blob: 8a6d0564af59b96d3e9842c02af373866b11bf02 [file] [log] [blame]
epoger@google.comec3ed6a2011-07-28 14:26:00 +00001
reed@android.com8a1c16f2008-12-17 15:59:43 +00002/*
epoger@google.comec3ed6a2011-07-28 14:26:00 +00003 * Copyright 2008 The Android Open Source Project
reed@android.com8a1c16f2008-12-17 15:59:43 +00004 *
epoger@google.comec3ed6a2011-07-28 14:26:00 +00005 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
reed@android.com8a1c16f2008-12-17 15:59:43 +00007 */
8
epoger@google.comec3ed6a2011-07-28 14:26:00 +00009
caryclark936b7342014-07-11 12:14:51 -070010#include "SkMathPriv.h"
reed@android.com8a1c16f2008-12-17 15:59:43 +000011#include "SkPoint.h"
12
13void SkIPoint::rotateCW(SkIPoint* dst) const {
14 SkASSERT(dst);
15
16 // use a tmp in case this == dst
17 int32_t tmp = fX;
18 dst->fX = -fY;
19 dst->fY = tmp;
20}
21
22void SkIPoint::rotateCCW(SkIPoint* dst) const {
23 SkASSERT(dst);
24
25 // use a tmp in case this == dst
26 int32_t tmp = fX;
27 dst->fX = fY;
28 dst->fY = -tmp;
29}
30
31///////////////////////////////////////////////////////////////////////////////
32
reed@google.com7744c202011-05-06 19:26:26 +000033void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) {
34 SkASSERT(stride >= sizeof(SkPoint));
rmistry@google.comfbfcd562012-08-23 18:09:54 +000035
36 ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l),
reed@google.com7744c202011-05-06 19:26:26 +000037 SkIntToScalar(t));
rmistry@google.comfbfcd562012-08-23 18:09:54 +000038 ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l),
reed@google.com7744c202011-05-06 19:26:26 +000039 SkIntToScalar(b));
rmistry@google.comfbfcd562012-08-23 18:09:54 +000040 ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r),
reed@google.com7744c202011-05-06 19:26:26 +000041 SkIntToScalar(b));
rmistry@google.comfbfcd562012-08-23 18:09:54 +000042 ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r),
reed@google.com7744c202011-05-06 19:26:26 +000043 SkIntToScalar(t));
44}
45
46void SkPoint::setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b,
47 size_t stride) {
48 SkASSERT(stride >= sizeof(SkPoint));
rmistry@google.comfbfcd562012-08-23 18:09:54 +000049
reed@google.com7744c202011-05-06 19:26:26 +000050 ((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t);
51 ((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b);
52 ((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b);
53 ((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t);
54}
55
reed@android.com8a1c16f2008-12-17 15:59:43 +000056void SkPoint::rotateCW(SkPoint* dst) const {
57 SkASSERT(dst);
58
59 // use a tmp in case this == dst
60 SkScalar tmp = fX;
61 dst->fX = -fY;
62 dst->fY = tmp;
63}
64
65void SkPoint::rotateCCW(SkPoint* dst) const {
66 SkASSERT(dst);
67
68 // use a tmp in case this == dst
69 SkScalar tmp = fX;
70 dst->fX = fY;
71 dst->fY = -tmp;
72}
73
74void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
75 SkASSERT(dst);
76 dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale));
77}
78
reed@android.com8a1c16f2008-12-17 15:59:43 +000079bool SkPoint::normalize() {
80 return this->setLength(fX, fY, SK_Scalar1);
81}
82
83bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
84 return this->setLength(x, y, SK_Scalar1);
85}
86
87bool SkPoint::setLength(SkScalar length) {
88 return this->setLength(fX, fY, length);
89}
90
epoger@google.com94fa43c2012-04-11 17:51:01 +000091// Returns the square of the Euclidian distance to (dx,dy).
92static inline float getLengthSquared(float dx, float dy) {
93 return dx * dx + dy * dy;
94}
95
96// Calculates the square of the Euclidian distance to (dx,dy) and stores it in
97// *lengthSquared. Returns true if the distance is judged to be "nearly zero".
98//
99// This logic is encapsulated in a helper method to make it explicit that we
100// always perform this check in the same manner, to avoid inconsistencies
101// (see http://code.google.com/p/skia/issues/detail?id=560 ).
102static inline bool isLengthNearlyZero(float dx, float dy,
103 float *lengthSquared) {
104 *lengthSquared = getLengthSquared(dx, dy);
105 return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
106}
107
epoger@google.com1fd56dc2011-06-15 18:04:58 +0000108SkScalar SkPoint::Normalize(SkPoint* pt) {
reed@google.com5a5fe582013-05-03 15:59:39 +0000109 float x = pt->fX;
110 float y = pt->fY;
epoger@google.com94fa43c2012-04-11 17:51:01 +0000111 float mag2;
reed@google.com5a5fe582013-05-03 15:59:39 +0000112 if (isLengthNearlyZero(x, y, &mag2)) {
113 return 0;
epoger@google.com1fd56dc2011-06-15 18:04:58 +0000114 }
reed@google.com5a5fe582013-05-03 15:59:39 +0000115
116 float mag, scale;
117 if (SkScalarIsFinite(mag2)) {
118 mag = sk_float_sqrt(mag2);
119 scale = 1 / mag;
120 } else {
121 // our mag2 step overflowed to infinity, so use doubles instead.
122 // much slower, but needed when x or y are very large, other wise we
123 // divide by inf. and return (0,0) vector.
124 double xx = x;
125 double yy = y;
126 double magmag = sqrt(xx * xx + yy * yy);
127 mag = (float)magmag;
128 // we perform the divide with the double magmag, to stay exactly the
129 // same as setLength. It would be faster to perform the divide with
130 // mag, but it is possible that mag has overflowed to inf. but still
131 // have a non-zero value for scale (thanks to denormalized numbers).
132 scale = (float)(1 / magmag);
133 }
134 pt->set(x * scale, y * scale);
135 return mag;
epoger@google.com1fd56dc2011-06-15 18:04:58 +0000136}
137
reed@android.com8a1c16f2008-12-17 15:59:43 +0000138SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
reed@google.com5a5fe582013-05-03 15:59:39 +0000139 float mag2 = dx * dx + dy * dy;
140 if (SkScalarIsFinite(mag2)) {
141 return sk_float_sqrt(mag2);
142 } else {
143 double xx = dx;
144 double yy = dy;
145 return (float)sqrt(xx * xx + yy * yy);
146 }
reed@android.com8a1c16f2008-12-17 15:59:43 +0000147}
148
reed@google.com5a5fe582013-05-03 15:59:39 +0000149/*
150 * We have to worry about 2 tricky conditions:
151 * 1. underflow of mag2 (compared against nearlyzero^2)
152 * 2. overflow of mag2 (compared w/ isfinite)
153 *
154 * If we underflow, we return false. If we overflow, we compute again using
155 * doubles, which is much slower (3x in a desktop test) but will not overflow.
156 */
reed@android.com8a1c16f2008-12-17 15:59:43 +0000157bool SkPoint::setLength(float x, float y, float length) {
epoger@google.com94fa43c2012-04-11 17:51:01 +0000158 float mag2;
reed@google.com5a5fe582013-05-03 15:59:39 +0000159 if (isLengthNearlyZero(x, y, &mag2)) {
160 return false;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000161 }
reed@google.com5a5fe582013-05-03 15:59:39 +0000162
163 float scale;
164 if (SkScalarIsFinite(mag2)) {
165 scale = length / sk_float_sqrt(mag2);
166 } else {
167 // our mag2 step overflowed to infinity, so use doubles instead.
168 // much slower, but needed when x or y are very large, other wise we
169 // divide by inf. and return (0,0) vector.
170 double xx = x;
171 double yy = y;
caryclark936b7342014-07-11 12:14:51 -0700172 #ifdef SK_DISCARD_DENORMALIZED_FOR_SPEED
173 // The iOS ARM processor discards small denormalized numbers to go faster.
174 // Casting this to a float would cause the scale to go to zero. Keeping it
175 // as a double for the multiply keeps the scale non-zero.
176 double dscale = length / sqrt(xx * xx + yy * yy);
177 fX = x * dscale;
178 fY = y * dscale;
179 return true;
180 #else
reed@google.com5a5fe582013-05-03 15:59:39 +0000181 scale = (float)(length / sqrt(xx * xx + yy * yy));
caryclark936b7342014-07-11 12:14:51 -0700182 #endif
reed@google.com5a5fe582013-05-03 15:59:39 +0000183 }
184 fX = x * scale;
185 fY = y * scale;
186 return true;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000187}
188
commit-bot@chromium.org11e5b972013-11-08 20:14:16 +0000189bool SkPoint::setLengthFast(float length) {
190 return this->setLengthFast(fX, fY, length);
epoger@google.com94fa43c2012-04-11 17:51:01 +0000191}
192
commit-bot@chromium.org11e5b972013-11-08 20:14:16 +0000193bool SkPoint::setLengthFast(float x, float y, float length) {
194 float mag2;
195 if (isLengthNearlyZero(x, y, &mag2)) {
196 return false;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000197 }
198
commit-bot@chromium.org11e5b972013-11-08 20:14:16 +0000199 float scale;
200 if (SkScalarIsFinite(mag2)) {
201 scale = length * sk_float_rsqrt(mag2); // <--- this is the difference
reed@android.com8a1c16f2008-12-17 15:59:43 +0000202 } else {
commit-bot@chromium.org11e5b972013-11-08 20:14:16 +0000203 // our mag2 step overflowed to infinity, so use doubles instead.
204 // much slower, but needed when x or y are very large, other wise we
205 // divide by inf. and return (0,0) vector.
206 double xx = x;
207 double yy = y;
208 scale = (float)(length / sqrt(xx * xx + yy * yy));
reed@android.com8a1c16f2008-12-17 15:59:43 +0000209 }
commit-bot@chromium.org11e5b972013-11-08 20:14:16 +0000210 fX = x * scale;
211 fY = y * scale;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000212 return true;
213}
reed@android.com8a1c16f2008-12-17 15:59:43 +0000214
reed@android.com8a1c16f2008-12-17 15:59:43 +0000215
reed@google.com7744c202011-05-06 19:26:26 +0000216///////////////////////////////////////////////////////////////////////////////
217
bsalomon@google.com647a8042011-08-23 14:39:01 +0000218SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a,
219 const SkPoint& b,
220 Side* side) const {
221
222 SkVector u = b - a;
223 SkVector v = *this - a;
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000224
bsalomon@google.com647a8042011-08-23 14:39:01 +0000225 SkScalar uLengthSqd = u.lengthSqd();
226 SkScalar det = u.cross(v);
227 if (NULL != side) {
228 SkASSERT(-1 == SkPoint::kLeft_Side &&
229 0 == SkPoint::kOn_Side &&
230 1 == kRight_Side);
231 *side = (Side) SkScalarSignAsInt(det);
232 }
233 return SkScalarMulDiv(det, det, uLengthSqd);
234}
235
236SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a,
reed@google.com7744c202011-05-06 19:26:26 +0000237 const SkPoint& b) const {
238 // See comments to distanceToLineBetweenSqd. If the projection of c onto
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000239 // u is between a and b then this returns the same result as that
reed@google.com7744c202011-05-06 19:26:26 +0000240 // function. Otherwise, it returns the distance to the closer of a and
241 // b. Let the projection of v onto u be v'. There are three cases:
242 // 1. v' points opposite to u. c is not between a and b and is closer
243 // to a than b.
244 // 2. v' points along u and has magnitude less than y. c is between
245 // a and b and the distance to the segment is the same as distance
246 // to the line ab.
247 // 3. v' points along u and has greater magnitude than u. c is not
248 // not between a and b and is closer to b than a.
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000249 // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
reed@google.com7744c202011-05-06 19:26:26 +0000250 // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000251 // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
reed@google.com7744c202011-05-06 19:26:26 +0000252 // avoid a sqrt to compute |u|.
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000253
reed@google.com7744c202011-05-06 19:26:26 +0000254 SkVector u = b - a;
255 SkVector v = *this - a;
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000256
reed@google.com7744c202011-05-06 19:26:26 +0000257 SkScalar uLengthSqd = u.lengthSqd();
258 SkScalar uDotV = SkPoint::DotProduct(u, v);
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000259
reed@google.com7744c202011-05-06 19:26:26 +0000260 if (uDotV <= 0) {
261 return v.lengthSqd();
262 } else if (uDotV > uLengthSqd) {
263 return b.distanceToSqd(*this);
264 } else {
265 SkScalar det = u.cross(v);
266 return SkScalarMulDiv(det, det, uLengthSqd);
267 }
268}