Initial export.

git-svn-id: http://v8.googlecode.com/svn/trunk@2 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
diff --git a/src/codegen-arm.cc b/src/codegen-arm.cc
new file mode 100644
index 0000000..25f165f
--- /dev/null
+++ b/src/codegen-arm.cc
@@ -0,0 +1,4383 @@
+// Copyright 2006-2008 Google Inc. All Rights Reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+//       notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+//       copyright notice, this list of conditions and the following
+//       disclaimer in the documentation and/or other materials provided
+//       with the distribution.
+//     * Neither the name of Google Inc. nor the names of its
+//       contributors may be used to endorse or promote products derived
+//       from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#include "bootstrapper.h"
+#include "codegen-inl.h"
+#include "debug.h"
+#include "prettyprinter.h"
+#include "scopeinfo.h"
+#include "scopes.h"
+#include "runtime.h"
+
+namespace v8 { namespace internal {
+
+DEFINE_bool(optimize_locals, true,
+            "optimize locals by allocating them in registers");
+DEFINE_bool(trace, false, "trace function calls");
+DECLARE_bool(debug_info);
+DECLARE_bool(debug_code);
+DECLARE_bool(optimize_locals);
+
+#ifdef DEBUG
+DECLARE_bool(gc_greedy);
+DEFINE_bool(trace_codegen, false,
+            "print name of functions for which code is generated");
+DEFINE_bool(print_code, false, "print generated code");
+DEFINE_bool(print_builtin_code, false, "print generated code for builtins");
+DEFINE_bool(print_source, false, "pretty print source code");
+DEFINE_bool(print_builtin_source, false,
+            "pretty print source code for builtins");
+DEFINE_bool(print_ast, false, "print source AST");
+DEFINE_bool(print_builtin_ast, false, "print source AST for builtins");
+DEFINE_bool(trace_calls, false, "trace calls");
+DEFINE_bool(trace_builtin_calls, false, "trace builtins calls");
+DEFINE_string(stop_at, "", "function name where to insert a breakpoint");
+#endif  // DEBUG
+
+
+DEFINE_bool(check_stack, true,
+            "check stack for overflow, interrupt, breakpoint");
+
+
+class ArmCodeGenerator;
+
+
+// -----------------------------------------------------------------------------
+// Reference support
+
+// A reference is a C++ stack-allocated object that keeps an ECMA
+// reference on the execution stack while in scope. For variables
+// the reference is empty, indicating that it isn't necessary to
+// store state on the stack for keeping track of references to those.
+// For properties, we keep either one (named) or two (indexed) values
+// on the execution stack to represent the reference.
+
+class Reference BASE_EMBEDDED {
+ public:
+  enum Type { ILLEGAL = -1, EMPTY = 0, NAMED = 1, KEYED = 2 };
+  Reference(ArmCodeGenerator* cgen, Expression* expression);
+  ~Reference();
+
+  Expression* expression() const  { return expression_; }
+  Type type() const  { return type_; }
+  void set_type(Type value)  {
+    ASSERT(type_ == ILLEGAL);
+    type_ = value;
+  }
+  int size() const  { return type_; }
+
+  bool is_illegal() const  { return type_ == ILLEGAL; }
+
+ private:
+  ArmCodeGenerator* cgen_;
+  Expression* expression_;
+  Type type_;
+};
+
+
+// -----------------------------------------------------------------------------
+// Code generation state
+
+class CodeGenState BASE_EMBEDDED {
+ public:
+  enum AccessType {
+    UNDEFINED,
+    LOAD,
+    LOAD_TYPEOF_EXPR,
+    STORE,
+    INIT_CONST
+  };
+
+  CodeGenState()
+      : access_(UNDEFINED),
+        ref_(NULL),
+        true_target_(NULL),
+        false_target_(NULL) {
+  }
+
+  CodeGenState(AccessType access,
+               Reference* ref,
+               Label* true_target,
+               Label* false_target)
+      : access_(access),
+        ref_(ref),
+        true_target_(true_target),
+        false_target_(false_target) {
+  }
+
+  AccessType access() const { return access_; }
+  Reference* ref() const { return ref_; }
+  Label* true_target() const { return true_target_; }
+  Label* false_target() const { return false_target_; }
+
+ private:
+  AccessType access_;
+  Reference* ref_;
+  Label* true_target_;
+  Label* false_target_;
+};
+
+
+// -----------------------------------------------------------------------------
+// ArmCodeGenerator
+
+class ArmCodeGenerator: public CodeGenerator {
+ public:
+  static Handle<Code> MakeCode(FunctionLiteral* fun,
+                               Handle<Script> script,
+                               bool is_eval);
+
+  MacroAssembler* masm()  { return masm_; }
+
+ private:
+  // Assembler
+  MacroAssembler* masm_;  // to generate code
+
+  // Code generation state
+  Scope* scope_;
+  Condition cc_reg_;
+  CodeGenState* state_;
+  RegList reg_locals_;  // the list of registers used to hold locals
+  int num_reg_locals_;  // the number of registers holding locals
+  int break_stack_height_;
+
+  // Labels
+  Label function_return_;
+
+  // Construction/destruction
+  ArmCodeGenerator(int buffer_size,
+                   Handle<Script> script,
+                   bool is_eval);
+
+  virtual ~ArmCodeGenerator()  { delete masm_; }
+
+  // Main code generation function
+  void GenCode(FunctionLiteral* fun);
+
+  // The following are used by class Reference.
+  void LoadReference(Reference* ref);
+  void UnloadReference(Reference* ref);
+  friend class Reference;
+
+  // State
+  bool has_cc() const  { return cc_reg_ != al; }
+  CodeGenState::AccessType access() const  { return state_->access(); }
+  Reference* ref() const  { return state_->ref(); }
+  bool is_referenced() const { return state_->ref() != NULL; }
+  Label* true_target() const  { return state_->true_target(); }
+  Label* false_target() const  { return state_->false_target(); }
+
+
+  // Expressions
+  MemOperand GlobalObject() const  {
+    return ContextOperand(cp, Context::GLOBAL_INDEX);
+  }
+
+  MemOperand ContextOperand(Register context, int index) const {
+    return MemOperand(context, Context::SlotOffset(index));
+  }
+
+  MemOperand ParameterOperand(int index) const {
+    // index -2 corresponds to the activated closure, -1 corresponds
+    // to the receiver
+    ASSERT(-2 <= index && index < scope_->num_parameters());
+    int offset = JavaScriptFrameConstants::kParam0Offset - index * kPointerSize;
+    return MemOperand(pp, offset);
+  }
+
+  MemOperand FunctionOperand() const { return ParameterOperand(-2); }
+
+  Register SlotRegister(int slot_index);
+  MemOperand SlotOperand(Slot* slot, Register tmp);
+
+  void LoadCondition(Expression* x, CodeGenState::AccessType access,
+                     Label* true_target, Label* false_target, bool force_cc);
+  void Load(Expression* x,
+            CodeGenState::AccessType access = CodeGenState::LOAD);
+  void LoadGlobal();
+
+  // Special code for typeof expressions: Unfortunately, we must
+  // be careful when loading the expression in 'typeof'
+  // expressions. We are not allowed to throw reference errors for
+  // non-existing properties of the global object, so we must make it
+  // look like an explicit property access, instead of an access
+  // through the context chain.
+  void LoadTypeofExpression(Expression* x);
+
+  // References
+  void AccessReference(Reference* ref, CodeGenState::AccessType access);
+
+  void GetValue(Reference* ref)  { AccessReference(ref, CodeGenState::LOAD); }
+  void SetValue(Reference* ref)  { AccessReference(ref, CodeGenState::STORE); }
+  void InitConst(Reference* ref)  {
+    AccessReference(ref, CodeGenState::INIT_CONST);
+  }
+
+  void ToBoolean(Register reg, Label* true_target, Label* false_target);
+
+
+  // Access property from the reference (must be at the TOS).
+  void AccessReferenceProperty(Expression* key,
+                               CodeGenState::AccessType access);
+
+  void GenericOperation(Token::Value op);
+  void Comparison(Condition cc, bool strict = false);
+
+  void SmiOperation(Token::Value op, Handle<Object> value, bool reversed);
+
+  void CallWithArguments(ZoneList<Expression*>* arguments, int position);
+
+  // Declare global variables and functions in the given array of
+  // name/value pairs.
+  virtual void DeclareGlobals(Handle<FixedArray> pairs);
+
+  // Instantiate the function boilerplate.
+  void InstantiateBoilerplate(Handle<JSFunction> boilerplate);
+
+  // Control flow
+  void Branch(bool if_true, Label* L);
+  void CheckStack();
+  void CleanStack(int num_bytes);
+
+  // Node visitors
+#define DEF_VISIT(type)                         \
+  virtual void Visit##type(type* node);
+  NODE_LIST(DEF_VISIT)
+#undef DEF_VISIT
+
+  void RecordStatementPosition(Node* node);
+
+  // Activation frames
+  void EnterJSFrame(int argc, RegList callee_saved);  // preserves r1
+  void ExitJSFrame(RegList callee_saved,
+                   ExitJSFlag flag = RETURN);  // preserves r0-r2
+
+  virtual void GenerateShiftDownAndTailCall(ZoneList<Expression*>* args);
+  virtual void GenerateSetThisFunction(ZoneList<Expression*>* args);
+  virtual void GenerateGetThisFunction(ZoneList<Expression*>* args);
+  virtual void GenerateSetThis(ZoneList<Expression*>* args);
+  virtual void GenerateGetArgumentsLength(ZoneList<Expression*>* args);
+  virtual void GenerateSetArgumentsLength(ZoneList<Expression*>* args);
+  virtual void GenerateTailCallWithArguments(ZoneList<Expression*>* args);
+  virtual void GenerateSetArgument(ZoneList<Expression*>* args);
+  virtual void GenerateSquashFrame(ZoneList<Expression*>* args);
+  virtual void GenerateExpandFrame(ZoneList<Expression*>* args);
+  virtual void GenerateIsSmi(ZoneList<Expression*>* args);
+  virtual void GenerateIsArray(ZoneList<Expression*>* args);
+
+  virtual void GenerateArgumentsLength(ZoneList<Expression*>* args);
+  virtual void GenerateArgumentsAccess(ZoneList<Expression*>* args);
+
+  virtual void GenerateValueOf(ZoneList<Expression*>* args);
+  virtual void GenerateSetValueOf(ZoneList<Expression*>* args);
+};
+
+
+// -----------------------------------------------------------------------------
+// ArmCodeGenerator implementation
+
+#define __  masm_->
+
+
+Handle<Code> ArmCodeGenerator::MakeCode(FunctionLiteral* flit,
+                                        Handle<Script> script,
+                                        bool is_eval) {
+#ifdef DEBUG
+  bool print_source = false;
+  bool print_ast = false;
+  bool print_code = false;
+  const char* ftype;
+
+  if (Bootstrapper::IsActive()) {
+    print_source = FLAG_print_builtin_source;
+    print_ast = FLAG_print_builtin_ast;
+    print_code = FLAG_print_builtin_code;
+    ftype = "builtin";
+  } else {
+    print_source = FLAG_print_source;
+    print_ast = FLAG_print_ast;
+    print_code = FLAG_print_code;
+    ftype = "user-defined";
+  }
+
+  if (FLAG_trace_codegen || print_source || print_ast) {
+    PrintF("*** Generate code for %s function: ", ftype);
+    flit->name()->ShortPrint();
+    PrintF(" ***\n");
+  }
+
+  if (print_source) {
+    PrintF("--- Source from AST ---\n%s\n", PrettyPrinter().PrintProgram(flit));
+  }
+
+  if (print_ast) {
+    PrintF("--- AST ---\n%s\n", AstPrinter().PrintProgram(flit));
+  }
+#endif  // DEBUG
+
+  // Generate code.
+  const int initial_buffer_size = 4 * KB;
+  ArmCodeGenerator cgen(initial_buffer_size, script, is_eval);
+  cgen.GenCode(flit);
+  if (cgen.HasStackOverflow()) {
+    Top::StackOverflow();
+    return Handle<Code>::null();
+  }
+
+  // Process any deferred code.
+  cgen.ProcessDeferred();
+
+  // Allocate and install the code.
+  CodeDesc desc;
+  cgen.masm()->GetCode(&desc);
+  ScopeInfo<> sinfo(flit->scope());
+  Code::Flags flags = Code::ComputeFlags(Code::FUNCTION);
+  Handle<Code> code = Factory::NewCode(desc, &sinfo, flags);
+
+  // Add unresolved entries in the code to the fixup list.
+  Bootstrapper::AddFixup(*code, cgen.masm());
+
+#ifdef DEBUG
+  if (print_code) {
+    // Print the source code if available.
+    if (!script->IsUndefined() && !script->source()->IsUndefined()) {
+      PrintF("--- Raw source ---\n");
+      StringInputBuffer stream(String::cast(script->source()));
+      stream.Seek(flit->start_position());
+      // flit->end_position() points to the last character in the stream. We
+      // need to compensate by adding one to calculate the length.
+      int source_len = flit->end_position() - flit->start_position() + 1;
+      for (int i = 0; i < source_len; i++) {
+        if (stream.has_more()) PrintF("%c", stream.GetNext());
+      }
+      PrintF("\n\n");
+    }
+    PrintF("--- Code ---\n");
+    code->Print();
+  }
+#endif  // DEBUG
+
+  return code;
+}
+
+
+ArmCodeGenerator::ArmCodeGenerator(int buffer_size,
+                                   Handle<Script> script,
+                                   bool is_eval)
+    : CodeGenerator(is_eval, script),
+      masm_(new MacroAssembler(NULL, buffer_size)),
+      scope_(NULL),
+      cc_reg_(al),
+      state_(NULL),
+      break_stack_height_(0) {
+}
+
+
+// Calling conventions:
+
+// r0: always contains top-of-stack (TOS), but in case of a call it's
+//     the number of arguments
+// fp: frame pointer
+// sp: stack pointer
+// pp: caller's parameter pointer
+// cp: callee's context
+
+void ArmCodeGenerator::GenCode(FunctionLiteral* fun) {
+  Scope* scope = fun->scope();
+  ZoneList<Statement*>* body = fun->body();
+
+  // Initialize state.
+  { CodeGenState state;
+    state_ = &state;
+    scope_ = scope;
+    cc_reg_ = al;
+    if (FLAG_optimize_locals) {
+      num_reg_locals_ = scope->num_stack_slots() < kNumJSCalleeSaved
+          ? scope->num_stack_slots()
+          : kNumJSCalleeSaved;
+      reg_locals_ = JSCalleeSavedList(num_reg_locals_);
+    } else {
+      num_reg_locals_ = 0;
+      reg_locals_ = 0;
+    }
+
+    // Entry
+    // stack: function, receiver, arguments, return address
+    // r0: number of arguments
+    // sp: stack pointer
+    // fp: frame pointer
+    // pp: caller's parameter pointer
+    // cp: callee's context
+
+    { Comment cmnt(masm_, "[ enter JS frame");
+      EnterJSFrame(scope->num_parameters(), reg_locals_);
+    }
+    // tos: code slot
+#ifdef DEBUG
+    if (strlen(FLAG_stop_at) > 0 &&
+        fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
+      __ bkpt(0);  // not supported before v5, but illegal instruction works too
+    }
+#endif
+
+    // Allocate space for locals and initialize them.
+    if (scope->num_stack_slots() > num_reg_locals_) {
+      Comment cmnt(masm_, "[ allocate space for locals");
+      // Pushing the first local materializes the code slot on the stack
+      // (formerly stored in tos register r0).
+      __ Push(Operand(Factory::undefined_value()));
+      // The remaining locals are pushed using the fact that r0 (tos)
+      // already contains the undefined value.
+      for (int i = scope->num_stack_slots(); i-- > num_reg_locals_ + 1;) {
+        __ push(r0);
+      }
+    }
+    // Initialize locals allocated in registers
+    if (num_reg_locals_ > 0) {
+      if (scope->num_stack_slots() > num_reg_locals_) {
+        // r0 contains 'undefined'
+        __ mov(SlotRegister(0), Operand(r0));
+      } else {
+        __ mov(SlotRegister(0), Operand(Factory::undefined_value()));
+      }
+      for (int i = num_reg_locals_ - 1; i > 0; i--) {
+        __ mov(SlotRegister(i), Operand(SlotRegister(0)));
+      }
+    }
+
+    if (scope->num_heap_slots() > 0) {
+      // Allocate local context.
+      // Get outer context and create a new context based on it.
+      __ Push(FunctionOperand());
+      __ CallRuntime(Runtime::kNewContext, 2);
+      // Update context local.
+      __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    }
+
+    // TODO(1241774): Improve this code!!!
+    // 1) only needed if we have a context
+    // 2) no need to recompute context ptr every single time
+    // 3) don't copy parameter operand code from SlotOperand!
+    {
+      Comment cmnt2(masm_, "[ copy context parameters into .context");
+
+      // Note that iteration order is relevant here! If we have the same
+      // parameter twice (e.g., function (x, y, x)), and that parameter
+      // needs to be copied into the context, it must be the last argument
+      // passed to the parameter that needs to be copied. This is a rare
+      // case so we don't check for it, instead we rely on the copying
+      // order: such a parameter is copied repeatedly into the same
+      // context location and thus the last value is what is seen inside
+      // the function.
+      for (int i = 0; i < scope->num_parameters(); i++) {
+        Variable* par = scope->parameter(i);
+        Slot* slot = par->slot();
+        if (slot != NULL && slot->type() == Slot::CONTEXT) {
+          ASSERT(!scope->is_global_scope());  // no parameters in global scope
+          int parameter_offset =
+              JavaScriptFrameConstants::kParam0Offset - i * kPointerSize;
+          __ ldr(r1, MemOperand(pp, parameter_offset));
+          // Loads r2 with context; used below in RecordWrite.
+          __ str(r1, SlotOperand(slot, r2));
+          // Load the offset into r3.
+          int slot_offset =
+              FixedArray::kHeaderSize + slot->index() * kPointerSize;
+          __ mov(r3, Operand(slot_offset));
+          __ RecordWrite(r2, r3, r1);
+        }
+      }
+    }
+
+    // Store the arguments object.
+    // This must happen after context initialization because
+    // the arguments array may be stored in the context!
+    if (scope->arguments() != NULL) {
+      ASSERT(scope->arguments_shadow() != NULL);
+      Comment cmnt(masm_, "[ allocate arguments object");
+      {
+        Reference target(this, scope->arguments());
+        __ Push(FunctionOperand());
+        __ CallRuntime(Runtime::kNewArguments, 1);
+        SetValue(&target);
+      }
+      // The value of arguments must also be stored in .arguments.
+      // TODO(1241813): This code can probably be improved by fusing it with
+      // the code that stores the arguments object above.
+      {
+        Reference target(this, scope->arguments_shadow());
+        Load(scope->arguments());
+        SetValue(&target);
+      }
+    }
+
+    // Generate code to 'execute' declarations and initialize
+    // functions (source elements). In case of an illegal
+    // redeclaration we need to handle that instead of processing the
+    // declarations.
+    if (scope->HasIllegalRedeclaration()) {
+      Comment cmnt(masm_, "[ illegal redeclarations");
+      scope->VisitIllegalRedeclaration(this);
+    } else {
+      Comment cmnt(masm_, "[ declarations");
+      ProcessDeclarations(scope->declarations());
+    }
+
+    if (FLAG_trace) __ CallRuntime(Runtime::kTraceEnter, 1);
+    CheckStack();
+
+    // Compile the body of the function in a vanilla state. Don't
+    // bother compiling all the code if the scope has an illegal
+    // redeclaration.
+    if (!scope->HasIllegalRedeclaration()) {
+      Comment cmnt(masm_, "[ function body");
+#ifdef DEBUG
+      bool is_builtin = Bootstrapper::IsActive();
+      bool should_trace =
+          is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
+      if (should_trace) __ CallRuntime(Runtime::kDebugTrace, 1);
+#endif
+      VisitStatements(body);
+    }
+
+    state_ = NULL;
+  }
+
+  // exit
+  // r0: result
+  // sp: stack pointer
+  // fp: frame pointer
+  // pp: parameter pointer
+  // cp: callee's context
+  __ Push(Operand(Factory::undefined_value()));
+  __ bind(&function_return_);
+  if (FLAG_trace) __ CallRuntime(Runtime::kTraceExit, 1);
+  ExitJSFrame(reg_locals_);
+
+  // Code generation state must be reset.
+  scope_ = NULL;
+  ASSERT(!has_cc());
+  ASSERT(state_ == NULL);
+}
+
+
+Register ArmCodeGenerator::SlotRegister(int slot_index) {
+  Register reg;
+  reg.code_ = JSCalleeSavedCode(slot_index);
+  return reg;
+}
+
+
+MemOperand ArmCodeGenerator::SlotOperand(Slot* slot, Register tmp) {
+  // Currently, this assertion will fail if we try to assign to
+  // a constant variable that is constant because it is read-only
+  // (such as the variable referring to a named function expression).
+  // We need to implement assignments to read-only variables.
+  // Ideally, we should do this during AST generation (by converting
+  // such assignments into expression statements); however, in general
+  // we may not be able to make the decision until past AST generation,
+  // that is when the entire program is known.
+  ASSERT(slot != NULL);
+  int index = slot->index();
+  switch (slot->type()) {
+    case Slot::PARAMETER:
+      return ParameterOperand(index);
+
+    case Slot::LOCAL: {
+      ASSERT(0 <= index &&
+             index < scope_->num_stack_slots() &&
+             index >= num_reg_locals_);
+      int local_offset = JavaScriptFrameConstants::kLocal0Offset -
+          (index - num_reg_locals_) * kPointerSize;
+      return MemOperand(fp, local_offset);
+    }
+
+    case Slot::CONTEXT: {
+      // Follow the context chain if necessary.
+      ASSERT(!tmp.is(cp));  // do not overwrite context register
+      Register context = cp;
+      int chain_length = scope_->ContextChainLength(slot->var()->scope());
+      for (int i = chain_length; i-- > 0;) {
+        // Load the closure.
+        // (All contexts, even 'with' contexts, have a closure,
+        // and it is the same for all contexts inside a function.
+        // There is no need to go to the function context first.)
+        __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
+        // Load the function context (which is the incoming, outer context).
+        __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
+        context = tmp;
+      }
+      // We may have a 'with' context now. Get the function context.
+      // (In fact this mov may never be the needed, since the scope analysis
+      // may not permit a direct context access in this case and thus we are
+      // always at a function context. However it is safe to dereference be-
+      // cause the function context of a function context is itself. Before
+      // deleting this mov we should try to create a counter-example first,
+      // though...)
+      __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
+      return ContextOperand(tmp, index);
+    }
+
+    default:
+      UNREACHABLE();
+      return MemOperand(r0, 0);
+  }
+}
+
+
+// Loads a value on TOS. If it is a boolean value, the result may have been
+// (partially) translated into branches, or it may have set the condition code
+// register. If force_cc is set, the value is forced to set the condition code
+// register and no value is pushed. If the condition code register was set,
+// has_cc() is true and cc_reg_ contains the condition to test for 'true'.
+void ArmCodeGenerator::LoadCondition(Expression* x,
+                                     CodeGenState::AccessType access,
+                                     Label* true_target,
+                                     Label* false_target,
+                                     bool force_cc) {
+  ASSERT(access == CodeGenState::LOAD ||
+         access == CodeGenState::LOAD_TYPEOF_EXPR);
+  ASSERT(!has_cc() && !is_referenced());
+
+  CodeGenState* old_state = state_;
+  CodeGenState new_state(access, NULL, true_target, false_target);
+  state_ = &new_state;
+  Visit(x);
+  state_ = old_state;
+  if (force_cc && !has_cc()) {
+    // Pop the TOS from the stack and convert it to a boolean in the
+    // condition code register.
+    __ mov(r1, Operand(r0));
+    __ pop(r0);
+    ToBoolean(r1, true_target, false_target);
+  }
+  ASSERT(has_cc() || !force_cc);
+}
+
+
+void ArmCodeGenerator::Load(Expression* x, CodeGenState::AccessType access) {
+  ASSERT(access == CodeGenState::LOAD ||
+         access == CodeGenState::LOAD_TYPEOF_EXPR);
+
+  Label true_target;
+  Label false_target;
+  LoadCondition(x, access, &true_target, &false_target, false);
+
+  if (has_cc()) {
+    // convert cc_reg_ into a bool
+    Label loaded, materialize_true;
+    __ b(cc_reg_, &materialize_true);
+    __ Push(Operand(Factory::false_value()));
+    __ b(&loaded);
+    __ bind(&materialize_true);
+    __ Push(Operand(Factory::true_value()));
+    __ bind(&loaded);
+    cc_reg_ = al;
+  }
+
+  if (true_target.is_linked() || false_target.is_linked()) {
+    // we have at least one condition value
+    // that has been "translated" into a branch,
+    // thus it needs to be loaded explicitly again
+    Label loaded;
+    __ b(&loaded);  // don't lose current TOS
+    bool both = true_target.is_linked() && false_target.is_linked();
+    // reincarnate "true", if necessary
+    if (true_target.is_linked()) {
+      __ bind(&true_target);
+      __ Push(Operand(Factory::true_value()));
+    }
+    // if both "true" and "false" need to be reincarnated,
+    // jump across code for "false"
+    if (both)
+      __ b(&loaded);
+    // reincarnate "false", if necessary
+    if (false_target.is_linked()) {
+      __ bind(&false_target);
+      __ Push(Operand(Factory::false_value()));
+    }
+    // everything is loaded at this point
+    __ bind(&loaded);
+  }
+  ASSERT(!has_cc());
+}
+
+
+void ArmCodeGenerator::LoadGlobal() {
+  __ Push(GlobalObject());
+}
+
+
+// TODO(1241834): Get rid of this function in favor of just using Load, now
+// that we have the LOAD_TYPEOF_EXPR access type. => Need to handle
+// global variables w/o reference errors elsewhere.
+void ArmCodeGenerator::LoadTypeofExpression(Expression* x) {
+  Variable* variable = x->AsVariableProxy()->AsVariable();
+  if (variable != NULL && !variable->is_this() && variable->is_global()) {
+    // NOTE: This is somewhat nasty. We force the compiler to load
+    // the variable as if through '<global>.<variable>' to make sure we
+    // do not get reference errors.
+    Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
+    Literal key(variable->name());
+    // TODO(1241834): Fetch the position from the variable instead of using
+    // no position.
+    Property property(&global, &key, kNoPosition);
+    Load(&property);
+  } else {
+    Load(x, CodeGenState::LOAD_TYPEOF_EXPR);
+  }
+}
+
+
+Reference::Reference(ArmCodeGenerator* cgen, Expression* expression)
+    : cgen_(cgen), expression_(expression), type_(ILLEGAL) {
+  cgen->LoadReference(this);
+}
+
+
+Reference::~Reference() {
+  cgen_->UnloadReference(this);
+}
+
+
+void ArmCodeGenerator::LoadReference(Reference* ref) {
+  Expression* e = ref->expression();
+  Property* property = e->AsProperty();
+  Variable* var = e->AsVariableProxy()->AsVariable();
+
+  if (property != NULL) {
+    Load(property->obj());
+    // Used a named reference if the key is a literal symbol.
+    // We don't use a named reference if they key is a string that can be
+    // legally parsed as an integer.  This is because, otherwise we don't
+    // get into the slow case code that handles [] on String objects.
+    Literal* literal = property->key()->AsLiteral();
+    uint32_t dummy;
+    if (literal != NULL && literal->handle()->IsSymbol() &&
+      !String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
+      ref->set_type(Reference::NAMED);
+    } else {
+      Load(property->key());
+      ref->set_type(Reference::KEYED);
+    }
+  } else if (var != NULL) {
+    if (var->is_global()) {
+      // global variable
+      LoadGlobal();
+      ref->set_type(Reference::NAMED);
+    } else {
+      // local variable
+      ref->set_type(Reference::EMPTY);
+    }
+  } else {
+    Load(e);
+    __ CallRuntime(Runtime::kThrowReferenceError, 1);
+  }
+}
+
+
+void ArmCodeGenerator::UnloadReference(Reference* ref) {
+  int size = ref->size();
+  if (size <= 0) {
+    // Do nothing. No popping is necessary.
+  } else {
+    __ add(sp, sp, Operand(size * kPointerSize));
+  }
+}
+
+
+void ArmCodeGenerator::AccessReference(Reference* ref,
+                                       CodeGenState::AccessType access) {
+  ASSERT(!has_cc());
+  ASSERT(ref->type() != Reference::ILLEGAL);
+  CodeGenState* old_state = state_;
+  CodeGenState new_state(access, ref, true_target(), false_target());
+  state_ = &new_state;
+  Visit(ref->expression());
+  state_ = old_state;
+}
+
+
+// ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given
+// register to a boolean in the condition code register. The code
+// may jump to 'false_target' in case the register converts to 'false'.
+void ArmCodeGenerator::ToBoolean(Register reg,
+                                 Label* true_target,
+                                 Label* false_target) {
+  // Note: The generated code snippet cannot change 'reg'.
+  //       Only the condition code should be set.
+
+  // Fast case checks
+
+  // Check if reg is 'false'.
+  __ cmp(reg, Operand(Factory::false_value()));
+  __ b(eq, false_target);
+
+  // Check if reg is 'true'.
+  __ cmp(reg, Operand(Factory::true_value()));
+  __ b(eq, true_target);
+
+  // Check if reg is 'undefined'.
+  __ cmp(reg, Operand(Factory::undefined_value()));
+  __ b(eq, false_target);
+
+  // Check if reg is a smi.
+  __ cmp(reg, Operand(Smi::FromInt(0)));
+  __ b(eq, false_target);
+  __ tst(reg, Operand(kSmiTagMask));
+  __ b(eq, true_target);
+
+  // Slow case: call the runtime.
+  __ push(r0);
+  if (r0.is(reg)) {
+    __ CallRuntime(Runtime::kToBool, 1);
+  } else {
+    __ mov(r0, Operand(reg));
+    __ CallRuntime(Runtime::kToBool, 1);
+  }
+  // Convert result (r0) to condition code
+  __ cmp(r0, Operand(Factory::false_value()));
+  __ pop(r0);
+
+  cc_reg_ = ne;
+}
+
+
+#undef __
+#define __  masm->
+
+
+class GetPropertyStub : public CodeStub {
+ public:
+  GetPropertyStub() { }
+
+ private:
+  Major MajorKey() { return GetProperty; }
+  int MinorKey() { return 0; }
+  void Generate(MacroAssembler* masm);
+
+  const char* GetName() { return "GetPropertyStub"; }
+};
+
+
+void GetPropertyStub::Generate(MacroAssembler* masm) {
+  Label slow, fast;
+  // Get the object from the stack.
+  __ ldr(r1, MemOperand(sp, 1 * kPointerSize));  // 1 ~ key
+  // Check that the key is a smi.
+  __ tst(r0, Operand(kSmiTagMask));
+  __ b(ne, &slow);
+  __ mov(r0, Operand(r0, ASR, kSmiTagSize));
+  // Check that the object isn't a smi.
+  __ tst(r1, Operand(kSmiTagMask));
+  __ b(eq, &slow);
+  // Check that the object is some kind of JS object.
+  __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
+  __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
+  __ cmp(r2, Operand(JS_OBJECT_TYPE));
+  __ b(lt, &slow);
+
+  // Check if the object is a value-wrapper object. In that case we
+  // enter the runtime system to make sure that indexing into string
+  // objects work as intended.
+  __ cmp(r2, Operand(JS_VALUE_TYPE));
+  __ b(eq, &slow);
+
+  // Get the elements array of the object.
+  __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
+  // Check that the object is in fast mode (not dictionary).
+  __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
+  __ cmp(r3, Operand(Factory::hash_table_map()));
+  __ b(eq, &slow);
+  // Check that the key (index) is within bounds.
+  __ ldr(r3, FieldMemOperand(r1, Array::kLengthOffset));
+  __ cmp(r0, Operand(r3));
+  __ b(lo, &fast);
+
+  // Slow case: Push extra copies of the arguments (2).
+  __ bind(&slow);
+  __ ldm(ia, sp, r0.bit() | r1.bit());
+  __ stm(db_w, sp, r0.bit() | r1.bit());
+  // Do tail-call to runtime routine.
+  __ mov(r0, Operand(1));  // not counting receiver
+  __ JumpToBuiltin(ExternalReference(Runtime::kGetProperty));
+
+  // Fast case: Do the load.
+  __ bind(&fast);
+  __ add(r3, r1, Operand(Array::kHeaderSize - kHeapObjectTag));
+  __ ldr(r0, MemOperand(r3, r0, LSL, kPointerSizeLog2));
+  __ cmp(r0, Operand(Factory::the_hole_value()));
+  // In case the loaded value is the_hole we have to consult GetProperty
+  // to ensure the prototype chain is searched.
+  __ b(eq, &slow);
+
+  masm->StubReturn(1);
+}
+
+
+class SetPropertyStub : public CodeStub {
+ public:
+  SetPropertyStub() { }
+
+ private:
+  Major MajorKey() { return SetProperty; }
+  int MinorKey() { return 0; }
+  void Generate(MacroAssembler* masm);
+
+  const char* GetName() { return "GetPropertyStub"; }
+};
+
+
+void SetPropertyStub::Generate(MacroAssembler* masm) {
+  Label slow, fast, array, extra, exit;
+  // Get the key and the object from the stack.
+  __ ldm(ia, sp, r1.bit() | r3.bit());  // r0 == value, r1 == key, r3 == object
+  // Check that the key is a smi.
+  __ tst(r1, Operand(kSmiTagMask));
+  __ b(ne, &slow);
+  // Check that the object isn't a smi.
+  __ tst(r3, Operand(kSmiTagMask));
+  __ b(eq, &slow);
+  // Get the type of the object from its map.
+  __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
+  __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
+  // Check if the object is a JS array or not.
+  __ cmp(r2, Operand(JS_ARRAY_TYPE));
+  __ b(eq, &array);
+  // Check that the object is some kind of JS object.
+  __ cmp(r2, Operand(JS_OBJECT_TYPE));
+  __ b(lt, &slow);
+
+
+  // Object case: Check key against length in the elements array.
+  __ ldr(r3, FieldMemOperand(r3, JSObject::kElementsOffset));
+  // Check that the object is in fast mode (not dictionary).
+  __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
+  __ cmp(r2, Operand(Factory::hash_table_map()));
+  __ b(eq, &slow);
+  // Untag the key (for checking against untagged length in the fixed array).
+  __ mov(r1, Operand(r1, ASR, kSmiTagSize));
+  // Compute address to store into and check array bounds.
+  __ add(r2, r3, Operand(Array::kHeaderSize - kHeapObjectTag));
+  __ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2));
+  __ ldr(ip, FieldMemOperand(r3, Array::kLengthOffset));
+  __ cmp(r1, Operand(ip));
+  __ b(lo, &fast);
+
+
+  // Slow case: Push extra copies of the arguments (3).
+  // r0 == value
+  __ bind(&slow);
+  __ ldm(ia, sp, r1.bit() | r3.bit());  // r0 == value, r1 == key, r3 == object
+  __ stm(db_w, sp, r0.bit() | r1.bit() | r3.bit());
+  // Do tail-call to runtime routine.
+  __ mov(r0, Operand(2));  // not counting receiver
+  __ JumpToBuiltin(ExternalReference(Runtime::kSetProperty));
+
+
+  // Extra capacity case: Check if there is extra capacity to
+  // perform the store and update the length. Used for adding one
+  // element to the array by writing to array[array.length].
+  // r0 == value, r1 == key, r2 == elements, r3 == object
+  __ bind(&extra);
+  __ b(ne, &slow);  // do not leave holes in the array
+  __ mov(r1, Operand(r1, ASR, kSmiTagSize));  // untag
+  __ ldr(ip, FieldMemOperand(r2, Array::kLengthOffset));
+  __ cmp(r1, Operand(ip));
+  __ b(hs, &slow);
+  __ mov(r1, Operand(r1, LSL, kSmiTagSize));  // restore tag
+  __ add(r1, r1, Operand(1 << kSmiTagSize));  // and increment
+  __ str(r1, FieldMemOperand(r3, JSArray::kLengthOffset));
+  __ mov(r3, Operand(r2));
+  // NOTE: Computing the address to store into must take the fact
+  // that the key has been incremented into account.
+  int displacement = Array::kHeaderSize - kHeapObjectTag -
+      ((1 << kSmiTagSize) * 2);
+  __ add(r2, r2, Operand(displacement));
+  __ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
+  __ b(&fast);
+
+
+  // Array case: Get the length and the elements array from the JS
+  // array. Check that the array is in fast mode; if it is the
+  // length is always a smi.
+  // r0 == value, r3 == object
+  __ bind(&array);
+  __ ldr(r2, FieldMemOperand(r3, JSObject::kElementsOffset));
+  __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
+  __ cmp(r1, Operand(Factory::hash_table_map()));
+  __ b(eq, &slow);
+
+  // Check the key against the length in the array, compute the
+  // address to store into and fall through to fast case.
+  __ ldr(r1, MemOperand(sp));
+  // r0 == value, r1 == key, r2 == elements, r3 == object.
+  __ ldr(ip, FieldMemOperand(r3, JSArray::kLengthOffset));
+  __ cmp(r1, Operand(ip));
+  __ b(hs, &extra);
+  __ mov(r3, Operand(r2));
+  __ add(r2, r2, Operand(Array::kHeaderSize - kHeapObjectTag));
+  __ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
+
+
+  // Fast case: Do the store.
+  // r0 == value, r2 == address to store into, r3 == elements
+  __ bind(&fast);
+  __ str(r0, MemOperand(r2));
+  // Skip write barrier if the written value is a smi.
+  __ tst(r0, Operand(kSmiTagMask));
+  __ b(eq, &exit);
+  // Update write barrier for the elements array address.
+  __ sub(r1, r2, Operand(r3));
+  __ RecordWrite(r3, r1, r2);
+  __ bind(&exit);
+  masm->StubReturn(1);
+}
+
+
+void GenericOpStub::Generate(MacroAssembler* masm) {
+  switch (op_) {
+    case Token::ADD: {
+      Label slow, exit;
+      // fast path
+      // Get x (y is on TOS, i.e., r0).
+      __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
+      __ orr(r2, r1, Operand(r0));  // r2 = x | y;
+      __ add(r0, r1, Operand(r0), SetCC);  // add y optimistically
+      // go slow-path in case of overflow
+      __ b(vs, &slow);
+      // go slow-path in case of non-smi operands
+      ASSERT(kSmiTag == 0);  // adjust code below
+      __ tst(r2, Operand(kSmiTagMask));
+      __ b(eq, &exit);
+      // slow path
+      __ bind(&slow);
+      __ sub(r0, r0, Operand(r1));  // revert optimistic add
+      __ push(r0);
+      __ mov(r0, Operand(1));  // set number of arguments
+      __ InvokeBuiltin("ADD", 1, JUMP_JS);
+      // done
+      __ bind(&exit);
+      break;
+    }
+
+    case Token::SUB: {
+      Label slow, exit;
+      // fast path
+      __ ldr(r1, MemOperand(sp, 0 * kPointerSize));  // get x
+      __ orr(r2, r1, Operand(r0));  // r2 = x | y;
+      __ sub(r3, r1, Operand(r0), SetCC);  // subtract y optimistically
+      // go slow-path in case of overflow
+      __ b(vs, &slow);
+      // go slow-path in case of non-smi operands
+      ASSERT(kSmiTag == 0);  // adjust code below
+      __ tst(r2, Operand(kSmiTagMask));
+      __ mov(r0, Operand(r3), LeaveCC, eq);  // conditionally set r0 to result
+      __ b(eq, &exit);
+      // slow path
+      __ bind(&slow);
+      __ push(r0);
+      __ mov(r0, Operand(1));  // set number of arguments
+      __ InvokeBuiltin("SUB", 1, JUMP_JS);
+      // done
+      __ bind(&exit);
+      break;
+    }
+
+    case Token::MUL: {
+      Label slow, exit;
+      __ ldr(r1, MemOperand(sp, 0 * kPointerSize));  // get x
+      // tag check
+      __ orr(r2, r1, Operand(r0));  // r2 = x | y;
+      ASSERT(kSmiTag == 0);  // adjust code below
+      __ tst(r2, Operand(kSmiTagMask));
+      __ b(ne, &slow);
+      // remove tag from one operand (but keep sign), so that result is smi
+      __ mov(ip, Operand(r0, ASR, kSmiTagSize));
+      // do multiplication
+      __ smull(r3, r2, r1, ip);  // r3 = lower 32 bits of ip*r1
+      // go slow on overflows (overflow bit is not set)
+      __ mov(ip, Operand(r3, ASR, 31));
+      __ cmp(ip, Operand(r2));  // no overflow if higher 33 bits are identical
+      __ b(ne, &slow);
+      // go slow on zero result to handle -0
+      __ tst(r3, Operand(r3));
+      __ mov(r0, Operand(r3), LeaveCC, ne);
+      __ b(ne, &exit);
+      // slow case
+      __ bind(&slow);
+      __ push(r0);
+      __ mov(r0, Operand(1));  // set number of arguments
+      __ InvokeBuiltin("MUL", 1, JUMP_JS);
+      // done
+      __ bind(&exit);
+      break;
+    }
+    default: UNREACHABLE();
+  }
+  masm->StubReturn(2);
+}
+
+
+class SmiOpStub : public CodeStub {
+ public:
+  SmiOpStub(Token::Value op, bool reversed)
+      : op_(op), reversed_(reversed) {}
+
+ private:
+  Token::Value op_;
+  bool reversed_;
+
+  Major MajorKey() { return SmiOp; }
+  int MinorKey() {
+    return (op_ == Token::ADD ? 2 : 0) | (reversed_ ? 1 : 0);
+  }
+  void Generate(MacroAssembler* masm);
+  void GenerateShared(MacroAssembler* masm);
+
+  const char* GetName() { return "SmiOpStub"; }
+
+#ifdef DEBUG
+  void Print() {
+    PrintF("SmiOpStub (token %s), (reversed %s)\n",
+           Token::String(op_), reversed_ ? "true" : "false");
+  }
+#endif
+};
+
+
+void SmiOpStub::Generate(MacroAssembler* masm) {
+  switch (op_) {
+    case Token::ADD: {
+      if (!reversed_) {
+        __ sub(r0, r0, Operand(r1));  // revert optimistic add
+        __ push(r0);
+        __ push(r1);
+        __ mov(r0, Operand(1));  // set number of arguments
+        __ InvokeBuiltin("ADD", 1, JUMP_JS);
+      } else {
+        __ sub(r0, r0, Operand(r1));  // revert optimistic add
+        __ push(r1);  // reversed
+        __ push(r0);
+        __ mov(r0, Operand(1));  // set number of arguments
+        __ InvokeBuiltin("ADD", 1, JUMP_JS);
+      }
+      break;
+    }
+    case Token::SUB: {
+      if (!reversed_) {
+        __ push(r0);
+        __ push(r1);
+        __ mov(r0, Operand(1));  // set number of arguments
+        __ InvokeBuiltin("SUB", 1, JUMP_JS);
+      } else {
+        __ push(r1);
+        __ push(r0);
+        __ mov(r0, Operand(1));  // set number of arguments
+        __ InvokeBuiltin("SUB", 1, JUMP_JS);
+      }
+      break;
+    }
+    default: UNREACHABLE();
+  }
+}
+
+void StackCheckStub::Generate(MacroAssembler* masm) {
+  Label within_limit;
+  __ mov(ip, Operand(ExternalReference::address_of_stack_guard_limit()));
+  __ ldr(ip, MemOperand(ip));
+  __ cmp(sp, Operand(ip));
+  __ b(hs, &within_limit);
+  // Do tail-call to runtime routine.
+  __ push(r0);
+  __ mov(r0, Operand(0));  // not counting receiver (i.e. flushed TOS)
+  __ JumpToBuiltin(ExternalReference(Runtime::kStackGuard));
+  __ bind(&within_limit);
+
+  masm->StubReturn(1);
+}
+
+
+void UnarySubStub::Generate(MacroAssembler* masm) {
+  Label undo;
+  Label slow;
+  Label done;
+
+  // Enter runtime system if the value is not a smi.
+  __ tst(r0, Operand(kSmiTagMask));
+  __ b(ne, &slow);
+
+  // Enter runtime system if the value of the expression is zero
+  // to make sure that we switch between 0 and -0.
+  __ cmp(r0, Operand(0));
+  __ b(eq, &slow);
+
+  // The value of the expression is a smi that is not zero.  Try
+  // optimistic subtraction '0 - value'.
+  __ rsb(r1, r0, Operand(0), SetCC);
+  __ b(vs, &slow);
+
+  // If result is a smi we are done.
+  __ tst(r1, Operand(kSmiTagMask));
+  __ mov(r0, Operand(r1), LeaveCC, eq);  // conditionally set r0 to result
+  __ b(eq, &done);
+
+  // Enter runtime system.
+  __ bind(&slow);
+  __ push(r0);
+  __ mov(r0, Operand(0));  // set number of arguments
+  __ InvokeBuiltin("UNARY_MINUS", 0, JUMP_JS);
+
+  __ bind(&done);
+  masm->StubReturn(1);
+}
+
+
+class InvokeBuiltinStub : public CodeStub {
+ public:
+  enum Kind { Inc, Dec, ToNumber };
+  InvokeBuiltinStub(Kind kind, int argc) : kind_(kind), argc_(argc) { }
+
+ private:
+  Kind kind_;
+  int argc_;
+
+  Major MajorKey() { return InvokeBuiltin; }
+  int MinorKey() { return (argc_ << 3) | static_cast<int>(kind_); }
+  void Generate(MacroAssembler* masm);
+
+  const char* GetName() { return "InvokeBuiltinStub"; }
+
+#ifdef DEBUG
+  void Print() {
+    PrintF("InvokeBuiltinStub (kind %d, argc, %d)\n",
+           static_cast<int>(kind_),
+           argc_);
+  }
+#endif
+};
+
+
+void InvokeBuiltinStub::Generate(MacroAssembler* masm) {
+  __ push(r0);
+  __ mov(r0, Operand(0));  // set number of arguments
+  switch (kind_) {
+    case ToNumber: __ InvokeBuiltin("TO_NUMBER", 0, JUMP_JS); break;
+    case Inc:      __ InvokeBuiltin("INC", 0, JUMP_JS);       break;
+    case Dec:      __ InvokeBuiltin("DEC", 0, JUMP_JS);       break;
+    default: UNREACHABLE();
+  }
+  masm->StubReturn(argc_);
+}
+
+
+class JSExitStub : public CodeStub {
+ public:
+  enum Kind { Inc, Dec, ToNumber };
+
+  JSExitStub(int num_callee_saved, RegList callee_saved, ExitJSFlag flag)
+      : num_callee_saved_(num_callee_saved),
+        callee_saved_(callee_saved),
+        flag_(flag) { }
+
+ private:
+  int num_callee_saved_;
+  RegList callee_saved_;
+  ExitJSFlag flag_;
+
+  Major MajorKey() { return JSExit; }
+  int MinorKey() { return (num_callee_saved_ << 3) | static_cast<int>(flag_); }
+  void Generate(MacroAssembler* masm);
+
+  const char* GetName() { return "JSExitStub"; }
+
+#ifdef DEBUG
+  void Print() {
+    PrintF("JSExitStub (num_callee_saved %d, flag %d)\n",
+           num_callee_saved_,
+           static_cast<int>(flag_));
+  }
+#endif
+};
+
+
+void JSExitStub::Generate(MacroAssembler* masm) {
+  __ ExitJSFrame(flag_, callee_saved_);
+  masm->StubReturn(1);
+}
+
+
+
+void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
+  // r0 holds exception
+  ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize);  // adjust this code
+  if (FLAG_optimize_locals) {
+    // Locals are allocated in callee-saved registers, so we need to restore
+    // saved callee-saved registers by unwinding the stack
+    static JSCalleeSavedBuffer regs;
+    intptr_t arg0 = reinterpret_cast<intptr_t>(&regs);
+    __ push(r0);
+    __ mov(r0, Operand(arg0));  // exception in r0 (TOS) is pushed, r0 == arg0
+    // Do not push a second C entry frame, but call directly
+    __ Call(FUNCTION_ADDR(StackFrameIterator::RestoreCalleeSavedForTopHandler),
+            runtime_entry);  // passing r0
+    // Frame::RestoreJSCalleeSaved returns arg0 (TOS)
+    __ mov(r1, Operand(r0));
+    __ pop(r0);  // r1 holds arg0, r0 holds exception
+    __ ldm(ia, r1, kJSCalleeSaved);  // restore callee-saved registers
+  }
+  __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
+  __ ldr(sp, MemOperand(r3));
+  __ pop(r2);  // pop next in chain
+  __ str(r2, MemOperand(r3));
+  // restore parameter- and frame-pointer and pop state.
+  __ ldm(ia_w, sp, r3.bit() | pp.bit() | fp.bit());
+  // Before returning we restore the context from the frame pointer if not NULL.
+  // The frame pointer is NULL in the exception handler of a JS entry frame.
+  __ cmp(fp, Operand(0));
+  // Set cp to NULL if fp is NULL.
+  __ mov(cp, Operand(0), LeaveCC, eq);
+  // Restore cp otherwise.
+  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
+  if (kDebug && FLAG_debug_code) __ mov(lr, Operand(pc));
+  __ pop(pc);
+}
+
+
+void CEntryStub::GenerateThrowOutOfMemory(MacroAssembler* masm) {
+  // Fetch top stack handler.
+  __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
+  __ ldr(r3, MemOperand(r3));
+
+  // Unwind the handlers until the ENTRY handler is found.
+  Label loop, done;
+  __ bind(&loop);
+  // Load the type of the current stack handler.
+  const int kStateOffset = StackHandlerConstants::kAddressDisplacement +
+      StackHandlerConstants::kStateOffset;
+  __ ldr(r2, MemOperand(r3, kStateOffset));
+  __ cmp(r2, Operand(StackHandler::ENTRY));
+  __ b(eq, &done);
+  // Fetch the next handler in the list.
+  const int kNextOffset =  StackHandlerConstants::kAddressDisplacement +
+      StackHandlerConstants::kNextOffset;
+  __ ldr(r3, MemOperand(r3, kNextOffset));
+  __ jmp(&loop);
+  __ bind(&done);
+
+  // Set the top handler address to next handler past the current ENTRY handler.
+  __ ldr(r0, MemOperand(r3, kNextOffset));
+  __ mov(r2, Operand(ExternalReference(Top::k_handler_address)));
+  __ str(r0, MemOperand(r2));
+
+  // Set external caught exception to false.
+  __ mov(r0, Operand(false));
+  ExternalReference external_caught(Top::k_external_caught_exception_address);
+  __ mov(r2, Operand(external_caught));
+  __ str(r0, MemOperand(r2));
+
+  // Set pending exception and TOS to out of memory exception.
+  Failure* out_of_memory = Failure::OutOfMemoryException();
+  __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
+  __ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address)));
+  __ str(r0, MemOperand(r2));
+
+  // Restore the stack to the address of the ENTRY handler
+  __ mov(sp, Operand(r3));
+
+  // restore parameter- and frame-pointer and pop state.
+  __ ldm(ia_w, sp, r3.bit() | pp.bit() | fp.bit());
+  // Before returning we restore the context from the frame pointer if not NULL.
+  // The frame pointer is NULL in the exception handler of a JS entry frame.
+  __ cmp(fp, Operand(0));
+  // Set cp to NULL if fp is NULL.
+  __ mov(cp, Operand(0), LeaveCC, eq);
+  // Restore cp otherwise.
+  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
+  if (kDebug && FLAG_debug_code) __ mov(lr, Operand(pc));
+  __ pop(pc);
+}
+
+
+void CEntryStub::GenerateCore(MacroAssembler* masm,
+                              Label* throw_normal_exception,
+                              Label* throw_out_of_memory_exception,
+                              bool do_gc,
+                              bool do_restore) {
+  // r0: result parameter for PerformGC, if any
+  // r4: number of arguments  (C callee-saved)
+  // r5: pointer to builtin function  (C callee-saved)
+
+  if (do_gc) {
+    __ Call(FUNCTION_ADDR(Runtime::PerformGC), runtime_entry);  // passing r0
+  }
+
+  // call C built-in
+  __ mov(r0, Operand(r4));  // a0 = argc
+  __ add(r1, fp, Operand(r4, LSL, kPointerSizeLog2));
+  __ add(r1, r1, Operand(ExitFrameConstants::kPPDisplacement));  // a1 = argv
+
+  // TODO(1242173): To let the GC traverse the return address of the exit
+  // frames, we need to know where the return address is. Right now,
+  // we push it on the stack to be able to find it again, but we never
+  // restore from it in case of changes, which makes it impossible to
+  // support moving the C entry code stub. This should be fixed, but currently
+  // this is OK because the CEntryStub gets generated so early in the V8 boot
+  // sequence that it is not moving ever.
+  __ add(lr, pc, Operand(4));  // compute return address: (pc + 8) + 4
+  __ push(lr);
+#if !defined(__arm__)
+  // Notify the simulator of the transition to C code.
+  __ swi(assembler::arm::call_rt_r5);
+#else /* !defined(__arm__) */
+  __ mov(pc, Operand(r5));
+#endif /* !defined(__arm__) */
+  // result is in r0 or r0:r1 - do not destroy these registers!
+
+  // check for failure result
+  Label failure_returned;
+  ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
+  // Lower 2 bits of r2 are 0 iff r0 has failure tag.
+  __ add(r2, r0, Operand(1));
+  __ tst(r2, Operand(kFailureTagMask));
+  __ b(eq, &failure_returned);
+
+  // clear top frame
+  __ mov(r3, Operand(0));
+  __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
+  __ str(r3, MemOperand(ip));
+
+  // Restore the memory copy of the registers by digging them out from
+  // the stack.
+  if (do_restore) {
+    // Ok to clobber r2 and r3.
+    const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize;
+    const int kOffset = ExitFrameConstants::kDebugMarkOffset - kCallerSavedSize;
+    __ add(r3, fp, Operand(kOffset));
+    __ CopyRegistersFromStackToMemory(r3, r2, kJSCallerSaved);
+  }
+
+  // Exit C frame and return
+  // r0:r1: result
+  // sp: stack pointer
+  // fp: frame pointer
+  // pp: caller's parameter pointer pp  (restored as C callee-saved)
+
+  // Restore current context from top and clear it in debug mode.
+  __ mov(r3, Operand(Top::context_address()));
+  __ ldr(cp, MemOperand(r3));
+  __ mov(sp, Operand(fp));  // respect ABI stack constraint
+  __ ldm(ia, sp, kJSCalleeSaved | pp.bit() | fp.bit() | sp.bit() | pc.bit());
+
+  // check if we should retry or throw exception
+  Label retry;
+  __ bind(&failure_returned);
+  ASSERT(Failure::RETRY_AFTER_GC == 0);
+  __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
+  __ b(eq, &retry);
+
+  Label continue_exception;
+  // If the returned failure is EXCEPTION then promote Top::pending_exception().
+  __ cmp(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
+  __ b(ne, &continue_exception);
+
+  // Retrieve the pending exception and clear the variable.
+  __ mov(ip, Operand(Factory::the_hole_value().location()));
+  __ ldr(r3, MemOperand(ip));
+  __ mov(ip, Operand(Top::pending_exception_address()));
+  __ ldr(r0, MemOperand(ip));
+  __ str(r3, MemOperand(ip));
+
+  __ bind(&continue_exception);
+  // Special handling of out of memory exception.
+  Failure* out_of_memory = Failure::OutOfMemoryException();
+  __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
+  __ b(eq, throw_out_of_memory_exception);
+
+  // Handle normal exception.
+  __ jmp(throw_normal_exception);
+
+  __ bind(&retry);  // pass last failure (r0) as parameter (r0) when retrying
+}
+
+
+void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
+  // Called from JavaScript; parameters are on stack as if calling JS function
+  // r0: number of arguments
+  // r1: pointer to builtin function
+  // fp: frame pointer  (restored after C call)
+  // sp: stack pointer  (restored as callee's pp after C call)
+  // cp: current context  (C callee-saved)
+  // pp: caller's parameter pointer pp  (C callee-saved)
+
+  // NOTE: Invocations of builtins may return failure objects
+  // instead of a proper result. The builtin entry handles
+  // this by performing a garbage collection and retrying the
+  // builtin once.
+
+  // Enter C frame
+  // Compute parameter pointer before making changes and save it as ip register
+  // so that it is restored as sp register on exit, thereby popping the args.
+  // ip = sp + kPointerSize*(args_len+1);  // +1 for receiver
+  __ add(ip, sp, Operand(r0, LSL, kPointerSizeLog2));
+  __ add(ip, ip, Operand(kPointerSize));
+
+  // all JS callee-saved are saved and traversed by GC; push in reverse order:
+  // JS callee-saved, caller_pp, caller_fp, sp_on_exit (ip==pp), caller_pc
+  __ stm(db_w, sp, kJSCalleeSaved | pp.bit() | fp.bit() | ip.bit() | lr.bit());
+  __ mov(fp, Operand(sp));  // setup new frame pointer
+
+  // Store the current context in top.
+  __ mov(ip, Operand(Top::context_address()));
+  __ str(cp, MemOperand(ip));
+
+  // remember top frame
+  __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
+  __ str(fp, MemOperand(ip));
+
+  // Push debug marker.
+  __ mov(ip, Operand(is_debug_break ? 1 : 0));
+  __ push(ip);
+
+  if (is_debug_break) {
+    // Save the state of all registers to the stack from the memory location.
+    // Use sp as base to push.
+    __ CopyRegistersFromMemoryToStack(sp, kJSCallerSaved);
+  }
+
+  // move number of arguments (argc) into callee-saved register
+  __ mov(r4, Operand(r0));
+
+  // move pointer to builtin function into callee-saved register
+  __ mov(r5, Operand(r1));
+
+  // r0: result parameter for PerformGC, if any (setup below)
+  // r4: number of arguments
+  // r5: pointer to builtin function  (C callee-saved)
+
+  Label entry;
+  __ bind(&entry);
+
+  Label throw_out_of_memory_exception;
+  Label throw_normal_exception;
+
+#ifdef DEBUG
+  if (FLAG_gc_greedy) {
+    Failure* failure = Failure::RetryAfterGC(0, NEW_SPACE);
+    __ mov(r0, Operand(reinterpret_cast<intptr_t>(failure)));
+  }
+  GenerateCore(masm,
+               &throw_normal_exception,
+               &throw_out_of_memory_exception,
+               FLAG_gc_greedy,
+               is_debug_break);
+#else
+  GenerateCore(masm,
+               &throw_normal_exception,
+               &throw_out_of_memory_exception,
+               false,
+               is_debug_break);
+#endif
+  GenerateCore(masm,
+               &throw_normal_exception,
+               &throw_out_of_memory_exception,
+               true,
+               is_debug_break);
+
+  __ bind(&throw_out_of_memory_exception);
+  GenerateThrowOutOfMemory(masm);
+  // control flow for generated will not return.
+
+  __ bind(&throw_normal_exception);
+  GenerateThrowTOS(masm);
+}
+
+
+void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
+  // r0: code entry
+  // r1: function
+  // r2: receiver
+  // r3: argc
+  // [sp+0]: argv
+
+  Label invoke, exit;
+
+  // Called from C, so do not pop argc and args on exit (preserve sp)
+  // No need to save register-passed args
+  // Save callee-saved registers (incl. cp, pp, and fp), sp, and lr
+  __ mov(ip, Operand(sp));
+  __ stm(db_w, sp, kCalleeSaved | ip.bit() | lr.bit());
+
+  // Setup frame pointer
+  __ mov(fp, Operand(sp));
+
+  // Add constructor mark.
+  __ mov(ip, Operand(is_construct ? 1 : 0));
+  __ push(ip);
+
+  // Move arguments into registers expected by Builtins::JSEntryTrampoline
+  // preserve r0-r3, set r4, r5-r7 may be clobbered
+
+  // Get address of argv, see stm above.
+  __ add(r4, sp, Operand((kNumCalleeSaved + 3)*kPointerSize));
+  __ ldr(r4, MemOperand(r4));  // argv
+
+  // Save copies of the top frame descriptors on the stack.
+  __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
+  __ ldr(r6, MemOperand(ip));
+  __ stm(db_w, sp, r6.bit());
+
+  // Call a faked try-block that does the invoke.
+  __ bl(&invoke);
+
+  // Caught exception: Store result (exception) in the pending
+  // exception field in the JSEnv and return a failure sentinel.
+  __ mov(ip, Operand(Top::pending_exception_address()));
+  __ str(r0, MemOperand(ip));
+  __ mov(r0, Operand(Handle<Failure>(Failure::Exception())));
+  __ b(&exit);
+
+  // Invoke: Link this frame into the handler chain.
+  __ bind(&invoke);
+  // Must preserve r0-r3, r5-r7 are available.
+  __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
+  // If an exception not caught by another handler occurs, this handler returns
+  // control to the code after the bl(&invoke) above, which restores all
+  // kCalleeSaved registers (including cp, pp and fp) to their saved values
+  // before returning a failure to C.
+
+  // Clear any pending exceptions.
+  __ mov(ip, Operand(ExternalReference::the_hole_value_location()));
+  __ ldr(r5, MemOperand(ip));
+  __ mov(ip, Operand(Top::pending_exception_address()));
+  __ str(r5, MemOperand(ip));
+
+  // Invoke the function by calling through JS entry trampoline builtin.
+  // Notice that we cannot store a reference to the trampoline code directly in
+  // this stub, because runtime stubs are not traversed when doing GC.
+
+  // Expected registers by Builtins::JSEntryTrampoline
+  // r0: code entry
+  // r1: function
+  // r2: receiver
+  // r3: argc
+  // r4: argv
+  if (is_construct) {
+    ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
+    __ mov(ip, Operand(construct_entry));
+  } else {
+    ExternalReference entry(Builtins::JSEntryTrampoline);
+    __ mov(ip, Operand(entry));
+  }
+  __ ldr(ip, MemOperand(ip));  // deref address
+
+  // Branch and link to JSEntryTrampoline
+  __ mov(lr, Operand(pc));
+  __ add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
+
+  // Unlink this frame from the handler chain. When reading the
+  // address of the next handler, there is no need to use the address
+  // displacement since the current stack pointer (sp) points directly
+  // to the stack handler.
+  __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
+  __ mov(ip, Operand(ExternalReference(Top::k_handler_address)));
+  __ str(r3, MemOperand(ip));
+  // No need to restore registers
+  __ add(sp, sp, Operand(StackHandlerConstants::kSize));
+
+  __ bind(&exit);  // r0 holds result
+  // Restore the top frame descriptors from the stack.
+  __ ldm(ia_w, sp, r3.bit());
+  __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
+  __ str(r3, MemOperand(ip));
+
+  // Remove constructor mark.
+  __ add(sp, sp, Operand(kPointerSize));
+
+  // Restore callee-saved registers, sp, and return.
+#ifdef DEBUG
+  if (FLAG_debug_code) __ mov(lr, Operand(pc));
+#endif
+  __ ldm(ia, sp, kCalleeSaved | sp.bit() | pc.bit());
+}
+
+
+class ArgumentsAccessStub: public CodeStub {
+ public:
+  explicit ArgumentsAccessStub(bool is_length) : is_length_(is_length) { }
+
+ private:
+  bool is_length_;
+
+  Major MajorKey() { return ArgumentsAccess; }
+  int MinorKey() { return is_length_ ? 1 : 0; }
+  void Generate(MacroAssembler* masm);
+
+  const char* GetName() { return "ArgumentsAccessStub"; }
+
+#ifdef DEBUG
+  void Print() {
+    PrintF("ArgumentsAccessStub (is_length %s)\n",
+           is_length_ ? "true" : "false");
+  }
+#endif
+};
+
+
+void ArgumentsAccessStub::Generate(MacroAssembler* masm) {
+  if (is_length_) {
+    __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kArgsLengthOffset));
+    __ mov(r0, Operand(r0, LSL, kSmiTagSize));
+    __ Ret();
+  } else {
+    // Check that the key is a smi.
+    Label slow;
+    __ tst(r0, Operand(kSmiTagMask));
+    __ b(ne, &slow);
+
+    // Get the actual number of arguments passed and do bounds
+    // check. Use unsigned comparison to get negative check for free.
+    __ ldr(r1, MemOperand(fp, JavaScriptFrameConstants::kArgsLengthOffset));
+    __ cmp(r0, Operand(r1, LSL, kSmiTagSize));
+    __ b(hs, &slow);
+
+    // Load the argument directly from the stack and return.
+    __ sub(r1, pp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
+    __ ldr(r0, MemOperand(r1, JavaScriptFrameConstants::kParam0Offset));
+    __ Ret();
+
+    // Slow-case: Handle non-smi or out-of-bounds access to arguments
+    // by calling the runtime system.
+    __ bind(&slow);
+    __ push(r0);
+    __ mov(r0, Operand(0));  // not counting receiver
+    __ JumpToBuiltin(ExternalReference(Runtime::kGetArgumentsProperty));
+  }
+}
+
+
+#undef __
+#define __  masm_->
+
+
+void ArmCodeGenerator::AccessReferenceProperty(
+    Expression* key,
+    CodeGenState::AccessType access) {
+  Reference::Type type = ref()->type();
+  ASSERT(type != Reference::ILLEGAL);
+
+  // TODO(1241834): Make sure that this is sufficient. If there is a chance
+  // that reference errors can be thrown below, we must distinguish
+  // between the 2 kinds of loads (typeof expression loads must not
+  // throw a reference errror).
+  bool is_load = (access == CodeGenState::LOAD ||
+                  access == CodeGenState::LOAD_TYPEOF_EXPR);
+
+  if (type == Reference::NAMED) {
+    // Compute the name of the property.
+    Literal* literal = key->AsLiteral();
+    Handle<String> name(String::cast(*literal->handle()));
+
+    // Loading adds a value to the stack; push the TOS to prepare.
+    if (is_load) __ push(r0);
+
+    // Setup the name register.
+    __ mov(r2, Operand(name));
+
+    // Call the appropriate IC code.
+    if (is_load) {
+      Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
+      Variable* var = ref()->expression()->AsVariableProxy()->AsVariable();
+      if (var != NULL) {
+        ASSERT(var->is_global());
+        __ Call(ic, code_target_context);
+      } else {
+        __ Call(ic, code_target);
+      }
+    } else {
+      Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
+      __ Call(ic, code_target);
+    }
+    return;
+  }
+
+  // Access keyed property.
+  ASSERT(type == Reference::KEYED);
+
+  if (is_load) {
+    __ push(r0);  // empty tos
+    // TODO(1224671): Implement inline caching for keyed loads as on ia32.
+    GetPropertyStub stub;
+    __ CallStub(&stub);
+  } else {
+    SetPropertyStub stub;
+    __ CallStub(&stub);
+  }
+}
+
+
+void ArmCodeGenerator::GenericOperation(Token::Value op) {
+  // Stub is entered with a call: 'return address' is in lr.
+  switch (op) {
+    case Token::ADD:  // fall through.
+    case Token::SUB:  // fall through.
+    case Token::MUL: {
+      GenericOpStub stub(op);
+      __ CallStub(&stub);
+      break;
+    }
+
+    case Token::DIV: {
+      __ push(r0);
+      __ mov(r0, Operand(1));  // set number of arguments
+      __ InvokeBuiltin("DIV", 1, CALL_JS);
+      break;
+    }
+
+    case Token::MOD: {
+      __ push(r0);
+      __ mov(r0, Operand(1));  // set number of arguments
+      __ InvokeBuiltin("MOD", 1, CALL_JS);
+      break;
+    }
+
+    case Token::BIT_OR:
+    case Token::BIT_AND:
+    case Token::BIT_XOR: {
+      Label slow, exit;
+      __ pop(r1);  // get x
+      // tag check
+      __ orr(r2, r1, Operand(r0));  // r2 = x | y;
+      ASSERT(kSmiTag == 0);  // adjust code below
+      __ tst(r2, Operand(kSmiTagMask));
+      __ b(ne, &slow);
+      switch (op) {
+        case Token::BIT_OR:  __ orr(r0, r0, Operand(r1)); break;
+        case Token::BIT_AND: __ and_(r0, r0, Operand(r1)); break;
+        case Token::BIT_XOR: __ eor(r0, r0, Operand(r1)); break;
+        default: UNREACHABLE();
+      }
+      __ b(&exit);
+      __ bind(&slow);
+      __ push(r1);  // restore stack
+      __ push(r0);
+      __ mov(r0, Operand(1));  // 1 argument (not counting receiver).
+      switch (op) {
+        case Token::BIT_OR:  __ InvokeBuiltin("BIT_OR",  1, CALL_JS); break;
+        case Token::BIT_AND: __ InvokeBuiltin("BIT_AND", 1, CALL_JS); break;
+        case Token::BIT_XOR: __ InvokeBuiltin("BIT_XOR", 1, CALL_JS); break;
+        default: UNREACHABLE();
+      }
+      __ bind(&exit);
+      break;
+    }
+
+    case Token::SHL:
+    case Token::SHR:
+    case Token::SAR: {
+      Label slow, exit;
+      __ mov(r1, Operand(r0));  // get y
+      __ pop(r0);  // get x
+      // tag check
+      __ orr(r2, r1, Operand(r0));  // r2 = x | y;
+      ASSERT(kSmiTag == 0);  // adjust code below
+      __ tst(r2, Operand(kSmiTagMask));
+      __ b(ne, &slow);
+       // get copies of operands
+      __ mov(r3, Operand(r0));
+      __ mov(r2, Operand(r1));
+      // remove tags from operands (but keep sign)
+      __ mov(r3, Operand(r3, ASR, kSmiTagSize));
+      __ mov(r2, Operand(r2, ASR, kSmiTagSize));
+      // use only the 5 least significant bits of the shift count
+      __ and_(r2, r2, Operand(0x1f));
+      // perform operation
+      switch (op) {
+        case Token::SAR:
+          __ mov(r3, Operand(r3, ASR, r2));
+          // no checks of result necessary
+          break;
+
+        case Token::SHR:
+          __ mov(r3, Operand(r3, LSR, r2));
+          // check that the *unsigned* result fits in a smi
+          // neither of the two high-order bits can be set:
+          // - 0x80000000: high bit would be lost when smi tagging
+          // - 0x40000000: this number would convert to negative when
+          // smi tagging these two cases can only happen with shifts
+          // by 0 or 1 when handed a valid smi
+          __ and_(r2, r3, Operand(0xc0000000), SetCC);
+          __ b(ne, &slow);
+          break;
+
+        case Token::SHL:
+          __ mov(r3, Operand(r3, LSL, r2));
+          // check that the *signed* result fits in a smi
+          __ add(r2, r3, Operand(0x40000000), SetCC);
+          __ b(mi, &slow);
+          break;
+
+        default: UNREACHABLE();
+      }
+      // tag result and store it in TOS (r0)
+      ASSERT(kSmiTag == 0);  // adjust code below
+      __ mov(r0, Operand(r3, LSL, kSmiTagSize));
+      __ b(&exit);
+      // slow case
+      __ bind(&slow);
+      __ push(r0);  // restore stack
+      __ mov(r0, Operand(r1));
+      __ Push(Operand(1));  // 1 argument (not counting receiver).
+      switch (op) {
+        case Token::SAR: __ InvokeBuiltin("SAR", 1, CALL_JS); break;
+        case Token::SHR: __ InvokeBuiltin("SHR", 1, CALL_JS); break;
+        case Token::SHL: __ InvokeBuiltin("SHL", 1, CALL_JS); break;
+        default: UNREACHABLE();
+      }
+      __ bind(&exit);
+      break;
+    }
+
+    case Token::COMMA:
+      // simply discard left value
+      __ add(sp, sp, Operand(kPointerSize));
+      break;
+
+    default:
+      // Other cases should have been handled before this point.
+      UNREACHABLE();
+      break;
+  }
+}
+
+
+
+
+void ArmCodeGenerator::SmiOperation(Token::Value op,
+                                    Handle<Object> value,
+                                    bool reversed) {
+  // NOTE: This is an attempt to inline (a bit) more of the code for
+  // some possible smi operations (like + and -) when (at least) one
+  // of the operands is a literal smi. With this optimization, the
+  // performance of the system is increased by ~15%, and the generated
+  // code size is increased by ~1% (measured on a combination of
+  // different benchmarks).
+
+  ASSERT(value->IsSmi());
+
+  Label exit;
+
+  switch (op) {
+    case Token::ADD: {
+      Label slow;
+
+      __ mov(r1, Operand(value));
+      __ add(r0, r0, Operand(r1), SetCC);
+      __ b(vs, &slow);
+      __ tst(r0, Operand(kSmiTagMask));
+      __ b(eq, &exit);
+      __ bind(&slow);
+
+      SmiOpStub stub(Token::ADD, reversed);
+      __ CallStub(&stub);
+      break;
+    }
+
+    case Token::SUB: {
+      Label slow;
+
+      __ mov(r1, Operand(value));
+      if (!reversed) {
+        __ sub(r2, r0, Operand(r1), SetCC);
+      } else {
+        __ rsb(r2, r0, Operand(r1), SetCC);
+      }
+      __ b(vs, &slow);
+      __ tst(r2, Operand(kSmiTagMask));
+      __ mov(r0, Operand(r2), LeaveCC, eq);  // conditionally set r0 to result
+      __ b(eq, &exit);
+
+      __ bind(&slow);
+
+      SmiOpStub stub(Token::SUB, reversed);
+      __ CallStub(&stub);
+      break;
+    }
+
+    default:
+      if (!reversed) {
+        __ Push(Operand(value));
+      } else {
+        __ mov(ip, Operand(value));
+        __ push(ip);
+      }
+      GenericOperation(op);
+      break;
+  }
+
+  __ bind(&exit);
+}
+
+
+void ArmCodeGenerator::Comparison(Condition cc, bool strict) {
+  // Strict only makes sense for equality comparisons.
+  ASSERT(!strict || cc == eq);
+
+  Label exit, smi;
+  __ pop(r1);
+  __ orr(r2, r0, Operand(r1));
+  __ tst(r2, Operand(kSmiTagMask));
+  __ b(eq, &smi);
+
+  // Perform non-smi comparison by runtime call.
+  __ push(r1);
+
+  // Figure out which native to call and setup the arguments.
+  const char* native;
+  int argc;
+  if (cc == eq) {
+    native = strict ? "STRICT_EQUALS" : "EQUALS";
+    argc = 1;
+  } else {
+    native = "COMPARE";
+    int ncr;  // NaN compare result
+    if (cc == lt || cc == le) {
+      ncr = GREATER;
+    } else {
+      ASSERT(cc == gt || cc == ge);  // remaining cases
+      ncr = LESS;
+    }
+    __ Push(Operand(Smi::FromInt(ncr)));
+    argc = 2;
+  }
+
+  // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
+  // tagged as a small integer.
+  __ Push(Operand(argc));
+  __ InvokeBuiltin(native, argc, CALL_JS);
+  __ cmp(r0, Operand(0));
+  __ b(&exit);
+
+  // test smi equality by pointer comparison.
+  __ bind(&smi);
+  __ cmp(r1, Operand(r0));
+
+  __ bind(&exit);
+  __ pop(r0);  // be careful not to destroy the cc register
+  cc_reg_ = cc;
+}
+
+
+// Call the function just below TOS on the stack with the given
+// arguments. The receiver is the TOS.
+void ArmCodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
+                                         int position) {
+  Label fast, slow, exit;
+
+  // Push the arguments ("left-to-right") on the stack.
+  for (int i = 0; i < args->length(); i++) Load(args->at(i));
+
+  // Push the number of arguments.
+  __ Push(Operand(args->length()));
+
+  // Get the function to call from the stack.
+  // +1 ~ receiver.
+  __ ldr(r1, MemOperand(sp, (args->length() + 1) * kPointerSize));
+
+  // Check that the function really is a JavaScript function.
+  __ tst(r1, Operand(kSmiTagMask));
+  __ b(eq, &slow);
+  __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));  // get the map
+  __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
+  __ cmp(r2, Operand(JS_FUNCTION_TYPE));
+  __ b(eq, &fast);
+
+  __ RecordPosition(position);
+
+  // Slow-case: Non-function called.
+  __ bind(&slow);
+  __ InvokeBuiltin("CALL_NON_FUNCTION", 0, CALL_JS);
+  __ b(&exit);
+
+  // Fast-case: Get the code from the function, call the first
+  // instruction in it, and pop function.
+  __ bind(&fast);
+  __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
+  __ ldr(r1, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
+  __ ldr(r1, MemOperand(r1, SharedFunctionInfo::kCodeOffset - kHeapObjectTag));
+  __ add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag));
+  __ Call(r1);
+
+  // Restore context and pop function from the stack.
+  __ bind(&exit);
+  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  __ add(sp, sp, Operand(kPointerSize));  // discard
+}
+
+
+void ArmCodeGenerator::Branch(bool if_true, Label* L) {
+  ASSERT(has_cc());
+  Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_);
+  __ b(cc, L);
+  cc_reg_ = al;
+}
+
+
+void ArmCodeGenerator::CheckStack() {
+  if (FLAG_check_stack) {
+    Comment cmnt(masm_, "[ check stack");
+    StackCheckStub stub;
+    __ CallStub(&stub);
+  }
+}
+
+
+void ArmCodeGenerator::VisitBlock(Block* node) {
+  Comment cmnt(masm_, "[ Block");
+  if (FLAG_debug_info) RecordStatementPosition(node);
+  node->set_break_stack_height(break_stack_height_);
+  VisitStatements(node->statements());
+  __ bind(node->break_target());
+}
+
+
+void ArmCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
+  __ Push(Operand(pairs));
+  __ Push(Operand(cp));
+  __ Push(Operand(Smi::FromInt(is_eval() ? 1 : 0)));
+  __ CallRuntime(Runtime::kDeclareGlobals, 3);
+
+  // Get rid of return value.
+  __ pop(r0);
+}
+
+
+void ArmCodeGenerator::VisitDeclaration(Declaration* node) {
+  Comment cmnt(masm_, "[ Declaration");
+  Variable* var = node->proxy()->var();
+  ASSERT(var != NULL);  // must have been resolved
+  Slot* slot = var->slot();
+
+  // If it was not possible to allocate the variable at compile time,
+  // we need to "declare" it at runtime to make sure it actually
+  // exists in the local context.
+  if (slot != NULL && slot->type() == Slot::LOOKUP) {
+    // Variables with a "LOOKUP" slot were introduced as non-locals
+    // during variable resolution and must have mode DYNAMIC.
+    ASSERT(var->mode() == Variable::DYNAMIC);
+    // For now, just do a runtime call.
+    __ Push(Operand(cp));
+    __ Push(Operand(var->name()));
+    // Declaration nodes are always declared in only two modes.
+    ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
+    PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
+    __ Push(Operand(Smi::FromInt(attr)));
+    // Push initial value, if any.
+    // Note: For variables we must not push an initial value (such as
+    // 'undefined') because we may have a (legal) redeclaration and we
+    // must not destroy the current value.
+    if (node->mode() == Variable::CONST) {
+      __ Push(Operand(Factory::the_hole_value()));
+    } else if (node->fun() != NULL) {
+      Load(node->fun());
+    } else {
+      __ Push(Operand(0));  // no initial value!
+    }
+    __ CallRuntime(Runtime::kDeclareContextSlot, 5);
+    // DeclareContextSlot pops the assigned value by accepting an
+    // extra argument and returning the TOS; no need to explicitly pop
+    // here.
+    return;
+  }
+
+  ASSERT(!var->is_global());
+
+  // If we have a function or a constant, we need to initialize the variable.
+  Expression* val = NULL;
+  if (node->mode() == Variable::CONST) {
+    val = new Literal(Factory::the_hole_value());
+  } else {
+    val = node->fun();  // NULL if we don't have a function
+  }
+
+  if (val != NULL) {
+    // Set initial value.
+    Reference target(this, node->proxy());
+    Load(val);
+    SetValue(&target);
+    // Get rid of the assigned value (declarations are statements).
+    __ pop(r0);  // Pop(no_reg);
+  }
+}
+
+
+void ArmCodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
+  Comment cmnt(masm_, "[ ExpressionStatement");
+  if (FLAG_debug_info) RecordStatementPosition(node);
+  Expression* expression = node->expression();
+  expression->MarkAsStatement();
+  Load(expression);
+  __ pop(r0);  // __ Pop(no_reg)
+}
+
+
+void ArmCodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
+  Comment cmnt(masm_, "// EmptyStatement");
+  // nothing to do
+}
+
+
+void ArmCodeGenerator::VisitIfStatement(IfStatement* node) {
+  Comment cmnt(masm_, "[ IfStatement");
+  // Generate different code depending on which
+  // parts of the if statement are present or not.
+  bool has_then_stm = node->HasThenStatement();
+  bool has_else_stm = node->HasElseStatement();
+
+  if (FLAG_debug_info) RecordStatementPosition(node);
+
+  Label exit;
+  if (has_then_stm && has_else_stm) {
+    Label then;
+    Label else_;
+    // if (cond)
+    LoadCondition(node->condition(), CodeGenState::LOAD, &then, &else_, true);
+    Branch(false, &else_);
+    // then
+    __ bind(&then);
+    Visit(node->then_statement());
+    __ b(&exit);
+    // else
+    __ bind(&else_);
+    Visit(node->else_statement());
+
+  } else if (has_then_stm) {
+    ASSERT(!has_else_stm);
+    Label then;
+    // if (cond)
+    LoadCondition(node->condition(), CodeGenState::LOAD, &then, &exit, true);
+    Branch(false, &exit);
+    // then
+    __ bind(&then);
+    Visit(node->then_statement());
+
+  } else if (has_else_stm) {
+    ASSERT(!has_then_stm);
+    Label else_;
+    // if (!cond)
+    LoadCondition(node->condition(), CodeGenState::LOAD, &exit, &else_, true);
+    Branch(true, &exit);
+    // else
+    __ bind(&else_);
+    Visit(node->else_statement());
+
+  } else {
+    ASSERT(!has_then_stm && !has_else_stm);
+    // if (cond)
+    LoadCondition(node->condition(), CodeGenState::LOAD, &exit, &exit, false);
+    if (has_cc()) {
+      cc_reg_ = al;
+    } else {
+      __ pop(r0);  // __ Pop(no_reg)
+    }
+  }
+
+  // end
+  __ bind(&exit);
+}
+
+
+void ArmCodeGenerator::CleanStack(int num_bytes) {
+  ASSERT(num_bytes >= 0);
+  if (num_bytes > 0) {
+    __ add(sp, sp, Operand(num_bytes - kPointerSize));
+    __ pop(r0);
+  }
+}
+
+
+void ArmCodeGenerator::VisitContinueStatement(ContinueStatement* node) {
+  Comment cmnt(masm_, "[ ContinueStatement");
+  if (FLAG_debug_info) RecordStatementPosition(node);
+  CleanStack(break_stack_height_ - node->target()->break_stack_height());
+  __ b(node->target()->continue_target());
+}
+
+
+void ArmCodeGenerator::VisitBreakStatement(BreakStatement* node) {
+  Comment cmnt(masm_, "[ BreakStatement");
+  if (FLAG_debug_info) RecordStatementPosition(node);
+  CleanStack(break_stack_height_ - node->target()->break_stack_height());
+  __ b(node->target()->break_target());
+}
+
+
+void ArmCodeGenerator::VisitReturnStatement(ReturnStatement* node) {
+  Comment cmnt(masm_, "[ ReturnStatement");
+  if (FLAG_debug_info) RecordStatementPosition(node);
+  Load(node->expression());
+  __ b(&function_return_);
+}
+
+
+void ArmCodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
+  Comment cmnt(masm_, "[ WithEnterStatement");
+  if (FLAG_debug_info) RecordStatementPosition(node);
+  Load(node->expression());
+  __ CallRuntime(Runtime::kPushContext, 2);
+  // Update context local.
+  __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void ArmCodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
+  Comment cmnt(masm_, "[ WithExitStatement");
+  // Pop context.
+  __ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX));
+  // Update context local.
+  __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void ArmCodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
+  Comment cmnt(masm_, "[ SwitchStatement");
+  if (FLAG_debug_info) RecordStatementPosition(node);
+  node->set_break_stack_height(break_stack_height_);
+
+  Load(node->tag());
+
+  Label next, fall_through, default_case;
+  ZoneList<CaseClause*>* cases = node->cases();
+  int length = cases->length();
+
+  for (int i = 0; i < length; i++) {
+    CaseClause* clause = cases->at(i);
+
+    Comment cmnt(masm_, "[ case clause");
+
+    if (clause->is_default()) {
+      // Bind the default case label, so we can branch to it when we
+      // have compared against all other cases.
+      ASSERT(default_case.is_unused());  // at most one default clause
+
+      // If the default case is the first (but not only) case, we have
+      // to jump past it for now. Once we're done with the remaining
+      // clauses, we'll branch back here. If it isn't the first case,
+      // we jump past it by avoiding to chain it into the next chain.
+      if (length > 1) {
+        if (i == 0) __ b(&next);
+        __ bind(&default_case);
+      }
+
+    } else {
+      __ bind(&next);
+      next.Unuse();
+      __ push(r0);  // duplicate TOS
+      Load(clause->label());
+      Comparison(eq, true);
+      Branch(false, &next);
+      __ pop(r0);  // __ Pop(no_reg)
+    }
+
+    // Generate code for the body.
+    __ bind(&fall_through);
+    fall_through.Unuse();
+    VisitStatements(clause->statements());
+    __ b(&fall_through);
+  }
+
+  __ bind(&next);
+  __ pop(r0);  // __ Pop(no_reg)
+  if (default_case.is_bound()) __ b(&default_case);
+
+  __ bind(&fall_through);
+  __ bind(node->break_target());
+}
+
+
+void ArmCodeGenerator::VisitLoopStatement(LoopStatement* node) {
+  Comment cmnt(masm_, "[ LoopStatement");
+  if (FLAG_debug_info) RecordStatementPosition(node);
+  node->set_break_stack_height(break_stack_height_);
+
+  // simple condition analysis
+  enum { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW } info = DONT_KNOW;
+  if (node->cond() == NULL) {
+    ASSERT(node->type() == LoopStatement::FOR_LOOP);
+    info = ALWAYS_TRUE;
+  } else {
+    Literal* lit = node->cond()->AsLiteral();
+    if (lit != NULL) {
+      if (lit->IsTrue()) {
+        info = ALWAYS_TRUE;
+      } else if (lit->IsFalse()) {
+        info = ALWAYS_FALSE;
+      }
+    }
+  }
+
+  Label loop, entry;
+
+  // init
+  if (node->init() != NULL) {
+    ASSERT(node->type() == LoopStatement::FOR_LOOP);
+    Visit(node->init());
+  }
+  if (node->type() != LoopStatement::DO_LOOP && info != ALWAYS_TRUE) {
+    __ b(&entry);
+  }
+
+  // body
+  __ bind(&loop);
+  Visit(node->body());
+
+  // next
+  __ bind(node->continue_target());
+  if (node->next() != NULL) {
+    // Record source position of the statement as this code which is after the
+    // code for the body actually belongs to the loop statement and not the
+    // body.
+    if (FLAG_debug_info) __ RecordPosition(node->statement_pos());
+    ASSERT(node->type() == LoopStatement::FOR_LOOP);
+    Visit(node->next());
+  }
+
+  // cond
+  __ bind(&entry);
+  switch (info) {
+    case ALWAYS_TRUE:
+      CheckStack();  // TODO(1222600): ignore if body contains calls.
+      __ b(&loop);
+      break;
+    case ALWAYS_FALSE:
+      break;
+    case DONT_KNOW:
+      CheckStack();  // TODO(1222600): ignore if body contains calls.
+      LoadCondition(node->cond(),
+                    CodeGenState::LOAD,
+                    &loop,
+                    node->break_target(),
+                    true);
+      Branch(true, &loop);
+      break;
+  }
+
+  // exit
+  __ bind(node->break_target());
+}
+
+
+void ArmCodeGenerator::VisitForInStatement(ForInStatement* node) {
+  Comment cmnt(masm_, "[ ForInStatement");
+  if (FLAG_debug_info) RecordStatementPosition(node);
+
+  // We keep stuff on the stack while the body is executing.
+  // Record it, so that a break/continue crossing this statement
+  // can restore the stack.
+  const int kForInStackSize = 5 * kPointerSize;
+  break_stack_height_ += kForInStackSize;
+  node->set_break_stack_height(break_stack_height_);
+
+  Label loop, next, entry, cleanup, exit, primitive, jsobject;
+  Label filter_key, end_del_check, fixed_array, non_string;
+
+  // Get the object to enumerate over (converted to JSObject).
+  Load(node->enumerable());
+
+  // Both SpiderMonkey and kjs ignore null and undefined in contrast
+  // to the specification.  12.6.4 mandates a call to ToObject.
+  __ cmp(r0, Operand(Factory::undefined_value()));
+  __ b(eq, &exit);
+  __ cmp(r0, Operand(Factory::null_value()));
+  __ b(eq, &exit);
+
+  // Stack layout in body:
+  // [iteration counter (Smi)]
+  // [length of array]
+  // [FixedArray]
+  // [Map or 0]
+  // [Object]
+
+  // Check if enumerable is already a JSObject
+  __ tst(r0, Operand(kSmiTagMask));
+  __ b(eq, &primitive);
+  __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+  __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
+  __ cmp(r1, Operand(JS_OBJECT_TYPE));
+  __ b(hs, &jsobject);
+
+  __ bind(&primitive);
+  __ Push(Operand(0));
+  __ InvokeBuiltin("TO_OBJECT", 0, CALL_JS);
+
+
+  __ bind(&jsobject);
+
+  // Get the set of properties (as a FixedArray or Map).
+  __ push(r0);  // duplicate the object being enumerated
+  __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
+
+  // If we got a Map, we can do a fast modification check.
+  // Otherwise, we got a FixedArray, and we have to do a slow check.
+  __ mov(r2, Operand(r0));
+  __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
+  __ cmp(r1, Operand(Factory::meta_map()));
+  __ b(ne, &fixed_array);
+
+  // Get enum cache
+  __ mov(r1, Operand(r0));
+  __ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset));
+  __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset));
+  __ ldr(r2,
+         FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset));
+
+  __ Push(Operand(r2));
+  __ Push(FieldMemOperand(r2, FixedArray::kLengthOffset));
+  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
+  __ Push(Operand(Smi::FromInt(0)));
+  __ b(&entry);
+
+
+  __ bind(&fixed_array);
+
+  __ mov(r1, Operand(Smi::FromInt(0)));
+  __ push(r1);  // insert 0 in place of Map
+
+  // Push the length of the array and the initial index onto the stack.
+  __ Push(FieldMemOperand(r0, FixedArray::kLengthOffset));
+  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
+  __ Push(Operand(Smi::FromInt(0)));
+  __ b(&entry);
+
+  // Body.
+  __ bind(&loop);
+  Visit(node->body());
+
+  // Next.
+  __ bind(node->continue_target());
+  __ bind(&next);
+  __ add(r0, r0, Operand(Smi::FromInt(1)));
+
+  // Condition.
+  __ bind(&entry);
+
+  __ ldr(ip, MemOperand(sp, 0));
+  __ cmp(r0, Operand(ip));
+  __ b(hs, &cleanup);
+
+  // Get the i'th entry of the array.
+  __ ldr(r2, MemOperand(sp, kPointerSize));
+  __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
+
+  // Get Map or 0.
+  __ ldr(r2, MemOperand(sp, 2 * kPointerSize));
+  // Check if this (still) matches the map of the enumerable.
+  // If not, we have to filter the key.
+  __ ldr(r1, MemOperand(sp, 3 * kPointerSize));
+  __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
+  __ cmp(r1, Operand(r2));
+  __ b(eq, &end_del_check);
+
+  // Convert the entry to a string (or null if it isn't a property anymore).
+  __ Push(MemOperand(sp, 4 * kPointerSize));  // push enumerable
+  __ Push(Operand(r3));  // push entry
+  __ Push(Operand(1));
+  __ InvokeBuiltin("FILTER_KEY", 1, CALL_JS);
+  __ mov(r3, Operand(r0));
+  __ pop(r0);
+
+  // If the property has been removed while iterating, we just skip it.
+  __ cmp(r3, Operand(Factory::null_value()));
+  __ b(eq, &next);
+
+
+  __ bind(&end_del_check);
+
+  // Store the entry in the 'each' expression and take another spin in the loop.
+  __ Push(Operand(r3));
+  { Reference each(this, node->each());
+    if (!each.is_illegal()) {
+      if (each.size() > 0) __ Push(MemOperand(sp, kPointerSize * each.size()));
+      SetValue(&each);
+      if (each.size() > 0) __ pop(r0);
+    }
+  }
+  __ pop(r0);
+  CheckStack();  // TODO(1222600): ignore if body contains calls.
+  __ jmp(&loop);
+
+  // Cleanup.
+  __ bind(&cleanup);
+  __ bind(node->break_target());
+  __ add(sp, sp, Operand(4 * kPointerSize));
+
+  // Exit.
+  __ bind(&exit);
+  __ pop(r0);
+
+  break_stack_height_ -= kForInStackSize;
+}
+
+
+void ArmCodeGenerator::VisitTryCatch(TryCatch* node) {
+  Comment cmnt(masm_, "[ TryCatch");
+
+  Label try_block, exit;
+
+  __ push(r0);
+  __ bl(&try_block);
+
+
+  // --- Catch block ---
+
+  // Store the caught exception in the catch variable.
+  { Reference ref(this, node->catch_var());
+    // Load the exception to the top of the stack.
+    __ Push(MemOperand(sp, ref.size() * kPointerSize));
+    SetValue(&ref);
+  }
+
+  // Remove the exception from the stack.
+  __ add(sp, sp, Operand(kPointerSize));
+
+  // Restore TOS register caching.
+  __ pop(r0);
+
+  VisitStatements(node->catch_block()->statements());
+  __ b(&exit);
+
+
+  // --- Try block ---
+  __ bind(&try_block);
+
+  __ PushTryHandler(IN_JAVASCRIPT, TRY_CATCH_HANDLER);
+
+  // Introduce shadow labels for all escapes from the try block,
+  // including returns. We should probably try to unify the escaping
+  // labels and the return label.
+  int nof_escapes = node->escaping_labels()->length();
+  List<LabelShadow*> shadows(1 + nof_escapes);
+  shadows.Add(new LabelShadow(&function_return_));
+  for (int i = 0; i < nof_escapes; i++) {
+    shadows.Add(new LabelShadow(node->escaping_labels()->at(i)));
+  }
+
+  // Generate code for the statements in the try block.
+  VisitStatements(node->try_block()->statements());
+
+  // Stop the introduced shadowing and count the number of required unlinks.
+  int nof_unlinks = 0;
+  for (int i = 0; i <= nof_escapes; i++) {
+    shadows[i]->StopShadowing();
+    if (shadows[i]->is_linked()) nof_unlinks++;
+  }
+
+  // Unlink from try chain.
+  // TOS contains code slot
+  const int kNextOffset = StackHandlerConstants::kNextOffset +
+      StackHandlerConstants::kAddressDisplacement;
+  __ ldr(r1, MemOperand(sp, kNextOffset));  // read next_sp
+  __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
+  __ str(r1, MemOperand(r3));
+  ASSERT(StackHandlerConstants::kCodeOffset == 0);  // first field is code
+  __ add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
+  // Code slot popped.
+  __ pop(r0);  // restore TOS
+  if (nof_unlinks > 0) __ b(&exit);
+
+  // Generate unlink code for all used shadow labels.
+  for (int i = 0; i <= nof_escapes; i++) {
+    if (shadows[i]->is_linked()) {
+      // Unlink from try chain; be careful not to destroy the TOS.
+      __ bind(shadows[i]);
+
+      bool is_return = (shadows[i]->shadowed() == &function_return_);
+      if (!is_return) {
+        // Break/continue case. TOS is the code slot of the handler.
+        __ push(r0);  // flush TOS
+      }
+
+      // Reload sp from the top handler, because some statements that we
+      // break from (eg, for...in) may have left stuff on the stack.
+      __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
+      __ ldr(sp, MemOperand(r3));
+
+      __ ldr(r1, MemOperand(sp, kNextOffset));
+      __ str(r1, MemOperand(r3));
+      ASSERT(StackHandlerConstants::kCodeOffset == 0);  // first field is code
+      __ add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
+      // Code slot popped.
+
+      if (!is_return) {
+        __ pop(r0);  // restore TOS
+      }
+
+      __ b(shadows[i]->shadowed());
+    }
+  }
+
+  __ bind(&exit);
+}
+
+
+void ArmCodeGenerator::VisitTryFinally(TryFinally* node) {
+  Comment cmnt(masm_, "[ TryFinally");
+
+  // State: Used to keep track of reason for entering the finally
+  // block. Should probably be extended to hold information for
+  // break/continue from within the try block.
+  enum { FALLING, THROWING, JUMPING };
+
+  Label exit, unlink, try_block, finally_block;
+
+  __ push(r0);
+  __ bl(&try_block);
+
+  // In case of thrown exceptions, this is where we continue.
+  __ mov(r2, Operand(Smi::FromInt(THROWING)));
+  __ b(&finally_block);
+
+
+  // --- Try block ---
+  __ bind(&try_block);
+
+  __ PushTryHandler(IN_JAVASCRIPT, TRY_FINALLY_HANDLER);
+
+  // Introduce shadow labels for all escapes from the try block,
+  // including returns. We should probably try to unify the escaping
+  // labels and the return label.
+  int nof_escapes = node->escaping_labels()->length();
+  List<LabelShadow*> shadows(1 + nof_escapes);
+  shadows.Add(new LabelShadow(&function_return_));
+  for (int i = 0; i < nof_escapes; i++) {
+    shadows.Add(new LabelShadow(node->escaping_labels()->at(i)));
+  }
+
+  // Generate code for the statements in the try block.
+  VisitStatements(node->try_block()->statements());
+
+  // Stop the introduced shadowing and count the number of required
+  // unlinks.
+  int nof_unlinks = 0;
+  for (int i = 0; i <= nof_escapes; i++) {
+    shadows[i]->StopShadowing();
+    if (shadows[i]->is_linked()) nof_unlinks++;
+  }
+
+  // Set the state on the stack to FALLING.
+  __ Push(Operand(Factory::undefined_value()));  // fake TOS
+  __ mov(r2, Operand(Smi::FromInt(FALLING)));
+  if (nof_unlinks > 0) __ b(&unlink);
+
+  // Generate code that sets the state for all used shadow labels.
+  for (int i = 0; i <= nof_escapes; i++) {
+    if (shadows[i]->is_linked()) {
+      __ bind(shadows[i]);
+      if (shadows[i]->shadowed() != &function_return_) {
+        // Fake TOS for break and continue (not return).
+        __ Push(Operand(Factory::undefined_value()));
+      }
+      __ mov(r2, Operand(Smi::FromInt(JUMPING + i)));
+      __ b(&unlink);
+    }
+  }
+
+  // Unlink from try chain; be careful not to destroy the TOS.
+  __ bind(&unlink);
+
+  // Reload sp from the top handler, because some statements that we
+  // break from (eg, for...in) may have left stuff on the stack.
+  __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
+  __ ldr(sp, MemOperand(r3));
+  const int kNextOffset = StackHandlerConstants::kNextOffset +
+      StackHandlerConstants::kAddressDisplacement;
+  __ ldr(r1, MemOperand(sp, kNextOffset));
+  __ str(r1, MemOperand(r3));
+  ASSERT(StackHandlerConstants::kCodeOffset == 0);  // first field is code
+  __ add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
+  // Code slot popped.
+
+
+  // --- Finally block ---
+  __ bind(&finally_block);
+
+  // Push the state on the stack. If necessary move the state to a
+  // local variable to avoid having extra values on the stack while
+  // evaluating the finally block.
+  __ Push(Operand(r2));
+  if (node->finally_var() != NULL) {
+    Reference target(this, node->finally_var());
+    SetValue(&target);
+    ASSERT(target.size() == 0);  // no extra stuff on the stack
+    __ pop(r0);
+  }
+
+  // Generate code for the statements in the finally block.
+  VisitStatements(node->finally_block()->statements());
+
+  // Get the state from the stack - or the local variable - and
+  // restore the TOS register.
+  if (node->finally_var() != NULL) {
+    Reference target(this, node->finally_var());
+    GetValue(&target);
+  }
+  __ Pop(r2);
+
+  // Generate code that jumps to the right destination for all used
+  // shadow labels.
+  for (int i = 0; i <= nof_escapes; i++) {
+    if (shadows[i]->is_bound()) {
+      __ cmp(r2, Operand(Smi::FromInt(JUMPING + i)));
+      if (shadows[i]->shadowed() != &function_return_) {
+        Label next;
+        __ b(ne, &next);
+        __ pop(r0);  // pop faked TOS
+        __ b(shadows[i]->shadowed());
+        __ bind(&next);
+      } else {
+        __ b(eq, shadows[i]->shadowed());
+      }
+    }
+  }
+
+  // Check if we need to rethrow the exception.
+  __ cmp(r2, Operand(Smi::FromInt(THROWING)));
+  __ b(ne, &exit);
+
+  // Rethrow exception.
+  __ CallRuntime(Runtime::kReThrow, 1);
+
+  // Done.
+  __ bind(&exit);
+  __ pop(r0);  // restore TOS caching.
+}
+
+
+void ArmCodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
+  Comment cmnt(masm_, "[ DebuggerStatament");
+  if (FLAG_debug_info) RecordStatementPosition(node);
+  __ CallRuntime(Runtime::kDebugBreak, 1);
+}
+
+
+void ArmCodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
+  ASSERT(boilerplate->IsBoilerplate());
+
+  // Push the boilerplate on the stack.
+  __ Push(Operand(boilerplate));
+
+  // Create a new closure.
+  __ Push(Operand(cp));
+  __ CallRuntime(Runtime::kNewClosure, 2);
+}
+
+
+void ArmCodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
+  Comment cmnt(masm_, "[ FunctionLiteral");
+
+  // Build the function boilerplate and instantiate it.
+  Handle<JSFunction> boilerplate = BuildBoilerplate(node);
+  InstantiateBoilerplate(boilerplate);
+}
+
+
+void ArmCodeGenerator::VisitFunctionBoilerplateLiteral(
+    FunctionBoilerplateLiteral* node) {
+  Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
+  InstantiateBoilerplate(node->boilerplate());
+}
+
+
+void ArmCodeGenerator::VisitConditional(Conditional* node) {
+  Comment cmnt(masm_, "[ Conditional");
+  Label then, else_, exit;
+  LoadCondition(node->condition(), CodeGenState::LOAD, &then, &else_, true);
+  Branch(false, &else_);
+  __ bind(&then);
+  Load(node->then_expression(), access());
+  __ b(&exit);
+  __ bind(&else_);
+  Load(node->else_expression(), access());
+  __ bind(&exit);
+}
+
+
+void ArmCodeGenerator::VisitSlot(Slot* node) {
+  Comment cmnt(masm_, "[ Slot");
+
+  if (node->type() == Slot::LOOKUP) {
+    ASSERT(node->var()->mode() == Variable::DYNAMIC);
+
+    // For now, just do a runtime call.
+    __ Push(Operand(cp));
+    __ Push(Operand(node->var()->name()));
+
+    switch (access()) {
+      case CodeGenState::UNDEFINED:
+        UNREACHABLE();
+        break;
+
+      case CodeGenState::LOAD:
+        __ CallRuntime(Runtime::kLoadContextSlot, 2);
+        // result (TOS) is the value that was loaded
+        break;
+
+      case CodeGenState::LOAD_TYPEOF_EXPR:
+        __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
+        // result (TOS) is the value that was loaded
+        break;
+
+      case CodeGenState::STORE:
+        // Storing a variable must keep the (new) value on the stack. This
+        // is necessary for compiling assignment expressions.
+        __ CallRuntime(Runtime::kStoreContextSlot, 3);
+        // result (TOS) is the value that was stored
+        break;
+
+      case CodeGenState::INIT_CONST:
+        // Same as STORE but ignores attribute (e.g. READ_ONLY) of
+        // context slot so that we can initialize const properties
+        // (introduced via eval("const foo = (some expr);")). Also,
+        // uses the current function context instead of the top
+        // context.
+        //
+        // Note that we must declare the foo upon entry of eval(),
+        // via a context slot declaration, but we cannot initialize
+        // it at the same time, because the const declaration may
+        // be at the end of the eval code (sigh...) and the const
+        // variable may have been used before (where its value is
+        // 'undefined'). Thus, we can only do the initialization
+        // when we actually encounter the expression and when the
+        // expression operands are defined and valid, and thus we
+        // need the split into 2 operations: declaration of the
+        // context slot followed by initialization.
+        __ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
+        break;
+    }
+
+  } else {
+    // Note: We would like to keep the assert below, but it fires because
+    // of some nasty code in LoadTypeofExpression() which should be removed...
+    // ASSERT(node->var()->mode() != Variable::DYNAMIC);
+
+    switch (access()) {
+      case CodeGenState::UNDEFINED:
+        UNREACHABLE();
+        break;
+
+      case CodeGenState::LOAD:  // fall through
+      case CodeGenState::LOAD_TYPEOF_EXPR:
+        // Special handling for locals allocated in registers.
+        if (FLAG_optimize_locals && node->type() == Slot::LOCAL &&
+            node->index() < num_reg_locals_) {
+          __ Push(Operand(SlotRegister(node->index())));
+        } else {
+          __ Push(SlotOperand(node, r2));
+        }
+        if (node->var()->mode() == Variable::CONST) {
+          // Const slots may contain 'the hole' value (the constant hasn't
+          // been initialized yet) which needs to be converted into the
+          // 'undefined' value.
+          Comment cmnt(masm_, "[ Unhole const");
+          __ cmp(r0, Operand(Factory::the_hole_value()));
+          __ mov(r0, Operand(Factory::undefined_value()), LeaveCC, eq);
+        }
+        break;
+
+      case CodeGenState::INIT_CONST: {
+        ASSERT(node->var()->mode() == Variable::CONST);
+        // Only the first const initialization must be executed (the slot
+        // still contains 'the hole' value). When the assignment is executed,
+        // the code is identical to a normal store (see below).
+        { Comment cmnt(masm_, "[ Init const");
+          Label L;
+          if (FLAG_optimize_locals && node->type() == Slot::LOCAL &&
+              node->index() < num_reg_locals_) {
+            __ mov(r2, Operand(SlotRegister(node->index())));
+          } else {
+            __ ldr(r2, SlotOperand(node, r2));
+          }
+          __ cmp(r2, Operand(Factory::the_hole_value()));
+          __ b(ne, &L);
+          // We must execute the store.
+          if (FLAG_optimize_locals && node->type() == Slot::LOCAL &&
+              node->index() < num_reg_locals_) {
+            __ mov(SlotRegister(node->index()), Operand(r0));
+          } else {
+            // r2 may be loaded with context; used below in RecordWrite.
+            __ str(r0, SlotOperand(node, r2));
+          }
+          if (node->type() == Slot::CONTEXT) {
+            // Skip write barrier if the written value is a smi.
+            Label exit;
+            __ tst(r0, Operand(kSmiTagMask));
+            __ b(eq, &exit);
+            // r2 is loaded with context when calling SlotOperand above.
+            int offset = FixedArray::kHeaderSize + node->index() * kPointerSize;
+            __ mov(r3, Operand(offset));
+            __ RecordWrite(r2, r3, r1);
+            __ bind(&exit);
+          }
+          __ bind(&L);
+        }
+        break;
+      }
+
+      case CodeGenState::STORE: {
+        // Storing a variable must keep the (new) value on the stack. This
+        // is necessary for compiling assignment expressions.
+        // Special handling for locals allocated in registers.
+        //
+        // Note: We will reach here even with node->var()->mode() ==
+        // Variable::CONST because of const declarations which will
+        // initialize consts to 'the hole' value and by doing so, end
+        // up calling this code.
+        if (FLAG_optimize_locals && node->type() == Slot::LOCAL &&
+            node->index() < num_reg_locals_) {
+          __ mov(SlotRegister(node->index()), Operand(r0));
+        } else {
+          // r2 may be loaded with context; used below in RecordWrite.
+          __ str(r0, SlotOperand(node, r2));
+        }
+        if (node->type() == Slot::CONTEXT) {
+          // Skip write barrier if the written value is a smi.
+          Label exit;
+          __ tst(r0, Operand(kSmiTagMask));
+          __ b(eq, &exit);
+          // r2 is loaded with context when calling SlotOperand above.
+          int offset = FixedArray::kHeaderSize + node->index() * kPointerSize;
+          __ mov(r3, Operand(offset));
+          __ RecordWrite(r2, r3, r1);
+          __ bind(&exit);
+        }
+        break;
+      }
+    }
+  }
+}
+
+
+void ArmCodeGenerator::VisitVariableProxy(VariableProxy* proxy_node) {
+  Comment cmnt(masm_, "[ VariableProxy");
+  Variable* node = proxy_node->var();
+
+  Expression* x = node->rewrite();
+  if (x != NULL) {
+    Visit(x);
+    return;
+  }
+
+  ASSERT(node->is_global());
+  if (is_referenced()) {
+    if (node->AsProperty() != NULL) {
+      __ RecordPosition(node->AsProperty()->position());
+    }
+    AccessReferenceProperty(new Literal(node->name()), access());
+
+  } else {
+    // All stores are through references.
+    ASSERT(access() != CodeGenState::STORE);
+    Reference property(this, proxy_node);
+    GetValue(&property);
+  }
+}
+
+
+void ArmCodeGenerator::VisitLiteral(Literal* node) {
+  Comment cmnt(masm_, "[ Literal");
+  __ Push(Operand(node->handle()));
+}
+
+
+void ArmCodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
+  Comment cmnt(masm_, "[ RexExp Literal");
+
+  // Retrieve the literal array and check the allocated entry.
+
+  // Load the function of this activation.
+  __ ldr(r1, MemOperand(pp, 0));
+
+  // Load the literals array of the function.
+  __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
+
+  // Load the literal at the ast saved index.
+  int literal_offset =
+      FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
+  __ ldr(r2, FieldMemOperand(r1, literal_offset));
+
+  Label done;
+  __ cmp(r2, Operand(Factory::undefined_value()));
+  __ b(ne, &done);
+
+  // If the entry is undefined we call the runtime system to computed
+  // the literal.
+  __ Push(Operand(r1));                                   // literal array  (0)
+  __ Push(Operand(Smi::FromInt(node->literal_index())));  // literal index  (1)
+  __ Push(Operand(node->pattern()));                      // RegExp pattern (2)
+  __ Push(Operand(node->flags()));                        // RegExp flags   (3)
+  __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
+  __ Pop(r2);
+  __ bind(&done);
+
+  // Push the literal.
+  __ Push(Operand(r2));
+}
+
+
+// This deferred code stub will be used for creating the boilerplate
+// by calling Runtime_CreateObjectLiteral.
+// Each created boilerplate is stored in the JSFunction and they are
+// therefore context dependent.
+class ObjectLiteralDeferred: public DeferredCode {
+ public:
+  ObjectLiteralDeferred(CodeGenerator* generator, ObjectLiteral* node)
+      : DeferredCode(generator), node_(node) {
+    set_comment("[ ObjectLiteralDeferred");
+  }
+  virtual void Generate();
+ private:
+  ObjectLiteral* node_;
+};
+
+
+void ObjectLiteralDeferred::Generate() {
+  // If the entry is undefined we call the runtime system to computed
+  // the literal.
+
+  // Literal array (0).
+  __ Push(Operand(r1));
+  // Literal index (1).
+  __ Push(Operand(Smi::FromInt(node_->literal_index())));
+  // Constant properties (2).
+  __ Push(Operand(node_->constant_properties()));
+  __ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
+  __ Pop(r2);
+}
+
+
+void ArmCodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
+  Comment cmnt(masm_, "[ ObjectLiteral");
+
+  ObjectLiteralDeferred* deferred = new ObjectLiteralDeferred(this, node);
+
+  // Retrieve the literal array and check the allocated entry.
+
+  // Load the function of this activation.
+  __ ldr(r1, MemOperand(pp, 0));
+
+  // Load the literals array of the function.
+  __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
+
+  // Load the literal at the ast saved index.
+  int literal_offset =
+      FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
+  __ ldr(r2, FieldMemOperand(r1, literal_offset));
+
+  // Check whether we need to materialize the object literal boilerplate.
+  // If so, jump to the deferred code.
+  __ cmp(r2, Operand(Factory::undefined_value()));
+  __ b(eq, deferred->enter());
+  __ bind(deferred->exit());
+
+  // Push the object literal boilerplate.
+  __ Push(Operand(r2));
+  // Clone the boilerplate object.
+  __ CallRuntime(Runtime::kCloneObjectLiteralBoilerplate, 1);
+
+  for (int i = 0; i < node->properties()->length(); i++) {
+    ObjectLiteral::Property* property = node->properties()->at(i);
+    Literal* key = property->key();
+    Expression* value = property->value();
+    switch (property->kind()) {
+      case ObjectLiteral::Property::CONSTANT: break;
+      case ObjectLiteral::Property::COMPUTED:  // fall through
+      case ObjectLiteral::Property::PROTOTYPE: {
+        // Save a copy of the resulting object on the stack.
+        __ push(r0);
+        Load(key);
+        Load(value);
+        __ CallRuntime(Runtime::kSetProperty, 3);
+        // Restore the result object from the stack.
+        __ pop(r0);
+        break;
+      }
+      case ObjectLiteral::Property::SETTER: {
+        __ push(r0);
+        Load(key);
+        __ Push(Operand(Smi::FromInt(1)));
+        Load(value);
+        __ CallRuntime(Runtime::kDefineAccessor, 4);
+        __ pop(r0);
+        break;
+      }
+      case ObjectLiteral::Property::GETTER: {
+        __ push(r0);
+        Load(key);
+        __ Push(Operand(Smi::FromInt(0)));
+        Load(value);
+        __ CallRuntime(Runtime::kDefineAccessor, 4);
+        __ pop(r0);
+        break;
+      }
+    }
+  }
+}
+
+
+void ArmCodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
+  Comment cmnt(masm_, "[ ArrayLiteral");
+  // Load the resulting object.
+  Load(node->result());
+  for (int i = 0; i < node->values()->length(); i++) {
+    Expression* value = node->values()->at(i);
+
+    // If value is literal the property value is already
+    // set in the boilerplate object.
+    if (value->AsLiteral() == NULL) {
+      // The property must be set by generated code.
+      Load(value);
+
+      // Fetch the object literal
+      __ ldr(r1, MemOperand(sp, 0));
+        // Get the elements array.
+      __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
+
+      // Write to the indexed properties array.
+      int offset = i * kPointerSize + Array::kHeaderSize;
+      __ str(r0, FieldMemOperand(r1, offset));
+
+      // Update the write barrier for the array address.
+      __ mov(r3, Operand(offset));
+      __ RecordWrite(r1, r3, r2);
+
+      __ pop(r0);
+    }
+  }
+}
+
+
+void ArmCodeGenerator::VisitAssignment(Assignment* node) {
+  Comment cmnt(masm_, "[ Assignment");
+
+  if (FLAG_debug_info) RecordStatementPosition(node);
+  Reference target(this, node->target());
+  if (target.is_illegal()) return;
+
+  if (node->op() == Token::ASSIGN ||
+      node->op() == Token::INIT_VAR ||
+      node->op() == Token::INIT_CONST) {
+    Load(node->value());
+
+  } else {
+    GetValue(&target);
+    Literal* literal = node->value()->AsLiteral();
+    if (literal != NULL && literal->handle()->IsSmi()) {
+      SmiOperation(node->binary_op(), literal->handle(), false);
+    } else {
+      Load(node->value());
+      GenericOperation(node->binary_op());
+    }
+  }
+
+  Variable* var = node->target()->AsVariableProxy()->AsVariable();
+  if (var != NULL &&
+      (var->mode() == Variable::CONST) &&
+      node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
+    // Assignment ignored - leave the value on the stack.
+  } else {
+    __ RecordPosition(node->position());
+    if (node->op() == Token::INIT_CONST) {
+      // Dynamic constant initializations must use the function context
+      // and initialize the actual constant declared. Dynamic variable
+      // initializations are simply assignments and use SetValue.
+      InitConst(&target);
+    } else {
+      SetValue(&target);
+    }
+  }
+}
+
+
+void ArmCodeGenerator::VisitThrow(Throw* node) {
+  Comment cmnt(masm_, "[ Throw");
+
+  Load(node->exception());
+  __ RecordPosition(node->position());
+  __ CallRuntime(Runtime::kThrow, 1);
+}
+
+
+void ArmCodeGenerator::VisitProperty(Property* node) {
+  Comment cmnt(masm_, "[ Property");
+  if (is_referenced()) {
+    __ RecordPosition(node->position());
+    AccessReferenceProperty(node->key(), access());
+  } else {
+    // All stores are through references.
+    ASSERT(access() != CodeGenState::STORE);
+    Reference property(this, node);
+    __ RecordPosition(node->position());
+    GetValue(&property);
+  }
+}
+
+
+void ArmCodeGenerator::VisitCall(Call* node) {
+  Comment cmnt(masm_, "[ Call");
+
+  ZoneList<Expression*>* args = node->arguments();
+
+  if (FLAG_debug_info) RecordStatementPosition(node);
+  // Standard function call.
+
+  // Check if the function is a variable or a property.
+  Expression* function = node->expression();
+  Variable* var = function->AsVariableProxy()->AsVariable();
+  Property* property = function->AsProperty();
+
+  // ------------------------------------------------------------------------
+  // Fast-case: Use inline caching.
+  // ---
+  // According to ECMA-262, section 11.2.3, page 44, the function to call
+  // must be resolved after the arguments have been evaluated. The IC code
+  // automatically handles this by loading the arguments before the function
+  // is resolved in cache misses (this also holds for megamorphic calls).
+  // ------------------------------------------------------------------------
+
+  if (var != NULL && !var->is_this() && var->is_global()) {
+    // ----------------------------------
+    // JavaScript example: 'foo(1, 2, 3)'  // foo is global
+    // ----------------------------------
+
+    // Push the name of the function and the receiver onto the stack.
+    __ Push(Operand(var->name()));
+    LoadGlobal();
+
+    // Load the arguments.
+    for (int i = 0; i < args->length(); i++) Load(args->at(i));
+    __ Push(Operand(args->length()));
+
+    // Setup the receiver register and call the IC initialization code.
+    Handle<Code> stub = ComputeCallInitialize(args->length());
+    __ ldr(r1, GlobalObject());
+    __ RecordPosition(node->position());
+    __ Call(stub, code_target_context);
+    __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+
+    // Remove the function from the stack.
+    __ add(sp, sp, Operand(kPointerSize));
+
+  } else if (var != NULL && var->slot() != NULL &&
+             var->slot()->type() == Slot::LOOKUP) {
+    // ----------------------------------
+    // JavaScript example: 'with (obj) foo(1, 2, 3)'  // foo is in obj
+    // ----------------------------------
+
+    // Load the function
+    __ Push(Operand(cp));
+    __ Push(Operand(var->name()));
+    __ CallRuntime(Runtime::kLoadContextSlot, 2);
+    // r0: slot value; r1: receiver
+
+    // Load the receiver.
+    __ push(r0);
+    __ mov(r0, Operand(r1));
+
+    // Call the function.
+    CallWithArguments(args, node->position());
+
+  } else if (property != NULL) {
+    // Check if the key is a literal string.
+    Literal* literal = property->key()->AsLiteral();
+
+    if (literal != NULL && literal->handle()->IsSymbol()) {
+      // ------------------------------------------------------------------
+      // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
+      // ------------------------------------------------------------------
+
+      // Push the name of the function and the receiver onto the stack.
+      __ Push(Operand(literal->handle()));
+      Load(property->obj());
+
+      // Load the arguments.
+      for (int i = 0; i < args->length(); i++) Load(args->at(i));
+      __ Push(Operand(args->length()));
+
+      // Set the receiver register and call the IC initialization code.
+      Handle<Code> stub = ComputeCallInitialize(args->length());
+      __ ldr(r1, MemOperand(sp, args->length() * kPointerSize));
+      __ RecordPosition(node->position());
+      __ Call(stub, code_target);
+      __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+
+      // Remove the function from the stack.
+      __ add(sp, sp, Operand(kPointerSize));
+
+    } else {
+      // -------------------------------------------
+      // JavaScript example: 'array[index](1, 2, 3)'
+      // -------------------------------------------
+
+      // Load the function to call from the property through a reference.
+      Reference ref(this, property);
+      GetValue(&ref);
+
+      // Pass receiver to called function.
+      __ Push(MemOperand(sp, ref.size() * kPointerSize));
+
+      // Call the function.
+      CallWithArguments(args, node->position());
+    }
+
+  } else {
+    // ----------------------------------
+    // JavaScript example: 'foo(1, 2, 3)'  // foo is not global
+    // ----------------------------------
+
+    // Load the function.
+    Load(function);
+
+    // Pass the global object as the receiver.
+    LoadGlobal();
+
+    // Call the function.
+    CallWithArguments(args, node->position());
+  }
+}
+
+
+void ArmCodeGenerator::VisitCallNew(CallNew* node) {
+  Comment cmnt(masm_, "[ CallNew");
+
+  // According to ECMA-262, section 11.2.2, page 44, the function
+  // expression in new calls must be evaluated before the
+  // arguments. This is different from ordinary calls, where the
+  // actual function to call is resolved after the arguments have been
+  // evaluated.
+
+  // Compute function to call and use the global object as the
+  // receiver.
+  Load(node->expression());
+  LoadGlobal();
+
+  // Push the arguments ("left-to-right") on the stack.
+  ZoneList<Expression*>* args = node->arguments();
+  for (int i = 0; i < args->length(); i++) Load(args->at(i));
+
+  // Push the number of arguments.
+  __ Push(Operand(args->length()));
+
+  // Call the construct call builtin that handles allocation and
+  // constructor invocation.
+  __ RecordPosition(position);
+  __ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
+          js_construct_call);
+  __ add(sp, sp, Operand(kPointerSize));  // discard
+}
+
+
+void ArmCodeGenerator::GenerateSetThisFunction(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 1);
+  Load(args->at(0));
+  __ str(r0, MemOperand(pp, JavaScriptFrameConstants::kFunctionOffset));
+}
+
+
+void ArmCodeGenerator::GenerateGetThisFunction(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 0);
+  __ Push(MemOperand(pp, JavaScriptFrameConstants::kFunctionOffset));
+}
+
+
+void ArmCodeGenerator::GenerateSetThis(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 1);
+  Load(args->at(0));
+  __ str(r0, MemOperand(pp, JavaScriptFrameConstants::kReceiverOffset));
+}
+
+
+void ArmCodeGenerator::GenerateSetArgumentsLength(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 1);
+  Load(args->at(0));
+  __ mov(r0, Operand(r0, LSR, kSmiTagSize));
+  __ str(r0, MemOperand(fp, JavaScriptFrameConstants::kArgsLengthOffset));
+  __ mov(r0, Operand(Smi::FromInt(0)));
+}
+
+
+void ArmCodeGenerator::GenerateGetArgumentsLength(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 1);
+  __ push(r0);
+  __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kArgsLengthOffset));
+  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
+}
+
+
+void ArmCodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 1);
+  Label leave;
+  Load(args->at(0));
+  // r0 contains object.
+  // if (object->IsSmi()) return TOS.
+  __ tst(r0, Operand(kSmiTagMask));
+  __ b(eq, &leave);
+  // It is a heap object - get map.
+  __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+  __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
+  // if (!object->IsJSValue()) return TOS.
+  __ cmp(r1, Operand(JS_VALUE_TYPE));
+  __ b(ne, &leave);
+  // Load the value.
+  __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset));
+  __ bind(&leave);
+}
+
+
+void ArmCodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 2);
+  Label leave;
+  Load(args->at(0));  // Load the object.
+  Load(args->at(1));  // Load the value.
+  __ pop(r1);
+  // r0 contains value.
+  // r1 contains object.
+  // if (object->IsSmi()) return object.
+  __ tst(r1, Operand(kSmiTagMask));
+  __ b(eq, &leave);
+  // It is a heap object - get map.
+  __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
+  __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
+  // if (!object->IsJSValue()) return object.
+  __ cmp(r2, Operand(JS_VALUE_TYPE));
+  __ b(ne, &leave);
+  // Store the value.
+  __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
+  // Update the write barrier.
+  __ mov(r2, Operand(JSValue::kValueOffset - kHeapObjectTag));
+  __ RecordWrite(r1, r2, r3);
+  // Leave.
+  __ bind(&leave);
+}
+
+
+void ArmCodeGenerator::GenerateTailCallWithArguments(
+    ZoneList<Expression*>* args) {
+  // r0 = number of arguments (smi)
+  ASSERT(args->length() == 1);
+  Load(args->at(0));
+  __ mov(r0, Operand(r0, LSR, kSmiTagSize));
+
+  // r1 = new function (previously written to stack)
+  __ ldr(r1, MemOperand(pp, JavaScriptFrameConstants::kFunctionOffset));
+
+  // Reset parameter pointer and frame pointer to previous frame
+  ExitJSFrame(reg_locals_, DO_NOT_RETURN);
+
+  // Jump (tail-call) to the function in register r1.
+  __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
+  __ ldr(r1, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
+  __ ldr(r1, FieldMemOperand(r1, SharedFunctionInfo::kCodeOffset));
+  __ add(pc, r1, Operand(Code::kHeaderSize - kHeapObjectTag));
+  return;
+}
+
+
+void ArmCodeGenerator::GenerateSetArgument(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 3);
+  // r1 = args[i]
+  Comment cmnt(masm_, "[ GenerateSetArgument");
+  Load(args->at(1));
+  __ mov(r1, Operand(r0));
+  // r0 = i
+  Load(args->at(0));
+#if defined(DEBUG)
+  { Label L;
+    __ tst(r0, Operand(kSmiTagMask));
+    __ b(eq, &L);
+    __ stop("SMI expected");
+    __ bind(&L);
+  }
+#endif  // defined(DEBUG)
+  __ add(r2, pp, Operand(JavaScriptFrameConstants::kParam0Offset));
+  __ str(r1,
+         MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize, NegOffset));
+  __ pop(r0);
+}
+
+
+void ArmCodeGenerator::GenerateSquashFrame(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 2);
+  // Load r1 with old number of arguments, r0 with new number, r1 > r0.
+  Load(args->at(0));
+  __ mov(r1, Operand(r0, LSR, kSmiTagSize));
+  Load(args->at(1));
+  __ mov(r0, Operand(r0, LSR, kSmiTagSize));
+  // r1 = number of words to move stack.
+  __ sub(r1, r1, Operand(r0));
+  // r2 is source.
+  __ add(r2, fp, Operand(StandardFrameConstants::kCallerPCOffset));
+  // Move down frame pointer fp.
+  __ add(fp, fp, Operand(r1, LSL, kPointerSizeLog2));
+  // r1 is destination.
+  __ add(r1, fp, Operand(StandardFrameConstants::kCallerPCOffset));
+
+  Label move;
+  __ bind(&move);
+  __ ldr(r3, MemOperand(r2, -kPointerSize, PostIndex));
+  __ str(r3, MemOperand(r1, -kPointerSize, PostIndex));
+  __ cmp(r2, Operand(sp));
+  __ b(ne, &move);
+  __ ldr(r3, MemOperand(r2));
+  __ str(r3, MemOperand(r1));
+
+  // Move down stack pointer esp.
+  __ mov(sp, Operand(r1));
+  // Balance stack and put something GC-able in r0.
+  __ pop(r0);
+}
+
+
+void ArmCodeGenerator::GenerateExpandFrame(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 2);
+  // Load r1 with new number of arguments, r0 with old number (as Smi), r1 > r0.
+  Load(args->at(1));
+  __ mov(r1, Operand(r0, LSR, kSmiTagSize));
+  Load(args->at(0));
+  // r1 = number of words to move stack.
+  __ sub(r1, r1, Operand(r0, LSR, kSmiTagSize));
+  Label end_of_expand_frame;
+  if (FLAG_check_stack) {
+    Label not_too_big;
+    __ sub(r2, sp, Operand(r1, LSL, kPointerSizeLog2));
+    __ mov(ip, Operand(ExternalReference::address_of_stack_guard_limit()));
+    __ ldr(ip, MemOperand(ip));
+    __ cmp(r2, Operand(ip));
+    __ b(gt, &not_too_big);
+    __ pop(r0);
+    __ mov(r0, Operand(Factory::false_value()));
+    __ b(&end_of_expand_frame);
+    __ bind(&not_too_big);
+  }
+  // r3 is source.
+  __ mov(r3, Operand(sp));
+  // r0 is copy limit + 1 word
+  __ add(r0, fp,
+         Operand(StandardFrameConstants::kCallerPCOffset + kPointerSize));
+  // Move up frame pointer fp.
+  __ sub(fp, fp, Operand(r1, LSL, kPointerSizeLog2));
+  // Move up stack pointer sp.
+  __ sub(sp, sp, Operand(r1, LSL, kPointerSizeLog2));
+  // r1 is destination (r1 = source - r1).
+  __ mov(r2, Operand(0));
+  __ sub(r2, r2, Operand(r1, LSL, kPointerSizeLog2));
+  __ add(r1, r3, Operand(r2));
+
+  Label move;
+  __ bind(&move);
+  __ ldr(r2, MemOperand(r3, kPointerSize, PostIndex));
+  __ str(r2, MemOperand(r1, kPointerSize, PostIndex));
+  __ cmp(r3, Operand(r0));
+  __ b(ne, &move);
+
+  // Balance stack and put success value in top of stack
+  __ pop(r0);
+  __ mov(r0, Operand(Factory::true_value()));
+  __ bind(&end_of_expand_frame);
+}
+
+
+void ArmCodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 1);
+  Load(args->at(0));
+  __ tst(r0, Operand(kSmiTagMask));
+  __ pop(r0);
+  cc_reg_ = eq;
+}
+
+
+// This is used in the implementation of apply on ia32 but it is not
+// used on ARM yet.
+void ArmCodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
+  __ int3();
+  cc_reg_ = eq;
+}
+
+
+void ArmCodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 0);
+
+  // Flush the TOS cache and seed the result with the formal
+  // parameters count, which will be used in case no arguments adaptor
+  // frame is found below the current frame.
+  __ push(r0);
+  __ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
+
+  // Call the shared stub to get to the arguments.length.
+  ArgumentsAccessStub stub(true);
+  __ CallStub(&stub);
+}
+
+
+void ArmCodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
+  ASSERT(args->length() == 1);
+
+  // Load the key onto the stack and set register r1 to the formal
+  // parameters count for the currently executing function.
+  Load(args->at(0));
+  __ mov(r1, Operand(Smi::FromInt(scope_->num_parameters())));
+
+  // Call the shared stub to get to arguments[key].
+  ArgumentsAccessStub stub(false);
+  __ CallStub(&stub);
+}
+
+
+void ArmCodeGenerator::GenerateShiftDownAndTailCall(
+    ZoneList<Expression*>* args) {
+    // r0 = number of arguments
+    ASSERT(args->length() == 1);
+    Load(args->at(0));
+    __ mov(r0, Operand(r0, LSR, kSmiTagSize));
+
+    // Get the 'this' function and exit the frame without returning.
+    __ ldr(r1, MemOperand(pp, JavaScriptFrameConstants::kFunctionOffset));
+    ExitJSFrame(reg_locals_, DO_NOT_RETURN);
+    // return address in lr
+
+    // Move arguments one element down the stack.
+    Label move;
+    Label moved;
+    __ sub(r2, r0, Operand(0), SetCC);
+    __ b(eq, &moved);
+    __ bind(&move);
+    __ sub(ip, r2, Operand(1));
+    __ ldr(r3, MemOperand(sp, ip, LSL, kPointerSizeLog2));
+    __ str(r3, MemOperand(sp, r2, LSL, kPointerSizeLog2));
+    __ sub(r2, r2, Operand(1), SetCC);
+    __ b(ne, &move);
+    __ bind(&moved);
+
+    // Remove the TOS (copy of last argument)
+    __ add(sp, sp, Operand(kPointerSize));
+
+    // Jump (tail-call) to the function in register r1.
+    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
+    __ ldr(r1, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
+    __ ldr(r1, FieldMemOperand(r1, SharedFunctionInfo::kCodeOffset));
+    __ add(pc, r1, Operand(Code::kHeaderSize - kHeapObjectTag));
+    return;
+}
+
+
+void ArmCodeGenerator::VisitCallRuntime(CallRuntime* node) {
+  if (CheckForInlineRuntimeCall(node))
+    return;
+
+  ZoneList<Expression*>* args = node->arguments();
+  Comment cmnt(masm_, "[ CallRuntime");
+  Runtime::Function* function = node->function();
+
+  if (function == NULL) {
+    // Prepare stack for calling JS runtime function.
+    __ Push(Operand(node->name()));
+    // Push the builtins object found in the current global object.
+    __ ldr(r1, GlobalObject());
+    __ Push(FieldMemOperand(r1, GlobalObject::kBuiltinsOffset));
+  }
+
+  // Push the arguments ("left-to-right").
+  for (int i = 0; i < args->length(); i++) Load(args->at(i));
+
+  if (function != NULL) {
+    // Call the C runtime function.
+    __ CallRuntime(function, args->length());
+  } else {
+    // Call the JS runtime function.
+    __ Push(Operand(args->length()));
+    __ ldr(r1, MemOperand(sp, args->length() * kPointerSize));
+    Handle<Code> stub = ComputeCallInitialize(args->length());
+    __ Call(stub, code_target);
+    __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    __ add(sp, sp, Operand(kPointerSize));
+  }
+}
+
+
+void ArmCodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
+  Comment cmnt(masm_, "[ UnaryOperation");
+
+  Token::Value op = node->op();
+
+  if (op == Token::NOT) {
+    LoadCondition(node->expression(),
+                  CodeGenState::LOAD,
+                  false_target(),
+                  true_target(),
+                  true);
+    cc_reg_ = NegateCondition(cc_reg_);
+
+  } else if (op == Token::DELETE) {
+    Property* property = node->expression()->AsProperty();
+    if (property != NULL) {
+      Load(property->obj());
+      Load(property->key());
+      __ Push(Operand(1));  // not counting receiver
+      __ InvokeBuiltin("DELETE", 1, CALL_JS);
+      return;
+    }
+
+    Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
+    if (variable != NULL) {
+      Slot* slot = variable->slot();
+      if (variable->is_global()) {
+        LoadGlobal();
+        __ Push(Operand(variable->name()));
+        __ Push(Operand(1));  // not counting receiver
+        __ InvokeBuiltin("DELETE", 1, CALL_JS);
+        return;
+
+      } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
+        // lookup the context holding the named variable
+        __ Push(Operand(cp));
+        __ Push(Operand(variable->name()));
+        __ CallRuntime(Runtime::kLookupContext, 2);
+        // r0: context
+        __ Push(Operand(variable->name()));
+        __ Push(Operand(1));  // not counting receiver
+        __ InvokeBuiltin("DELETE", 1, CALL_JS);
+        return;
+      }
+
+      // Default: Result of deleting non-global, not dynamically
+      // introduced variables is false.
+      __ Push(Operand(Factory::false_value()));
+
+    } else {
+      // Default: Result of deleting expressions is true.
+      Load(node->expression());  // may have side-effects
+      __ mov(r0, Operand(Factory::true_value()));
+    }
+
+  } else if (op == Token::TYPEOF) {
+    // Special case for loading the typeof expression; see comment on
+    // LoadTypeofExpression().
+    LoadTypeofExpression(node->expression());
+    __ CallRuntime(Runtime::kTypeof, 1);
+
+  } else {
+    Load(node->expression());
+    switch (op) {
+      case Token::NOT:
+      case Token::DELETE:
+      case Token::TYPEOF:
+        UNREACHABLE();  // handled above
+        break;
+
+      case Token::SUB: {
+        UnarySubStub stub;
+        __ CallStub(&stub);
+        break;
+      }
+
+      case Token::BIT_NOT: {
+        // smi check
+        Label smi_label;
+        Label continue_label;
+        __ tst(r0, Operand(kSmiTagMask));
+        __ b(eq, &smi_label);
+
+        __ Push(Operand(0));  // not counting receiver
+        __ InvokeBuiltin("BIT_NOT", 0, CALL_JS);
+
+        __ b(&continue_label);
+        __ bind(&smi_label);
+        __ mvn(r0, Operand(r0));
+        __ bic(r0, r0, Operand(kSmiTagMask));  // bit-clear inverted smi-tag
+        __ bind(&continue_label);
+        break;
+      }
+
+      case Token::VOID:
+        // since the stack top is cached in r0, popping and then
+        // pushing a value can be done by just writing to r0.
+        __ mov(r0, Operand(Factory::undefined_value()));
+        break;
+
+      case Token::ADD:
+        __ Push(Operand(0));  // not counting receiver
+        __ InvokeBuiltin("TO_NUMBER", 0, CALL_JS);
+        break;
+
+      default:
+        UNREACHABLE();
+    }
+  }
+}
+
+
+void ArmCodeGenerator::VisitCountOperation(CountOperation* node) {
+  Comment cmnt(masm_, "[ CountOperation");
+
+  bool is_postfix = node->is_postfix();
+  bool is_increment = node->op() == Token::INC;
+
+  Variable* var = node->expression()->AsVariableProxy()->AsVariable();
+  bool is_const = (var != NULL && var->mode() == Variable::CONST);
+
+  // Postfix: Make room for the result.
+  if (is_postfix) __ Push(Operand(0));
+
+  { Reference target(this, node->expression());
+    if (target.is_illegal()) return;
+    GetValue(&target);
+
+    Label slow, exit;
+
+    // Load the value (1) into register r1.
+    __ mov(r1, Operand(Smi::FromInt(1)));
+
+    // Check for smi operand.
+    __ tst(r0, Operand(kSmiTagMask));
+    __ b(ne, &slow);
+
+    // Postfix: Store the old value as the result.
+    if (is_postfix) __ str(r0, MemOperand(sp, target.size() * kPointerSize));
+
+    // Perform optimistic increment/decrement.
+    if (is_increment) {
+      __ add(r0, r0, Operand(r1), SetCC);
+    } else {
+      __ sub(r0, r0, Operand(r1), SetCC);
+    }
+
+    // If the increment/decrement didn't overflow, we're done.
+    __ b(vc, &exit);
+
+    // Revert optimistic increment/decrement.
+    if (is_increment) {
+      __ sub(r0, r0, Operand(r1));
+    } else {
+      __ add(r0, r0, Operand(r1));
+    }
+
+    // Slow case: Convert to number.
+    __ bind(&slow);
+
+    // Postfix: Convert the operand to a number and store it as the result.
+    if (is_postfix) {
+      InvokeBuiltinStub stub(InvokeBuiltinStub::ToNumber, 2);
+      __ CallStub(&stub);
+      // Store to result (on the stack).
+      __ str(r0, MemOperand(sp, target.size() * kPointerSize));
+    }
+
+    // Compute the new value by calling the right JavaScript native.
+    if (is_increment) {
+      InvokeBuiltinStub stub(InvokeBuiltinStub::Inc, 1);
+      __ CallStub(&stub);
+    } else {
+      InvokeBuiltinStub stub(InvokeBuiltinStub::Dec, 1);
+      __ CallStub(&stub);
+    }
+
+    // Store the new value in the target if not const.
+    __ bind(&exit);
+    if (!is_const) SetValue(&target);
+  }
+
+  // Postfix: Discard the new value and use the old.
+  if (is_postfix) __ pop(r0);
+}
+
+
+void ArmCodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
+  Comment cmnt(masm_, "[ BinaryOperation");
+  Token::Value op = node->op();
+
+  // According to ECMA-262 section 11.11, page 58, the binary logical
+  // operators must yield the result of one of the two expressions
+  // before any ToBoolean() conversions. This means that the value
+  // produced by a && or || operator is not necessarily a boolean.
+
+  // NOTE: If the left hand side produces a materialized value (not in
+  // the CC register), we force the right hand side to do the
+  // same. This is necessary because we may have to branch to the exit
+  // after evaluating the left hand side (due to the shortcut
+  // semantics), but the compiler must (statically) know if the result
+  // of compiling the binary operation is materialized or not.
+
+  if (op == Token::AND) {
+    Label is_true;
+    LoadCondition(node->left(),
+                  CodeGenState::LOAD,
+                  &is_true,
+                  false_target(),
+                  false);
+    if (has_cc()) {
+      Branch(false, false_target());
+
+      // Evaluate right side expression.
+      __ bind(&is_true);
+      LoadCondition(node->right(),
+                    CodeGenState::LOAD,
+                    true_target(),
+                    false_target(),
+                    false);
+
+    } else {
+      Label pop_and_continue, exit;
+
+      // Avoid popping the result if it converts to 'false' using the
+      // standard ToBoolean() conversion as described in ECMA-262,
+      // section 9.2, page 30.
+      ToBoolean(r0, &pop_and_continue, &exit);
+      Branch(false, &exit);
+
+      // Pop the result of evaluating the first part.
+      __ bind(&pop_and_continue);
+      __ pop(r0);
+
+      // Evaluate right side expression.
+      __ bind(&is_true);
+      Load(node->right());
+
+      // Exit (always with a materialized value).
+      __ bind(&exit);
+    }
+
+  } else if (op == Token::OR) {
+    Label is_false;
+    LoadCondition(node->left(),
+                  CodeGenState::LOAD,
+                  true_target(),
+                  &is_false,
+                  false);
+    if (has_cc()) {
+      Branch(true, true_target());
+
+      // Evaluate right side expression.
+      __ bind(&is_false);
+      LoadCondition(node->right(),
+                    CodeGenState::LOAD,
+                    true_target(),
+                    false_target(),
+                    false);
+
+    } else {
+      Label pop_and_continue, exit;
+
+      // Avoid popping the result if it converts to 'true' using the
+      // standard ToBoolean() conversion as described in ECMA-262,
+      // section 9.2, page 30.
+      ToBoolean(r0, &exit, &pop_and_continue);
+      Branch(true, &exit);
+
+      // Pop the result of evaluating the first part.
+      __ bind(&pop_and_continue);
+      __ pop(r0);
+
+      // Evaluate right side expression.
+      __ bind(&is_false);
+      Load(node->right());
+
+      // Exit (always with a materialized value).
+      __ bind(&exit);
+    }
+
+  } else {
+    // Optimize for the case where (at least) one of the expressions
+    // is a literal small integer.
+    Literal* lliteral = node->left()->AsLiteral();
+    Literal* rliteral = node->right()->AsLiteral();
+
+    if (rliteral != NULL && rliteral->handle()->IsSmi()) {
+      Load(node->left());
+      SmiOperation(node->op(), rliteral->handle(), false);
+
+    } else if (lliteral != NULL && lliteral->handle()->IsSmi()) {
+      Load(node->right());
+      SmiOperation(node->op(), lliteral->handle(), true);
+
+    } else {
+      Load(node->left());
+      Load(node->right());
+      GenericOperation(node->op());
+    }
+  }
+}
+
+
+void ArmCodeGenerator::VisitThisFunction(ThisFunction* node) {
+  __ Push(FunctionOperand());
+}
+
+
+void ArmCodeGenerator::VisitCompareOperation(CompareOperation* node) {
+  Comment cmnt(masm_, "[ CompareOperation");
+
+  // Get the expressions from the node.
+  Expression* left = node->left();
+  Expression* right = node->right();
+  Token::Value op = node->op();
+
+  // NOTE: To make null checks efficient, we check if either left or
+  // right is the literal 'null'. If so, we optimize the code by
+  // inlining a null check instead of calling the (very) general
+  // runtime routine for checking equality.
+
+  bool left_is_null =
+    left->AsLiteral() != NULL && left->AsLiteral()->IsNull();
+  bool right_is_null =
+    right->AsLiteral() != NULL && right->AsLiteral()->IsNull();
+
+  if (op == Token::EQ || op == Token::EQ_STRICT) {
+    // The 'null' value is only equal to 'null' or 'undefined'.
+    if (left_is_null || right_is_null) {
+      Load(left_is_null ? right : left);
+      Label exit, undetectable;
+      __ cmp(r0, Operand(Factory::null_value()));
+
+      // The 'null' value is only equal to 'undefined' if using
+      // non-strict comparisons.
+      if (op != Token::EQ_STRICT) {
+        __ b(eq, &exit);
+        __ cmp(r0, Operand(Factory::undefined_value()));
+
+        // NOTE: it can be undetectable object.
+        __ b(eq, &exit);
+        __ tst(r0, Operand(kSmiTagMask));
+
+        __ b(ne, &undetectable);
+        __ pop(r0);
+        __ b(false_target());
+
+        __ bind(&undetectable);
+        __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+        __ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
+        __ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
+        __ cmp(r2, Operand(1 << Map::kIsUndetectable));
+      }
+
+      __ bind(&exit);
+      __ pop(r0);
+
+      cc_reg_ = eq;
+      return;
+    }
+  }
+
+
+  // NOTE: To make typeof testing for natives implemented in
+  // JavaScript really efficient, we generate special code for
+  // expressions of the form: 'typeof <expression> == <string>'.
+
+  UnaryOperation* operation = left->AsUnaryOperation();
+  if ((op == Token::EQ || op == Token::EQ_STRICT) &&
+      (operation != NULL && operation->op() == Token::TYPEOF) &&
+      (right->AsLiteral() != NULL &&
+       right->AsLiteral()->handle()->IsString())) {
+    Handle<String> check(String::cast(*right->AsLiteral()->handle()));
+
+    // Load the operand, move it to register r1, and restore TOS.
+    LoadTypeofExpression(operation->expression());
+    __ mov(r1, Operand(r0));
+    __ pop(r0);
+
+    if (check->Equals(Heap::number_symbol())) {
+      __ tst(r1, Operand(kSmiTagMask));
+      __ b(eq, true_target());
+      __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
+      __ cmp(r1, Operand(Factory::heap_number_map()));
+      cc_reg_ = eq;
+
+    } else if (check->Equals(Heap::string_symbol())) {
+      __ tst(r1, Operand(kSmiTagMask));
+      __ b(eq, false_target());
+
+      __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
+
+      // NOTE: it might be an undetectable string object
+      __ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
+      __ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
+      __ cmp(r2, Operand(1 << Map::kIsUndetectable));
+      __ b(eq, false_target());
+
+      __ ldrb(r2, FieldMemOperand(r1, Map::kInstanceTypeOffset));
+      __ cmp(r2, Operand(FIRST_NONSTRING_TYPE));
+      cc_reg_ = lt;
+
+    } else if (check->Equals(Heap::boolean_symbol())) {
+      __ cmp(r1, Operand(Factory::true_value()));
+      __ b(eq, true_target());
+      __ cmp(r1, Operand(Factory::false_value()));
+      cc_reg_ = eq;
+
+    } else if (check->Equals(Heap::undefined_symbol())) {
+      __ cmp(r1, Operand(Factory::undefined_value()));
+      __ b(eq, true_target());
+
+      __ tst(r1, Operand(kSmiTagMask));
+      __ b(eq, false_target());
+
+      // NOTE: it can be undetectable object.
+      __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
+      __ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
+      __ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
+      __ cmp(r2, Operand(1 << Map::kIsUndetectable));
+
+      cc_reg_ = eq;
+
+    } else if (check->Equals(Heap::function_symbol())) {
+      __ tst(r1, Operand(kSmiTagMask));
+      __ b(eq, false_target());
+      __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
+      __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
+      __ cmp(r1, Operand(JS_FUNCTION_TYPE));
+      cc_reg_ = eq;
+
+    } else if (check->Equals(Heap::object_symbol())) {
+      __ tst(r1, Operand(kSmiTagMask));
+      __ b(eq, false_target());
+
+      __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
+      __ cmp(r1, Operand(Factory::null_value()));
+      __ b(eq, true_target());
+
+      // NOTE: it might be an undetectable object.
+      __ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset));
+      __ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
+      __ cmp(r1, Operand(1 << Map::kIsUndetectable));
+      __ b(eq, false_target());
+
+      __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
+      __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
+      __ b(lt, false_target());
+      __ cmp(r2, Operand(LAST_JS_OBJECT_TYPE));
+      cc_reg_ = le;
+
+    } else {
+      // Uncommon case: Typeof testing against a string literal that
+      // is never returned from the typeof operator.
+      __ b(false_target());
+    }
+    return;
+  }
+
+  Load(left);
+  Load(right);
+  switch (op) {
+    case Token::EQ:
+      Comparison(eq, false);
+      break;
+
+    case Token::LT:
+      Comparison(lt);
+      break;
+
+    case Token::GT:
+      Comparison(gt);
+      break;
+
+    case Token::LTE:
+      Comparison(le);
+      break;
+
+    case Token::GTE:
+      Comparison(ge);
+      break;
+
+    case Token::EQ_STRICT:
+      Comparison(eq, true);
+      break;
+
+    case Token::IN:
+      __ Push(Operand(1));  // not counting receiver
+      __ InvokeBuiltin("IN", 1, CALL_JS);
+      break;
+
+    case Token::INSTANCEOF:
+      __ Push(Operand(1));  // not counting receiver
+      __ InvokeBuiltin("INSTANCE_OF", 1, CALL_JS);
+      break;
+
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+void ArmCodeGenerator::RecordStatementPosition(Node* node) {
+  if (FLAG_debug_info) {
+    int statement_pos = node->statement_pos();
+    if (statement_pos == kNoPosition) return;
+    __ RecordStatementPosition(statement_pos);
+  }
+}
+
+
+void ArmCodeGenerator::EnterJSFrame(int argc, RegList callee_saved) {
+  __ EnterJSFrame(argc, callee_saved);
+}
+
+
+void ArmCodeGenerator::ExitJSFrame(RegList callee_saved, ExitJSFlag flag) {
+  // The JavaScript debugger expects ExitJSFrame to be implemented as a stub,
+  // so that a breakpoint can be inserted at the end of a function.
+  int num_callee_saved = NumRegs(callee_saved);
+
+  // We support a fixed number of register variable configurations
+  ASSERT(num_callee_saved <= 5 &&
+         JSCalleeSavedList(num_callee_saved) == callee_saved);
+
+  JSExitStub stub(num_callee_saved, callee_saved, flag);
+  __ CallJSExitStub(&stub);
+}
+
+
+#undef __
+
+
+// -----------------------------------------------------------------------------
+// CodeGenerator interface
+
+// MakeCode() is just a wrapper for CodeGenerator::MakeCode()
+// so we don't have to expose the entire CodeGenerator class in
+// the .h file.
+Handle<Code> CodeGenerator::MakeCode(FunctionLiteral* fun,
+                                     Handle<Script> script,
+                                     bool is_eval) {
+  Handle<Code> code = ArmCodeGenerator::MakeCode(fun, script, is_eval);
+  if (!code.is_null()) {
+    Counters::total_compiled_code_size.Increment(code->instruction_size());
+  }
+  return code;
+}
+
+
+} }  // namespace v8::internal