Version 3.3.8

Added MarkIndependent to the persistent handle API.  Independent handles are independent of all other persistent handles and can be garbage collected more frequently.

Implemented the get trap for Harmony proxies.  Proxies are enabled with the --harmony-proxies flag.

Performance improvements and bug fixes on all platforms.

R=ager@chromium.org

Review URL: http://codereview.chromium.org/7043003

git-svn-id: http://v8.googlecode.com/svn/trunk@7923 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
diff --git a/src/mips/full-codegen-mips.cc b/src/mips/full-codegen-mips.cc
index 007aa17..8c26fb3 100644
--- a/src/mips/full-codegen-mips.cc
+++ b/src/mips/full-codegen-mips.cc
@@ -53,6 +53,67 @@
 
 #define __ ACCESS_MASM(masm_)
 
+
+// A patch site is a location in the code which it is possible to patch. This
+// class has a number of methods to emit the code which is patchable and the
+// method EmitPatchInfo to record a marker back to the patchable code. This
+// marker is a andi at, rx, #yyy instruction, and x * 0x0000ffff + yyy (raw 16
+// bit immediate value is used) is the delta from the pc to the first
+// instruction of the patchable code.
+class JumpPatchSite BASE_EMBEDDED {
+ public:
+  explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
+#ifdef DEBUG
+    info_emitted_ = false;
+#endif
+  }
+
+  ~JumpPatchSite() {
+    ASSERT(patch_site_.is_bound() == info_emitted_);
+  }
+
+  // When initially emitting this ensure that a jump is always generated to skip
+  // the inlined smi code.
+  void EmitJumpIfNotSmi(Register reg, Label* target) {
+    ASSERT(!patch_site_.is_bound() && !info_emitted_);
+    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+    __ bind(&patch_site_);
+    __ andi(at, reg, 0);
+    // Always taken before patched.
+    __ Branch(target, eq, at, Operand(zero_reg));
+  }
+
+  // When initially emitting this ensure that a jump is never generated to skip
+  // the inlined smi code.
+  void EmitJumpIfSmi(Register reg, Label* target) {
+    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+    ASSERT(!patch_site_.is_bound() && !info_emitted_);
+    __ bind(&patch_site_);
+    __ andi(at, reg, 0);
+    // Never taken before patched.
+    __ Branch(target, ne, at, Operand(zero_reg));
+  }
+
+  void EmitPatchInfo() {
+    int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
+    Register reg = Register::from_code(delta_to_patch_site / kImm16Mask);
+    __ andi(at, reg, delta_to_patch_site % kImm16Mask);
+#ifdef DEBUG
+    info_emitted_ = true;
+#endif
+  }
+
+  bool is_bound() const { return patch_site_.is_bound(); }
+
+ private:
+  MacroAssembler* masm_;
+  Label patch_site_;
+#ifdef DEBUG
+  bool info_emitted_;
+#endif
+};
+
+
 // Generate code for a JS function.  On entry to the function the receiver
 // and arguments have been pushed on the stack left to right.  The actual
 // argument count matches the formal parameter count expected by the
@@ -68,189 +129,512 @@
 // The function builds a JS frame.  Please see JavaScriptFrameConstants in
 // frames-mips.h for its layout.
 void FullCodeGenerator::Generate(CompilationInfo* info) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(info_ == NULL);
+  info_ = info;
+  SetFunctionPosition(function());
+  Comment cmnt(masm_, "[ function compiled by full code generator");
+
+#ifdef DEBUG
+  if (strlen(FLAG_stop_at) > 0 &&
+      info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
+    __ stop("stop-at");
+  }
+#endif
+
+  int locals_count = scope()->num_stack_slots();
+
+  __ Push(ra, fp, cp, a1);
+  if (locals_count > 0) {
+    // Load undefined value here, so the value is ready for the loop
+    // below.
+    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+  }
+  // Adjust fp to point to caller's fp.
+  __ Addu(fp, sp, Operand(2 * kPointerSize));
+
+  { Comment cmnt(masm_, "[ Allocate locals");
+    for (int i = 0; i < locals_count; i++) {
+      __ push(at);
+    }
+  }
+
+  bool function_in_register = true;
+
+  // Possibly allocate a local context.
+  int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+  if (heap_slots > 0) {
+    Comment cmnt(masm_, "[ Allocate local context");
+    // Argument to NewContext is the function, which is in a1.
+    __ push(a1);
+    if (heap_slots <= FastNewContextStub::kMaximumSlots) {
+      FastNewContextStub stub(heap_slots);
+      __ CallStub(&stub);
+    } else {
+      __ CallRuntime(Runtime::kNewContext, 1);
+    }
+    function_in_register = false;
+    // Context is returned in both v0 and cp.  It replaces the context
+    // passed to us.  It's saved in the stack and kept live in cp.
+    __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    // Copy any necessary parameters into the context.
+    int num_parameters = scope()->num_parameters();
+    for (int i = 0; i < num_parameters; i++) {
+      Slot* slot = scope()->parameter(i)->AsSlot();
+      if (slot != NULL && slot->type() == Slot::CONTEXT) {
+        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+                                 (num_parameters - 1 - i) * kPointerSize;
+        // Load parameter from stack.
+        __ lw(a0, MemOperand(fp, parameter_offset));
+        // Store it in the context.
+        __ li(a1, Operand(Context::SlotOffset(slot->index())));
+        __ addu(a2, cp, a1);
+        __ sw(a0, MemOperand(a2, 0));
+        // Update the write barrier. This clobbers all involved
+        // registers, so we have to use two more registers to avoid
+        // clobbering cp.
+        __ mov(a2, cp);
+        __ RecordWrite(a2, a1, a3);
+      }
+    }
+  }
+
+  Variable* arguments = scope()->arguments();
+  if (arguments != NULL) {
+    // Function uses arguments object.
+    Comment cmnt(masm_, "[ Allocate arguments object");
+    if (!function_in_register) {
+      // Load this again, if it's used by the local context below.
+      __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+    } else {
+      __ mov(a3, a1);
+    }
+    // Receiver is just before the parameters on the caller's stack.
+    int offset = scope()->num_parameters() * kPointerSize;
+    __ Addu(a2, fp,
+           Operand(StandardFrameConstants::kCallerSPOffset + offset));
+    __ li(a1, Operand(Smi::FromInt(scope()->num_parameters())));
+    __ Push(a3, a2, a1);
+
+    // Arguments to ArgumentsAccessStub:
+    //   function, receiver address, parameter count.
+    // The stub will rewrite receiever and parameter count if the previous
+    // stack frame was an arguments adapter frame.
+    ArgumentsAccessStub stub(
+        is_strict_mode() ? ArgumentsAccessStub::NEW_STRICT
+                         : ArgumentsAccessStub::NEW_NON_STRICT);
+    __ CallStub(&stub);
+
+    Variable* arguments_shadow = scope()->arguments_shadow();
+    if (arguments_shadow != NULL) {
+      // Duplicate the value; move-to-slot operation might clobber registers.
+      __ mov(a3, v0);
+      Move(arguments_shadow->AsSlot(), a3, a1, a2);
+    }
+    Move(arguments->AsSlot(), v0, a1, a2);
+  }
+
+  if (FLAG_trace) {
+    __ CallRuntime(Runtime::kTraceEnter, 0);
+  }
+
+  // Visit the declarations and body unless there is an illegal
+  // redeclaration.
+  if (scope()->HasIllegalRedeclaration()) {
+    Comment cmnt(masm_, "[ Declarations");
+    scope()->VisitIllegalRedeclaration(this);
+
+  } else {
+    { Comment cmnt(masm_, "[ Declarations");
+      // For named function expressions, declare the function name as a
+      // constant.
+      if (scope()->is_function_scope() && scope()->function() != NULL) {
+        EmitDeclaration(scope()->function(), Variable::CONST, NULL);
+      }
+      VisitDeclarations(scope()->declarations());
+    }
+
+    { Comment cmnt(masm_, "[ Stack check");
+      PrepareForBailoutForId(AstNode::kFunctionEntryId, NO_REGISTERS);
+      Label ok;
+      __ LoadRoot(t0, Heap::kStackLimitRootIndex);
+      __ Branch(&ok, hs, sp, Operand(t0));
+      StackCheckStub stub;
+      __ CallStub(&stub);
+      __ bind(&ok);
+    }
+
+    { Comment cmnt(masm_, "[ Body");
+      ASSERT(loop_depth() == 0);
+      VisitStatements(function()->body());
+      ASSERT(loop_depth() == 0);
+    }
+  }
+
+  // Always emit a 'return undefined' in case control fell off the end of
+  // the body.
+  { Comment cmnt(masm_, "[ return <undefined>;");
+    __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+  }
+  EmitReturnSequence();
 }
 
 
 void FullCodeGenerator::ClearAccumulator() {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(Smi::FromInt(0) == 0);
+  __ mov(v0, zero_reg);
 }
 
 
 void FullCodeGenerator::EmitStackCheck(IterationStatement* stmt) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ Stack check");
+  Label ok;
+  __ LoadRoot(t0, Heap::kStackLimitRootIndex);
+  __ Branch(&ok, hs, sp, Operand(t0));
+  StackCheckStub stub;
+  // Record a mapping of this PC offset to the OSR id.  This is used to find
+  // the AST id from the unoptimized code in order to use it as a key into
+  // the deoptimization input data found in the optimized code.
+  RecordStackCheck(stmt->OsrEntryId());
+
+  __ CallStub(&stub);
+  __ bind(&ok);
+  PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+  // Record a mapping of the OSR id to this PC.  This is used if the OSR
+  // entry becomes the target of a bailout.  We don't expect it to be, but
+  // we want it to work if it is.
+  PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
 }
 
 
 void FullCodeGenerator::EmitReturnSequence() {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ Return sequence");
+  if (return_label_.is_bound()) {
+    __ Branch(&return_label_);
+  } else {
+    __ bind(&return_label_);
+    if (FLAG_trace) {
+      // Push the return value on the stack as the parameter.
+      // Runtime::TraceExit returns its parameter in v0.
+      __ push(v0);
+      __ CallRuntime(Runtime::kTraceExit, 1);
+    }
+
+#ifdef DEBUG
+    // Add a label for checking the size of the code used for returning.
+    Label check_exit_codesize;
+    masm_->bind(&check_exit_codesize);
+#endif
+    // Make sure that the constant pool is not emitted inside of the return
+    // sequence.
+    { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+      // Here we use masm_-> instead of the __ macro to avoid the code coverage
+      // tool from instrumenting as we rely on the code size here.
+      int32_t sp_delta = (scope()->num_parameters() + 1) * kPointerSize;
+      CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
+      __ RecordJSReturn();
+      masm_->mov(sp, fp);
+      masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit()));
+      masm_->Addu(sp, sp, Operand(sp_delta));
+      masm_->Jump(ra);
+    }
+
+#ifdef DEBUG
+    // Check that the size of the code used for returning is large enough
+    // for the debugger's requirements.
+    ASSERT(Assembler::kJSReturnSequenceInstructions <=
+           masm_->InstructionsGeneratedSince(&check_exit_codesize));
+#endif
+  }
 }
 
 
 void FullCodeGenerator::EffectContext::Plug(Slot* slot) const {
-  UNIMPLEMENTED_MIPS();
 }
 
 
 void FullCodeGenerator::AccumulatorValueContext::Plug(Slot* slot) const {
-  UNIMPLEMENTED_MIPS();
+  codegen()->Move(result_register(), slot);
 }
 
 
 void FullCodeGenerator::StackValueContext::Plug(Slot* slot) const {
-  UNIMPLEMENTED_MIPS();
+  codegen()->Move(result_register(), slot);
+  __ push(result_register());
 }
 
 
 void FullCodeGenerator::TestContext::Plug(Slot* slot) const {
-  UNIMPLEMENTED_MIPS();
+  // For simplicity we always test the accumulator register.
+  codegen()->Move(result_register(), slot);
+  codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL);
+  codegen()->DoTest(true_label_, false_label_, fall_through_);
 }
 
 
 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
-  UNIMPLEMENTED_MIPS();
 }
 
 
 void FullCodeGenerator::AccumulatorValueContext::Plug(
     Heap::RootListIndex index) const {
-  UNIMPLEMENTED_MIPS();
+  __ LoadRoot(result_register(), index);
 }
 
 
 void FullCodeGenerator::StackValueContext::Plug(
     Heap::RootListIndex index) const {
-  UNIMPLEMENTED_MIPS();
+  __ LoadRoot(result_register(), index);
+  __ push(result_register());
 }
 
 
 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
-  UNIMPLEMENTED_MIPS();
+  codegen()->PrepareForBailoutBeforeSplit(TOS_REG,
+                                          true,
+                                          true_label_,
+                                          false_label_);
+  if (index == Heap::kUndefinedValueRootIndex ||
+      index == Heap::kNullValueRootIndex ||
+      index == Heap::kFalseValueRootIndex) {
+    if (false_label_ != fall_through_) __ Branch(false_label_);
+  } else if (index == Heap::kTrueValueRootIndex) {
+    if (true_label_ != fall_through_) __ Branch(true_label_);
+  } else {
+    __ LoadRoot(result_register(), index);
+    codegen()->DoTest(true_label_, false_label_, fall_through_);
+  }
 }
 
 
 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
-  UNIMPLEMENTED_MIPS();
 }
 
 
 void FullCodeGenerator::AccumulatorValueContext::Plug(
     Handle<Object> lit) const {
-  UNIMPLEMENTED_MIPS();
+  __ li(result_register(), Operand(lit));
 }
 
 
 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
-  UNIMPLEMENTED_MIPS();
+  // Immediates cannot be pushed directly.
+  __ li(result_register(), Operand(lit));
+  __ push(result_register());
 }
 
 
 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
-  UNIMPLEMENTED_MIPS();
+  codegen()->PrepareForBailoutBeforeSplit(TOS_REG,
+                                          true,
+                                          true_label_,
+                                          false_label_);
+  ASSERT(!lit->IsUndetectableObject());  // There are no undetectable literals.
+  if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
+    if (false_label_ != fall_through_) __ Branch(false_label_);
+  } else if (lit->IsTrue() || lit->IsJSObject()) {
+    if (true_label_ != fall_through_) __ Branch(true_label_);
+  } else if (lit->IsString()) {
+    if (String::cast(*lit)->length() == 0) {
+      if (false_label_ != fall_through_) __ Branch(false_label_);
+    } else {
+      if (true_label_ != fall_through_) __ Branch(true_label_);
+    }
+  } else if (lit->IsSmi()) {
+    if (Smi::cast(*lit)->value() == 0) {
+      if (false_label_ != fall_through_) __ Branch(false_label_);
+    } else {
+      if (true_label_ != fall_through_) __ Branch(true_label_);
+    }
+  } else {
+    // For simplicity we always test the accumulator register.
+    __ li(result_register(), Operand(lit));
+    codegen()->DoTest(true_label_, false_label_, fall_through_);
+  }
 }
 
 
 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
                                                    Register reg) const {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(count > 0);
+  __ Drop(count);
 }
 
 
 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
     int count,
     Register reg) const {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(count > 0);
+  __ Drop(count);
+  __ Move(result_register(), reg);
 }
 
 
 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
                                                        Register reg) const {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(count > 0);
+  if (count > 1) __ Drop(count - 1);
+  __ sw(reg, MemOperand(sp, 0));
 }
 
 
 void FullCodeGenerator::TestContext::DropAndPlug(int count,
                                                  Register reg) const {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(count > 0);
+  // For simplicity we always test the accumulator register.
+  __ Drop(count);
+  __ Move(result_register(), reg);
+  codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL);
+  codegen()->DoTest(true_label_, false_label_, fall_through_);
 }
 
 
 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
                                             Label* materialize_false) const {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(materialize_true == materialize_false);
+  __ bind(materialize_true);
 }
 
 
 void FullCodeGenerator::AccumulatorValueContext::Plug(
     Label* materialize_true,
     Label* materialize_false) const {
-  UNIMPLEMENTED_MIPS();
+  Label done;
+  __ bind(materialize_true);
+  __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
+  __ Branch(&done);
+  __ bind(materialize_false);
+  __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
+  __ bind(&done);
 }
 
 
 void FullCodeGenerator::StackValueContext::Plug(
     Label* materialize_true,
     Label* materialize_false) const {
-  UNIMPLEMENTED_MIPS();
+  Label done;
+  __ bind(materialize_true);
+  __ LoadRoot(at, Heap::kTrueValueRootIndex);
+  __ push(at);
+  __ Branch(&done);
+  __ bind(materialize_false);
+  __ LoadRoot(at, Heap::kFalseValueRootIndex);
+  __ push(at);
+  __ bind(&done);
 }
 
 
 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
                                           Label* materialize_false) const {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(materialize_true == true_label_);
+  ASSERT(materialize_false == false_label_);
 }
 
 
 void FullCodeGenerator::EffectContext::Plug(bool flag) const {
-  UNIMPLEMENTED_MIPS();
 }
 
 
 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
-  UNIMPLEMENTED_MIPS();
+  Heap::RootListIndex value_root_index =
+      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+  __ LoadRoot(result_register(), value_root_index);
 }
 
 
 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
-  UNIMPLEMENTED_MIPS();
+  Heap::RootListIndex value_root_index =
+      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+  __ LoadRoot(at, value_root_index);
+  __ push(at);
 }
 
 
 void FullCodeGenerator::TestContext::Plug(bool flag) const {
-  UNIMPLEMENTED_MIPS();
+  codegen()->PrepareForBailoutBeforeSplit(TOS_REG,
+                                          true,
+                                          true_label_,
+                                          false_label_);
+  if (flag) {
+    if (true_label_ != fall_through_) __ Branch(true_label_);
+  } else {
+    if (false_label_ != fall_through_) __ Branch(false_label_);
+  }
 }
 
 
 void FullCodeGenerator::DoTest(Label* if_true,
                                Label* if_false,
                                Label* fall_through) {
-  UNIMPLEMENTED_MIPS();
+  if (CpuFeatures::IsSupported(FPU)) {
+    CpuFeatures::Scope scope(FPU);
+    // Emit the inlined tests assumed by the stub.
+    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+    __ Branch(if_false, eq, result_register(), Operand(at));
+    __ LoadRoot(at, Heap::kTrueValueRootIndex);
+    __ Branch(if_true, eq, result_register(), Operand(at));
+    __ LoadRoot(at, Heap::kFalseValueRootIndex);
+    __ Branch(if_false, eq, result_register(), Operand(at));
+    STATIC_ASSERT(kSmiTag == 0);
+    __ Branch(if_false, eq, result_register(), Operand(zero_reg));
+    __ JumpIfSmi(result_register(), if_true);
+
+    // Call the ToBoolean stub for all other cases.
+    ToBooleanStub stub(result_register());
+    __ CallStub(&stub);
+    __ mov(at, zero_reg);
+  } else {
+    // Call the runtime to find the boolean value of the source and then
+    // translate it into control flow to the pair of labels.
+    __ push(result_register());
+    __ CallRuntime(Runtime::kToBool, 1);
+    __ LoadRoot(at, Heap::kFalseValueRootIndex);
+  }
+
+  // The stub returns nonzero for true.
+  Split(ne, v0, Operand(at), if_true, if_false, fall_through);
 }
 
 
-// Original prototype for mips, needs arch-indep change. Leave out for now.
-// void FullCodeGenerator::Split(Condition cc,
-//                               Register lhs,
-//                               const Operand&  rhs,
-//                               Label* if_true,
-//                               Label* if_false,
-//                               Label* fall_through) {
 void FullCodeGenerator::Split(Condition cc,
+                              Register lhs,
+                              const Operand&  rhs,
                               Label* if_true,
                               Label* if_false,
                               Label* fall_through) {
-  UNIMPLEMENTED_MIPS();
+  if (if_false == fall_through) {
+    __ Branch(if_true, cc, lhs, rhs);
+  } else if (if_true == fall_through) {
+    __ Branch(if_false, NegateCondition(cc), lhs, rhs);
+  } else {
+    __ Branch(if_true, cc, lhs, rhs);
+    __ Branch(if_false);
+  }
 }
 
 
 MemOperand FullCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) {
-  UNIMPLEMENTED_MIPS();
-  return MemOperand(zero_reg, 0);
+  switch (slot->type()) {
+    case Slot::PARAMETER:
+    case Slot::LOCAL:
+      return MemOperand(fp, SlotOffset(slot));
+    case Slot::CONTEXT: {
+      int context_chain_length =
+          scope()->ContextChainLength(slot->var()->scope());
+      __ LoadContext(scratch, context_chain_length);
+      return ContextOperand(scratch, slot->index());
+    }
+    case Slot::LOOKUP:
+      UNREACHABLE();
+  }
+  UNREACHABLE();
+  return MemOperand(v0, 0);
 }
 
 
 void FullCodeGenerator::Move(Register destination, Slot* source) {
-  UNIMPLEMENTED_MIPS();
+  // Use destination as scratch.
+  MemOperand slot_operand = EmitSlotSearch(source, destination);
+  __ lw(destination, slot_operand);
 }
 
 
@@ -258,7 +642,25 @@
                                                      bool should_normalize,
                                                      Label* if_true,
                                                      Label* if_false) {
-  UNIMPLEMENTED_MIPS();
+  // Only prepare for bailouts before splits if we're in a test
+  // context. Otherwise, we let the Visit function deal with the
+  // preparation to avoid preparing with the same AST id twice.
+  if (!context()->IsTest() || !info_->IsOptimizable()) return;
+
+  Label skip;
+  if (should_normalize) __ Branch(&skip);
+
+  ForwardBailoutStack* current = forward_bailout_stack_;
+  while (current != NULL) {
+    PrepareForBailout(current->expr(), state);
+    current = current->parent();
+  }
+
+  if (should_normalize) {
+    __ LoadRoot(t0, Heap::kTrueValueRootIndex);
+    Split(eq, a0, Operand(t0), if_true, if_false, NULL);
+    __ bind(&skip);
+  }
 }
 
 
@@ -266,53 +668,532 @@
                              Register src,
                              Register scratch1,
                              Register scratch2) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(dst->type() != Slot::LOOKUP);  // Not yet implemented.
+  ASSERT(!scratch1.is(src) && !scratch2.is(src));
+  MemOperand location = EmitSlotSearch(dst, scratch1);
+  __ sw(src, location);
+  // Emit the write barrier code if the location is in the heap.
+  if (dst->type() == Slot::CONTEXT) {
+    __ RecordWrite(scratch1,
+                   Operand(Context::SlotOffset(dst->index())),
+                   scratch2,
+                   src);
+  }
 }
 
 
 void FullCodeGenerator::EmitDeclaration(Variable* variable,
                                         Variable::Mode mode,
                                         FunctionLiteral* function) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ Declaration");
+  ASSERT(variable != NULL);  // Must have been resolved.
+  Slot* slot = variable->AsSlot();
+  Property* prop = variable->AsProperty();
+
+  if (slot != NULL) {
+    switch (slot->type()) {
+      case Slot::PARAMETER:
+      case Slot::LOCAL:
+        if (mode == Variable::CONST) {
+          __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
+          __ sw(t0, MemOperand(fp, SlotOffset(slot)));
+        } else if (function != NULL) {
+          VisitForAccumulatorValue(function);
+          __ sw(result_register(), MemOperand(fp, SlotOffset(slot)));
+        }
+        break;
+
+      case Slot::CONTEXT:
+        // We bypass the general EmitSlotSearch because we know more about
+        // this specific context.
+
+        // The variable in the decl always resides in the current function
+        // context.
+        ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
+        if (FLAG_debug_code) {
+          // Check that we're not inside a 'with'.
+          __ lw(a1, ContextOperand(cp, Context::FCONTEXT_INDEX));
+          __ Check(eq, "Unexpected declaration in current context.",
+                   a1, Operand(cp));
+        }
+        if (mode == Variable::CONST) {
+          __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+          __ sw(at, ContextOperand(cp, slot->index()));
+          // No write barrier since the_hole_value is in old space.
+        } else if (function != NULL) {
+          VisitForAccumulatorValue(function);
+          __ sw(result_register(), ContextOperand(cp, slot->index()));
+          int offset = Context::SlotOffset(slot->index());
+          // We know that we have written a function, which is not a smi.
+          __ mov(a1, cp);
+          __ RecordWrite(a1, Operand(offset), a2, result_register());
+        }
+        break;
+
+      case Slot::LOOKUP: {
+        __ li(a2, Operand(variable->name()));
+        // Declaration nodes are always introduced in one of two modes.
+        ASSERT(mode == Variable::VAR ||
+               mode == Variable::CONST);
+        PropertyAttributes attr =
+            (mode == Variable::VAR) ? NONE : READ_ONLY;
+        __ li(a1, Operand(Smi::FromInt(attr)));
+        // Push initial value, if any.
+        // Note: For variables we must not push an initial value (such as
+        // 'undefined') because we may have a (legal) redeclaration and we
+        // must not destroy the current value.
+        if (mode == Variable::CONST) {
+          __ LoadRoot(a0, Heap::kTheHoleValueRootIndex);
+          __ Push(cp, a2, a1, a0);
+        } else if (function != NULL) {
+          __ Push(cp, a2, a1);
+          // Push initial value for function declaration.
+          VisitForStackValue(function);
+        } else {
+          ASSERT(Smi::FromInt(0) == 0);
+          // No initial value!
+          __ mov(a0, zero_reg);  // Operand(Smi::FromInt(0)));
+          __ Push(cp, a2, a1, a0);
+        }
+        __ CallRuntime(Runtime::kDeclareContextSlot, 4);
+        break;
+      }
+    }
+
+  } else if (prop != NULL) {
+    if (function != NULL || mode == Variable::CONST) {
+      // We are declaring a function or constant that rewrites to a
+      // property.  Use (keyed) IC to set the initial value.  We
+      // cannot visit the rewrite because it's shared and we risk
+      // recording duplicate AST IDs for bailouts from optimized code.
+      ASSERT(prop->obj()->AsVariableProxy() != NULL);
+      { AccumulatorValueContext for_object(this);
+        EmitVariableLoad(prop->obj()->AsVariableProxy()->var());
+      }
+      if (function != NULL) {
+        __ push(result_register());
+        VisitForAccumulatorValue(function);
+        __ mov(a0, result_register());
+        __ pop(a2);
+      } else {
+        __ mov(a2, result_register());
+        __ LoadRoot(a0, Heap::kTheHoleValueRootIndex);
+      }
+      ASSERT(prop->key()->AsLiteral() != NULL &&
+             prop->key()->AsLiteral()->handle()->IsSmi());
+      __ li(a1, Operand(prop->key()->AsLiteral()->handle()));
+
+      Handle<Code> ic = is_strict_mode()
+          ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+          : isolate()->builtins()->KeyedStoreIC_Initialize();
+      EmitCallIC(ic, RelocInfo::CODE_TARGET, AstNode::kNoNumber);
+      // Value in v0 is ignored (declarations are statements).
+    }
+  }
 }
 
 
 void FullCodeGenerator::VisitDeclaration(Declaration* decl) {
-  UNIMPLEMENTED_MIPS();
+  EmitDeclaration(decl->proxy()->var(), decl->mode(), decl->fun());
 }
 
 
 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
-  UNIMPLEMENTED_MIPS();
+  // Call the runtime to declare the globals.
+  // The context is the first argument.
+  __ li(a2, Operand(pairs));
+  __ li(a1, Operand(Smi::FromInt(is_eval() ? 1 : 0)));
+  __ li(a0, Operand(Smi::FromInt(strict_mode_flag())));
+  __ Push(cp, a2, a1, a0);
+  __ CallRuntime(Runtime::kDeclareGlobals, 4);
+  // Return value is ignored.
 }
 
 
 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ SwitchStatement");
+  Breakable nested_statement(this, stmt);
+  SetStatementPosition(stmt);
+
+  // Keep the switch value on the stack until a case matches.
+  VisitForStackValue(stmt->tag());
+  PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+
+  ZoneList<CaseClause*>* clauses = stmt->cases();
+  CaseClause* default_clause = NULL;  // Can occur anywhere in the list.
+
+  Label next_test;  // Recycled for each test.
+  // Compile all the tests with branches to their bodies.
+  for (int i = 0; i < clauses->length(); i++) {
+    CaseClause* clause = clauses->at(i);
+    clause->body_target()->Unuse();
+
+    // The default is not a test, but remember it as final fall through.
+    if (clause->is_default()) {
+      default_clause = clause;
+      continue;
+    }
+
+    Comment cmnt(masm_, "[ Case comparison");
+    __ bind(&next_test);
+    next_test.Unuse();
+
+    // Compile the label expression.
+    VisitForAccumulatorValue(clause->label());
+    __ mov(a0, result_register());  // CompareStub requires args in a0, a1.
+
+    // Perform the comparison as if via '==='.
+    __ lw(a1, MemOperand(sp, 0));  // Switch value.
+    bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
+    JumpPatchSite patch_site(masm_);
+    if (inline_smi_code) {
+      Label slow_case;
+      __ or_(a2, a1, a0);
+      patch_site.EmitJumpIfNotSmi(a2, &slow_case);
+
+      __ Branch(&next_test, ne, a1, Operand(a0));
+      __ Drop(1);  // Switch value is no longer needed.
+      __ Branch(clause->body_target());
+
+      __ bind(&slow_case);
+    }
+
+    // Record position before stub call for type feedback.
+    SetSourcePosition(clause->position());
+    Handle<Code> ic = CompareIC::GetUninitialized(Token::EQ_STRICT);
+    EmitCallIC(ic, &patch_site, clause->CompareId());
+    __ Branch(&next_test, ne, v0, Operand(zero_reg));
+    __ Drop(1);  // Switch value is no longer needed.
+    __ Branch(clause->body_target());
+  }
+
+  // Discard the test value and jump to the default if present, otherwise to
+  // the end of the statement.
+  __ bind(&next_test);
+  __ Drop(1);  // Switch value is no longer needed.
+  if (default_clause == NULL) {
+    __ Branch(nested_statement.break_target());
+  } else {
+    __ Branch(default_clause->body_target());
+  }
+
+  // Compile all the case bodies.
+  for (int i = 0; i < clauses->length(); i++) {
+    Comment cmnt(masm_, "[ Case body");
+    CaseClause* clause = clauses->at(i);
+    __ bind(clause->body_target());
+    PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
+    VisitStatements(clause->statements());
+  }
+
+  __ bind(nested_statement.break_target());
+  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
 }
 
 
 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ ForInStatement");
+  SetStatementPosition(stmt);
+
+  Label loop, exit;
+  ForIn loop_statement(this, stmt);
+  increment_loop_depth();
+
+  // Get the object to enumerate over. Both SpiderMonkey and JSC
+  // ignore null and undefined in contrast to the specification; see
+  // ECMA-262 section 12.6.4.
+  VisitForAccumulatorValue(stmt->enumerable());
+  __ mov(a0, result_register());  // Result as param to InvokeBuiltin below.
+  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+  __ Branch(&exit, eq, a0, Operand(at));
+  Register null_value = t1;
+  __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+  __ Branch(&exit, eq, a0, Operand(null_value));
+
+  // Convert the object to a JS object.
+  Label convert, done_convert;
+  __ JumpIfSmi(a0, &convert);
+  __ GetObjectType(a0, a1, a1);
+  __ Branch(&done_convert, hs, a1, Operand(FIRST_JS_OBJECT_TYPE));
+  __ bind(&convert);
+  __ push(a0);
+  __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+  __ mov(a0, v0);
+  __ bind(&done_convert);
+  __ push(a0);
+
+  // Check cache validity in generated code. This is a fast case for
+  // the JSObject::IsSimpleEnum cache validity checks. If we cannot
+  // guarantee cache validity, call the runtime system to check cache
+  // validity or get the property names in a fixed array.
+  Label next, call_runtime;
+  // Preload a couple of values used in the loop.
+  Register  empty_fixed_array_value = t2;
+  __ LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
+  Register empty_descriptor_array_value = t3;
+  __ LoadRoot(empty_descriptor_array_value,
+              Heap::kEmptyDescriptorArrayRootIndex);
+  __ mov(a1, a0);
+  __ bind(&next);
+
+  // Check that there are no elements.  Register a1 contains the
+  // current JS object we've reached through the prototype chain.
+  __ lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset));
+  __ Branch(&call_runtime, ne, a2, Operand(empty_fixed_array_value));
+
+  // Check that instance descriptors are not empty so that we can
+  // check for an enum cache.  Leave the map in a2 for the subsequent
+  // prototype load.
+  __ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset));
+  __ lw(a3, FieldMemOperand(a2, Map::kInstanceDescriptorsOffset));
+  __ Branch(&call_runtime, eq, a3, Operand(empty_descriptor_array_value));
+
+  // Check that there is an enum cache in the non-empty instance
+  // descriptors (a3).  This is the case if the next enumeration
+  // index field does not contain a smi.
+  __ lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumerationIndexOffset));
+  __ JumpIfSmi(a3, &call_runtime);
+
+  // For all objects but the receiver, check that the cache is empty.
+  Label check_prototype;
+  __ Branch(&check_prototype, eq, a1, Operand(a0));
+  __ lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumCacheBridgeCacheOffset));
+  __ Branch(&call_runtime, ne, a3, Operand(empty_fixed_array_value));
+
+  // Load the prototype from the map and loop if non-null.
+  __ bind(&check_prototype);
+  __ lw(a1, FieldMemOperand(a2, Map::kPrototypeOffset));
+  __ Branch(&next, ne, a1, Operand(null_value));
+
+  // The enum cache is valid.  Load the map of the object being
+  // iterated over and use the cache for the iteration.
+  Label use_cache;
+  __ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset));
+  __ Branch(&use_cache);
+
+  // Get the set of properties to enumerate.
+  __ bind(&call_runtime);
+  __ push(a0);  // Duplicate the enumerable object on the stack.
+  __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
+
+  // If we got a map from the runtime call, we can do a fast
+  // modification check. Otherwise, we got a fixed array, and we have
+  // to do a slow check.
+  Label fixed_array;
+  __ mov(a2, v0);
+  __ lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
+  __ LoadRoot(at, Heap::kMetaMapRootIndex);
+  __ Branch(&fixed_array, ne, a1, Operand(at));
+
+  // We got a map in register v0. Get the enumeration cache from it.
+  __ bind(&use_cache);
+  __ lw(a1, FieldMemOperand(v0, Map::kInstanceDescriptorsOffset));
+  __ lw(a1, FieldMemOperand(a1, DescriptorArray::kEnumerationIndexOffset));
+  __ lw(a2, FieldMemOperand(a1, DescriptorArray::kEnumCacheBridgeCacheOffset));
+
+  // Setup the four remaining stack slots.
+  __ push(v0);  // Map.
+  __ lw(a1, FieldMemOperand(a2, FixedArray::kLengthOffset));
+  __ li(a0, Operand(Smi::FromInt(0)));
+  // Push enumeration cache, enumeration cache length (as smi) and zero.
+  __ Push(a2, a1, a0);
+  __ jmp(&loop);
+
+  // We got a fixed array in register v0. Iterate through that.
+  __ bind(&fixed_array);
+  __ li(a1, Operand(Smi::FromInt(0)));  // Map (0) - force slow check.
+  __ Push(a1, v0);
+  __ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset));
+  __ li(a0, Operand(Smi::FromInt(0)));
+  __ Push(a1, a0);  // Fixed array length (as smi) and initial index.
+
+  // Generate code for doing the condition check.
+  __ bind(&loop);
+  // Load the current count to a0, load the length to a1.
+  __ lw(a0, MemOperand(sp, 0 * kPointerSize));
+  __ lw(a1, MemOperand(sp, 1 * kPointerSize));
+  __ Branch(loop_statement.break_target(), hs, a0, Operand(a1));
+
+  // Get the current entry of the array into register a3.
+  __ lw(a2, MemOperand(sp, 2 * kPointerSize));
+  __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
+  __ addu(t0, a2, t0);  // Array base + scaled (smi) index.
+  __ lw(a3, MemOperand(t0));  // Current entry.
+
+  // Get the expected map from the stack or a zero map in the
+  // permanent slow case into register a2.
+  __ lw(a2, MemOperand(sp, 3 * kPointerSize));
+
+  // Check if the expected map still matches that of the enumerable.
+  // If not, we have to filter the key.
+  Label update_each;
+  __ lw(a1, MemOperand(sp, 4 * kPointerSize));
+  __ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset));
+  __ Branch(&update_each, eq, t0, Operand(a2));
+
+  // Convert the entry to a string or (smi) 0 if it isn't a property
+  // any more. If the property has been removed while iterating, we
+  // just skip it.
+  __ push(a1);  // Enumerable.
+  __ push(a3);  // Current entry.
+  __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
+  __ mov(a3, result_register());
+  __ Branch(loop_statement.continue_target(), eq, a3, Operand(zero_reg));
+
+  // Update the 'each' property or variable from the possibly filtered
+  // entry in register a3.
+  __ bind(&update_each);
+  __ mov(result_register(), a3);
+  // Perform the assignment as if via '='.
+  { EffectContext context(this);
+    EmitAssignment(stmt->each(), stmt->AssignmentId());
+  }
+
+  // Generate code for the body of the loop.
+  Visit(stmt->body());
+
+  // Generate code for the going to the next element by incrementing
+  // the index (smi) stored on top of the stack.
+  __ bind(loop_statement.continue_target());
+  __ pop(a0);
+  __ Addu(a0, a0, Operand(Smi::FromInt(1)));
+  __ push(a0);
+
+  EmitStackCheck(stmt);
+  __ Branch(&loop);
+
+  // Remove the pointers stored on the stack.
+  __ bind(loop_statement.break_target());
+  __ Drop(5);
+
+  // Exit and decrement the loop depth.
+  __ bind(&exit);
+  decrement_loop_depth();
 }
 
 
 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
                                        bool pretenure) {
-  UNIMPLEMENTED_MIPS();
+  // Use the fast case closure allocation code that allocates in new
+  // space for nested functions that don't need literals cloning. If
+  // we're running with the --always-opt or the --prepare-always-opt
+  // flag, we need to use the runtime function so that the new function
+  // we are creating here gets a chance to have its code optimized and
+  // doesn't just get a copy of the existing unoptimized code.
+  if (!FLAG_always_opt &&
+      !FLAG_prepare_always_opt &&
+      !pretenure &&
+      scope()->is_function_scope() &&
+      info->num_literals() == 0) {
+    FastNewClosureStub stub(info->strict_mode() ? kStrictMode : kNonStrictMode);
+    __ li(a0, Operand(info));
+    __ push(a0);
+    __ CallStub(&stub);
+  } else {
+    __ li(a0, Operand(info));
+    __ LoadRoot(a1, pretenure ? Heap::kTrueValueRootIndex
+                              : Heap::kFalseValueRootIndex);
+    __ Push(cp, a0, a1);
+    __ CallRuntime(Runtime::kNewClosure, 3);
+  }
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ VariableProxy");
+  EmitVariableLoad(expr->var());
+}
+
+
+void FullCodeGenerator::EmitLoadGlobalSlotCheckExtensions(
+    Slot* slot,
+    TypeofState typeof_state,
+    Label* slow) {
+  Register current = cp;
+  Register next = a1;
+  Register temp = a2;
+
+  Scope* s = scope();
+  while (s != NULL) {
+    if (s->num_heap_slots() > 0) {
+      if (s->calls_eval()) {
+        // Check that extension is NULL.
+        __ lw(temp, ContextOperand(current, Context::EXTENSION_INDEX));
+        __ Branch(slow, ne, temp, Operand(zero_reg));
+      }
+      // Load next context in chain.
+      __ lw(next, ContextOperand(current, Context::CLOSURE_INDEX));
+      __ lw(next, FieldMemOperand(next, JSFunction::kContextOffset));
+      // Walk the rest of the chain without clobbering cp.
+      current = next;
+    }
+    // If no outer scope calls eval, we do not need to check more
+    // context extensions.
+    if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
+    s = s->outer_scope();
+  }
+
+  if (s->is_eval_scope()) {
+    Label loop, fast;
+    if (!current.is(next)) {
+      __ Move(next, current);
+    }
+    __ bind(&loop);
+    // Terminate at global context.
+    __ lw(temp, FieldMemOperand(next, HeapObject::kMapOffset));
+    __ LoadRoot(t0, Heap::kGlobalContextMapRootIndex);
+    __ Branch(&fast, eq, temp, Operand(t0));
+    // Check that extension is NULL.
+    __ lw(temp, ContextOperand(next, Context::EXTENSION_INDEX));
+    __ Branch(slow, ne, temp, Operand(zero_reg));
+    // Load next context in chain.
+    __ lw(next, ContextOperand(next, Context::CLOSURE_INDEX));
+    __ lw(next, FieldMemOperand(next, JSFunction::kContextOffset));
+    __ Branch(&loop);
+    __ bind(&fast);
+  }
+
+  __ lw(a0, GlobalObjectOperand());
+  __ li(a2, Operand(slot->var()->name()));
+  RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
+      ? RelocInfo::CODE_TARGET
+      : RelocInfo::CODE_TARGET_CONTEXT;
+  Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+  EmitCallIC(ic, mode, AstNode::kNoNumber);
 }
 
 
 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(
     Slot* slot,
     Label* slow) {
-  UNIMPLEMENTED_MIPS();
-  return MemOperand(zero_reg, 0);
+  ASSERT(slot->type() == Slot::CONTEXT);
+  Register context = cp;
+  Register next = a3;
+  Register temp = t0;
+
+  for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
+    if (s->num_heap_slots() > 0) {
+      if (s->calls_eval()) {
+        // Check that extension is NULL.
+        __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
+        __ Branch(slow, ne, temp, Operand(zero_reg));
+      }
+      __ lw(next, ContextOperand(context, Context::CLOSURE_INDEX));
+      __ lw(next, FieldMemOperand(next, JSFunction::kContextOffset));
+      // Walk the rest of the chain without clobbering cp.
+      context = next;
+    }
+  }
+  // Check that last extension is NULL.
+  __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
+  __ Branch(slow, ne, temp, Operand(zero_reg));
+
+  // This function is used only for loads, not stores, so it's safe to
+  // return an cp-based operand (the write barrier cannot be allowed to
+  // destroy the cp register).
+  return ContextOperand(context, slot->index());
 }
 
 
@@ -321,337 +1202,2850 @@
     TypeofState typeof_state,
     Label* slow,
     Label* done) {
-  UNIMPLEMENTED_MIPS();
-}
-
-
-void FullCodeGenerator::EmitLoadGlobalSlotCheckExtensions(
-    Slot* slot,
-    TypeofState typeof_state,
-    Label* slow) {
-  UNIMPLEMENTED_MIPS();
+  // Generate fast-case code for variables that might be shadowed by
+  // eval-introduced variables.  Eval is used a lot without
+  // introducing variables.  In those cases, we do not want to
+  // perform a runtime call for all variables in the scope
+  // containing the eval.
+  if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
+    EmitLoadGlobalSlotCheckExtensions(slot, typeof_state, slow);
+    __ Branch(done);
+  } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
+    Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot();
+    Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite();
+    if (potential_slot != NULL) {
+      // Generate fast case for locals that rewrite to slots.
+      __ lw(v0, ContextSlotOperandCheckExtensions(potential_slot, slow));
+      if (potential_slot->var()->mode() == Variable::CONST) {
+        __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+        __ subu(at, v0, at);  // Sub as compare: at == 0 on eq.
+        __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
+        __ movz(v0, a0, at);  // Conditional move.
+      }
+      __ Branch(done);
+    } else if (rewrite != NULL) {
+      // Generate fast case for calls of an argument function.
+      Property* property = rewrite->AsProperty();
+      if (property != NULL) {
+        VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
+        Literal* key_literal = property->key()->AsLiteral();
+        if (obj_proxy != NULL &&
+            key_literal != NULL &&
+            obj_proxy->IsArguments() &&
+            key_literal->handle()->IsSmi()) {
+          // Load arguments object if there are no eval-introduced
+          // variables. Then load the argument from the arguments
+          // object using keyed load.
+          __ lw(a1,
+                 ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(),
+                                                   slow));
+          __ li(a0, Operand(key_literal->handle()));
+          Handle<Code> ic =
+              isolate()->builtins()->KeyedLoadIC_Initialize();
+          EmitCallIC(ic, RelocInfo::CODE_TARGET, AstNode::kNoNumber);
+          __ Branch(done);
+        }
+      }
+    }
+  }
 }
 
 
 void FullCodeGenerator::EmitVariableLoad(Variable* var) {
-  UNIMPLEMENTED_MIPS();
+  // Four cases: non-this global variables, lookup slots, all other
+  // types of slots, and parameters that rewrite to explicit property
+  // accesses on the arguments object.
+  Slot* slot = var->AsSlot();
+  Property* property = var->AsProperty();
+
+  if (var->is_global() && !var->is_this()) {
+    Comment cmnt(masm_, "Global variable");
+    // Use inline caching. Variable name is passed in a2 and the global
+    // object (receiver) in a0.
+    __ lw(a0, GlobalObjectOperand());
+    __ li(a2, Operand(var->name()));
+    Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+    EmitCallIC(ic, RelocInfo::CODE_TARGET_CONTEXT, AstNode::kNoNumber);
+    context()->Plug(v0);
+
+  } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
+    Label done, slow;
+
+    // Generate code for loading from variables potentially shadowed
+    // by eval-introduced variables.
+    EmitDynamicLoadFromSlotFastCase(slot, NOT_INSIDE_TYPEOF, &slow, &done);
+
+    __ bind(&slow);
+    Comment cmnt(masm_, "Lookup slot");
+    __ li(a1, Operand(var->name()));
+    __ Push(cp, a1);  // Context and name.
+    __ CallRuntime(Runtime::kLoadContextSlot, 2);
+    __ bind(&done);
+
+    context()->Plug(v0);
+
+  } else if (slot != NULL) {
+    Comment cmnt(masm_, (slot->type() == Slot::CONTEXT)
+                            ? "Context slot"
+                            : "Stack slot");
+    if (var->mode() == Variable::CONST) {
+       // Constants may be the hole value if they have not been initialized.
+       // Unhole them.
+       MemOperand slot_operand = EmitSlotSearch(slot, a0);
+       __ lw(v0, slot_operand);
+       __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+       __ subu(at, v0, at);  // Sub as compare: at == 0 on eq.
+       __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
+       __ movz(v0, a0, at);  // Conditional move.
+       context()->Plug(v0);
+     } else {
+       context()->Plug(slot);
+     }
+  } else {
+    Comment cmnt(masm_, "Rewritten parameter");
+    ASSERT_NOT_NULL(property);
+    // Rewritten parameter accesses are of the form "slot[literal]".
+    // Assert that the object is in a slot.
+    Variable* object_var = property->obj()->AsVariableProxy()->AsVariable();
+    ASSERT_NOT_NULL(object_var);
+    Slot* object_slot = object_var->AsSlot();
+    ASSERT_NOT_NULL(object_slot);
+
+    // Load the object.
+    Move(a1, object_slot);
+
+    // Assert that the key is a smi.
+    Literal* key_literal = property->key()->AsLiteral();
+    ASSERT_NOT_NULL(key_literal);
+    ASSERT(key_literal->handle()->IsSmi());
+
+    // Load the key.
+    __ li(a0, Operand(key_literal->handle()));
+
+    // Call keyed load IC. It has arguments key and receiver in a0 and a1.
+    Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
+    EmitCallIC(ic, RelocInfo::CODE_TARGET, AstNode::kNoNumber);
+    context()->Plug(v0);
+  }
 }
 
 
 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ RegExpLiteral");
+  Label materialized;
+  // Registers will be used as follows:
+  // t1 = materialized value (RegExp literal)
+  // t0 = JS function, literals array
+  // a3 = literal index
+  // a2 = RegExp pattern
+  // a1 = RegExp flags
+  // a0 = RegExp literal clone
+  __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  __ lw(t0, FieldMemOperand(a0, JSFunction::kLiteralsOffset));
+  int literal_offset =
+      FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
+  __ lw(t1, FieldMemOperand(t0, literal_offset));
+  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+  __ Branch(&materialized, ne, t1, Operand(at));
+
+  // Create regexp literal using runtime function.
+  // Result will be in v0.
+  __ li(a3, Operand(Smi::FromInt(expr->literal_index())));
+  __ li(a2, Operand(expr->pattern()));
+  __ li(a1, Operand(expr->flags()));
+  __ Push(t0, a3, a2, a1);
+  __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
+  __ mov(t1, v0);
+
+  __ bind(&materialized);
+  int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
+  Label allocated, runtime_allocate;
+  __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
+  __ jmp(&allocated);
+
+  __ bind(&runtime_allocate);
+  __ push(t1);
+  __ li(a0, Operand(Smi::FromInt(size)));
+  __ push(a0);
+  __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
+  __ pop(t1);
+
+  __ bind(&allocated);
+
+  // After this, registers are used as follows:
+  // v0: Newly allocated regexp.
+  // t1: Materialized regexp.
+  // a2: temp.
+  __ CopyFields(v0, t1, a2.bit(), size / kPointerSize);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ ObjectLiteral");
+  __ lw(a3, MemOperand(fp,  JavaScriptFrameConstants::kFunctionOffset));
+  __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
+  __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
+  __ li(a1, Operand(expr->constant_properties()));
+  int flags = expr->fast_elements()
+      ? ObjectLiteral::kFastElements
+      : ObjectLiteral::kNoFlags;
+  flags |= expr->has_function()
+      ? ObjectLiteral::kHasFunction
+      : ObjectLiteral::kNoFlags;
+  __ li(a0, Operand(Smi::FromInt(flags)));
+  __ Push(a3, a2, a1, a0);
+  if (expr->depth() > 1) {
+    __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
+  } else {
+    __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
+  }
+
+  // If result_saved is true the result is on top of the stack.  If
+  // result_saved is false the result is in v0.
+  bool result_saved = false;
+
+  // Mark all computed expressions that are bound to a key that
+  // is shadowed by a later occurrence of the same key. For the
+  // marked expressions, no store code is emitted.
+  expr->CalculateEmitStore();
+
+  for (int i = 0; i < expr->properties()->length(); i++) {
+    ObjectLiteral::Property* property = expr->properties()->at(i);
+    if (property->IsCompileTimeValue()) continue;
+
+    Literal* key = property->key();
+    Expression* value = property->value();
+    if (!result_saved) {
+      __ push(v0);  // Save result on stack.
+      result_saved = true;
+    }
+    switch (property->kind()) {
+      case ObjectLiteral::Property::CONSTANT:
+        UNREACHABLE();
+      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+        ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value()));
+        // Fall through.
+      case ObjectLiteral::Property::COMPUTED:
+        if (key->handle()->IsSymbol()) {
+          if (property->emit_store()) {
+            VisitForAccumulatorValue(value);
+            __ mov(a0, result_register());
+            __ li(a2, Operand(key->handle()));
+            __ lw(a1, MemOperand(sp));
+            Handle<Code> ic = is_strict_mode()
+                ? isolate()->builtins()->StoreIC_Initialize_Strict()
+                : isolate()->builtins()->StoreIC_Initialize();
+            EmitCallIC(ic, RelocInfo::CODE_TARGET_WITH_ID, key->id());
+            PrepareForBailoutForId(key->id(), NO_REGISTERS);
+          } else {
+            VisitForEffect(value);
+          }
+          break;
+        }
+        // Fall through.
+      case ObjectLiteral::Property::PROTOTYPE:
+        // Duplicate receiver on stack.
+        __ lw(a0, MemOperand(sp));
+        __ push(a0);
+        VisitForStackValue(key);
+        VisitForStackValue(value);
+        if (property->emit_store()) {
+          __ li(a0, Operand(Smi::FromInt(NONE)));  // PropertyAttributes.
+          __ push(a0);
+          __ CallRuntime(Runtime::kSetProperty, 4);
+        } else {
+          __ Drop(3);
+        }
+        break;
+      case ObjectLiteral::Property::GETTER:
+      case ObjectLiteral::Property::SETTER:
+        // Duplicate receiver on stack.
+        __ lw(a0, MemOperand(sp));
+        __ push(a0);
+        VisitForStackValue(key);
+        __ li(a1, Operand(property->kind() == ObjectLiteral::Property::SETTER ?
+                           Smi::FromInt(1) :
+                           Smi::FromInt(0)));
+        __ push(a1);
+        VisitForStackValue(value);
+        __ CallRuntime(Runtime::kDefineAccessor, 4);
+        break;
+    }
+  }
+
+  if (expr->has_function()) {
+    ASSERT(result_saved);
+    __ lw(a0, MemOperand(sp));
+    __ push(a0);
+    __ CallRuntime(Runtime::kToFastProperties, 1);
+  }
+
+  if (result_saved) {
+    context()->PlugTOS();
+  } else {
+    context()->Plug(v0);
+  }
 }
 
 
 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ ArrayLiteral");
+
+  ZoneList<Expression*>* subexprs = expr->values();
+  int length = subexprs->length();
+  __ mov(a0, result_register());
+  __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
+  __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
+  __ li(a1, Operand(expr->constant_elements()));
+  __ Push(a3, a2, a1);
+  if (expr->constant_elements()->map() ==
+      isolate()->heap()->fixed_cow_array_map()) {
+    FastCloneShallowArrayStub stub(
+        FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
+    __ CallStub(&stub);
+    __ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(),
+        1, a1, a2);
+  } else if (expr->depth() > 1) {
+    __ CallRuntime(Runtime::kCreateArrayLiteral, 3);
+  } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
+    __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
+  } else {
+    FastCloneShallowArrayStub stub(
+        FastCloneShallowArrayStub::CLONE_ELEMENTS, length);
+    __ CallStub(&stub);
+  }
+
+  bool result_saved = false;  // Is the result saved to the stack?
+
+  // Emit code to evaluate all the non-constant subexpressions and to store
+  // them into the newly cloned array.
+  for (int i = 0; i < length; i++) {
+    Expression* subexpr = subexprs->at(i);
+    // If the subexpression is a literal or a simple materialized literal it
+    // is already set in the cloned array.
+    if (subexpr->AsLiteral() != NULL ||
+        CompileTimeValue::IsCompileTimeValue(subexpr)) {
+      continue;
+    }
+
+    if (!result_saved) {
+      __ push(v0);
+      result_saved = true;
+    }
+    VisitForAccumulatorValue(subexpr);
+
+    // Store the subexpression value in the array's elements.
+    __ lw(a1, MemOperand(sp));  // Copy of array literal.
+    __ lw(a1, FieldMemOperand(a1, JSObject::kElementsOffset));
+    int offset = FixedArray::kHeaderSize + (i * kPointerSize);
+    __ sw(result_register(), FieldMemOperand(a1, offset));
+
+    // Update the write barrier for the array store with v0 as the scratch
+    // register.
+    __ li(a2, Operand(offset));
+    // TODO(PJ): double check this RecordWrite call.
+    __ RecordWrite(a1, a2, result_register());
+
+    PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
+  }
+
+  if (result_saved) {
+    context()->PlugTOS();
+  } else {
+    context()->Plug(v0);
+  }
 }
 
 
 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ Assignment");
+  // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
+  // on the left-hand side.
+  if (!expr->target()->IsValidLeftHandSide()) {
+    VisitForEffect(expr->target());
+    return;
+  }
+
+  // Left-hand side can only be a property, a global or a (parameter or local)
+  // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
+  enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
+  LhsKind assign_type = VARIABLE;
+  Property* property = expr->target()->AsProperty();
+  if (property != NULL) {
+    assign_type = (property->key()->IsPropertyName())
+        ? NAMED_PROPERTY
+        : KEYED_PROPERTY;
+  }
+
+  // Evaluate LHS expression.
+  switch (assign_type) {
+    case VARIABLE:
+      // Nothing to do here.
+      break;
+    case NAMED_PROPERTY:
+      if (expr->is_compound()) {
+        // We need the receiver both on the stack and in the accumulator.
+        VisitForAccumulatorValue(property->obj());
+        __ push(result_register());
+      } else {
+        VisitForStackValue(property->obj());
+      }
+      break;
+    case KEYED_PROPERTY:
+      // We need the key and receiver on both the stack and in v0 and a1.
+      if (expr->is_compound()) {
+        if (property->is_arguments_access()) {
+          VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
+          __ lw(v0, EmitSlotSearch(obj_proxy->var()->AsSlot(), v0));
+          __ push(v0);
+          __ li(v0, Operand(property->key()->AsLiteral()->handle()));
+        } else {
+          VisitForStackValue(property->obj());
+          VisitForAccumulatorValue(property->key());
+        }
+        __ lw(a1, MemOperand(sp, 0));
+        __ push(v0);
+      } else {
+        if (property->is_arguments_access()) {
+          VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
+          __ lw(a1, EmitSlotSearch(obj_proxy->var()->AsSlot(), v0));
+          __ li(v0, Operand(property->key()->AsLiteral()->handle()));
+          __ Push(a1, v0);
+        } else {
+          VisitForStackValue(property->obj());
+          VisitForStackValue(property->key());
+        }
+      }
+      break;
+  }
+
+  // For compound assignments we need another deoptimization point after the
+  // variable/property load.
+  if (expr->is_compound()) {
+    { AccumulatorValueContext context(this);
+      switch (assign_type) {
+        case VARIABLE:
+          EmitVariableLoad(expr->target()->AsVariableProxy()->var());
+          PrepareForBailout(expr->target(), TOS_REG);
+          break;
+        case NAMED_PROPERTY:
+          EmitNamedPropertyLoad(property);
+          PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
+          break;
+        case KEYED_PROPERTY:
+          EmitKeyedPropertyLoad(property);
+          PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
+          break;
+      }
+    }
+
+    Token::Value op = expr->binary_op();
+    __ push(v0);  // Left operand goes on the stack.
+    VisitForAccumulatorValue(expr->value());
+
+    OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
+        ? OVERWRITE_RIGHT
+        : NO_OVERWRITE;
+    SetSourcePosition(expr->position() + 1);
+    AccumulatorValueContext context(this);
+    if (ShouldInlineSmiCase(op)) {
+      EmitInlineSmiBinaryOp(expr->binary_operation(),
+                            op,
+                            mode,
+                            expr->target(),
+                            expr->value());
+    } else {
+      EmitBinaryOp(expr->binary_operation(), op, mode);
+    }
+
+    // Deoptimization point in case the binary operation may have side effects.
+    PrepareForBailout(expr->binary_operation(), TOS_REG);
+  } else {
+    VisitForAccumulatorValue(expr->value());
+  }
+
+  // Record source position before possible IC call.
+  SetSourcePosition(expr->position());
+
+  // Store the value.
+  switch (assign_type) {
+    case VARIABLE:
+      EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
+                             expr->op());
+      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+      context()->Plug(v0);
+      break;
+    case NAMED_PROPERTY:
+      EmitNamedPropertyAssignment(expr);
+      break;
+    case KEYED_PROPERTY:
+      EmitKeyedPropertyAssignment(expr);
+      break;
+  }
 }
 
 
 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
-  UNIMPLEMENTED_MIPS();
+  SetSourcePosition(prop->position());
+  Literal* key = prop->key()->AsLiteral();
+  __ mov(a0, result_register());
+  __ li(a2, Operand(key->handle()));
+  // Call load IC. It has arguments receiver and property name a0 and a2.
+  Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+  if (prop->is_synthetic()) {
+    EmitCallIC(ic, RelocInfo::CODE_TARGET, AstNode::kNoNumber);
+  } else {
+    EmitCallIC(ic, RelocInfo::CODE_TARGET_WITH_ID, prop->id());
+  }
 }
 
 
 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
-  UNIMPLEMENTED_MIPS();
+  SetSourcePosition(prop->position());
+  __ mov(a0, result_register());
+  // Call keyed load IC. It has arguments key and receiver in a0 and a1.
+  Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
+  if (prop->is_synthetic()) {
+    EmitCallIC(ic, RelocInfo::CODE_TARGET, AstNode::kNoNumber);
+  } else {
+    EmitCallIC(ic, RelocInfo::CODE_TARGET_WITH_ID, prop->id());
+  }
 }
 
 
 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
                                               Token::Value op,
                                               OverwriteMode mode,
-                                              Expression* left,
-                                              Expression* right) {
-  UNIMPLEMENTED_MIPS();
+                                              Expression* left_expr,
+                                              Expression* right_expr) {
+  Label done, smi_case, stub_call;
+
+  Register scratch1 = a2;
+  Register scratch2 = a3;
+
+  // Get the arguments.
+  Register left = a1;
+  Register right = a0;
+  __ pop(left);
+  __ mov(a0, result_register());
+
+  // Perform combined smi check on both operands.
+  __ Or(scratch1, left, Operand(right));
+  STATIC_ASSERT(kSmiTag == 0);
+  JumpPatchSite patch_site(masm_);
+  patch_site.EmitJumpIfSmi(scratch1, &smi_case);
+
+  __ bind(&stub_call);
+  TypeRecordingBinaryOpStub stub(op, mode);
+  EmitCallIC(stub.GetCode(), &patch_site, expr->id());
+  __ jmp(&done);
+
+  __ bind(&smi_case);
+  // Smi case. This code works the same way as the smi-smi case in the type
+  // recording binary operation stub, see
+  // TypeRecordingBinaryOpStub::GenerateSmiSmiOperation for comments.
+  switch (op) {
+    case Token::SAR:
+      __ Branch(&stub_call);
+      __ GetLeastBitsFromSmi(scratch1, right, 5);
+      __ srav(right, left, scratch1);
+      __ And(v0, right, Operand(~kSmiTagMask));
+      break;
+    case Token::SHL: {
+      __ Branch(&stub_call);
+      __ SmiUntag(scratch1, left);
+      __ GetLeastBitsFromSmi(scratch2, right, 5);
+      __ sllv(scratch1, scratch1, scratch2);
+      __ Addu(scratch2, scratch1, Operand(0x40000000));
+      __ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
+      __ SmiTag(v0, scratch1);
+      break;
+    }
+    case Token::SHR: {
+      __ Branch(&stub_call);
+      __ SmiUntag(scratch1, left);
+      __ GetLeastBitsFromSmi(scratch2, right, 5);
+      __ srlv(scratch1, scratch1, scratch2);
+      __ And(scratch2, scratch1, 0xc0000000);
+      __ Branch(&stub_call, ne, scratch2, Operand(zero_reg));
+      __ SmiTag(v0, scratch1);
+      break;
+    }
+    case Token::ADD:
+      __ AdduAndCheckForOverflow(v0, left, right, scratch1);
+      __ BranchOnOverflow(&stub_call, scratch1);
+      break;
+    case Token::SUB:
+      __ SubuAndCheckForOverflow(v0, left, right, scratch1);
+      __ BranchOnOverflow(&stub_call, scratch1);
+      break;
+    case Token::MUL: {
+      __ SmiUntag(scratch1, right);
+      __ Mult(left, scratch1);
+      __ mflo(scratch1);
+      __ mfhi(scratch2);
+      __ sra(scratch1, scratch1, 31);
+      __ Branch(&stub_call, ne, scratch1, Operand(scratch2));
+      __ mflo(v0);
+      __ Branch(&done, ne, v0, Operand(zero_reg));
+      __ Addu(scratch2, right, left);
+      __ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
+      ASSERT(Smi::FromInt(0) == 0);
+      __ mov(v0, zero_reg);
+      break;
+    }
+    case Token::BIT_OR:
+      __ Or(v0, left, Operand(right));
+      break;
+    case Token::BIT_AND:
+      __ And(v0, left, Operand(right));
+      break;
+    case Token::BIT_XOR:
+      __ Xor(v0, left, Operand(right));
+      break;
+    default:
+      UNREACHABLE();
+  }
+
+  __ bind(&done);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
                                      Token::Value op,
                                      OverwriteMode mode) {
-  UNIMPLEMENTED_MIPS();
+  __ mov(a0, result_register());
+  __ pop(a1);
+  TypeRecordingBinaryOpStub stub(op, mode);
+  EmitCallIC(stub.GetCode(), NULL, expr->id());
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitAssignment(Expression* expr, int bailout_ast_id) {
-  UNIMPLEMENTED_MIPS();
+  // Invalid left-hand sides are rewritten to have a 'throw
+  // ReferenceError' on the left-hand side.
+  if (!expr->IsValidLeftHandSide()) {
+    VisitForEffect(expr);
+    return;
+  }
+
+  // Left-hand side can only be a property, a global or a (parameter or local)
+  // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
+  enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
+  LhsKind assign_type = VARIABLE;
+  Property* prop = expr->AsProperty();
+  if (prop != NULL) {
+    assign_type = (prop->key()->IsPropertyName())
+        ? NAMED_PROPERTY
+        : KEYED_PROPERTY;
+  }
+
+  switch (assign_type) {
+    case VARIABLE: {
+      Variable* var = expr->AsVariableProxy()->var();
+      EffectContext context(this);
+      EmitVariableAssignment(var, Token::ASSIGN);
+      break;
+    }
+    case NAMED_PROPERTY: {
+      __ push(result_register());  // Preserve value.
+      VisitForAccumulatorValue(prop->obj());
+      __ mov(a1, result_register());
+      __ pop(a0);  // Restore value.
+      __ li(a2, Operand(prop->key()->AsLiteral()->handle()));
+      Handle<Code> ic = is_strict_mode()
+          ? isolate()->builtins()->StoreIC_Initialize_Strict()
+          : isolate()->builtins()->StoreIC_Initialize();
+      EmitCallIC(ic, RelocInfo::CODE_TARGET, AstNode::kNoNumber);
+      break;
+    }
+    case KEYED_PROPERTY: {
+      __ push(result_register());  // Preserve value.
+      if (prop->is_synthetic()) {
+        ASSERT(prop->obj()->AsVariableProxy() != NULL);
+        ASSERT(prop->key()->AsLiteral() != NULL);
+        { AccumulatorValueContext for_object(this);
+          EmitVariableLoad(prop->obj()->AsVariableProxy()->var());
+        }
+        __ mov(a2, result_register());
+        __ li(a1, Operand(prop->key()->AsLiteral()->handle()));
+      } else {
+        VisitForStackValue(prop->obj());
+        VisitForAccumulatorValue(prop->key());
+        __ mov(a1, result_register());
+        __ pop(a2);
+      }
+      __ pop(a0);  // Restore value.
+      Handle<Code> ic = is_strict_mode()
+        ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+        : isolate()->builtins()->KeyedStoreIC_Initialize();
+      EmitCallIC(ic, RelocInfo::CODE_TARGET, AstNode::kNoNumber);
+      break;
+    }
+  }
+  PrepareForBailoutForId(bailout_ast_id, TOS_REG);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitVariableAssignment(Variable* var,
                                                Token::Value op) {
-  UNIMPLEMENTED_MIPS();
+  // Left-hand sides that rewrite to explicit property accesses do not reach
+  // here.
+  ASSERT(var != NULL);
+  ASSERT(var->is_global() || var->AsSlot() != NULL);
+
+  if (var->is_global()) {
+    ASSERT(!var->is_this());
+    // Assignment to a global variable.  Use inline caching for the
+    // assignment.  Right-hand-side value is passed in a0, variable name in
+    // a2, and the global object in a1.
+    __ mov(a0, result_register());
+    __ li(a2, Operand(var->name()));
+    __ lw(a1, GlobalObjectOperand());
+    Handle<Code> ic = is_strict_mode()
+        ? isolate()->builtins()->StoreIC_Initialize_Strict()
+        : isolate()->builtins()->StoreIC_Initialize();
+    EmitCallIC(ic, RelocInfo::CODE_TARGET_CONTEXT, AstNode::kNoNumber);
+
+  } else if (op == Token::INIT_CONST) {
+    // Like var declarations, const declarations are hoisted to function
+    // scope.  However, unlike var initializers, const initializers are able
+    // to drill a hole to that function context, even from inside a 'with'
+    // context.  We thus bypass the normal static scope lookup.
+    Slot* slot = var->AsSlot();
+    Label skip;
+    switch (slot->type()) {
+      case Slot::PARAMETER:
+        // No const parameters.
+        UNREACHABLE();
+        break;
+      case Slot::LOCAL:
+        // Detect const reinitialization by checking for the hole value.
+        __ lw(a1, MemOperand(fp, SlotOffset(slot)));
+        __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
+        __ Branch(&skip, ne, a1, Operand(t0));
+        __ sw(result_register(), MemOperand(fp, SlotOffset(slot)));
+        break;
+      case Slot::CONTEXT: {
+        __ lw(a1, ContextOperand(cp, Context::FCONTEXT_INDEX));
+        __ lw(a2, ContextOperand(a1, slot->index()));
+        __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
+        __ Branch(&skip, ne, a2, Operand(t0));
+        __ sw(result_register(), ContextOperand(a1, slot->index()));
+        int offset = Context::SlotOffset(slot->index());
+        __ mov(a3, result_register());  // Preserve the stored value in v0.
+        __ RecordWrite(a1, Operand(offset), a3, a2);
+        break;
+      }
+      case Slot::LOOKUP:
+        __ push(result_register());
+        __ li(a0, Operand(slot->var()->name()));
+        __ Push(cp, a0);  // Context and name.
+        __ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
+        break;
+    }
+    __ bind(&skip);
+
+  } else if (var->mode() != Variable::CONST) {
+    // Perform the assignment for non-const variables.  Const assignments
+    // are simply skipped.
+    Slot* slot = var->AsSlot();
+    switch (slot->type()) {
+      case Slot::PARAMETER:
+      case Slot::LOCAL:
+        // Perform the assignment.
+        __ sw(result_register(), MemOperand(fp, SlotOffset(slot)));
+        break;
+
+      case Slot::CONTEXT: {
+        MemOperand target = EmitSlotSearch(slot, a1);
+        // Perform the assignment and issue the write barrier.
+        __ sw(result_register(), target);
+        // RecordWrite may destroy all its register arguments.
+        __ mov(a3, result_register());
+         int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
+        __ RecordWrite(a1, Operand(offset), a2, a3);
+        break;
+      }
+
+      case Slot::LOOKUP:
+        // Call the runtime for the assignment.
+        __ push(v0);  // Value.
+        __ li(a1, Operand(slot->var()->name()));
+        __ li(a0, Operand(Smi::FromInt(strict_mode_flag())));
+        __ Push(cp, a1, a0);  // Context, name, strict mode.
+        __ CallRuntime(Runtime::kStoreContextSlot, 4);
+        break;
+    }
+  }
 }
 
 
 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
-  UNIMPLEMENTED_MIPS();
+  // Assignment to a property, using a named store IC.
+  Property* prop = expr->target()->AsProperty();
+  ASSERT(prop != NULL);
+  ASSERT(prop->key()->AsLiteral() != NULL);
+
+  // If the assignment starts a block of assignments to the same object,
+  // change to slow case to avoid the quadratic behavior of repeatedly
+  // adding fast properties.
+  if (expr->starts_initialization_block()) {
+    __ push(result_register());
+    __ lw(t0, MemOperand(sp, kPointerSize));  // Receiver is now under value.
+    __ push(t0);
+    __ CallRuntime(Runtime::kToSlowProperties, 1);
+    __ pop(result_register());
+  }
+
+  // Record source code position before IC call.
+  SetSourcePosition(expr->position());
+  __ mov(a0, result_register());  // Load the value.
+  __ li(a2, Operand(prop->key()->AsLiteral()->handle()));
+  // Load receiver to a1. Leave a copy in the stack if needed for turning the
+  // receiver into fast case.
+  if (expr->ends_initialization_block()) {
+    __ lw(a1, MemOperand(sp));
+  } else {
+    __ pop(a1);
+  }
+
+  Handle<Code> ic = is_strict_mode()
+        ? isolate()->builtins()->StoreIC_Initialize_Strict()
+        : isolate()->builtins()->StoreIC_Initialize();
+  EmitCallIC(ic, RelocInfo::CODE_TARGET_WITH_ID, expr->id());
+
+  // If the assignment ends an initialization block, revert to fast case.
+  if (expr->ends_initialization_block()) {
+    __ push(v0);  // Result of assignment, saved even if not needed.
+    // Receiver is under the result value.
+    __ lw(t0, MemOperand(sp, kPointerSize));
+    __ push(t0);
+    __ CallRuntime(Runtime::kToFastProperties, 1);
+    __ pop(v0);
+    __ Drop(1);
+  }
+  PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
-  UNIMPLEMENTED_MIPS();
+  // Assignment to a property, using a keyed store IC.
+
+  // If the assignment starts a block of assignments to the same object,
+  // change to slow case to avoid the quadratic behavior of repeatedly
+  // adding fast properties.
+  if (expr->starts_initialization_block()) {
+    __ push(result_register());
+    // Receiver is now under the key and value.
+    __ lw(t0, MemOperand(sp, 2 * kPointerSize));
+    __ push(t0);
+    __ CallRuntime(Runtime::kToSlowProperties, 1);
+    __ pop(result_register());
+  }
+
+  // Record source code position before IC call.
+  SetSourcePosition(expr->position());
+  // Call keyed store IC.
+  // The arguments are:
+  // - a0 is the value,
+  // - a1 is the key,
+  // - a2 is the receiver.
+  __ mov(a0, result_register());
+  __ pop(a1);  // Key.
+  // Load receiver to a2. Leave a copy in the stack if needed for turning the
+  // receiver into fast case.
+  if (expr->ends_initialization_block()) {
+    __ lw(a2, MemOperand(sp));
+  } else {
+    __ pop(a2);
+  }
+
+  Handle<Code> ic = is_strict_mode()
+      ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+      : isolate()->builtins()->KeyedStoreIC_Initialize();
+  EmitCallIC(ic, RelocInfo::CODE_TARGET_WITH_ID, expr->id());
+
+  // If the assignment ends an initialization block, revert to fast case.
+  if (expr->ends_initialization_block()) {
+    __ push(v0);  // Result of assignment, saved even if not needed.
+    // Receiver is under the result value.
+    __ lw(t0, MemOperand(sp, kPointerSize));
+    __ push(t0);
+    __ CallRuntime(Runtime::kToFastProperties, 1);
+    __ pop(v0);
+    __ Drop(1);
+  }
+  PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::VisitProperty(Property* expr) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ Property");
+  Expression* key = expr->key();
+
+  if (key->IsPropertyName()) {
+    VisitForAccumulatorValue(expr->obj());
+    EmitNamedPropertyLoad(expr);
+    context()->Plug(v0);
+  } else {
+    VisitForStackValue(expr->obj());
+    VisitForAccumulatorValue(expr->key());
+    __ pop(a1);
+    EmitKeyedPropertyLoad(expr);
+    context()->Plug(v0);
+  }
 }
 
 
 void FullCodeGenerator::EmitCallWithIC(Call* expr,
                                        Handle<Object> name,
                                        RelocInfo::Mode mode) {
-  UNIMPLEMENTED_MIPS();
+  // Code common for calls using the IC.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+  { PreservePositionScope scope(masm()->positions_recorder());
+    for (int i = 0; i < arg_count; i++) {
+      VisitForStackValue(args->at(i));
+    }
+    __ li(a2, Operand(name));
+  }
+  // Record source position for debugger.
+  SetSourcePosition(expr->position());
+  // Call the IC initialization code.
+  InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
+  Handle<Code> ic =
+      isolate()->stub_cache()->ComputeCallInitialize(arg_count, in_loop);
+  unsigned ast_id =
+      (mode == RelocInfo::CODE_TARGET_WITH_ID) ? expr->id() : kNoASTId;
+  EmitCallIC(ic, mode, ast_id);
+  RecordJSReturnSite(expr);
+  // Restore context register.
+  __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
                                             Expression* key,
                                             RelocInfo::Mode mode) {
-  UNIMPLEMENTED_MIPS();
+  // Load the key.
+  VisitForAccumulatorValue(key);
+
+  // Swap the name of the function and the receiver on the stack to follow
+  // the calling convention for call ICs.
+  __ pop(a1);
+  __ push(v0);
+  __ push(a1);
+
+  // Code common for calls using the IC.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+  { PreservePositionScope scope(masm()->positions_recorder());
+    for (int i = 0; i < arg_count; i++) {
+      VisitForStackValue(args->at(i));
+    }
+  }
+  // Record source position for debugger.
+  SetSourcePosition(expr->position());
+  // Call the IC initialization code.
+  InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
+  Handle<Code> ic =
+      isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count, in_loop);
+  __ lw(a2, MemOperand(sp, (arg_count + 1) * kPointerSize));  // Key.
+  EmitCallIC(ic, mode, expr->id());
+  RecordJSReturnSite(expr);
+  // Restore context register.
+  __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->DropAndPlug(1, v0);  // Drop the key still on the stack.
 }
 
 
 void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) {
-  UNIMPLEMENTED_MIPS();
+  // Code common for calls using the call stub.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+  { PreservePositionScope scope(masm()->positions_recorder());
+    for (int i = 0; i < arg_count; i++) {
+      VisitForStackValue(args->at(i));
+    }
+  }
+  // Record source position for debugger.
+  SetSourcePosition(expr->position());
+  InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
+  CallFunctionStub stub(arg_count, in_loop, flags);
+  __ CallStub(&stub);
+  RecordJSReturnSite(expr);
+  // Restore context register.
+  __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->DropAndPlug(1, v0);
+}
+
+
+void FullCodeGenerator::EmitResolvePossiblyDirectEval(ResolveEvalFlag flag,
+                                                      int arg_count) {
+  // Push copy of the first argument or undefined if it doesn't exist.
+  if (arg_count > 0) {
+    __ lw(a1, MemOperand(sp, arg_count * kPointerSize));
+  } else {
+    __ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
+  }
+  __ push(a1);
+
+  // Push the receiver of the enclosing function and do runtime call.
+  __ lw(a1, MemOperand(fp, (2 + scope()->num_parameters()) * kPointerSize));
+  __ push(a1);
+  // Push the strict mode flag.
+  __ li(a1, Operand(Smi::FromInt(strict_mode_flag())));
+  __ push(a1);
+
+  __ CallRuntime(flag == SKIP_CONTEXT_LOOKUP
+                 ? Runtime::kResolvePossiblyDirectEvalNoLookup
+                 : Runtime::kResolvePossiblyDirectEval, 4);
 }
 
 
 void FullCodeGenerator::VisitCall(Call* expr) {
-  UNIMPLEMENTED_MIPS();
+#ifdef DEBUG
+  // We want to verify that RecordJSReturnSite gets called on all paths
+  // through this function.  Avoid early returns.
+  expr->return_is_recorded_ = false;
+#endif
+
+  Comment cmnt(masm_, "[ Call");
+  Expression* fun = expr->expression();
+  Variable* var = fun->AsVariableProxy()->AsVariable();
+
+  if (var != NULL && var->is_possibly_eval()) {
+    // In a call to eval, we first call %ResolvePossiblyDirectEval to
+    // resolve the function we need to call and the receiver of the
+    // call.  Then we call the resolved function using the given
+    // arguments.
+    ZoneList<Expression*>* args = expr->arguments();
+    int arg_count = args->length();
+
+    { PreservePositionScope pos_scope(masm()->positions_recorder());
+      VisitForStackValue(fun);
+      __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
+      __ push(a2);  // Reserved receiver slot.
+
+      // Push the arguments.
+      for (int i = 0; i < arg_count; i++) {
+        VisitForStackValue(args->at(i));
+      }
+      // If we know that eval can only be shadowed by eval-introduced
+      // variables we attempt to load the global eval function directly
+      // in generated code. If we succeed, there is no need to perform a
+      // context lookup in the runtime system.
+      Label done;
+      if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) {
+        Label slow;
+        EmitLoadGlobalSlotCheckExtensions(var->AsSlot(),
+                                          NOT_INSIDE_TYPEOF,
+                                          &slow);
+        // Push the function and resolve eval.
+        __ push(v0);
+        EmitResolvePossiblyDirectEval(SKIP_CONTEXT_LOOKUP, arg_count);
+        __ jmp(&done);
+        __ bind(&slow);
+      }
+
+      // Push copy of the function (found below the arguments) and
+      // resolve eval.
+      __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
+      __ push(a1);
+      EmitResolvePossiblyDirectEval(PERFORM_CONTEXT_LOOKUP, arg_count);
+      if (done.is_linked()) {
+        __ bind(&done);
+      }
+
+      // The runtime call returns a pair of values in v0 (function) and
+      // v1 (receiver). Touch up the stack with the right values.
+      __ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize));
+      __ sw(v1, MemOperand(sp, arg_count * kPointerSize));
+    }
+    // Record source position for debugger.
+    SetSourcePosition(expr->position());
+    InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
+    CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
+    __ CallStub(&stub);
+    RecordJSReturnSite(expr);
+    // Restore context register.
+    __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+    context()->DropAndPlug(1, v0);
+  } else if (var != NULL && !var->is_this() && var->is_global()) {
+    // Push global object as receiver for the call IC.
+    __ lw(a0, GlobalObjectOperand());
+    __ push(a0);
+    EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT);
+  } else if (var != NULL && var->AsSlot() != NULL &&
+             var->AsSlot()->type() == Slot::LOOKUP) {
+    // Call to a lookup slot (dynamically introduced variable).
+    Label slow, done;
+
+    { PreservePositionScope scope(masm()->positions_recorder());
+      // Generate code for loading from variables potentially shadowed
+      // by eval-introduced variables.
+      EmitDynamicLoadFromSlotFastCase(var->AsSlot(),
+                                      NOT_INSIDE_TYPEOF,
+                                      &slow,
+                                      &done);
+    }
+
+    __ bind(&slow);
+    // Call the runtime to find the function to call (returned in v0)
+    // and the object holding it (returned in v1).
+    __ push(context_register());
+    __ li(a2, Operand(var->name()));
+    __ push(a2);
+    __ CallRuntime(Runtime::kLoadContextSlot, 2);
+    __ Push(v0, v1);  // Function, receiver.
+
+    // If fast case code has been generated, emit code to push the
+    // function and receiver and have the slow path jump around this
+    // code.
+    if (done.is_linked()) {
+      Label call;
+      __ Branch(&call);
+      __ bind(&done);
+      // Push function.
+      __ push(v0);
+      // Push global receiver.
+      __ lw(a1, GlobalObjectOperand());
+      __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset));
+      __ push(a1);
+      __ bind(&call);
+    }
+
+    // The receiver is either the global receiver or a JSObject found by
+    // LoadContextSlot.
+    EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS);
+  } else if (fun->AsProperty() != NULL) {
+    // Call to an object property.
+    Property* prop = fun->AsProperty();
+    Literal* key = prop->key()->AsLiteral();
+    if (key != NULL && key->handle()->IsSymbol()) {
+      // Call to a named property, use call IC.
+      { PreservePositionScope scope(masm()->positions_recorder());
+        VisitForStackValue(prop->obj());
+      }
+      EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET_WITH_ID);
+    } else {
+      // Call to a keyed property.
+      // For a synthetic property use keyed load IC followed by function call,
+      // for a regular property use keyed EmitCallIC.
+      if (prop->is_synthetic()) {
+        // Do not visit the object and key subexpressions (they are shared
+        // by all occurrences of the same rewritten parameter).
+        ASSERT(prop->obj()->AsVariableProxy() != NULL);
+        ASSERT(prop->obj()->AsVariableProxy()->var()->AsSlot() != NULL);
+        Slot* slot = prop->obj()->AsVariableProxy()->var()->AsSlot();
+        MemOperand operand = EmitSlotSearch(slot, a1);
+        __ lw(a1, operand);
+
+        ASSERT(prop->key()->AsLiteral() != NULL);
+        ASSERT(prop->key()->AsLiteral()->handle()->IsSmi());
+        __ li(a0, Operand(prop->key()->AsLiteral()->handle()));
+
+        // Record source code position for IC call.
+        SetSourcePosition(prop->position());
+
+        Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
+        EmitCallIC(ic, RelocInfo::CODE_TARGET, AstNode::kNoNumber);
+        __ lw(a1, GlobalObjectOperand());
+        __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset));
+        __ Push(v0, a1);  // Function, receiver.
+        EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS);
+      } else {
+        { PreservePositionScope scope(masm()->positions_recorder());
+          VisitForStackValue(prop->obj());
+        }
+        EmitKeyedCallWithIC(expr, prop->key(), RelocInfo::CODE_TARGET_WITH_ID);
+      }
+    }
+  } else {
+    { PreservePositionScope scope(masm()->positions_recorder());
+      VisitForStackValue(fun);
+    }
+    // Load global receiver object.
+    __ lw(a1, GlobalObjectOperand());
+    __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset));
+    __ push(a1);
+    // Emit function call.
+    EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS);
+  }
+
+#ifdef DEBUG
+  // RecordJSReturnSite should have been called.
+  ASSERT(expr->return_is_recorded_);
+#endif
 }
 
 
 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ CallNew");
+  // According to ECMA-262, section 11.2.2, page 44, the function
+  // expression in new calls must be evaluated before the
+  // arguments.
+
+  // Push constructor on the stack.  If it's not a function it's used as
+  // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
+  // ignored.
+  VisitForStackValue(expr->expression());
+
+  // Push the arguments ("left-to-right") on the stack.
+  ZoneList<Expression*>* args = expr->arguments();
+  int arg_count = args->length();
+  for (int i = 0; i < arg_count; i++) {
+    VisitForStackValue(args->at(i));
+  }
+
+  // Call the construct call builtin that handles allocation and
+  // constructor invocation.
+  SetSourcePosition(expr->position());
+
+  // Load function and argument count into a1 and a0.
+  __ li(a0, Operand(arg_count));
+  __ lw(a1, MemOperand(sp, arg_count * kPointerSize));
+
+  Handle<Code> construct_builtin =
+      isolate()->builtins()->JSConstructCall();
+  __ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitIsSmi(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  __ And(t0, v0, Operand(kSmiTagMask));
+  Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitIsNonNegativeSmi(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  __ And(at, v0, Operand(kSmiTagMask | 0x80000000));
+  Split(eq, at, Operand(zero_reg), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitIsObject(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ LoadRoot(at, Heap::kNullValueRootIndex);
+  __ Branch(if_true, eq, v0, Operand(at));
+  __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
+  // Undetectable objects behave like undefined when tested with typeof.
+  __ lbu(a1, FieldMemOperand(a2, Map::kBitFieldOffset));
+  __ And(at, a1, Operand(1 << Map::kIsUndetectable));
+  __ Branch(if_false, ne, at, Operand(zero_reg));
+  __ lbu(a1, FieldMemOperand(a2, Map::kInstanceTypeOffset));
+  __ Branch(if_false, lt, a1, Operand(FIRST_JS_OBJECT_TYPE));
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  Split(le, a1, Operand(LAST_JS_OBJECT_TYPE), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitIsSpecObject(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a1);
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  Split(ge, a1, Operand(FIRST_JS_OBJECT_TYPE),
+        if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitIsUndetectableObject(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
+  __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset));
+  __ And(at, a1, Operand(1 << Map::kIsUndetectable));
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  Split(ne, at, Operand(zero_reg), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
     ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+
+  ASSERT(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  if (FLAG_debug_code) __ AbortIfSmi(v0);
+
+  __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
+  __ lbu(t0, FieldMemOperand(a1, Map::kBitField2Offset));
+  __ And(t0, t0, 1 << Map::kStringWrapperSafeForDefaultValueOf);
+  __ Branch(if_true, ne, t0, Operand(zero_reg));
+
+  // Check for fast case object. Generate false result for slow case object.
+  __ lw(a2, FieldMemOperand(v0, JSObject::kPropertiesOffset));
+  __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
+  __ LoadRoot(t0, Heap::kHashTableMapRootIndex);
+  __ Branch(if_false, eq, a2, Operand(t0));
+
+  // Look for valueOf symbol in the descriptor array, and indicate false if
+  // found. The type is not checked, so if it is a transition it is a false
+  // negative.
+  __ lw(t0, FieldMemOperand(a1, Map::kInstanceDescriptorsOffset));
+  __ lw(a3, FieldMemOperand(t0, FixedArray::kLengthOffset));
+  // t0: descriptor array
+  // a3: length of descriptor array
+  // Calculate the end of the descriptor array.
+  STATIC_ASSERT(kSmiTag == 0);
+  STATIC_ASSERT(kSmiTagSize == 1);
+  STATIC_ASSERT(kPointerSize == 4);
+  __ Addu(a2, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  __ sll(t1, a3, kPointerSizeLog2 - kSmiTagSize);
+  __ Addu(a2, a2, t1);
+
+  // Calculate location of the first key name.
+  __ Addu(t0,
+          t0,
+          Operand(FixedArray::kHeaderSize - kHeapObjectTag +
+                  DescriptorArray::kFirstIndex * kPointerSize));
+  // Loop through all the keys in the descriptor array. If one of these is the
+  // symbol valueOf the result is false.
+  Label entry, loop;
+  // The use of t2 to store the valueOf symbol asumes that it is not otherwise
+  // used in the loop below.
+  __ li(t2, Operand(FACTORY->value_of_symbol()));
+  __ jmp(&entry);
+  __ bind(&loop);
+  __ lw(a3, MemOperand(t0, 0));
+  __ Branch(if_false, eq, a3, Operand(t2));
+  __ Addu(t0, t0, Operand(kPointerSize));
+  __ bind(&entry);
+  __ Branch(&loop, ne, t0, Operand(a2));
+
+  // If a valueOf property is not found on the object check that it's
+  // prototype is the un-modified String prototype. If not result is false.
+  __ lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
+  __ JumpIfSmi(a2, if_false);
+  __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
+  __ lw(a3, ContextOperand(cp, Context::GLOBAL_INDEX));
+  __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset));
+  __ lw(a3, ContextOperand(a3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
+  __ Branch(if_false, ne, a2, Operand(a3));
+
+  // Set the bit in the map to indicate that it has been checked safe for
+  // default valueOf and set true result.
+  __ lbu(a2, FieldMemOperand(a1, Map::kBitField2Offset));
+  __ Or(a2, a2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
+  __ sb(a2, FieldMemOperand(a1, Map::kBitField2Offset));
+  __ jmp(if_true);
+
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitIsFunction(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a2);
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  __ Branch(if_true, eq, a2, Operand(JS_FUNCTION_TYPE));
+  __ Branch(if_false);
+
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitIsArray(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a1);
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  Split(eq, a1, Operand(JS_ARRAY_TYPE),
+        if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitIsRegExp(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ JumpIfSmi(v0, if_false);
+  __ GetObjectType(v0, a1, a1);
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitIsConstructCall(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 0);
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  // Get the frame pointer for the calling frame.
+  __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+
+  // Skip the arguments adaptor frame if it exists.
+  Label check_frame_marker;
+  __ lw(a1, MemOperand(a2, StandardFrameConstants::kContextOffset));
+  __ Branch(&check_frame_marker, ne,
+            a1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+  __ lw(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
+
+  // Check the marker in the calling frame.
+  __ bind(&check_frame_marker);
+  __ lw(a1, MemOperand(a2, StandardFrameConstants::kMarkerOffset));
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  Split(eq, a1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)),
+        if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitObjectEquals(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 2);
+
+  // Load the two objects into registers and perform the comparison.
+  VisitForStackValue(args->at(0));
+  VisitForAccumulatorValue(args->at(1));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ pop(a1);
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  Split(eq, v0, Operand(a1), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitArguments(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+
+  // ArgumentsAccessStub expects the key in a1 and the formal
+  // parameter count in a0.
+  VisitForAccumulatorValue(args->at(0));
+  __ mov(a1, v0);
+  __ li(a0, Operand(Smi::FromInt(scope()->num_parameters())));
+  ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
+  __ CallStub(&stub);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitArgumentsLength(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 0);
+
+  Label exit;
+  // Get the number of formal parameters.
+  __ li(v0, Operand(Smi::FromInt(scope()->num_parameters())));
+
+  // Check if the calling frame is an arguments adaptor frame.
+  __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+  __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
+  __ Branch(&exit, ne, a3,
+            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+  // Arguments adaptor case: Read the arguments length from the
+  // adaptor frame.
+  __ lw(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+
+  __ bind(&exit);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitClassOf(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+  Label done, null, function, non_function_constructor;
+
+  VisitForAccumulatorValue(args->at(0));
+
+  // If the object is a smi, we return null.
+  __ JumpIfSmi(v0, &null);
+
+  // Check that the object is a JS object but take special care of JS
+  // functions to make sure they have 'Function' as their class.
+  __ GetObjectType(v0, v0, a1);  // Map is now in v0.
+  __ Branch(&null, lt, a1, Operand(FIRST_JS_OBJECT_TYPE));
+
+  // As long as JS_FUNCTION_TYPE is the last instance type and it is
+  // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
+  // LAST_JS_OBJECT_TYPE.
+  ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
+  ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
+  __ Branch(&function, eq, a1, Operand(JS_FUNCTION_TYPE));
+
+  // Check if the constructor in the map is a function.
+  __ lw(v0, FieldMemOperand(v0, Map::kConstructorOffset));
+  __ GetObjectType(v0, a1, a1);
+  __ Branch(&non_function_constructor, ne, a1, Operand(JS_FUNCTION_TYPE));
+
+  // v0 now contains the constructor function. Grab the
+  // instance class name from there.
+  __ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
+  __ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset));
+  __ Branch(&done);
+
+  // Functions have class 'Function'.
+  __ bind(&function);
+  __ LoadRoot(v0, Heap::kfunction_class_symbolRootIndex);
+  __ jmp(&done);
+
+  // Objects with a non-function constructor have class 'Object'.
+  __ bind(&non_function_constructor);
+  __ LoadRoot(v0, Heap::kfunction_class_symbolRootIndex);
+  __ jmp(&done);
+
+  // Non-JS objects have class null.
+  __ bind(&null);
+  __ LoadRoot(v0, Heap::kNullValueRootIndex);
+
+  // All done.
+  __ bind(&done);
+
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitLog(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  // Conditionally generate a log call.
+  // Args:
+  //   0 (literal string): The type of logging (corresponds to the flags).
+  //     This is used to determine whether or not to generate the log call.
+  //   1 (string): Format string.  Access the string at argument index 2
+  //     with '%2s' (see Logger::LogRuntime for all the formats).
+  //   2 (array): Arguments to the format string.
+  ASSERT_EQ(args->length(), 3);
+#ifdef ENABLE_LOGGING_AND_PROFILING
+  if (CodeGenerator::ShouldGenerateLog(args->at(0))) {
+    VisitForStackValue(args->at(1));
+    VisitForStackValue(args->at(2));
+    __ CallRuntime(Runtime::kLog, 2);
+  }
+#endif
+  // Finally, we're expected to leave a value on the top of the stack.
+  __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitRandomHeapNumber(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 0);
+
+  Label slow_allocate_heapnumber;
+  Label heapnumber_allocated;
+
+  // Save the new heap number in callee-saved register s0, since
+  // we call out to external C code below.
+  __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
+  __ AllocateHeapNumber(s0, a1, a2, t6, &slow_allocate_heapnumber);
+  __ jmp(&heapnumber_allocated);
+
+  __ bind(&slow_allocate_heapnumber);
+
+  // Allocate a heap number.
+  __ CallRuntime(Runtime::kNumberAlloc, 0);
+  __ mov(s0, v0);   // Save result in s0, so it is saved thru CFunc call.
+
+  __ bind(&heapnumber_allocated);
+
+  // Convert 32 random bits in v0 to 0.(32 random bits) in a double
+  // by computing:
+  // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
+  if (CpuFeatures::IsSupported(FPU)) {
+    __ PrepareCallCFunction(1, a0);
+    __ li(a0, Operand(ExternalReference::isolate_address()));
+    __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
+
+
+    CpuFeatures::Scope scope(FPU);
+    // 0x41300000 is the top half of 1.0 x 2^20 as a double.
+    __ li(a1, Operand(0x41300000));
+    // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU.
+    __ mtc1(a1, f13);
+    __ mtc1(v0, f12);
+    // Move 0x4130000000000000 to FPU.
+    __ mtc1(a1, f15);
+    __ mtc1(zero_reg, f14);
+    // Subtract and store the result in the heap number.
+    __ sub_d(f0, f12, f14);
+    __ sdc1(f0, MemOperand(s0, HeapNumber::kValueOffset - kHeapObjectTag));
+    __ mov(v0, s0);
+  } else {
+    __ PrepareCallCFunction(2, a0);
+    __ mov(a0, s0);
+    __ li(a1, Operand(ExternalReference::isolate_address()));
+    __ CallCFunction(
+        ExternalReference::fill_heap_number_with_random_function(isolate()), 2);
+  }
+
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitSubString(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  // Load the arguments on the stack and call the stub.
+  SubStringStub stub;
+  ASSERT(args->length() == 3);
+  VisitForStackValue(args->at(0));
+  VisitForStackValue(args->at(1));
+  VisitForStackValue(args->at(2));
+  __ CallStub(&stub);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitRegExpExec(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  // Load the arguments on the stack and call the stub.
+  RegExpExecStub stub;
+  ASSERT(args->length() == 4);
+  VisitForStackValue(args->at(0));
+  VisitForStackValue(args->at(1));
+  VisitForStackValue(args->at(2));
+  VisitForStackValue(args->at(3));
+  __ CallStub(&stub);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitValueOf(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));  // Load the object.
+
+  Label done;
+  // If the object is a smi return the object.
+  __ JumpIfSmi(v0, &done);
+  // If the object is not a value type, return the object.
+  __ GetObjectType(v0, a1, a1);
+  __ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE));
+
+  __ lw(v0, FieldMemOperand(v0, JSValue::kValueOffset));
+
+  __ bind(&done);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitMathPow(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  // Load the arguments on the stack and call the runtime function.
+  ASSERT(args->length() == 2);
+  VisitForStackValue(args->at(0));
+  VisitForStackValue(args->at(1));
+  MathPowStub stub;
+  __ CallStub(&stub);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitSetValueOf(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 2);
+
+  VisitForStackValue(args->at(0));  // Load the object.
+  VisitForAccumulatorValue(args->at(1));  // Load the value.
+  __ pop(a1);  // v0 = value. a1 = object.
+
+  Label done;
+  // If the object is a smi, return the value.
+  __ JumpIfSmi(a1, &done);
+
+  // If the object is not a value type, return the value.
+  __ GetObjectType(a1, a2, a2);
+  __ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE));
+
+  // Store the value.
+  __ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset));
+  // Update the write barrier.  Save the value as it will be
+  // overwritten by the write barrier code and is needed afterward.
+  __ RecordWrite(a1, Operand(JSValue::kValueOffset - kHeapObjectTag), a2, a3);
+
+  __ bind(&done);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitNumberToString(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT_EQ(args->length(), 1);
+
+  // Load the argument on the stack and call the stub.
+  VisitForStackValue(args->at(0));
+
+  NumberToStringStub stub;
+  __ CallStub(&stub);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitStringCharFromCode(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+
+  VisitForAccumulatorValue(args->at(0));
+
+  Label done;
+  StringCharFromCodeGenerator generator(v0, a1);
+  generator.GenerateFast(masm_);
+  __ jmp(&done);
+
+  NopRuntimeCallHelper call_helper;
+  generator.GenerateSlow(masm_, call_helper);
+
+  __ bind(&done);
+  context()->Plug(a1);
 }
 
 
 void FullCodeGenerator::EmitStringCharCodeAt(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 2);
+
+  VisitForStackValue(args->at(0));
+  VisitForAccumulatorValue(args->at(1));
+  __ mov(a0, result_register());
+
+  Register object = a1;
+  Register index = a0;
+  Register scratch = a2;
+  Register result = v0;
+
+  __ pop(object);
+
+  Label need_conversion;
+  Label index_out_of_range;
+  Label done;
+  StringCharCodeAtGenerator generator(object,
+                                      index,
+                                      scratch,
+                                      result,
+                                      &need_conversion,
+                                      &need_conversion,
+                                      &index_out_of_range,
+                                      STRING_INDEX_IS_NUMBER);
+  generator.GenerateFast(masm_);
+  __ jmp(&done);
+
+  __ bind(&index_out_of_range);
+  // When the index is out of range, the spec requires us to return
+  // NaN.
+  __ LoadRoot(result, Heap::kNanValueRootIndex);
+  __ jmp(&done);
+
+  __ bind(&need_conversion);
+  // Load the undefined value into the result register, which will
+  // trigger conversion.
+  __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+  __ jmp(&done);
+
+  NopRuntimeCallHelper call_helper;
+  generator.GenerateSlow(masm_, call_helper);
+
+  __ bind(&done);
+  context()->Plug(result);
 }
 
 
 void FullCodeGenerator::EmitStringCharAt(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 2);
+
+  VisitForStackValue(args->at(0));
+  VisitForAccumulatorValue(args->at(1));
+  __ mov(a0, result_register());
+
+  Register object = a1;
+  Register index = a0;
+  Register scratch1 = a2;
+  Register scratch2 = a3;
+  Register result = v0;
+
+  __ pop(object);
+
+  Label need_conversion;
+  Label index_out_of_range;
+  Label done;
+  StringCharAtGenerator generator(object,
+                                  index,
+                                  scratch1,
+                                  scratch2,
+                                  result,
+                                  &need_conversion,
+                                  &need_conversion,
+                                  &index_out_of_range,
+                                  STRING_INDEX_IS_NUMBER);
+  generator.GenerateFast(masm_);
+  __ jmp(&done);
+
+  __ bind(&index_out_of_range);
+  // When the index is out of range, the spec requires us to return
+  // the empty string.
+  __ LoadRoot(result, Heap::kEmptyStringRootIndex);
+  __ jmp(&done);
+
+  __ bind(&need_conversion);
+  // Move smi zero into the result register, which will trigger
+  // conversion.
+  __ li(result, Operand(Smi::FromInt(0)));
+  __ jmp(&done);
+
+  NopRuntimeCallHelper call_helper;
+  generator.GenerateSlow(masm_, call_helper);
+
+  __ bind(&done);
+  context()->Plug(result);
 }
 
 
 void FullCodeGenerator::EmitStringAdd(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT_EQ(2, args->length());
+
+  VisitForStackValue(args->at(0));
+  VisitForStackValue(args->at(1));
+
+  StringAddStub stub(NO_STRING_ADD_FLAGS);
+  __ CallStub(&stub);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitStringCompare(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT_EQ(2, args->length());
+
+  VisitForStackValue(args->at(0));
+  VisitForStackValue(args->at(1));
+
+  StringCompareStub stub;
+  __ CallStub(&stub);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitMathSin(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  // Load the argument on the stack and call the stub.
+  TranscendentalCacheStub stub(TranscendentalCache::SIN,
+                               TranscendentalCacheStub::TAGGED);
+  ASSERT(args->length() == 1);
+  VisitForStackValue(args->at(0));
+  __ mov(a0, result_register());  // Stub requires parameter in a0 and on tos.
+  __ CallStub(&stub);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitMathCos(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
-}
-
-
-void FullCodeGenerator::EmitMathSqrt(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  // Load the argument on the stack and call the stub.
+  TranscendentalCacheStub stub(TranscendentalCache::COS,
+                               TranscendentalCacheStub::TAGGED);
+  ASSERT(args->length() == 1);
+  VisitForStackValue(args->at(0));
+  __ mov(a0, result_register());  // Stub requires parameter in a0 and on tos.
+  __ CallStub(&stub);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitMathLog(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  // Load the argument on the stack and call the stub.
+  TranscendentalCacheStub stub(TranscendentalCache::LOG,
+                               TranscendentalCacheStub::TAGGED);
+  ASSERT(args->length() == 1);
+  VisitForStackValue(args->at(0));
+  __ mov(a0, result_register());  // Stub requires parameter in a0 and on tos.
+  __ CallStub(&stub);
+  context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitMathSqrt(ZoneList<Expression*>* args) {
+  // Load the argument on the stack and call the runtime function.
+  ASSERT(args->length() == 1);
+  VisitForStackValue(args->at(0));
+  __ CallRuntime(Runtime::kMath_sqrt, 1);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitCallFunction(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() >= 2);
+
+  int arg_count = args->length() - 2;  // 2 ~ receiver and function.
+  for (int i = 0; i < arg_count + 1; i++) {
+    VisitForStackValue(args->at(i));
+  }
+  VisitForAccumulatorValue(args->last());  // Function.
+
+  // InvokeFunction requires the function in a1. Move it in there.
+  __ mov(a1, result_register());
+  ParameterCount count(arg_count);
+  __ InvokeFunction(a1, count, CALL_FUNCTION);
+  __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitRegExpConstructResult(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  RegExpConstructResultStub stub;
+  ASSERT(args->length() == 3);
+  VisitForStackValue(args->at(0));
+  VisitForStackValue(args->at(1));
+  VisitForStackValue(args->at(2));
+  __ CallStub(&stub);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitSwapElements(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 3);
+  VisitForStackValue(args->at(0));
+  VisitForStackValue(args->at(1));
+  VisitForStackValue(args->at(2));
+  Label done;
+  Label slow_case;
+  Register object = a0;
+  Register index1 = a1;
+  Register index2 = a2;
+  Register elements = a3;
+  Register scratch1 = t0;
+  Register scratch2 = t1;
+
+  __ lw(object, MemOperand(sp, 2 * kPointerSize));
+  // Fetch the map and check if array is in fast case.
+  // Check that object doesn't require security checks and
+  // has no indexed interceptor.
+  __ GetObjectType(object, scratch1, scratch2);
+  __ Branch(&slow_case, ne, scratch2, Operand(JS_ARRAY_TYPE));
+  // Map is now in scratch1.
+
+  __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitFieldOffset));
+  __ And(scratch2, scratch2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask));
+  __ Branch(&slow_case, ne, scratch2, Operand(zero_reg));
+
+  // Check the object's elements are in fast case and writable.
+  __ lw(elements, FieldMemOperand(object, JSObject::kElementsOffset));
+  __ lw(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset));
+  __ LoadRoot(scratch2, Heap::kFixedArrayMapRootIndex);
+  __ Branch(&slow_case, ne, scratch1, Operand(scratch2));
+
+  // Check that both indices are smis.
+  __ lw(index1, MemOperand(sp, 1 * kPointerSize));
+  __ lw(index2, MemOperand(sp, 0));
+  __ JumpIfNotBothSmi(index1, index2, &slow_case);
+
+  // Check that both indices are valid.
+  Label not_hi;
+  __ lw(scratch1, FieldMemOperand(object, JSArray::kLengthOffset));
+  __ Branch(&slow_case, ls, scratch1, Operand(index1));
+  __ Branch(&not_hi, NegateCondition(hi), scratch1, Operand(index1));
+  __ Branch(&slow_case, ls, scratch1, Operand(index2));
+  __ bind(&not_hi);
+
+  // Bring the address of the elements into index1 and index2.
+  __ Addu(scratch1, elements,
+      Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  __ sll(index1, index1, kPointerSizeLog2 - kSmiTagSize);
+  __ Addu(index1, scratch1, index1);
+  __ sll(index2, index2, kPointerSizeLog2 - kSmiTagSize);
+  __ Addu(index2, scratch1, index2);
+
+  // Swap elements.
+  __ lw(scratch1, MemOperand(index1, 0));
+  __ lw(scratch2, MemOperand(index2, 0));
+  __ sw(scratch1, MemOperand(index2, 0));
+  __ sw(scratch2, MemOperand(index1, 0));
+
+  Label new_space;
+  __ InNewSpace(elements, scratch1, eq, &new_space);
+  // Possible optimization: do a check that both values are Smis
+  // (or them and test against Smi mask).
+
+  __ mov(scratch1, elements);
+  __ RecordWriteHelper(elements, index1, scratch2);
+  __ RecordWriteHelper(scratch1, index2, scratch2);  // scratch1 holds elements.
+
+  __ bind(&new_space);
+  // We are done. Drop elements from the stack, and return undefined.
+  __ Drop(3);
+  __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+  __ jmp(&done);
+
+  __ bind(&slow_case);
+  __ CallRuntime(Runtime::kSwapElements, 3);
+
+  __ bind(&done);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitGetFromCache(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT_EQ(2, args->length());
+
+  ASSERT_NE(NULL, args->at(0)->AsLiteral());
+  int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
+
+  Handle<FixedArray> jsfunction_result_caches(
+      isolate()->global_context()->jsfunction_result_caches());
+  if (jsfunction_result_caches->length() <= cache_id) {
+    __ Abort("Attempt to use undefined cache.");
+    __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+    context()->Plug(v0);
+    return;
+  }
+
+  VisitForAccumulatorValue(args->at(1));
+
+  Register key = v0;
+  Register cache = a1;
+  __ lw(cache, ContextOperand(cp, Context::GLOBAL_INDEX));
+  __ lw(cache, FieldMemOperand(cache, GlobalObject::kGlobalContextOffset));
+  __ lw(cache,
+         ContextOperand(
+             cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
+  __ lw(cache,
+         FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
+
+
+  Label done, not_found;
+  ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
+  __ lw(a2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
+  // a2 now holds finger offset as a smi.
+  __ Addu(a3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  // a3 now points to the start of fixed array elements.
+  __ sll(at, a2, kPointerSizeLog2 - kSmiTagSize);
+  __ addu(a3, a3, at);
+  // a3 now points to key of indexed element of cache.
+  __ lw(a2, MemOperand(a3));
+  __ Branch(&not_found, ne, key, Operand(a2));
+
+  __ lw(v0, MemOperand(a3, kPointerSize));
+  __ Branch(&done);
+
+  __ bind(&not_found);
+  // Call runtime to perform the lookup.
+  __ Push(cache, key);
+  __ CallRuntime(Runtime::kGetFromCache, 2);
+
+  __ bind(&done);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitIsRegExpEquivalent(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT_EQ(2, args->length());
+
+  Register right = v0;
+  Register left = a1;
+  Register tmp = a2;
+  Register tmp2 = a3;
+
+  VisitForStackValue(args->at(0));
+  VisitForAccumulatorValue(args->at(1));  // Result (right) in v0.
+  __ pop(left);
+
+  Label done, fail, ok;
+  __ Branch(&ok, eq, left, Operand(right));
+  // Fail if either is a non-HeapObject.
+  __ And(tmp, left, Operand(right));
+  __ And(at, tmp, Operand(kSmiTagMask));
+  __ Branch(&fail, eq, at, Operand(zero_reg));
+  __ lw(tmp, FieldMemOperand(left, HeapObject::kMapOffset));
+  __ lbu(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset));
+  __ Branch(&fail, ne, tmp2, Operand(JS_REGEXP_TYPE));
+  __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+  __ Branch(&fail, ne, tmp, Operand(tmp2));
+  __ lw(tmp, FieldMemOperand(left, JSRegExp::kDataOffset));
+  __ lw(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset));
+  __ Branch(&ok, eq, tmp, Operand(tmp2));
+  __ bind(&fail);
+  __ LoadRoot(v0, Heap::kFalseValueRootIndex);
+  __ jmp(&done);
+  __ bind(&ok);
+  __ LoadRoot(v0, Heap::kTrueValueRootIndex);
+  __ bind(&done);
+
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitHasCachedArrayIndex(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  VisitForAccumulatorValue(args->at(0));
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  __ lw(a0, FieldMemOperand(v0, String::kHashFieldOffset));
+  __ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask));
+
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through);
+
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::EmitGetCachedArrayIndex(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(args->length() == 1);
+  VisitForAccumulatorValue(args->at(0));
+
+  if (FLAG_debug_code) {
+    __ AbortIfNotString(v0);
+  }
+
+  __ lw(v0, FieldMemOperand(v0, String::kHashFieldOffset));
+  __ IndexFromHash(v0, v0);
+
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::EmitFastAsciiArrayJoin(ZoneList<Expression*>* args) {
-  UNIMPLEMENTED_MIPS();
+  Label bailout, done, one_char_separator, long_separator,
+      non_trivial_array, not_size_one_array, loop,
+      empty_separator_loop, one_char_separator_loop,
+      one_char_separator_loop_entry, long_separator_loop;
+
+  ASSERT(args->length() == 2);
+  VisitForStackValue(args->at(1));
+  VisitForAccumulatorValue(args->at(0));
+
+  // All aliases of the same register have disjoint lifetimes.
+  Register array = v0;
+  Register elements = no_reg;  // Will be v0.
+  Register result = no_reg;  // Will be v0.
+  Register separator = a1;
+  Register array_length = a2;
+  Register result_pos = no_reg;  // Will be a2.
+  Register string_length = a3;
+  Register string = t0;
+  Register element = t1;
+  Register elements_end = t2;
+  Register scratch1 = t3;
+  Register scratch2 = t5;
+  Register scratch3 = t4;
+  Register scratch4 = v1;
+
+  // Separator operand is on the stack.
+  __ pop(separator);
+
+  // Check that the array is a JSArray.
+  __ JumpIfSmi(array, &bailout);
+  __ GetObjectType(array, scratch1, scratch2);
+  __ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE));
+
+  // Check that the array has fast elements.
+  __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
+  __ And(scratch3, scratch2, Operand(1 << Map::kHasFastElements));
+  __ Branch(&bailout, eq, scratch3, Operand(zero_reg));
+
+  // If the array has length zero, return the empty string.
+  __ lw(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
+  __ SmiUntag(array_length);
+  __ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg));
+  __ LoadRoot(v0, Heap::kEmptyStringRootIndex);
+  __ Branch(&done);
+
+  __ bind(&non_trivial_array);
+
+  // Get the FixedArray containing array's elements.
+  elements = array;
+  __ lw(elements, FieldMemOperand(array, JSArray::kElementsOffset));
+  array = no_reg;  // End of array's live range.
+
+  // Check that all array elements are sequential ASCII strings, and
+  // accumulate the sum of their lengths, as a smi-encoded value.
+  __ mov(string_length, zero_reg);
+  __ Addu(element,
+          elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  __ sll(elements_end, array_length, kPointerSizeLog2);
+  __ Addu(elements_end, element, elements_end);
+  // Loop condition: while (element < elements_end).
+  // Live values in registers:
+  //   elements: Fixed array of strings.
+  //   array_length: Length of the fixed array of strings (not smi)
+  //   separator: Separator string
+  //   string_length: Accumulated sum of string lengths (smi).
+  //   element: Current array element.
+  //   elements_end: Array end.
+  if (FLAG_debug_code) {
+    __ Assert(gt, "No empty arrays here in EmitFastAsciiArrayJoin",
+        array_length, Operand(zero_reg));
+  }
+  __ bind(&loop);
+  __ lw(string, MemOperand(element));
+  __ Addu(element, element, kPointerSize);
+  __ JumpIfSmi(string, &bailout);
+  __ lw(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
+  __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+  __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
+  __ lw(scratch1, FieldMemOperand(string, SeqAsciiString::kLengthOffset));
+  __ AdduAndCheckForOverflow(string_length, string_length, scratch1, scratch3);
+  __ BranchOnOverflow(&bailout, scratch3);
+  __ Branch(&loop, lt, element, Operand(elements_end));
+
+  // If array_length is 1, return elements[0], a string.
+  __ Branch(&not_size_one_array, ne, array_length, Operand(1));
+  __ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize));
+  __ Branch(&done);
+
+  __ bind(&not_size_one_array);
+
+  // Live values in registers:
+  //   separator: Separator string
+  //   array_length: Length of the array.
+  //   string_length: Sum of string lengths (smi).
+  //   elements: FixedArray of strings.
+
+  // Check that the separator is a flat ASCII string.
+  __ JumpIfSmi(separator, &bailout);
+  __ lw(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
+  __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+  __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
+
+  // Add (separator length times array_length) - separator length to the
+  // string_length to get the length of the result string. array_length is not
+  // smi but the other values are, so the result is a smi.
+  __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
+  __ Subu(string_length, string_length, Operand(scratch1));
+  __ Mult(array_length, scratch1);
+  // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
+  // zero.
+  __ mfhi(scratch2);
+  __ Branch(&bailout, ne, scratch2, Operand(zero_reg));
+  __ mflo(scratch2);
+  __ And(scratch3, scratch2, Operand(0x80000000));
+  __ Branch(&bailout, ne, scratch3, Operand(zero_reg));
+  __ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3);
+  __ BranchOnOverflow(&bailout, scratch3);
+  __ SmiUntag(string_length);
+
+  // Get first element in the array to free up the elements register to be used
+  // for the result.
+  __ Addu(element,
+          elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+  result = elements;  // End of live range for elements.
+  elements = no_reg;
+  // Live values in registers:
+  //   element: First array element
+  //   separator: Separator string
+  //   string_length: Length of result string (not smi)
+  //   array_length: Length of the array.
+  __ AllocateAsciiString(result,
+                         string_length,
+                         scratch1,
+                         scratch2,
+                         elements_end,
+                         &bailout);
+  // Prepare for looping. Set up elements_end to end of the array. Set
+  // result_pos to the position of the result where to write the first
+  // character.
+  __ sll(elements_end, array_length, kPointerSizeLog2);
+  __ Addu(elements_end, element, elements_end);
+  result_pos = array_length;  // End of live range for array_length.
+  array_length = no_reg;
+  __ Addu(result_pos,
+          result,
+          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+
+  // Check the length of the separator.
+  __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
+  __ li(at, Operand(Smi::FromInt(1)));
+  __ Branch(&one_char_separator, eq, scratch1, Operand(at));
+  __ Branch(&long_separator, gt, scratch1, Operand(at));
+
+  // Empty separator case.
+  __ bind(&empty_separator_loop);
+  // Live values in registers:
+  //   result_pos: the position to which we are currently copying characters.
+  //   element: Current array element.
+  //   elements_end: Array end.
+
+  // Copy next array element to the result.
+  __ lw(string, MemOperand(element));
+  __ Addu(element, element, kPointerSize);
+  __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+  // End while (element < elements_end).
+  __ Branch(&empty_separator_loop, lt, element, Operand(elements_end));
+  ASSERT(result.is(v0));
+  __ Branch(&done);
+
+  // One-character separator case.
+  __ bind(&one_char_separator);
+  // Replace separator with its ascii character value.
+  __ lbu(separator, FieldMemOperand(separator, SeqAsciiString::kHeaderSize));
+  // Jump into the loop after the code that copies the separator, so the first
+  // element is not preceded by a separator.
+  __ jmp(&one_char_separator_loop_entry);
+
+  __ bind(&one_char_separator_loop);
+  // Live values in registers:
+  //   result_pos: the position to which we are currently copying characters.
+  //   element: Current array element.
+  //   elements_end: Array end.
+  //   separator: Single separator ascii char (in lower byte).
+
+  // Copy the separator character to the result.
+  __ sb(separator, MemOperand(result_pos));
+  __ Addu(result_pos, result_pos, 1);
+
+  // Copy next array element to the result.
+  __ bind(&one_char_separator_loop_entry);
+  __ lw(string, MemOperand(element));
+  __ Addu(element, element, kPointerSize);
+  __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+  // End while (element < elements_end).
+  __ Branch(&one_char_separator_loop, lt, element, Operand(elements_end));
+  ASSERT(result.is(v0));
+  __ Branch(&done);
+
+  // Long separator case (separator is more than one character). Entry is at the
+  // label long_separator below.
+  __ bind(&long_separator_loop);
+  // Live values in registers:
+  //   result_pos: the position to which we are currently copying characters.
+  //   element: Current array element.
+  //   elements_end: Array end.
+  //   separator: Separator string.
+
+  // Copy the separator to the result.
+  __ lw(string_length, FieldMemOperand(separator, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ Addu(string,
+          separator,
+          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+
+  __ bind(&long_separator);
+  __ lw(string, MemOperand(element));
+  __ Addu(element, element, kPointerSize);
+  __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
+  __ SmiUntag(string_length);
+  __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
+  __ CopyBytes(string, result_pos, string_length, scratch1);
+  // End while (element < elements_end).
+  __ Branch(&long_separator_loop, lt, element, Operand(elements_end));
+  ASSERT(result.is(v0));
+  __ Branch(&done);
+
+  __ bind(&bailout);
+  __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+  __ bind(&done);
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
-  UNIMPLEMENTED_MIPS();
+  Handle<String> name = expr->name();
+  if (name->length() > 0 && name->Get(0) == '_') {
+    Comment cmnt(masm_, "[ InlineRuntimeCall");
+    EmitInlineRuntimeCall(expr);
+    return;
+  }
+
+  Comment cmnt(masm_, "[ CallRuntime");
+  ZoneList<Expression*>* args = expr->arguments();
+
+  if (expr->is_jsruntime()) {
+    // Prepare for calling JS runtime function.
+    __ lw(a0, GlobalObjectOperand());
+    __ lw(a0, FieldMemOperand(a0, GlobalObject::kBuiltinsOffset));
+    __ push(a0);
+  }
+
+  // Push the arguments ("left-to-right").
+  int arg_count = args->length();
+  for (int i = 0; i < arg_count; i++) {
+    VisitForStackValue(args->at(i));
+  }
+
+  if (expr->is_jsruntime()) {
+    // Call the JS runtime function.
+    __ li(a2, Operand(expr->name()));
+    Handle<Code> ic =
+        isolate()->stub_cache()->ComputeCallInitialize(arg_count, NOT_IN_LOOP);
+    EmitCallIC(ic, RelocInfo::CODE_TARGET_WITH_ID, expr->id());
+    // Restore context register.
+    __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+  } else {
+    // Call the C runtime function.
+    __ CallRuntime(expr->function(), arg_count);
+  }
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
-  UNIMPLEMENTED_MIPS();
+  switch (expr->op()) {
+    case Token::DELETE: {
+      Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
+      Property* prop = expr->expression()->AsProperty();
+      Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
+
+      if (prop != NULL) {
+        if (prop->is_synthetic()) {
+          // Result of deleting parameters is false, even when they rewrite
+          // to accesses on the arguments object.
+          context()->Plug(false);
+        } else {
+          VisitForStackValue(prop->obj());
+          VisitForStackValue(prop->key());
+          __ li(a1, Operand(Smi::FromInt(strict_mode_flag())));
+          __ push(a1);
+          __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
+          context()->Plug(v0);
+        }
+      } else if (var != NULL) {
+        // Delete of an unqualified identifier is disallowed in strict mode
+        // but "delete this" is.
+        ASSERT(strict_mode_flag() == kNonStrictMode || var->is_this());
+        if (var->is_global()) {
+          __ lw(a2, GlobalObjectOperand());
+          __ li(a1, Operand(var->name()));
+          __ li(a0, Operand(Smi::FromInt(kNonStrictMode)));
+          __ Push(a2, a1, a0);
+          __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
+          context()->Plug(v0);
+        } else if (var->AsSlot() != NULL &&
+                   var->AsSlot()->type() != Slot::LOOKUP) {
+          // Result of deleting non-global, non-dynamic variables is false.
+          // The subexpression does not have side effects.
+          context()->Plug(false);
+        } else {
+          // Non-global variable.  Call the runtime to try to delete from the
+          // context where the variable was introduced.
+          __ push(context_register());
+          __ li(a2, Operand(var->name()));
+          __ push(a2);
+          __ CallRuntime(Runtime::kDeleteContextSlot, 2);
+          context()->Plug(v0);
+        }
+      } else {
+        // Result of deleting non-property, non-variable reference is true.
+        // The subexpression may have side effects.
+        VisitForEffect(expr->expression());
+        context()->Plug(true);
+      }
+      break;
+    }
+
+    case Token::VOID: {
+      Comment cmnt(masm_, "[ UnaryOperation (VOID)");
+      VisitForEffect(expr->expression());
+      context()->Plug(Heap::kUndefinedValueRootIndex);
+      break;
+    }
+
+    case Token::NOT: {
+      Comment cmnt(masm_, "[ UnaryOperation (NOT)");
+      if (context()->IsEffect()) {
+        // Unary NOT has no side effects so it's only necessary to visit the
+        // subexpression.  Match the optimizing compiler by not branching.
+        VisitForEffect(expr->expression());
+      } else {
+        Label materialize_true, materialize_false;
+        Label* if_true = NULL;
+        Label* if_false = NULL;
+        Label* fall_through = NULL;
+
+        // Notice that the labels are swapped.
+        context()->PrepareTest(&materialize_true, &materialize_false,
+                               &if_false, &if_true, &fall_through);
+        if (context()->IsTest()) ForwardBailoutToChild(expr);
+        VisitForControl(expr->expression(), if_true, if_false, fall_through);
+        context()->Plug(if_false, if_true);  // Labels swapped.
+      }
+      break;
+    }
+
+    case Token::TYPEOF: {
+      Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
+      { StackValueContext context(this);
+        VisitForTypeofValue(expr->expression());
+      }
+      __ CallRuntime(Runtime::kTypeof, 1);
+      context()->Plug(v0);
+      break;
+    }
+
+    case Token::ADD: {
+      Comment cmt(masm_, "[ UnaryOperation (ADD)");
+      VisitForAccumulatorValue(expr->expression());
+      Label no_conversion;
+      __ JumpIfSmi(result_register(), &no_conversion);
+      __ mov(a0, result_register());
+      ToNumberStub convert_stub;
+      __ CallStub(&convert_stub);
+      __ bind(&no_conversion);
+      context()->Plug(result_register());
+      break;
+    }
+
+    case Token::SUB:
+      EmitUnaryOperation(expr, "[ UnaryOperation (SUB)");
+      break;
+
+    case Token::BIT_NOT:
+      EmitUnaryOperation(expr, "[ UnaryOperation (BIT_NOT)");
+      break;
+
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+void FullCodeGenerator::EmitUnaryOperation(UnaryOperation* expr,
+                                           const char* comment) {
+  // TODO(svenpanne): Allowing format strings in Comment would be nice here...
+  Comment cmt(masm_, comment);
+  bool can_overwrite = expr->expression()->ResultOverwriteAllowed();
+  UnaryOverwriteMode overwrite =
+      can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
+  TypeRecordingUnaryOpStub stub(expr->op(), overwrite);
+  // TypeRecordingGenericUnaryOpStub expects the argument to be in a0.
+  VisitForAccumulatorValue(expr->expression());
+  SetSourcePosition(expr->position());
+  __ mov(a0, result_register());
+  EmitCallIC(stub.GetCode(), NULL, expr->id());
+  context()->Plug(v0);
 }
 
 
 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ CountOperation");
+  SetSourcePosition(expr->position());
+
+  // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
+  // as the left-hand side.
+  if (!expr->expression()->IsValidLeftHandSide()) {
+    VisitForEffect(expr->expression());
+    return;
+  }
+
+  // Expression can only be a property, a global or a (parameter or local)
+  // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
+  enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
+  LhsKind assign_type = VARIABLE;
+  Property* prop = expr->expression()->AsProperty();
+  // In case of a property we use the uninitialized expression context
+  // of the key to detect a named property.
+  if (prop != NULL) {
+    assign_type =
+        (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
+  }
+
+  // Evaluate expression and get value.
+  if (assign_type == VARIABLE) {
+    ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
+    AccumulatorValueContext context(this);
+    EmitVariableLoad(expr->expression()->AsVariableProxy()->var());
+  } else {
+    // Reserve space for result of postfix operation.
+    if (expr->is_postfix() && !context()->IsEffect()) {
+      __ li(at, Operand(Smi::FromInt(0)));
+      __ push(at);
+    }
+    if (assign_type == NAMED_PROPERTY) {
+      // Put the object both on the stack and in the accumulator.
+      VisitForAccumulatorValue(prop->obj());
+      __ push(v0);
+      EmitNamedPropertyLoad(prop);
+    } else {
+      if (prop->is_arguments_access()) {
+        VariableProxy* obj_proxy = prop->obj()->AsVariableProxy();
+        __ lw(v0, EmitSlotSearch(obj_proxy->var()->AsSlot(), v0));
+        __ push(v0);
+        __ li(v0, Operand(prop->key()->AsLiteral()->handle()));
+      } else {
+        VisitForStackValue(prop->obj());
+        VisitForAccumulatorValue(prop->key());
+      }
+      __ lw(a1, MemOperand(sp, 0));
+      __ push(v0);
+      EmitKeyedPropertyLoad(prop);
+    }
+  }
+
+  // We need a second deoptimization point after loading the value
+  // in case evaluating the property load my have a side effect.
+  if (assign_type == VARIABLE) {
+    PrepareForBailout(expr->expression(), TOS_REG);
+  } else {
+    PrepareForBailoutForId(expr->CountId(), TOS_REG);
+  }
+
+  // Call ToNumber only if operand is not a smi.
+  Label no_conversion;
+  __ JumpIfSmi(v0, &no_conversion);
+  __ mov(a0, v0);
+  ToNumberStub convert_stub;
+  __ CallStub(&convert_stub);
+  __ bind(&no_conversion);
+
+  // Save result for postfix expressions.
+  if (expr->is_postfix()) {
+    if (!context()->IsEffect()) {
+      // Save the result on the stack. If we have a named or keyed property
+      // we store the result under the receiver that is currently on top
+      // of the stack.
+      switch (assign_type) {
+        case VARIABLE:
+          __ push(v0);
+          break;
+        case NAMED_PROPERTY:
+          __ sw(v0, MemOperand(sp, kPointerSize));
+          break;
+        case KEYED_PROPERTY:
+          __ sw(v0, MemOperand(sp, 2 * kPointerSize));
+          break;
+      }
+    }
+  }
+  __ mov(a0, result_register());
+
+  // Inline smi case if we are in a loop.
+  Label stub_call, done;
+  JumpPatchSite patch_site(masm_);
+
+  int count_value = expr->op() == Token::INC ? 1 : -1;
+  __ li(a1, Operand(Smi::FromInt(count_value)));
+
+  if (ShouldInlineSmiCase(expr->op())) {
+    __ AdduAndCheckForOverflow(v0, a0, a1, t0);
+    __ BranchOnOverflow(&stub_call, t0);  // Do stub on overflow.
+
+    // We could eliminate this smi check if we split the code at
+    // the first smi check before calling ToNumber.
+    patch_site.EmitJumpIfSmi(v0, &done);
+    __ bind(&stub_call);
+  }
+
+  // Record position before stub call.
+  SetSourcePosition(expr->position());
+
+  TypeRecordingBinaryOpStub stub(Token::ADD, NO_OVERWRITE);
+  EmitCallIC(stub.GetCode(), &patch_site, expr->CountId());
+  __ bind(&done);
+
+  // Store the value returned in v0.
+  switch (assign_type) {
+    case VARIABLE:
+      if (expr->is_postfix()) {
+        { EffectContext context(this);
+          EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+                                 Token::ASSIGN);
+          PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+          context.Plug(v0);
+        }
+        // For all contexts except EffectConstant we have the result on
+        // top of the stack.
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+                               Token::ASSIGN);
+        PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+        context()->Plug(v0);
+      }
+      break;
+    case NAMED_PROPERTY: {
+      __ mov(a0, result_register());  // Value.
+      __ li(a2, Operand(prop->key()->AsLiteral()->handle()));  // Name.
+      __ pop(a1);  // Receiver.
+      Handle<Code> ic = is_strict_mode()
+          ? isolate()->builtins()->StoreIC_Initialize_Strict()
+          : isolate()->builtins()->StoreIC_Initialize();
+      EmitCallIC(ic, RelocInfo::CODE_TARGET_WITH_ID, expr->id());
+      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+      if (expr->is_postfix()) {
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        context()->Plug(v0);
+      }
+      break;
+    }
+    case KEYED_PROPERTY: {
+      __ mov(a0, result_register());  // Value.
+      __ pop(a1);  // Key.
+      __ pop(a2);  // Receiver.
+      Handle<Code> ic = is_strict_mode()
+          ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+          : isolate()->builtins()->KeyedStoreIC_Initialize();
+      EmitCallIC(ic, RelocInfo::CODE_TARGET_WITH_ID, expr->id());
+      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+      if (expr->is_postfix()) {
+        if (!context()->IsEffect()) {
+          context()->PlugTOS();
+        }
+      } else {
+        context()->Plug(v0);
+      }
+      break;
+    }
+  }
 }
 
 
 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
-  UNIMPLEMENTED_MIPS();
+  VariableProxy* proxy = expr->AsVariableProxy();
+  if (proxy != NULL && !proxy->var()->is_this() && proxy->var()->is_global()) {
+    Comment cmnt(masm_, "Global variable");
+    __ lw(a0, GlobalObjectOperand());
+    __ li(a2, Operand(proxy->name()));
+    Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+    // Use a regular load, not a contextual load, to avoid a reference
+    // error.
+    EmitCallIC(ic, RelocInfo::CODE_TARGET, AstNode::kNoNumber);
+    PrepareForBailout(expr, TOS_REG);
+    context()->Plug(v0);
+  } else if (proxy != NULL &&
+             proxy->var()->AsSlot() != NULL &&
+             proxy->var()->AsSlot()->type() == Slot::LOOKUP) {
+    Label done, slow;
+
+    // Generate code for loading from variables potentially shadowed
+    // by eval-introduced variables.
+    Slot* slot = proxy->var()->AsSlot();
+    EmitDynamicLoadFromSlotFastCase(slot, INSIDE_TYPEOF, &slow, &done);
+
+    __ bind(&slow);
+    __ li(a0, Operand(proxy->name()));
+    __ Push(cp, a0);
+    __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
+    PrepareForBailout(expr, TOS_REG);
+    __ bind(&done);
+
+    context()->Plug(v0);
+  } else {
+    // This expression cannot throw a reference error at the top level.
+    context()->HandleExpression(expr);
+  }
 }
 
 
@@ -661,34 +4055,229 @@
                                           Label* if_true,
                                           Label* if_false,
                                           Label* fall_through) {
-  UNIMPLEMENTED_MIPS();
-  return false;
+  if (op != Token::EQ && op != Token::EQ_STRICT) return false;
+
+  // Check for the pattern: typeof <expression> == <string literal>.
+  Literal* right_literal = right->AsLiteral();
+  if (right_literal == NULL) return false;
+  Handle<Object> right_literal_value = right_literal->handle();
+  if (!right_literal_value->IsString()) return false;
+  UnaryOperation* left_unary = left->AsUnaryOperation();
+  if (left_unary == NULL || left_unary->op() != Token::TYPEOF) return false;
+  Handle<String> check = Handle<String>::cast(right_literal_value);
+
+  { AccumulatorValueContext context(this);
+    VisitForTypeofValue(left_unary->expression());
+  }
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+
+  if (check->Equals(isolate()->heap()->number_symbol())) {
+    __ JumpIfSmi(v0, if_true);
+    __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
+    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+    Split(eq, v0, Operand(at), if_true, if_false, fall_through);
+  } else if (check->Equals(isolate()->heap()->string_symbol())) {
+    __ JumpIfSmi(v0, if_false);
+    // Check for undetectable objects => false.
+    __ GetObjectType(v0, v0, a1);
+    __ Branch(if_false, ge, a1, Operand(FIRST_NONSTRING_TYPE));
+    __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
+    __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
+    Split(eq, a1, Operand(zero_reg),
+          if_true, if_false, fall_through);
+  } else if (check->Equals(isolate()->heap()->boolean_symbol())) {
+    __ LoadRoot(at, Heap::kTrueValueRootIndex);
+    __ Branch(if_true, eq, v0, Operand(at));
+    __ LoadRoot(at, Heap::kFalseValueRootIndex);
+    Split(eq, v0, Operand(at), if_true, if_false, fall_through);
+  } else if (check->Equals(isolate()->heap()->undefined_symbol())) {
+    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+    __ Branch(if_true, eq, v0, Operand(at));
+    __ JumpIfSmi(v0, if_false);
+    // Check for undetectable objects => true.
+    __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
+    __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
+    __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
+    Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
+  } else if (check->Equals(isolate()->heap()->function_symbol())) {
+    __ JumpIfSmi(v0, if_false);
+    __ GetObjectType(v0, a1, v0);  // Leave map in a1.
+    Split(ge, v0, Operand(FIRST_FUNCTION_CLASS_TYPE),
+        if_true, if_false, fall_through);
+
+  } else if (check->Equals(isolate()->heap()->object_symbol())) {
+    __ JumpIfSmi(v0, if_false);
+    __ LoadRoot(at, Heap::kNullValueRootIndex);
+    __ Branch(if_true, eq, v0, Operand(at));
+    // Check for JS objects => true.
+    __ GetObjectType(v0, v0, a1);
+    __ Branch(if_false, lo, a1, Operand(FIRST_JS_OBJECT_TYPE));
+    __ lbu(a1, FieldMemOperand(v0, Map::kInstanceTypeOffset));
+    __ Branch(if_false, hs, a1, Operand(FIRST_FUNCTION_CLASS_TYPE));
+    // Check for undetectable objects => false.
+    __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
+    __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
+    Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through);
+  } else {
+    if (if_false != fall_through) __ jmp(if_false);
+  }
+
+  return true;
 }
 
 
 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ CompareOperation");
+  SetSourcePosition(expr->position());
+
+  // Always perform the comparison for its control flow.  Pack the result
+  // into the expression's context after the comparison is performed.
+
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  // First we try a fast inlined version of the compare when one of
+  // the operands is a literal.
+  Token::Value op = expr->op();
+  Expression* left = expr->left();
+  Expression* right = expr->right();
+  if (TryLiteralCompare(op, left, right, if_true, if_false, fall_through)) {
+    context()->Plug(if_true, if_false);
+    return;
+  }
+
+  VisitForStackValue(expr->left());
+  switch (op) {
+    case Token::IN:
+      VisitForStackValue(expr->right());
+      __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
+      PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL);
+      __ LoadRoot(t0, Heap::kTrueValueRootIndex);
+      Split(eq, v0, Operand(t0), if_true, if_false, fall_through);
+      break;
+
+    case Token::INSTANCEOF: {
+      VisitForStackValue(expr->right());
+      InstanceofStub stub(InstanceofStub::kNoFlags);
+      __ CallStub(&stub);
+      PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+      // The stub returns 0 for true.
+      Split(eq, v0, Operand(zero_reg), if_true, if_false, fall_through);
+      break;
+    }
+
+    default: {
+      VisitForAccumulatorValue(expr->right());
+      Condition cc = eq;
+      bool strict = false;
+      switch (op) {
+        case Token::EQ_STRICT:
+          strict = true;
+          // Fall through.
+        case Token::EQ:
+          cc = eq;
+          __ mov(a0, result_register());
+          __ pop(a1);
+          break;
+        case Token::LT:
+          cc = lt;
+          __ mov(a0, result_register());
+          __ pop(a1);
+          break;
+        case Token::GT:
+          // Reverse left and right sides to obtain ECMA-262 conversion order.
+          cc = lt;
+          __ mov(a1, result_register());
+          __ pop(a0);
+         break;
+        case Token::LTE:
+          // Reverse left and right sides to obtain ECMA-262 conversion order.
+          cc = ge;
+          __ mov(a1, result_register());
+          __ pop(a0);
+          break;
+        case Token::GTE:
+          cc = ge;
+          __ mov(a0, result_register());
+          __ pop(a1);
+          break;
+        case Token::IN:
+        case Token::INSTANCEOF:
+        default:
+          UNREACHABLE();
+      }
+
+      bool inline_smi_code = ShouldInlineSmiCase(op);
+      JumpPatchSite patch_site(masm_);
+      if (inline_smi_code) {
+        Label slow_case;
+        __ Or(a2, a0, Operand(a1));
+        patch_site.EmitJumpIfNotSmi(a2, &slow_case);
+        Split(cc, a1, Operand(a0), if_true, if_false, NULL);
+        __ bind(&slow_case);
+      }
+      // Record position and call the compare IC.
+      SetSourcePosition(expr->position());
+      Handle<Code> ic = CompareIC::GetUninitialized(op);
+      EmitCallIC(ic, &patch_site, expr->id());
+      PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+      Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through);
+    }
+  }
+
+  // Convert the result of the comparison into one expected for this
+  // expression's context.
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::VisitCompareToNull(CompareToNull* expr) {
-  UNIMPLEMENTED_MIPS();
+  Comment cmnt(masm_, "[ CompareToNull");
+  Label materialize_true, materialize_false;
+  Label* if_true = NULL;
+  Label* if_false = NULL;
+  Label* fall_through = NULL;
+  context()->PrepareTest(&materialize_true, &materialize_false,
+                         &if_true, &if_false, &fall_through);
+
+  VisitForAccumulatorValue(expr->expression());
+  PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+  __ mov(a0, result_register());
+  __ LoadRoot(a1, Heap::kNullValueRootIndex);
+  if (expr->is_strict()) {
+    Split(eq, a0, Operand(a1), if_true, if_false, fall_through);
+  } else {
+    __ Branch(if_true, eq, a0, Operand(a1));
+    __ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
+    __ Branch(if_true, eq, a0, Operand(a1));
+    __ And(at, a0, Operand(kSmiTagMask));
+    __ Branch(if_false, eq, at, Operand(zero_reg));
+    // It can be an undetectable object.
+    __ lw(a1, FieldMemOperand(a0, HeapObject::kMapOffset));
+    __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset));
+    __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
+    Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
+  }
+  context()->Plug(if_true, if_false);
 }
 
 
 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
-  UNIMPLEMENTED_MIPS();
+  __ lw(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+  context()->Plug(v0);
 }
 
 
 Register FullCodeGenerator::result_register() {
-  UNIMPLEMENTED_MIPS();
   return v0;
 }
 
 
 Register FullCodeGenerator::context_register() {
-  UNIMPLEMENTED_MIPS();
   return cp;
 }
 
@@ -696,17 +4285,76 @@
 void FullCodeGenerator::EmitCallIC(Handle<Code> ic,
                                    RelocInfo::Mode mode,
                                    unsigned ast_id) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(mode == RelocInfo::CODE_TARGET ||
+         mode == RelocInfo::CODE_TARGET_CONTEXT ||
+         mode == RelocInfo::CODE_TARGET_WITH_ID);
+  Counters* counters = isolate()->counters();
+  switch (ic->kind()) {
+    case Code::LOAD_IC:
+      __ IncrementCounter(counters->named_load_full(), 1, a1, a2);
+      break;
+    case Code::KEYED_LOAD_IC:
+      __ IncrementCounter(counters->keyed_load_full(), 1, a1, a2);
+      break;
+    case Code::STORE_IC:
+      __ IncrementCounter(counters->named_store_full(), 1, a1, a2);
+      break;
+    case Code::KEYED_STORE_IC:
+      __ IncrementCounter(counters->keyed_store_full(), 1, a1, a2);
+    default:
+      break;
+  }
+  if (mode == RelocInfo::CODE_TARGET_WITH_ID) {
+    ASSERT(ast_id != kNoASTId);
+    __ CallWithAstId(ic, mode, ast_id);
+  } else {
+    ASSERT(ast_id == kNoASTId);
+    __ Call(ic, mode);
+  }
+}
+
+
+void FullCodeGenerator::EmitCallIC(Handle<Code> ic,
+                                   JumpPatchSite* patch_site,
+                                   unsigned ast_id) {
+  Counters* counters = isolate()->counters();
+  switch (ic->kind()) {
+    case Code::LOAD_IC:
+      __ IncrementCounter(counters->named_load_full(), 1, a1, a2);
+      break;
+    case Code::KEYED_LOAD_IC:
+      __ IncrementCounter(counters->keyed_load_full(), 1, a1, a2);
+      break;
+    case Code::STORE_IC:
+      __ IncrementCounter(counters->named_store_full(), 1, a1, a2);
+      break;
+    case Code::KEYED_STORE_IC:
+      __ IncrementCounter(counters->keyed_store_full(), 1, a1, a2);
+    default:
+      break;
+  }
+
+  if (ast_id != kNoASTId) {
+    __ CallWithAstId(ic, RelocInfo::CODE_TARGET_WITH_ID, ast_id);
+  } else {
+    __ Call(ic, RelocInfo::CODE_TARGET);
+  }
+  if (patch_site != NULL && patch_site->is_bound()) {
+    patch_site->EmitPatchInfo();
+  } else {
+    __ nop();  // Signals no inlined code.
+  }
 }
 
 
 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
-  UNIMPLEMENTED_MIPS();
+  ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
+  __ sw(value, MemOperand(fp, frame_offset));
 }
 
 
 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
-  UNIMPLEMENTED_MIPS();
+  __ lw(dst, ContextOperand(cp, context_index));
 }
 
 
@@ -714,12 +4362,28 @@
 // Non-local control flow support.
 
 void FullCodeGenerator::EnterFinallyBlock() {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(!result_register().is(a1));
+  // Store result register while executing finally block.
+  __ push(result_register());
+  // Cook return address in link register to stack (smi encoded Code* delta).
+  __ Subu(a1, ra, Operand(masm_->CodeObject()));
+  ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
+  ASSERT_EQ(0, kSmiTag);
+  __ Addu(a1, a1, Operand(a1));  // Convert to smi.
+  __ push(a1);
 }
 
 
 void FullCodeGenerator::ExitFinallyBlock() {
-  UNIMPLEMENTED_MIPS();
+  ASSERT(!result_register().is(a1));
+  // Restore result register from stack.
+  __ pop(a1);
+  // Uncook return address and return.
+  __ pop(result_register());
+  ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
+  __ sra(a1, a1, 1);  // Un-smi-tag value.
+  __ Addu(at, a1, Operand(masm_->CodeObject()));
+  __ Jump(at);
 }