blob: bc190f9cfcba77623349942d605adc08c68f430e [file] [log] [blame]
/* libs/graphics/sgl/SkGeometry.cpp
**
** Copyright 2006, Google Inc.
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "SkGeometry.h"
#include "Sk64.h"
#include "SkMatrix.h"
/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
May also introduce overflow of fixed when we compute our setup.
*/
#ifdef SK_SCALAR_IS_FIXED
#define DIRECT_EVAL_OF_POLYNOMIALS
#endif
////////////////////////////////////////////////////////////////////////
#if defined(SK_SCALAR_IS_FIXED) && !defined(SK_CPU_HAS_CONDITIONAL_INSTR)
static int is_not_monotonic(int a, int b, int c, int d)
{
return (((a - b) | (b - c) | (c - d)) & ((b - a) | (c - b) | (d - c))) >> 31;
}
static int is_not_monotonic(int a, int b, int c)
{
return (((a - b) | (b - c)) & ((b - a) | (c - b))) >> 31;
}
#else // scalar-is-float or we have fast if/then instructions
static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c, SkScalar d)
{
int neg = 0, pos = 0;
if (a < b) neg = 1;
if (a > b) pos = 1;
if (b < c) neg = 1;
if (b > c) pos = 1;
if (c < d) neg = 1;
if (c > d) pos = 1;
return neg & pos;
}
static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c)
{
int neg = 0, pos = 0;
if (a < b) neg = 1;
if (a > b) pos = 1;
if (b < c) neg = 1;
if (b > c) pos = 1;
return neg & pos;
}
#endif
////////////////////////////////////////////////////////////////////////
static bool is_unit_interval(SkScalar x)
{
return x > 0 && x < SK_Scalar1;
}
static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio)
{
if (numer < 0)
{
numer = -numer;
denom = -denom;
}
if (denom == 0 || numer == 0 || numer >= denom)
return 0;
if (ratio)
{
SkScalar r = SkScalarDiv(numer, denom);
SkASSERT(r >= 0 && r < SK_Scalar1);
if (r == 0) // catch underflow if numer <<<< denom
return 0;
*ratio = r;
}
return 1;
}
/** From Numerical Recipes in C.
Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
x1 = Q / A
x2 = C / Q
*/
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
{
SkScalar* r = roots;
if (A == 0)
return valid_unit_divide(-C, B, roots);
#ifdef SK_SCALAR_IS_FLOAT
float R = B*B - 4*A*C;
if (R < 0) // complex roots
return 0;
R = sk_float_sqrt(R);
#else
Sk64 RR, tmp;
RR.setMul(B,B);
tmp.setMul(A,C);
tmp.shiftLeft(2);
RR.sub(tmp);
if (RR.isNeg())
return 0;
SkFixed R = RR.getSqrt();
#endif
SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
r += valid_unit_divide(Q, A, r);
r += valid_unit_divide(C, Q, r);
if (r - roots == 2)
{
if (roots[0] > roots[1])
SkTSwap<SkScalar>(roots[0], roots[1]);
else if (roots[0] == roots[1]) // nearly-equal?
r -= 1; // skip the double root
}
return (int)(r - roots);
}
#ifdef SK_SCALAR_IS_FIXED
/** Trim A/B/C down so that they are all <= 32bits
and then call SkFindUnitQuadRoots()
*/
static int Sk64FindFixedQuadRoots(const Sk64& A, const Sk64& B, const Sk64& C, SkFixed roots[2])
{
int na = A.shiftToMake32();
int nb = B.shiftToMake32();
int nc = C.shiftToMake32();
int shift = SkMax32(na, SkMax32(nb, nc));
SkASSERT(shift >= 0);
return SkFindUnitQuadRoots(A.getShiftRight(shift), B.getShiftRight(shift), C.getShiftRight(shift), roots);
}
#endif
/////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////
static SkScalar eval_quad(const SkScalar src[], SkScalar t)
{
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
#ifdef DIRECT_EVAL_OF_POLYNOMIALS
SkScalar C = src[0];
SkScalar A = src[4] - 2 * src[2] + C;
SkScalar B = 2 * (src[2] - C);
return SkScalarMul(SkScalarMul(A, t) + B, t) + C;
#else
SkScalar ab = SkScalarInterp(src[0], src[2], t);
SkScalar bc = SkScalarInterp(src[2], src[4], t);
return SkScalarInterp(ab, bc, t);
#endif
}
static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t)
{
SkScalar A = src[4] - 2 * src[2] + src[0];
SkScalar B = src[2] - src[0];
return 2 * (SkScalarMul(A, t) + B);
}
static SkScalar eval_quad_derivative_at_half(const SkScalar src[])
{
SkScalar A = src[4] - 2 * src[2] + src[0];
SkScalar B = src[2] - src[0];
return A + 2 * B;
}
void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent)
{
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
if (pt)
pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
if (tangent)
tangent->set(eval_quad_derivative(&src[0].fX, t),
eval_quad_derivative(&src[0].fY, t));
}
void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent)
{
SkASSERT(src);
if (pt)
{
SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
}
if (tangent)
tangent->set(eval_quad_derivative_at_half(&src[0].fX),
eval_quad_derivative_at_half(&src[0].fY));
}
static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
{
SkScalar ab = SkScalarInterp(src[0], src[2], t);
SkScalar bc = SkScalarInterp(src[2], src[4], t);
dst[0] = src[0];
dst[2] = ab;
dst[4] = SkScalarInterp(ab, bc, t);
dst[6] = bc;
dst[8] = src[4];
}
void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
{
SkASSERT(t > 0 && t < SK_Scalar1);
interp_quad_coords(&src[0].fX, &dst[0].fX, t);
interp_quad_coords(&src[0].fY, &dst[0].fY, t);
}
void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5])
{
SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
dst[0] = src[0];
dst[1].set(x01, y01);
dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
dst[3].set(x12, y12);
dst[4] = src[2];
}
/** Quad'(t) = At + B, where
A = 2(a - 2b + c)
B = 2(b - a)
Solve for t, only if it fits between 0 < t < 1
*/
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
{
/* At + B == 0
t = -B / A
*/
#ifdef SK_SCALAR_IS_FIXED
return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c, tValue);
#else
return valid_unit_divide(a - b, a - b - b + c, tValue);
#endif
}
static void flatten_double_quad_extrema(SkScalar coords[14])
{
coords[2] = coords[6] = coords[4];
}
static void force_quad_monotonic_in_y(SkPoint pts[3])
{
// zap pts[1].fY to the nearest value
SkScalar ab = SkScalarAbs(pts[0].fY - pts[1].fY);
SkScalar bc = SkScalarAbs(pts[1].fY - pts[2].fY);
pts[1].fY = ab < bc ? pts[0].fY : pts[2].fY;
}
/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
*/
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
{
#if 0
static bool once = true;
if (once)
{
once = false;
SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
SkPoint d[6];
int n = SkChopQuadAtYExtrema(s, d);
SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY);
}
#endif
SkScalar tValue;
int roots = SkFindQuadExtrema(src[0].fY, src[1].fY, src[2].fY, &tValue);
if (dst)
{
if (roots == 0) // nothing to chop
{
memcpy(dst, src, 3*sizeof(SkPoint));
// check if valid_unit_divide gave up but we're still not monotonic
// can happen if valid_unit_divide can't see the t-value (underflow)
// e.g. SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
if (is_not_monotonic(src[0].fY, src[1].fY, src[2].fY))
force_quad_monotonic_in_y(dst);
}
else
{
SkChopQuadAt(src, dst, tValue);
flatten_double_quad_extrema(&dst[0].fY);
}
}
return roots;
}
// F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
// F'(t) = 2 (b - a) + 2 (a - 2b + c) t
// F''(t) = 2 (a - 2b + c)
//
// A = 2 (b - a)
// B = 2 (a - 2b + c)
//
// Maximum curvature for a quadratic means solving
// Fx' Fx'' + Fy' Fy'' = 0
//
// t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
//
int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
{
SkScalar Ax = src[1].fX - src[0].fX;
SkScalar Ay = src[1].fY - src[0].fY;
SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
SkScalar t = 0; // 0 means don't chop
#ifdef SK_SCALAR_IS_FLOAT
(void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
#else
// !!! should I use SkFloat here? seems like it
Sk64 numer, denom, tmp;
numer.setMul(Ax, -Bx);
tmp.setMul(Ay, -By);
numer.add(tmp);
if (numer.isPos()) // do nothing if numer <= 0
{
denom.setMul(Bx, Bx);
tmp.setMul(By, By);
denom.add(tmp);
SkASSERT(!denom.isNeg());
if (numer < denom)
{
t = numer.getFixedDiv(denom);
SkASSERT(t >= 0 && t <= SK_Fixed1); // assert that we're numerically stable (ha!)
if ((unsigned)t >= SK_Fixed1) // runtime check for numerical stability
t = 0; // ignore the chop
}
}
#endif
if (t == 0)
{
memcpy(dst, src, 3 * sizeof(SkPoint));
return 1;
}
else
{
SkChopQuadAt(src, dst, t);
return 2;
}
}
////////////////////////////////////////////////////////////////////////////////////////
///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
////////////////////////////////////////////////////////////////////////////////////////
static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4])
{
coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
coeff[2] = 3*(pt[2] - pt[0]);
coeff[3] = pt[0];
}
void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4])
{
SkASSERT(pts);
if (cx)
get_cubic_coeff(&pts[0].fX, cx);
if (cy)
get_cubic_coeff(&pts[0].fY, cy);
}
static SkScalar eval_cubic(const SkScalar src[], SkScalar t)
{
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
if (t == 0)
return src[0];
#ifdef DIRECT_EVAL_OF_POLYNOMIALS
SkScalar D = src[0];
SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
SkScalar B = 3*(src[4] - src[2] - src[2] + D);
SkScalar C = 3*(src[2] - D);
return SkScalarMul(SkScalarMul(SkScalarMul(A, t) + B, t) + C, t) + D;
#else
SkScalar ab = SkScalarInterp(src[0], src[2], t);
SkScalar bc = SkScalarInterp(src[2], src[4], t);
SkScalar cd = SkScalarInterp(src[4], src[6], t);
SkScalar abc = SkScalarInterp(ab, bc, t);
SkScalar bcd = SkScalarInterp(bc, cd, t);
return SkScalarInterp(abc, bcd, t);
#endif
}
/** return At^2 + Bt + C
*/
static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t)
{
SkASSERT(t >= 0 && t <= SK_Scalar1);
return SkScalarMul(SkScalarMul(A, t) + B, t) + C;
}
static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t)
{
SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
SkScalar C = src[2] - src[0];
return eval_quadratic(A, B, C, t);
}
static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t)
{
SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
SkScalar B = src[4] - 2 * src[2] + src[0];
return SkScalarMul(A, t) + B;
}
void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature)
{
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
if (loc)
loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
if (tangent)
tangent->set(eval_cubic_derivative(&src[0].fX, t),
eval_cubic_derivative(&src[0].fY, t));
if (curvature)
curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
eval_cubic_2ndDerivative(&src[0].fY, t));
}
/** Cubic'(t) = At^2 + Bt + C, where
A = 3(-a + 3(b - c) + d)
B = 6(a - 2b + c)
C = 3(b - a)
Solve for t, keeping only those that fit betwee 0 < t < 1
*/
int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
{
#ifdef SK_SCALAR_IS_FIXED
if (!is_not_monotonic(a, b, c, d))
return 0;
#endif
// we divide A,B,C by 3 to simplify
SkScalar A = d - a + 3*(b - c);
SkScalar B = 2*(a - b - b + c);
SkScalar C = b - a;
return SkFindUnitQuadRoots(A, B, C, tValues);
}
static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
{
SkScalar ab = SkScalarInterp(src[0], src[2], t);
SkScalar bc = SkScalarInterp(src[2], src[4], t);
SkScalar cd = SkScalarInterp(src[4], src[6], t);
SkScalar abc = SkScalarInterp(ab, bc, t);
SkScalar bcd = SkScalarInterp(bc, cd, t);
SkScalar abcd = SkScalarInterp(abc, bcd, t);
dst[0] = src[0];
dst[2] = ab;
dst[4] = abc;
dst[6] = abcd;
dst[8] = bcd;
dst[10] = cd;
dst[12] = src[6];
}
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t)
{
SkASSERT(t > 0 && t < SK_Scalar1);
interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
}
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots)
{
#ifdef SK_DEBUG
{
for (int i = 0; i < roots - 1; i++)
{
SkASSERT(is_unit_interval(tValues[i]));
SkASSERT(is_unit_interval(tValues[i+1]));
SkASSERT(tValues[i] < tValues[i+1]);
}
}
#endif
if (dst)
{
if (roots == 0) // nothing to chop
memcpy(dst, src, 4*sizeof(SkPoint));
else
{
SkScalar t = tValues[0];
SkPoint tmp[4];
for (int i = 0; i < roots; i++)
{
SkChopCubicAt(src, dst, t);
if (i == roots - 1)
break;
SkDEBUGCODE(int valid =) valid_unit_divide(tValues[i+1] - tValues[i], SK_Scalar1 - tValues[i], &t);
SkASSERT(valid);
dst += 3;
memcpy(tmp, dst, 4 * sizeof(SkPoint));
src = tmp;
}
}
}
}
void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7])
{
SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
SkScalar x012 = SkScalarAve(x01, x12);
SkScalar y012 = SkScalarAve(y01, y12);
SkScalar x123 = SkScalarAve(x12, x23);
SkScalar y123 = SkScalarAve(y12, y23);
dst[0] = src[0];
dst[1].set(x01, y01);
dst[2].set(x012, y012);
dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
dst[4].set(x123, y123);
dst[5].set(x23, y23);
dst[6] = src[3];
}
static void flatten_double_cubic_extrema(SkScalar coords[14])
{
coords[4] = coords[8] = coords[6];
}
/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
the resulting beziers are monotonic in Y. This is called by the scan converter.
Depending on what is returned, dst[] is treated as follows
0 dst[0..3] is the original cubic
1 dst[0..3] and dst[3..6] are the two new cubics
2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
If dst == nil, it is ignored and only the count is returned.
*/
int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10])
{
SkScalar tValues[2];
int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, src[3].fY, tValues);
SkChopCubicAt(src, dst, tValues, roots);
if (dst && roots > 0)
{
// we do some cleanup to ensure our Y extrema are flat
flatten_double_cubic_extrema(&dst[0].fY);
if (roots == 2)
flatten_double_cubic_extrema(&dst[3].fY);
}
return roots;
}
/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
Inflection means that curvature is zero.
Curvature is [F' x F''] / [F'^3]
So we solve F'x X F''y - F'y X F''y == 0
After some canceling of the cubic term, we get
A = b - a
B = c - 2b + a
C = d - 3c + 3b - a
(BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
*/
int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[])
{
SkScalar Ax = src[1].fX - src[0].fX;
SkScalar Ay = src[1].fY - src[0].fY;
SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
int count;
#ifdef SK_SCALAR_IS_FLOAT
count = SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
#else
Sk64 A, B, C, tmp;
A.setMul(Bx, Cy);
tmp.setMul(By, Cx);
A.sub(tmp);
B.setMul(Ax, Cy);
tmp.setMul(Ay, Cx);
B.sub(tmp);
C.setMul(Ax, By);
tmp.setMul(Ay, Bx);
C.sub(tmp);
count = Sk64FindFixedQuadRoots(A, B, C, tValues);
#endif
return count;
}
int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10])
{
SkScalar tValues[2];
int count = SkFindCubicInflections(src, tValues);
if (dst)
{
if (count == 0)
memcpy(dst, src, 4 * sizeof(SkPoint));
else
SkChopCubicAt(src, dst, tValues, count);
}
return count + 1;
}
template <typename T> void bubble_sort(T array[], int count)
{
for (int i = count - 1; i > 0; --i)
for (int j = i; j > 0; --j)
if (array[j] < array[j-1])
{
T tmp(array[j]);
array[j] = array[j-1];
array[j-1] = tmp;
}
}
#include "SkFP.h"
// newton refinement
#if 0
static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root)
{
// x1 = x0 - f(t) / f'(t)
SkFP T = SkScalarToFloat(root);
SkFP N, D;
// f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2]
D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3);
D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2));
D = SkFPAdd(D, coeff[2]);
if (D == 0)
return root;
// f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]);
N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1]));
N = SkFPAdd(N, SkFPMul(T, coeff[2]));
N = SkFPAdd(N, coeff[3]);
if (N)
{
SkScalar delta = SkFPToScalar(SkFPDiv(N, D));
if (delta)
root -= delta;
}
return root;
}
#endif
#if defined _WIN32 && _MSC_VER >= 1300 && defined SK_SCALAR_IS_FIXED // disable warning : unreachable code if building fixed point for windows desktop
#pragma warning ( disable : 4702 )
#endif
/* Solve coeff(t) == 0, returning the number of roots that
lie withing 0 < t < 1.
coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
*/
static int solve_cubic_polynomial(const SkFP coeff[4], SkScalar tValues[3])
{
#ifndef SK_SCALAR_IS_FLOAT
return 0; // this is not yet implemented for software float
#endif
if (SkScalarNearlyZero(coeff[0])) // we're just a quadratic
{
return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
}
SkFP a, b, c, Q, R;
{
SkASSERT(coeff[0] != 0);
SkFP inva = SkFPInvert(coeff[0]);
a = SkFPMul(coeff[1], inva);
b = SkFPMul(coeff[2], inva);
c = SkFPMul(coeff[3], inva);
}
Q = SkFPDivInt(SkFPSub(SkFPMul(a,a), SkFPMulInt(b, 3)), 9);
// R = (2*a*a*a - 9*a*b + 27*c) / 54;
R = SkFPMulInt(SkFPMul(SkFPMul(a, a), a), 2);
R = SkFPSub(R, SkFPMulInt(SkFPMul(a, b), 9));
R = SkFPAdd(R, SkFPMulInt(c, 27));
R = SkFPDivInt(R, 54);
SkFP Q3 = SkFPMul(SkFPMul(Q, Q), Q);
SkFP R2MinusQ3 = SkFPSub(SkFPMul(R,R), Q3);
SkFP adiv3 = SkFPDivInt(a, 3);
SkScalar* roots = tValues;
SkScalar r;
if (SkFPLT(R2MinusQ3, 0)) // we have 3 real roots
{
#ifdef SK_SCALAR_IS_FLOAT
float theta = sk_float_acos(R / sk_float_sqrt(Q3));
float neg2RootQ = -2 * sk_float_sqrt(Q);
r = neg2RootQ * sk_float_cos(theta/3) - adiv3;
if (is_unit_interval(r))
*roots++ = r;
r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3;
if (is_unit_interval(r))
*roots++ = r;
r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3;
if (is_unit_interval(r))
*roots++ = r;
// now sort the roots
bubble_sort(tValues, (int)(roots - tValues));
#endif
}
else // we have 1 real root
{
SkFP A = SkFPAdd(SkFPAbs(R), SkFPSqrt(R2MinusQ3));
A = SkFPCubeRoot(A);
if (SkFPGT(R, 0))
A = SkFPNeg(A);
if (A != 0)
A = SkFPAdd(A, SkFPDiv(Q, A));
r = SkFPToScalar(SkFPSub(A, adiv3));
if (is_unit_interval(r))
*roots++ = r;
}
return (int)(roots - tValues);
}
/* Looking for F' dot F'' == 0
A = b - a
B = c - 2b + a
C = d - 3c + 3b - a
F' = 3Ct^2 + 6Bt + 3A
F'' = 6Ct + 6B
F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
static void formulate_F1DotF2(const SkScalar src[], SkFP coeff[4])
{
SkScalar a = src[2] - src[0];
SkScalar b = src[4] - 2 * src[2] + src[0];
SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
SkFP A = SkScalarToFP(a);
SkFP B = SkScalarToFP(b);
SkFP C = SkScalarToFP(c);
coeff[0] = SkFPMul(C, C);
coeff[1] = SkFPMulInt(SkFPMul(B, C), 3);
coeff[2] = SkFPMulInt(SkFPMul(B, B), 2);
coeff[2] = SkFPAdd(coeff[2], SkFPMul(C, A));
coeff[3] = SkFPMul(A, B);
}
// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1
//#define kMinTValueForChopping (SK_Scalar1 / 256)
#define kMinTValueForChopping 0
/* Looking for F' dot F'' == 0
A = b - a
B = c - 2b + a
C = d - 3c + 3b - a
F' = 3Ct^2 + 6Bt + 3A
F'' = 6Ct + 6B
F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3])
{
SkFP coeffX[4], coeffY[4];
int i;
formulate_F1DotF2(&src[0].fX, coeffX);
formulate_F1DotF2(&src[0].fY, coeffY);
for (i = 0; i < 4; i++)
coeffX[i] = SkFPAdd(coeffX[i],coeffY[i]);
SkScalar t[3];
int count = solve_cubic_polynomial(coeffX, t);
int maxCount = 0;
// now remove extrema where the curvature is zero (mins)
// !!!! need a test for this !!!!
for (i = 0; i < count; i++)
{
// if (not_min_curvature())
if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping)
tValues[maxCount++] = t[i];
}
return maxCount;
}
int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3])
{
SkScalar t_storage[3];
if (tValues == nil)
tValues = t_storage;
int count = SkFindCubicMaxCurvature(src, tValues);
if (dst)
{
if (count == 0)
memcpy(dst, src, 4 * sizeof(SkPoint));
else
SkChopCubicAt(src, dst, tValues, count);
}
return count + 1;
}
////////////////////////////////////////////////////////////////////////////////
/* Find t value for quadratic [a, b, c] = d.
Return 0 if there is no solution
*/
static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d)
{
// At^2 + Bt + C = d
SkScalar A = a - 2 * b + c;
SkScalar B = 2 * (b - a);
SkScalar C = a - d;
SkScalar roots[2];
int count = SkFindUnitQuadRoots(A, B, C, roots);
SkASSERT(count <= 1);
return count == 1 ? roots[0] : 0;
}
/* given a quad-curve and a point (x,y), chop the quad at that point and return
the new quad's offCurve point.
*/
static bool quad_pt2OffCurve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* offCurve)
{
SkScalar t;
SkPoint tmp[5];
if (SkScalarAbs(x) < SkScalarAbs(y))
t = quad_solve(quad[0].fX, quad[1].fX, quad[2].fX, x);
else
t = quad_solve(quad[0].fY, quad[1].fY, quad[2].fY, y);
if (t > 0)
{
SkChopQuadAt(quad, tmp, t);
*offCurve = tmp[1];
return true;
}
return false;
}
static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
{ SK_Scalar1, 0 },
{ SK_Scalar1, SK_ScalarTanPIOver8 },
{ SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 },
{ SK_ScalarTanPIOver8, SK_Scalar1 },
{ 0, SK_Scalar1 },
{ -SK_ScalarTanPIOver8, SK_Scalar1 },
{ -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 },
{ -SK_Scalar1, SK_ScalarTanPIOver8 },
{ -SK_Scalar1, 0 },
{ -SK_Scalar1, -SK_ScalarTanPIOver8 },
{ -SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 },
{ -SK_ScalarTanPIOver8, -SK_Scalar1 },
{ 0, -SK_Scalar1 },
{ SK_ScalarTanPIOver8, -SK_Scalar1 },
{ SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 },
{ SK_Scalar1, -SK_ScalarTanPIOver8 },
{ SK_Scalar1, 0 }
};
int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
SkRotationDirection dir, const SkMatrix* userMatrix,
SkPoint quadPoints[])
{
// check for (effectively) coincident vectors
{
SkScalar dot = SkScalarMul(uStart.fX, uStop.fX) + SkScalarMul(uStart.fY, uStop.fY);
if (SkScalarAbs(dot - SK_Scalar1) <= SK_ScalarNearlyZero)
return 0;
}
// rotate unitStop so that unitStart is at (1,0)
SkScalar x = SkScalarMul(uStop.fX, uStart.fX) + SkScalarMul(uStop.fY, uStart.fY);
SkScalar y = SkScalarMul(uStop.fY, uStart.fX) - SkScalarMul(uStop.fX, uStart.fY);
if (dir == kCCW_SkRotationDirection)
y = -y;
// what octant (quadratic curve) is [xy] in?
int oct = 0;
bool sameSign = true;
if (y < 0)
oct += 4;
if ((x < 0) != (y < 0))
{
oct += 2;
sameSign = false;
}
if ((SkScalarAbs(x) < SkScalarAbs(y)) == sameSign)
oct += 1;
if (SkScalarAbs(y) >= SK_Scalar1 || x <= -SK_Scalar1)
oct += 1;
int wholeCount = oct << 1;
memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
const SkPoint* arc = &gQuadCirclePts[wholeCount];
if (quad_pt2OffCurve(arc, x, y, &quadPoints[wholeCount + 1]))
{
quadPoints[wholeCount + 2].set(x, y);
wholeCount += 2;
}
wholeCount += 1;
// now handle counter-clockwise and the initial unitStart rotation
SkMatrix matrix;
matrix.setSinCos(uStart.fY, uStart.fX);
if (dir == kCCW_SkRotationDirection)
matrix.preScale(SK_Scalar1, -SK_Scalar1);
if (userMatrix)
matrix.postConcat(*userMatrix);
matrix.mapPoints(quadPoints, wholeCount);
return wholeCount;
}
/////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkGeometry::UnitTest()
{
#ifdef SK_SUPPORT_UNITTEST
SkPoint pts[3], dst[5];
pts[0].set(0, 0);
pts[1].set(100, 50);
pts[2].set(0, 100);
int count = SkChopQuadAtMaxCurvature(pts, dst);
SkASSERT(count == 1 || count == 2);
#endif
}
#endif