPL(operand2_type, operand1_printer)\
inline String FormatForComparisonFailureMessage(\
operand2_type::value_type* str, const operand2_type& /*operand2*/) {\
return operand1_printer(str);\
}\
inline String FormatForComparisonFailureMessage(\
const operand2_type::value_type* str, const operand2_type& /*operand2*/) {\
return operand1_printer(str);\
}
#if GTEST_HAS_STD_STRING
GTEST_FORMAT_IMPL(::std::string, String::ShowCStringQuoted)
#endif // GTEST_HAS_STD_STRING
#if GTEST_HAS_STD_WSTRING
GTEST_FORMAT_IMPL(::std::wstring, String::ShowWideCStringQuoted)
#endif // GTEST_HAS_STD_WSTRING
#if GTEST_HAS_GLOBAL_STRING
GTEST_FORMAT_IMPL(::string, String::ShowCStringQuoted)
#endif // GTEST_HAS_GLOBAL_STRING
#if GTEST_HAS_GLOBAL_WSTRING
GTEST_FORMAT_IMPL(::wstring, String::ShowWideCStringQuoted)
#endif // GTEST_HAS_GLOBAL_WSTRING
#undef GTEST_FORMAT_IMPL
// Constructs and returns the message for an equality assertion
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
//
// The first four parameters are the expressions used in the assertion
// and their values, as strings. For example, for ASSERT_EQ(foo, bar)
// where foo is 5 and bar is 6, we have:
//
// expected_expression: "foo"
// actual_expression: "bar"
// expected_value: "5"
// actual_value: "6"
//
// The ignoring_case parameter is true iff the assertion is a
// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
// be inserted into the message.
AssertionResult EqFailure(const char* expected_expression,
const char* actual_expression,
const String& expected_value,
const String& actual_value,
bool ignoring_case);
// This template class represents an IEEE floating-point number
// (either single-precision or double-precision, depending on the
// template parameters).
//
// The purpose of this class is to do more sophisticated number
// comparison. (Due to round-off error, etc, it's very unlikely that
// two floating-points will be equal exactly. Hence a naive
// comparison by the == operation often doesn't work.)
//
// Format of IEEE floating-point:
//
// The most-significant bit being the leftmost, an IEEE
// floating-point looks like
//
// sign_bit exponent_bits fraction_bits
//
// Here, sign_bit is a single bit that designates the sign of the
// number.
//
// For float, there are 8 exponent bits and 23 fraction bits.
//
// For double, there are 11 exponent bits and 52 fraction bits.
//
// More details can be found at
// http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
//
// Template parameter:
//
// RawType: the raw floating-point type (either float or double)
template <typename RawType>
class FloatingPoint {
public:
// Defines the unsigned integer type that has the same size as the
// floating point number.
typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
// Constants.
// # of bits in a number.
static const size_t kBitCount = 8*sizeof(RawType);
// # of fraction bits in a number.
static const size_t kFractionBitCount =
std::numeric_limits<RawType>::digits - 1;
// # of exponent bits in a number.
static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
// The mask for the sign bit.
static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
// The mask for the fraction bits.
static const Bits kFractionBitMask =
~static_cast<Bits>(0) >> (kExponentBitCount + 1);
// The mask for the exponent bits.
static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
// How many ULP's (Units in the Last Place) we want to tolerate when
// comparing two numbers. The larger the value, the more error we
// allow. A 0 value means that two numbers must be exactly the same
// to be considered equal.
//
// The maximum error of a single floating-point operation is 0.5
// units in the last place. On Intel CPU's, all floating-point
// calculations are done with 80-bit precision, while double has 64
// bits. Therefore, 4 should be enough for ordinary use.
//
// See the following article for more details on ULP:
// http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
static const size_t kMaxUlps = 4;
// Constructs a FloatingPoint from a raw floating-point number.
//
// On an Intel CPU, passing a non-normalized NAN (Not a Number)
// around may change its bits, although the new value is guaranteed
// to be also a NAN. Therefore, don't expect this constructor to
// preserve the bits in x when x is a NAN.
explicit FloatingPoint(const RawType& x) : value_(x) {}
// Static methods
// Reinterprets a bit pattern as a floating-point number.
//
// This function is needed to test the AlmostEquals() method.
static RawType ReinterpretBits(const Bits bits) {
FloatingPoint fp(0);
fp.bits_ = bits;
return fp.value_;
}
// Returns the floating-point number that represent positive infinity.
static RawType Infinity() {
return ReinterpretBits(kExponentBitMask);
}
// Non-static methods
// Returns the bits that represents this number.
const Bits &bits() const { return bits_; }
// Returns the exponent bits of this number.
Bits exponent_bits() const { return kExponentBitMask & bits_; }
// Returns the fraction bits of this number.
Bits fraction_bits() const { return kFractionBitMask & bits_; }
// Returns the sign bit of this number.
Bits sign_bit() const { return kSignBitMask & bits_; }
// Returns true iff this is NAN (not a number).
bool is_nan() const {
// It's a NAN if the exponent bits are all ones and the fraction
// bits are not entirely zeros.
return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
}
// Returns true iff this number is at most kMaxUlps ULP's away from
// rhs. In particular, this function:
//
// - returns false if either number is (or both are) NAN.
// - treats really large numbers as almost equal to infinity.
// - thinks +0.0 and -0.0 are 0 DLP's apart.
bool AlmostEquals(const FloatingPoint& rhs) const {
// The IEEE standard says that any comparison operation involving
// a NAN must return false.
if (is_nan() || rhs.is_nan()) return false;
return DistanceBetweenSignAndMagnitudeNumbers(bits_, rhs.bits_) <= kMaxUlps;
}
private:
// Converts an integer from the sign-and-magnitude representation to
// the biased representation. More precisely, let N be 2 to the
// power of (kBitCount - 1), an integer x is represented by the
// unsigned number x + N.
//
// For instance,
//
// -N + 1 (the most negative number representable using
// sign-and-magnitude) is represented by 1;
// 0 is represented by N; and
// N - 1 (the biggest number representable using
// sign-and-magnitude) is represented by 2N - 1.
//
// Read http://en.wikipedia.org/wiki/Signed_number_representations
// for more details on signed number representations.
static Bits SignAndMagnitudeToBiased(const Bits &sam) {
if (kSignBitMask & sam) {
// sam represents a negative number.
return ~sam + 1;
} else {
// sam represents a positive number.
return kSignBitMask | sam;
}
}
// Given two numbers in the sign-and-magnitude representation,
// returns the distance between them as an unsigned number.
static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
const Bits &sam2) {
const Bits biased1 = SignAndMagnitudeToBiased(sam1);
const Bits biased2 = SignAndMagnitudeToBiased(sam2);
return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
}
union {
RawType value_; // The raw floating-point number.
Bits bits_; // The bits that represent the number.
};
};
// Typedefs the instances of the FloatingPoint template class that we
// care to use.
typedef FloatingPoint<float> Float;
typedef FloatingPoint<double> Double;
// In order to catch the mistake of putting tests that use different
// test fixture classes in the same test case, we need to assign
// unique IDs to fixture classes and compare them. The TypeId type is
// used to hold such IDs. The user should treat TypeId as an opaque
// type: the only operation allowed on TypeId values is to compare
// them for equality using the == operator.
typedef void* TypeId;
// GetTypeId<T>() returns the ID of type T. Different values will be
// returned for different types. Calling the function twice with the
// same type argument is guaranteed to return the same ID.
template <typename T>
inline TypeId GetTypeId() {
static bool dummy = false;
// The compiler is required to create an instance of the static
// variable dummy for each T used to instantiate the template.
// Therefore, the address of dummy is guaranteed to be unique.
return &dummy;
}
#ifdef GTEST_OS_WINDOWS
// Predicate-formatters for implementing the HRESULT checking macros
// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
// We pass a long instead of HRESULT to avoid causing an
// include dependency for the HRESULT type.
AssertionResult IsHRESULTSuccess(const char* expr, long hr); // NOLINT
AssertionResult IsHRESULTFailure(const char* expr, long hr); // NOLINT
#endif // GTEST_OS_WINDOWS
} // namespace internal
} // namespace testing
#define GTEST_MESSAGE(message, result_type) \
::testing::internal::AssertHelper(result_type, __FILE__, __LINE__, message) \
= ::testing::Message()
#define GTEST_FATAL_FAILURE(message) \
return GTEST_MESSAGE(message, ::testing::TPRT_FATAL_FAILURE)
#define GTEST_NONFATAL_FAILURE(message) \
GTEST_MESSAGE(message, ::testing::TPRT_NONFATAL_FAILURE)
#define GTEST_SUCCESS(message) \
GTEST_MESSAGE(message, ::testing::TPRT_SUCCESS)
#define GTEST_TEST_BOOLEAN(boolexpr, booltext, actual, expected, fail) \
GTEST_AMBIGUOUS_ELSE_BLOCKER \
if (boolexpr) \
; \
else \
fail("Value of: " booltext "\n Actual: " #actual "\nExpected: " #expected)
// Helper macro for defining tests.
#define GTEST_TEST(test_case_name, test_name, parent_class)\
class test_case_name##_##test_name##_Test : public parent_class {\
public:\
test_case_name##_##test_name##_Test() {}\
static ::testing::Test* NewTest() {\
return new test_case_name##_##test_name##_Test;\
}\
private:\
virtual void TestBody();\
static ::testing::TestInfo* const test_info_;\
GTEST_DISALLOW_COPY_AND_ASSIGN(test_case_name##_##test_name##_Test);\
};\
\
::testing::TestInfo* const test_case_name##_##test_name##_Test::test_info_ =\
::testing::TestInfo::MakeAndRegisterInstance(\
#test_case_name, \
#test_name, \
::testing::internal::GetTypeId< parent_class >(), \
parent_class::SetUpTestCase, \
parent_class::TearDownTestCase, \
test_case_name##_##test_name##_Test::NewTest);\
void test_case_name##_##test_name##_Test::TestBody()
#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_