blob: 1236e31784c917d87fa612db324303298b191773 [file] [log] [blame]
danno@chromium.orgfa458e42012-02-01 10:48:36 +00001// Copyright 2012 the V8 project authors. All rights reserved.
ricow@chromium.org65fae842010-08-25 15:26:24 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "bootstrapper.h"
ricow@chromium.orgd236f4d2010-09-01 06:52:08 +000033#include "code-stubs.h"
ricow@chromium.org65fae842010-08-25 15:26:24 +000034#include "regexp-macro-assembler.h"
mvstanton@chromium.org6bec0092013-01-23 13:46:53 +000035#include "stub-cache.h"
ricow@chromium.org65fae842010-08-25 15:26:24 +000036
37namespace v8 {
38namespace internal {
39
40
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +000041void KeyedLoadFastElementStub::InitializeInterfaceDescriptor(
42 Isolate* isolate,
43 CodeStubInterfaceDescriptor* descriptor) {
44 static Register registers[] = { r1, r0 };
45 descriptor->register_param_count_ = 2;
46 descriptor->register_params_ = registers;
47 descriptor->deoptimization_handler_ =
mstarzinger@chromium.orge3b8d0f2013-02-01 09:06:41 +000048 FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +000049}
50
51
ricow@chromium.org65fae842010-08-25 15:26:24 +000052#define __ ACCESS_MASM(masm)
53
54static void EmitIdenticalObjectComparison(MacroAssembler* masm,
55 Label* slow,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +000056 Condition cond);
ricow@chromium.org65fae842010-08-25 15:26:24 +000057static void EmitSmiNonsmiComparison(MacroAssembler* masm,
58 Register lhs,
59 Register rhs,
60 Label* lhs_not_nan,
61 Label* slow,
62 bool strict);
ager@chromium.org378b34e2011-01-28 08:04:38 +000063static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond);
ricow@chromium.org65fae842010-08-25 15:26:24 +000064static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
65 Register lhs,
66 Register rhs);
67
68
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +000069// Check if the operand is a heap number.
70static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
71 Register scratch1, Register scratch2,
72 Label* not_a_heap_number) {
73 __ ldr(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
74 __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
75 __ cmp(scratch1, scratch2);
76 __ b(ne, not_a_heap_number);
77}
78
79
whesse@chromium.org7a392b32011-01-31 11:30:36 +000080void ToNumberStub::Generate(MacroAssembler* masm) {
81 // The ToNumber stub takes one argument in eax.
82 Label check_heap_number, call_builtin;
whesse@chromium.org7b260152011-06-20 15:33:18 +000083 __ JumpIfNotSmi(r0, &check_heap_number);
whesse@chromium.org7a392b32011-01-31 11:30:36 +000084 __ Ret();
85
86 __ bind(&check_heap_number);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +000087 EmitCheckForHeapNumber(masm, r0, r1, ip, &call_builtin);
whesse@chromium.org7a392b32011-01-31 11:30:36 +000088 __ Ret();
89
90 __ bind(&call_builtin);
91 __ push(r0);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +000092 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
whesse@chromium.org7a392b32011-01-31 11:30:36 +000093}
94
95
ricow@chromium.org65fae842010-08-25 15:26:24 +000096void FastNewClosureStub::Generate(MacroAssembler* masm) {
97 // Create a new closure from the given function info in new
98 // space. Set the context to the current context in cp.
yangguo@chromium.org5a11aaf2012-06-20 11:29:00 +000099 Counters* counters = masm->isolate()->counters();
100
ricow@chromium.org65fae842010-08-25 15:26:24 +0000101 Label gc;
102
103 // Pop the function info from the stack.
104 __ pop(r3);
105
106 // Attempt to allocate new JSFunction in new space.
107 __ AllocateInNewSpace(JSFunction::kSize,
108 r0,
109 r1,
110 r2,
111 &gc,
112 TAG_OBJECT);
113
yangguo@chromium.org5a11aaf2012-06-20 11:29:00 +0000114 __ IncrementCounter(counters->fast_new_closure_total(), 1, r6, r7);
115
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000116 int map_index = (language_mode_ == CLASSIC_MODE)
117 ? Context::FUNCTION_MAP_INDEX
118 : Context::STRICT_MODE_FUNCTION_MAP_INDEX;
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000119
yangguo@chromium.org46839fb2012-08-28 09:06:19 +0000120 // Compute the function map in the current native context and set that
ricow@chromium.org65fae842010-08-25 15:26:24 +0000121 // as the map of the allocated object.
yangguo@chromium.org46839fb2012-08-28 09:06:19 +0000122 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
123 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kNativeContextOffset));
yangguo@chromium.org5a11aaf2012-06-20 11:29:00 +0000124 __ ldr(r5, MemOperand(r2, Context::SlotOffset(map_index)));
125 __ str(r5, FieldMemOperand(r0, HeapObject::kMapOffset));
ricow@chromium.org65fae842010-08-25 15:26:24 +0000126
127 // Initialize the rest of the function. We don't have to update the
128 // write barrier because the allocated object is in new space.
129 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
yangguo@chromium.org5a11aaf2012-06-20 11:29:00 +0000130 __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
ricow@chromium.org65fae842010-08-25 15:26:24 +0000131 __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
132 __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
yangguo@chromium.org5a11aaf2012-06-20 11:29:00 +0000133 __ str(r5, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
ricow@chromium.org65fae842010-08-25 15:26:24 +0000134 __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
135 __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
136 __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
kasperl@chromium.orga5551262010-12-07 12:49:48 +0000137
ricow@chromium.org65fae842010-08-25 15:26:24 +0000138 // Initialize the code pointer in the function to be the one
139 // found in the shared function info object.
yangguo@chromium.org5a11aaf2012-06-20 11:29:00 +0000140 // But first check if there is an optimized version for our context.
141 Label check_optimized;
142 Label install_unoptimized;
143 if (FLAG_cache_optimized_code) {
144 __ ldr(r1,
145 FieldMemOperand(r3, SharedFunctionInfo::kOptimizedCodeMapOffset));
146 __ tst(r1, r1);
147 __ b(ne, &check_optimized);
148 }
149 __ bind(&install_unoptimized);
150 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
151 __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
ricow@chromium.org65fae842010-08-25 15:26:24 +0000152 __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
153 __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
154 __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
155
156 // Return result. The argument function info has been popped already.
157 __ Ret();
158
yangguo@chromium.org5a11aaf2012-06-20 11:29:00 +0000159 __ bind(&check_optimized);
160
161 __ IncrementCounter(counters->fast_new_closure_try_optimized(), 1, r6, r7);
162
yangguo@chromium.org46839fb2012-08-28 09:06:19 +0000163 // r2 holds native context, r1 points to fixed array of 3-element entries
164 // (native context, optimized code, literals).
yangguo@chromium.org5a11aaf2012-06-20 11:29:00 +0000165 // The optimized code map must never be empty, so check the first elements.
166 Label install_optimized;
167 // Speculatively move code object into r4.
168 __ ldr(r4, FieldMemOperand(r1, FixedArray::kHeaderSize + kPointerSize));
169 __ ldr(r5, FieldMemOperand(r1, FixedArray::kHeaderSize));
170 __ cmp(r2, r5);
171 __ b(eq, &install_optimized);
172
173 // Iterate through the rest of map backwards. r4 holds an index as a Smi.
174 Label loop;
175 __ ldr(r4, FieldMemOperand(r1, FixedArray::kLengthOffset));
176 __ bind(&loop);
177 // Do not double check first entry.
178
179 __ cmp(r4, Operand(Smi::FromInt(SharedFunctionInfo::kEntryLength)));
180 __ b(eq, &install_unoptimized);
181 __ sub(r4, r4, Operand(
182 Smi::FromInt(SharedFunctionInfo::kEntryLength))); // Skip an entry.
183 __ add(r5, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
184 __ add(r5, r5, Operand(r4, LSL, kPointerSizeLog2 - kSmiTagSize));
185 __ ldr(r5, MemOperand(r5));
186 __ cmp(r2, r5);
187 __ b(ne, &loop);
188 // Hit: fetch the optimized code.
189 __ add(r5, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
190 __ add(r5, r5, Operand(r4, LSL, kPointerSizeLog2 - kSmiTagSize));
191 __ add(r5, r5, Operand(kPointerSize));
192 __ ldr(r4, MemOperand(r5));
193
194 __ bind(&install_optimized);
195 __ IncrementCounter(counters->fast_new_closure_install_optimized(),
196 1, r6, r7);
197
198 // TODO(fschneider): Idea: store proper code pointers in the map and either
199 // unmangle them on marking or do nothing as the whole map is discarded on
200 // major GC anyway.
201 __ add(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
202 __ str(r4, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
203
204 // Now link a function into a list of optimized functions.
205 __ ldr(r4, ContextOperand(r2, Context::OPTIMIZED_FUNCTIONS_LIST));
206
207 __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
208 // No need for write barrier as JSFunction (eax) is in the new space.
209
210 __ str(r0, ContextOperand(r2, Context::OPTIMIZED_FUNCTIONS_LIST));
211 // Store JSFunction (eax) into edx before issuing write barrier as
212 // it clobbers all the registers passed.
213 __ mov(r4, r0);
214 __ RecordWriteContextSlot(
215 r2,
216 Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST),
217 r4,
218 r1,
219 kLRHasNotBeenSaved,
220 kDontSaveFPRegs);
221
222 // Return result. The argument function info has been popped already.
223 __ Ret();
224
ricow@chromium.org65fae842010-08-25 15:26:24 +0000225 // Create a new closure through the slower runtime call.
226 __ bind(&gc);
vegorov@chromium.org21b5e952010-11-23 10:24:40 +0000227 __ LoadRoot(r4, Heap::kFalseValueRootIndex);
228 __ Push(cp, r3, r4);
229 __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
ricow@chromium.org65fae842010-08-25 15:26:24 +0000230}
231
232
233void FastNewContextStub::Generate(MacroAssembler* masm) {
234 // Try to allocate the context in new space.
235 Label gc;
ager@chromium.org0ee099b2011-01-25 14:06:47 +0000236 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
ricow@chromium.org65fae842010-08-25 15:26:24 +0000237
238 // Attempt to allocate the context in new space.
ager@chromium.org0ee099b2011-01-25 14:06:47 +0000239 __ AllocateInNewSpace(FixedArray::SizeFor(length),
ricow@chromium.org65fae842010-08-25 15:26:24 +0000240 r0,
241 r1,
242 r2,
243 &gc,
244 TAG_OBJECT);
245
246 // Load the function from the stack.
247 __ ldr(r3, MemOperand(sp, 0));
248
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +0000249 // Set up the object header.
danno@chromium.orgfa458e42012-02-01 10:48:36 +0000250 __ LoadRoot(r1, Heap::kFunctionContextMapRootIndex);
ager@chromium.org0ee099b2011-01-25 14:06:47 +0000251 __ mov(r2, Operand(Smi::FromInt(length)));
ricow@chromium.org65fae842010-08-25 15:26:24 +0000252 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
danno@chromium.orgfa458e42012-02-01 10:48:36 +0000253 __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
ricow@chromium.org65fae842010-08-25 15:26:24 +0000254
danno@chromium.orgfa458e42012-02-01 10:48:36 +0000255 // Set up the fixed slots, copy the global object from the previous context.
yangguo@chromium.org46839fb2012-08-28 09:06:19 +0000256 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
ricow@chromium.org65fae842010-08-25 15:26:24 +0000257 __ mov(r1, Operand(Smi::FromInt(0)));
258 __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
svenpanne@chromium.org6d786c92011-06-15 10:58:27 +0000259 __ str(cp, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
ricow@chromium.org65fae842010-08-25 15:26:24 +0000260 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
yangguo@chromium.org46839fb2012-08-28 09:06:19 +0000261 __ str(r2, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
ricow@chromium.org65fae842010-08-25 15:26:24 +0000262
263 // Initialize the rest of the slots to undefined.
264 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
ager@chromium.org0ee099b2011-01-25 14:06:47 +0000265 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
ricow@chromium.org65fae842010-08-25 15:26:24 +0000266 __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
267 }
268
269 // Remove the on-stack argument and return.
270 __ mov(cp, r0);
271 __ pop();
272 __ Ret();
273
274 // Need to collect. Call into runtime system.
275 __ bind(&gc);
svenpanne@chromium.org6d786c92011-06-15 10:58:27 +0000276 __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
ricow@chromium.org65fae842010-08-25 15:26:24 +0000277}
278
279
svenpanne@chromium.orga8bb4d92011-10-10 13:20:40 +0000280void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
281 // Stack layout on entry:
282 //
283 // [sp]: function.
284 // [sp + kPointerSize]: serialized scope info
285
286 // Try to allocate the context in new space.
287 Label gc;
288 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
289 __ AllocateInNewSpace(FixedArray::SizeFor(length),
290 r0, r1, r2, &gc, TAG_OBJECT);
291
292 // Load the function from the stack.
293 __ ldr(r3, MemOperand(sp, 0));
294
295 // Load the serialized scope info from the stack.
296 __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
297
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +0000298 // Set up the object header.
svenpanne@chromium.orga8bb4d92011-10-10 13:20:40 +0000299 __ LoadRoot(r2, Heap::kBlockContextMapRootIndex);
300 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
301 __ mov(r2, Operand(Smi::FromInt(length)));
302 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
303
yangguo@chromium.org46839fb2012-08-28 09:06:19 +0000304 // If this block context is nested in the native context we get a smi
svenpanne@chromium.orga8bb4d92011-10-10 13:20:40 +0000305 // sentinel instead of a function. The block context should get the
yangguo@chromium.org46839fb2012-08-28 09:06:19 +0000306 // canonical empty function of the native context as its closure which
svenpanne@chromium.orga8bb4d92011-10-10 13:20:40 +0000307 // we still have to look up.
308 Label after_sentinel;
309 __ JumpIfNotSmi(r3, &after_sentinel);
310 if (FLAG_debug_code) {
311 const char* message = "Expected 0 as a Smi sentinel";
312 __ cmp(r3, Operand::Zero());
313 __ Assert(eq, message);
314 }
315 __ ldr(r3, GlobalObjectOperand());
yangguo@chromium.org46839fb2012-08-28 09:06:19 +0000316 __ ldr(r3, FieldMemOperand(r3, GlobalObject::kNativeContextOffset));
svenpanne@chromium.orga8bb4d92011-10-10 13:20:40 +0000317 __ ldr(r3, ContextOperand(r3, Context::CLOSURE_INDEX));
318 __ bind(&after_sentinel);
319
danno@chromium.orgfa458e42012-02-01 10:48:36 +0000320 // Set up the fixed slots, copy the global object from the previous context.
yangguo@chromium.org46839fb2012-08-28 09:06:19 +0000321 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
svenpanne@chromium.orga8bb4d92011-10-10 13:20:40 +0000322 __ str(r3, ContextOperand(r0, Context::CLOSURE_INDEX));
323 __ str(cp, ContextOperand(r0, Context::PREVIOUS_INDEX));
324 __ str(r1, ContextOperand(r0, Context::EXTENSION_INDEX));
yangguo@chromium.org46839fb2012-08-28 09:06:19 +0000325 __ str(r2, ContextOperand(r0, Context::GLOBAL_OBJECT_INDEX));
svenpanne@chromium.orga8bb4d92011-10-10 13:20:40 +0000326
327 // Initialize the rest of the slots to the hole value.
328 __ LoadRoot(r1, Heap::kTheHoleValueRootIndex);
329 for (int i = 0; i < slots_; i++) {
330 __ str(r1, ContextOperand(r0, i + Context::MIN_CONTEXT_SLOTS));
331 }
332
333 // Remove the on-stack argument and return.
334 __ mov(cp, r0);
335 __ add(sp, sp, Operand(2 * kPointerSize));
336 __ Ret();
337
338 // Need to collect. Call into runtime system.
339 __ bind(&gc);
340 __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
341}
342
343
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000344static void GenerateFastCloneShallowArrayCommon(
345 MacroAssembler* masm,
346 int length,
347 FastCloneShallowArrayStub::Mode mode,
yangguo@chromium.org46a2a512013-01-18 16:29:40 +0000348 AllocationSiteMode allocation_site_mode,
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000349 Label* fail) {
350 // Registers on entry:
ricow@chromium.org65fae842010-08-25 15:26:24 +0000351 //
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000352 // r3: boilerplate literal array.
353 ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
ricow@chromium.org65fae842010-08-25 15:26:24 +0000354
355 // All sizes here are multiples of kPointerSize.
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +0000356 int elements_size = 0;
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000357 if (length > 0) {
358 elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
359 ? FixedDoubleArray::SizeFor(length)
360 : FixedArray::SizeFor(length);
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +0000361 }
yangguo@chromium.org46a2a512013-01-18 16:29:40 +0000362
jkummerow@chromium.org59297c72013-01-09 16:32:23 +0000363 int size = JSArray::kSize;
364 int allocation_info_start = size;
yangguo@chromium.org46a2a512013-01-18 16:29:40 +0000365 if (allocation_site_mode == TRACK_ALLOCATION_SITE) {
jkummerow@chromium.org59297c72013-01-09 16:32:23 +0000366 size += AllocationSiteInfo::kSize;
367 }
368 size += elements_size;
ricow@chromium.org65fae842010-08-25 15:26:24 +0000369
ricow@chromium.org65fae842010-08-25 15:26:24 +0000370 // Allocate both the JS array and the elements array in one big
371 // allocation. This avoids multiple limit checks.
yangguo@chromium.org4cd70b42013-01-04 08:57:54 +0000372 AllocationFlags flags = TAG_OBJECT;
373 if (mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS) {
374 flags = static_cast<AllocationFlags>(DOUBLE_ALIGNMENT | flags);
375 }
376 __ AllocateInNewSpace(size, r0, r1, r2, fail, flags);
ricow@chromium.org65fae842010-08-25 15:26:24 +0000377
yangguo@chromium.org46a2a512013-01-18 16:29:40 +0000378 if (allocation_site_mode == TRACK_ALLOCATION_SITE) {
jkummerow@chromium.org59297c72013-01-09 16:32:23 +0000379 __ mov(r2, Operand(Handle<Map>(masm->isolate()->heap()->
380 allocation_site_info_map())));
381 __ str(r2, FieldMemOperand(r0, allocation_info_start));
382 __ str(r3, FieldMemOperand(r0, allocation_info_start + kPointerSize));
383 }
384
ricow@chromium.org65fae842010-08-25 15:26:24 +0000385 // Copy the JS array part.
386 for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000387 if ((i != JSArray::kElementsOffset) || (length == 0)) {
ricow@chromium.org65fae842010-08-25 15:26:24 +0000388 __ ldr(r1, FieldMemOperand(r3, i));
389 __ str(r1, FieldMemOperand(r0, i));
390 }
391 }
392
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000393 if (length > 0) {
ricow@chromium.org65fae842010-08-25 15:26:24 +0000394 // Get hold of the elements array of the boilerplate and setup the
395 // elements pointer in the resulting object.
396 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
yangguo@chromium.org46a2a512013-01-18 16:29:40 +0000397 if (allocation_site_mode == TRACK_ALLOCATION_SITE) {
jkummerow@chromium.org59297c72013-01-09 16:32:23 +0000398 __ add(r2, r0, Operand(JSArray::kSize + AllocationSiteInfo::kSize));
399 } else {
400 __ add(r2, r0, Operand(JSArray::kSize));
401 }
ricow@chromium.org65fae842010-08-25 15:26:24 +0000402 __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
403
404 // Copy the elements array.
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +0000405 ASSERT((elements_size % kPointerSize) == 0);
ricow@chromium.org65fae842010-08-25 15:26:24 +0000406 __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
407 }
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000408}
409
410void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
411 // Stack layout on entry:
412 //
413 // [sp]: constant elements.
414 // [sp + kPointerSize]: literal index.
415 // [sp + (2 * kPointerSize)]: literals array.
416
417 // Load boilerplate object into r3 and check if we need to create a
418 // boilerplate.
419 Label slow_case;
420 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
421 __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
422 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
423 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
424 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
425 __ b(eq, &slow_case);
426
427 FastCloneShallowArrayStub::Mode mode = mode_;
428 if (mode == CLONE_ANY_ELEMENTS) {
429 Label double_elements, check_fast_elements;
430 __ ldr(r0, FieldMemOperand(r3, JSArray::kElementsOffset));
431 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
danno@chromium.orgfa458e42012-02-01 10:48:36 +0000432 __ CompareRoot(r0, Heap::kFixedCOWArrayMapRootIndex);
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000433 __ b(ne, &check_fast_elements);
yangguo@chromium.org46a2a512013-01-18 16:29:40 +0000434 GenerateFastCloneShallowArrayCommon(masm, 0, COPY_ON_WRITE_ELEMENTS,
435 allocation_site_mode_,
jkummerow@chromium.org59297c72013-01-09 16:32:23 +0000436 &slow_case);
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000437 // Return and remove the on-stack parameters.
438 __ add(sp, sp, Operand(3 * kPointerSize));
439 __ Ret();
440
441 __ bind(&check_fast_elements);
danno@chromium.orgfa458e42012-02-01 10:48:36 +0000442 __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000443 __ b(ne, &double_elements);
yangguo@chromium.org46a2a512013-01-18 16:29:40 +0000444 GenerateFastCloneShallowArrayCommon(masm, length_, CLONE_ELEMENTS,
445 allocation_site_mode_,
jkummerow@chromium.org59297c72013-01-09 16:32:23 +0000446 &slow_case);
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000447 // Return and remove the on-stack parameters.
448 __ add(sp, sp, Operand(3 * kPointerSize));
449 __ Ret();
450
451 __ bind(&double_elements);
452 mode = CLONE_DOUBLE_ELEMENTS;
453 // Fall through to generate the code to handle double elements.
454 }
455
456 if (FLAG_debug_code) {
457 const char* message;
458 Heap::RootListIndex expected_map_index;
459 if (mode == CLONE_ELEMENTS) {
460 message = "Expected (writable) fixed array";
461 expected_map_index = Heap::kFixedArrayMapRootIndex;
462 } else if (mode == CLONE_DOUBLE_ELEMENTS) {
463 message = "Expected (writable) fixed double array";
464 expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
465 } else {
466 ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
467 message = "Expected copy-on-write fixed array";
468 expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
469 }
470 __ push(r3);
471 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
472 __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
473 __ CompareRoot(r3, expected_map_index);
474 __ Assert(eq, message);
475 __ pop(r3);
476 }
477
jkummerow@chromium.org59297c72013-01-09 16:32:23 +0000478 GenerateFastCloneShallowArrayCommon(masm, length_, mode,
yangguo@chromium.org46a2a512013-01-18 16:29:40 +0000479 allocation_site_mode_,
480 &slow_case);
ricow@chromium.org65fae842010-08-25 15:26:24 +0000481
482 // Return and remove the on-stack parameters.
483 __ add(sp, sp, Operand(3 * kPointerSize));
484 __ Ret();
485
486 __ bind(&slow_case);
487 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
488}
489
490
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +0000491void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
492 // Stack layout on entry:
493 //
494 // [sp]: object literal flags.
495 // [sp + kPointerSize]: constant properties.
496 // [sp + (2 * kPointerSize)]: literal index.
497 // [sp + (3 * kPointerSize)]: literals array.
498
499 // Load boilerplate object into r3 and check if we need to create a
500 // boilerplate.
501 Label slow_case;
502 __ ldr(r3, MemOperand(sp, 3 * kPointerSize));
503 __ ldr(r0, MemOperand(sp, 2 * kPointerSize));
504 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
505 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
506 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
507 __ b(eq, &slow_case);
508
509 // Check that the boilerplate contains only fast properties and we can
510 // statically determine the instance size.
511 int size = JSObject::kHeaderSize + length_ * kPointerSize;
512 __ ldr(r0, FieldMemOperand(r3, HeapObject::kMapOffset));
513 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceSizeOffset));
514 __ cmp(r0, Operand(size >> kPointerSizeLog2));
515 __ b(ne, &slow_case);
516
517 // Allocate the JS object and copy header together with all in-object
518 // properties from the boilerplate.
519 __ AllocateInNewSpace(size, r0, r1, r2, &slow_case, TAG_OBJECT);
520 for (int i = 0; i < size; i += kPointerSize) {
521 __ ldr(r1, FieldMemOperand(r3, i));
522 __ str(r1, FieldMemOperand(r0, i));
523 }
524
525 // Return and remove the on-stack parameters.
526 __ add(sp, sp, Operand(4 * kPointerSize));
527 __ Ret();
528
529 __ bind(&slow_case);
530 __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
531}
532
533
ricow@chromium.org65fae842010-08-25 15:26:24 +0000534// Takes a Smi and converts to an IEEE 64 bit floating point value in two
535// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
536// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
537// scratch register. Destroys the source register. No GC occurs during this
538// stub so you don't have to set up the frame.
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +0000539class ConvertToDoubleStub : public PlatformCodeStub {
ricow@chromium.org65fae842010-08-25 15:26:24 +0000540 public:
541 ConvertToDoubleStub(Register result_reg_1,
542 Register result_reg_2,
543 Register source_reg,
544 Register scratch_reg)
545 : result1_(result_reg_1),
546 result2_(result_reg_2),
547 source_(source_reg),
548 zeros_(scratch_reg) { }
549
550 private:
551 Register result1_;
552 Register result2_;
553 Register source_;
554 Register zeros_;
555
556 // Minor key encoding in 16 bits.
557 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
558 class OpBits: public BitField<Token::Value, 2, 14> {};
559
560 Major MajorKey() { return ConvertToDouble; }
561 int MinorKey() {
562 // Encode the parameters in a unique 16 bit value.
563 return result1_.code() +
564 (result2_.code() << 4) +
565 (source_.code() << 8) +
566 (zeros_.code() << 12);
567 }
568
569 void Generate(MacroAssembler* masm);
ricow@chromium.org65fae842010-08-25 15:26:24 +0000570};
571
572
573void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
danno@chromium.org160a7b02011-04-18 15:51:38 +0000574 Register exponent = result1_;
575 Register mantissa = result2_;
karlklose@chromium.org44bc7082011-04-11 12:33:05 +0000576
ricow@chromium.org65fae842010-08-25 15:26:24 +0000577 Label not_special;
578 // Convert from Smi to integer.
579 __ mov(source_, Operand(source_, ASR, kSmiTagSize));
580 // Move sign bit from source to destination. This works because the sign bit
581 // in the exponent word of the double has the same position and polarity as
582 // the 2's complement sign bit in a Smi.
583 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
584 __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
585 // Subtract from 0 if source was negative.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +0000586 __ rsb(source_, source_, Operand::Zero(), LeaveCC, ne);
ricow@chromium.org65fae842010-08-25 15:26:24 +0000587
588 // We have -1, 0 or 1, which we treat specially. Register source_ contains
589 // absolute value: it is either equal to 1 (special case of -1 and 1),
590 // greater than 1 (not a special case) or less than 1 (special case of 0).
591 __ cmp(source_, Operand(1));
592 __ b(gt, &not_special);
593
594 // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
jkummerow@chromium.org1456e702012-03-30 08:38:13 +0000595 const uint32_t exponent_word_for_1 =
ricow@chromium.org65fae842010-08-25 15:26:24 +0000596 HeapNumber::kExponentBias << HeapNumber::kExponentShift;
597 __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
598 // 1, 0 and -1 all have 0 for the second word.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +0000599 __ mov(mantissa, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +0000600 __ Ret();
601
602 __ bind(&not_special);
603 // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5.
604 // Gets the wrong answer for 0, but we already checked for that case above.
605 __ CountLeadingZeros(zeros_, source_, mantissa);
606 // Compute exponent and or it into the exponent register.
607 // We use mantissa as a scratch register here. Use a fudge factor to
608 // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
609 // that fit in the ARM's constant field.
610 int fudge = 0x400;
611 __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
612 __ add(mantissa, mantissa, Operand(fudge));
613 __ orr(exponent,
614 exponent,
615 Operand(mantissa, LSL, HeapNumber::kExponentShift));
616 // Shift up the source chopping the top bit off.
617 __ add(zeros_, zeros_, Operand(1));
618 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
619 __ mov(source_, Operand(source_, LSL, zeros_));
620 // Compute lower part of fraction (last 12 bits).
621 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
622 // And the top (top 20 bits).
623 __ orr(exponent,
624 exponent,
625 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
626 __ Ret();
627}
628
629
ager@chromium.org378b34e2011-01-28 08:04:38 +0000630void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
631 FloatingPointHelper::Destination destination,
632 Register scratch1,
633 Register scratch2) {
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +0000634 if (CpuFeatures::IsSupported(VFP2)) {
635 CpuFeatures::Scope scope(VFP2);
ager@chromium.org378b34e2011-01-28 08:04:38 +0000636 __ mov(scratch1, Operand(r0, ASR, kSmiTagSize));
kmillikin@chromium.org31b12772011-02-02 16:08:26 +0000637 __ vmov(d7.high(), scratch1);
638 __ vcvt_f64_s32(d7, d7.high());
ager@chromium.org378b34e2011-01-28 08:04:38 +0000639 __ mov(scratch1, Operand(r1, ASR, kSmiTagSize));
kmillikin@chromium.org31b12772011-02-02 16:08:26 +0000640 __ vmov(d6.high(), scratch1);
641 __ vcvt_f64_s32(d6, d6.high());
ager@chromium.org378b34e2011-01-28 08:04:38 +0000642 if (destination == kCoreRegisters) {
643 __ vmov(r2, r3, d7);
644 __ vmov(r0, r1, d6);
645 }
646 } else {
647 ASSERT(destination == kCoreRegisters);
648 // Write Smi from r0 to r3 and r2 in double format.
649 __ mov(scratch1, Operand(r0));
650 ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2);
651 __ push(lr);
ricow@chromium.org4f693d62011-07-04 14:01:31 +0000652 __ Call(stub1.GetCode());
danno@chromium.org160a7b02011-04-18 15:51:38 +0000653 // Write Smi from r1 to r1 and r0 in double format.
ager@chromium.org378b34e2011-01-28 08:04:38 +0000654 __ mov(scratch1, Operand(r1));
655 ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2);
ricow@chromium.org4f693d62011-07-04 14:01:31 +0000656 __ Call(stub2.GetCode());
ager@chromium.org378b34e2011-01-28 08:04:38 +0000657 __ pop(lr);
658 }
659}
660
661
ager@chromium.org378b34e2011-01-28 08:04:38 +0000662void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
ricow@chromium.org83aa5492011-02-07 12:42:56 +0000663 Destination destination,
664 Register object,
665 DwVfpRegister dst,
666 Register dst1,
667 Register dst2,
668 Register heap_number_map,
669 Register scratch1,
670 Register scratch2,
671 Label* not_number) {
svenpanne@chromium.orgc859c4f2012-10-15 11:51:39 +0000672 __ AssertRootValue(heap_number_map,
673 Heap::kHeapNumberMapRootIndex,
674 "HeapNumberMap register clobbered.");
ricow@chromium.org83aa5492011-02-07 12:42:56 +0000675
ager@chromium.org378b34e2011-01-28 08:04:38 +0000676 Label is_smi, done;
677
danno@chromium.orgfa458e42012-02-01 10:48:36 +0000678 // Smi-check
679 __ UntagAndJumpIfSmi(scratch1, object, &is_smi);
680 // Heap number check
ager@chromium.org378b34e2011-01-28 08:04:38 +0000681 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
682
683 // Handle loading a double from a heap number.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +0000684 if (CpuFeatures::IsSupported(VFP2) &&
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +0000685 destination == kVFPRegisters) {
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +0000686 CpuFeatures::Scope scope(VFP2);
ager@chromium.org378b34e2011-01-28 08:04:38 +0000687 // Load the double from tagged HeapNumber to double register.
688 __ sub(scratch1, object, Operand(kHeapObjectTag));
689 __ vldr(dst, scratch1, HeapNumber::kValueOffset);
690 } else {
691 ASSERT(destination == kCoreRegisters);
692 // Load the double from heap number to dst1 and dst2 in double format.
693 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
694 }
695 __ jmp(&done);
696
697 // Handle loading a double from a smi.
698 __ bind(&is_smi);
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +0000699 if (CpuFeatures::IsSupported(VFP2)) {
700 CpuFeatures::Scope scope(VFP2);
kmillikin@chromium.org31b12772011-02-02 16:08:26 +0000701 // Convert smi to double using VFP instructions.
ager@chromium.org378b34e2011-01-28 08:04:38 +0000702 __ vmov(dst.high(), scratch1);
703 __ vcvt_f64_s32(dst, dst.high());
704 if (destination == kCoreRegisters) {
kmillikin@chromium.org31b12772011-02-02 16:08:26 +0000705 // Load the converted smi to dst1 and dst2 in double format.
ager@chromium.org378b34e2011-01-28 08:04:38 +0000706 __ vmov(dst1, dst2, dst);
707 }
708 } else {
709 ASSERT(destination == kCoreRegisters);
kmillikin@chromium.org31b12772011-02-02 16:08:26 +0000710 // Write smi to dst1 and dst2 double format.
ager@chromium.org378b34e2011-01-28 08:04:38 +0000711 __ mov(scratch1, Operand(object));
712 ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
713 __ push(lr);
ricow@chromium.org4f693d62011-07-04 14:01:31 +0000714 __ Call(stub.GetCode());
ager@chromium.org378b34e2011-01-28 08:04:38 +0000715 __ pop(lr);
716 }
717
718 __ bind(&done);
719}
720
721
whesse@chromium.orgb08986c2011-03-14 16:13:42 +0000722void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
723 Register object,
724 Register dst,
725 Register heap_number_map,
726 Register scratch1,
727 Register scratch2,
728 Register scratch3,
729 DwVfpRegister double_scratch,
730 Label* not_number) {
svenpanne@chromium.orgc859c4f2012-10-15 11:51:39 +0000731 __ AssertRootValue(heap_number_map,
732 Heap::kHeapNumberMapRootIndex,
733 "HeapNumberMap register clobbered.");
whesse@chromium.orgb08986c2011-03-14 16:13:42 +0000734 Label done;
735 Label not_in_int32_range;
736
danno@chromium.orgfa458e42012-02-01 10:48:36 +0000737 __ UntagAndJumpIfSmi(dst, object, &done);
ricow@chromium.org83aa5492011-02-07 12:42:56 +0000738 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
739 __ cmp(scratch1, heap_number_map);
whesse@chromium.orgb08986c2011-03-14 16:13:42 +0000740 __ b(ne, not_number);
741 __ ConvertToInt32(object,
742 dst,
743 scratch1,
744 scratch2,
745 double_scratch,
746 &not_in_int32_range);
ricow@chromium.org83aa5492011-02-07 12:42:56 +0000747 __ jmp(&done);
whesse@chromium.orgb08986c2011-03-14 16:13:42 +0000748
749 __ bind(&not_in_int32_range);
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +0000750 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
751 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
whesse@chromium.orgb08986c2011-03-14 16:13:42 +0000752
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +0000753 __ EmitOutOfInt32RangeTruncate(dst,
754 scratch1,
755 scratch2,
756 scratch3);
ricow@chromium.org83aa5492011-02-07 12:42:56 +0000757 __ bind(&done);
758}
759
760
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000761void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
762 Register int_scratch,
763 Destination destination,
764 DwVfpRegister double_dst,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000765 Register dst_mantissa,
766 Register dst_exponent,
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000767 Register scratch2,
768 SwVfpRegister single_scratch) {
769 ASSERT(!int_scratch.is(scratch2));
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000770 ASSERT(!int_scratch.is(dst_mantissa));
771 ASSERT(!int_scratch.is(dst_exponent));
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000772
773 Label done;
774
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +0000775 if (CpuFeatures::IsSupported(VFP2)) {
776 CpuFeatures::Scope scope(VFP2);
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000777 __ vmov(single_scratch, int_scratch);
778 __ vcvt_f64_s32(double_dst, single_scratch);
779 if (destination == kCoreRegisters) {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000780 __ vmov(dst_mantissa, dst_exponent, double_dst);
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000781 }
782 } else {
783 Label fewer_than_20_useful_bits;
784 // Expected output:
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000785 // | dst_exponent | dst_mantissa |
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000786 // | s | exp | mantissa |
787
788 // Check for zero.
ricow@chromium.orgddd545c2011-08-24 12:02:41 +0000789 __ cmp(int_scratch, Operand::Zero());
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000790 __ mov(dst_exponent, int_scratch);
791 __ mov(dst_mantissa, int_scratch);
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000792 __ b(eq, &done);
793
794 // Preload the sign of the value.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000795 __ and_(dst_exponent, int_scratch, Operand(HeapNumber::kSignMask), SetCC);
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000796 // Get the absolute value of the object (as an unsigned integer).
ricow@chromium.orgddd545c2011-08-24 12:02:41 +0000797 __ rsb(int_scratch, int_scratch, Operand::Zero(), SetCC, mi);
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000798
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +0000799 // Get mantissa[51:20].
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000800
801 // Get the position of the first set bit.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000802 __ CountLeadingZeros(dst_mantissa, int_scratch, scratch2);
803 __ rsb(dst_mantissa, dst_mantissa, Operand(31));
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000804
805 // Set the exponent.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000806 __ add(scratch2, dst_mantissa, Operand(HeapNumber::kExponentBias));
807 __ Bfi(dst_exponent, scratch2, scratch2,
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000808 HeapNumber::kExponentShift, HeapNumber::kExponentBits);
809
810 // Clear the first non null bit.
811 __ mov(scratch2, Operand(1));
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000812 __ bic(int_scratch, int_scratch, Operand(scratch2, LSL, dst_mantissa));
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000813
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000814 __ cmp(dst_mantissa, Operand(HeapNumber::kMantissaBitsInTopWord));
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000815 // Get the number of bits to set in the lower part of the mantissa.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000816 __ sub(scratch2, dst_mantissa, Operand(HeapNumber::kMantissaBitsInTopWord),
817 SetCC);
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000818 __ b(mi, &fewer_than_20_useful_bits);
819 // Set the higher 20 bits of the mantissa.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000820 __ orr(dst_exponent, dst_exponent, Operand(int_scratch, LSR, scratch2));
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000821 __ rsb(scratch2, scratch2, Operand(32));
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000822 __ mov(dst_mantissa, Operand(int_scratch, LSL, scratch2));
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000823 __ b(&done);
824
825 __ bind(&fewer_than_20_useful_bits);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000826 __ rsb(scratch2, dst_mantissa, Operand(HeapNumber::kMantissaBitsInTopWord));
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000827 __ mov(scratch2, Operand(int_scratch, LSL, scratch2));
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000828 __ orr(dst_exponent, dst_exponent, scratch2);
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000829 // Set dst1 to 0.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000830 __ mov(dst_mantissa, Operand::Zero());
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +0000831 }
832 __ bind(&done);
833}
834
835
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000836void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
837 Register object,
838 Destination destination,
839 DwVfpRegister double_dst,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +0000840 DwVfpRegister double_scratch,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000841 Register dst_mantissa,
842 Register dst_exponent,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000843 Register heap_number_map,
844 Register scratch1,
845 Register scratch2,
846 SwVfpRegister single_scratch,
847 Label* not_int32) {
848 ASSERT(!scratch1.is(object) && !scratch2.is(object));
849 ASSERT(!scratch1.is(scratch2));
850 ASSERT(!heap_number_map.is(object) &&
851 !heap_number_map.is(scratch1) &&
852 !heap_number_map.is(scratch2));
853
854 Label done, obj_is_not_smi;
855
856 __ JumpIfNotSmi(object, &obj_is_not_smi);
857 __ SmiUntag(scratch1, object);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000858 ConvertIntToDouble(masm, scratch1, destination, double_dst, dst_mantissa,
859 dst_exponent, scratch2, single_scratch);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000860 __ b(&done);
861
862 __ bind(&obj_is_not_smi);
svenpanne@chromium.orgc859c4f2012-10-15 11:51:39 +0000863 __ AssertRootValue(heap_number_map,
864 Heap::kHeapNumberMapRootIndex,
865 "HeapNumberMap register clobbered.");
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000866 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
867
868 // Load the number.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +0000869 if (CpuFeatures::IsSupported(VFP2)) {
870 CpuFeatures::Scope scope(VFP2);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000871 // Load the double value.
872 __ sub(scratch1, object, Operand(kHeapObjectTag));
873 __ vldr(double_dst, scratch1, HeapNumber::kValueOffset);
874
875 __ EmitVFPTruncate(kRoundToZero,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000876 scratch1,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +0000877 double_dst,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000878 scratch2,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +0000879 double_scratch,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000880 kCheckForInexactConversion);
881
882 // Jump to not_int32 if the operation did not succeed.
883 __ b(ne, not_int32);
884
885 if (destination == kCoreRegisters) {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000886 __ vmov(dst_mantissa, dst_exponent, double_dst);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000887 }
888
889 } else {
890 ASSERT(!scratch1.is(object) && !scratch2.is(object));
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000891 // Load the double value in the destination registers.
892 bool save_registers = object.is(dst_mantissa) || object.is(dst_exponent);
893 if (save_registers) {
894 // Save both output registers, because the other one probably holds
895 // an important value too.
896 __ Push(dst_exponent, dst_mantissa);
897 }
898 __ Ldrd(dst_mantissa, dst_exponent,
899 FieldMemOperand(object, HeapNumber::kValueOffset));
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000900
901 // Check for 0 and -0.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000902 Label zero;
903 __ bic(scratch1, dst_exponent, Operand(HeapNumber::kSignMask));
904 __ orr(scratch1, scratch1, Operand(dst_mantissa));
ricow@chromium.orgddd545c2011-08-24 12:02:41 +0000905 __ cmp(scratch1, Operand::Zero());
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000906 __ b(eq, &zero);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000907
908 // Check that the value can be exactly represented by a 32-bit integer.
909 // Jump to not_int32 if that's not the case.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000910 Label restore_input_and_miss;
911 DoubleIs32BitInteger(masm, dst_exponent, dst_mantissa, scratch1, scratch2,
912 &restore_input_and_miss);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000913
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000914 // dst_* were trashed. Reload the double value.
915 if (save_registers) {
916 __ Pop(dst_exponent, dst_mantissa);
917 }
918 __ Ldrd(dst_mantissa, dst_exponent,
919 FieldMemOperand(object, HeapNumber::kValueOffset));
920 __ b(&done);
921
922 __ bind(&restore_input_and_miss);
923 if (save_registers) {
924 __ Pop(dst_exponent, dst_mantissa);
925 }
926 __ b(not_int32);
927
928 __ bind(&zero);
929 if (save_registers) {
930 __ Drop(2);
931 }
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000932 }
933
934 __ bind(&done);
935}
936
937
938void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
939 Register object,
940 Register dst,
941 Register heap_number_map,
942 Register scratch1,
943 Register scratch2,
944 Register scratch3,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +0000945 DwVfpRegister double_scratch0,
946 DwVfpRegister double_scratch1,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000947 Label* not_int32) {
948 ASSERT(!dst.is(object));
949 ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
950 ASSERT(!scratch1.is(scratch2) &&
951 !scratch1.is(scratch3) &&
952 !scratch2.is(scratch3));
953
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000954 Label done, maybe_undefined;
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000955
danno@chromium.orgfa458e42012-02-01 10:48:36 +0000956 __ UntagAndJumpIfSmi(dst, object, &done);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000957
svenpanne@chromium.orgc859c4f2012-10-15 11:51:39 +0000958 __ AssertRootValue(heap_number_map,
959 Heap::kHeapNumberMapRootIndex,
960 "HeapNumberMap register clobbered.");
yangguo@chromium.orgfb377212012-11-16 14:43:43 +0000961
962 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, &maybe_undefined);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000963
964 // Object is a heap number.
965 // Convert the floating point value to a 32-bit integer.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +0000966 if (CpuFeatures::IsSupported(VFP2)) {
967 CpuFeatures::Scope scope(VFP2);
verwaest@chromium.org33e09c82012-10-10 17:07:22 +0000968
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000969 // Load the double value.
970 __ sub(scratch1, object, Operand(kHeapObjectTag));
verwaest@chromium.org33e09c82012-10-10 17:07:22 +0000971 __ vldr(double_scratch0, scratch1, HeapNumber::kValueOffset);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000972
973 __ EmitVFPTruncate(kRoundToZero,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +0000974 dst,
975 double_scratch0,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000976 scratch1,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +0000977 double_scratch1,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000978 kCheckForInexactConversion);
979
980 // Jump to not_int32 if the operation did not succeed.
981 __ b(ne, not_int32);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000982 } else {
983 // Load the double value in the destination registers.
984 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
985 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
986
987 // Check for 0 and -0.
988 __ bic(dst, scratch1, Operand(HeapNumber::kSignMask));
989 __ orr(dst, scratch2, Operand(dst));
ricow@chromium.orgddd545c2011-08-24 12:02:41 +0000990 __ cmp(dst, Operand::Zero());
ager@chromium.org9ee27ae2011-03-02 13:43:26 +0000991 __ b(eq, &done);
992
993 DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
994
995 // Registers state after DoubleIs32BitInteger.
996 // dst: mantissa[51:20].
997 // scratch2: 1
998
999 // Shift back the higher bits of the mantissa.
1000 __ mov(dst, Operand(dst, LSR, scratch3));
1001 // Set the implicit first bit.
1002 __ rsb(scratch3, scratch3, Operand(32));
1003 __ orr(dst, dst, Operand(scratch2, LSL, scratch3));
1004 // Set the sign.
1005 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
1006 __ tst(scratch1, Operand(HeapNumber::kSignMask));
ricow@chromium.orgddd545c2011-08-24 12:02:41 +00001007 __ rsb(dst, dst, Operand::Zero(), LeaveCC, mi);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00001008 }
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001009 __ b(&done);
1010
1011 __ bind(&maybe_undefined);
1012 __ CompareRoot(object, Heap::kUndefinedValueRootIndex);
1013 __ b(ne, not_int32);
1014 // |undefined| is truncated to 0.
1015 __ mov(dst, Operand(Smi::FromInt(0)));
1016 // Fall through.
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00001017
1018 __ bind(&done);
1019}
1020
1021
1022void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001023 Register src_exponent,
1024 Register src_mantissa,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00001025 Register dst,
1026 Register scratch,
1027 Label* not_int32) {
1028 // Get exponent alone in scratch.
1029 __ Ubfx(scratch,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001030 src_exponent,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00001031 HeapNumber::kExponentShift,
1032 HeapNumber::kExponentBits);
1033
1034 // Substract the bias from the exponent.
1035 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC);
1036
1037 // src1: higher (exponent) part of the double value.
1038 // src2: lower (mantissa) part of the double value.
1039 // scratch: unbiased exponent.
1040
1041 // Fast cases. Check for obvious non 32-bit integer values.
1042 // Negative exponent cannot yield 32-bit integers.
1043 __ b(mi, not_int32);
1044 // Exponent greater than 31 cannot yield 32-bit integers.
1045 // Also, a positive value with an exponent equal to 31 is outside of the
1046 // signed 32-bit integer range.
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00001047 // Another way to put it is that if (exponent - signbit) > 30 then the
1048 // number cannot be represented as an int32.
1049 Register tmp = dst;
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001050 __ sub(tmp, scratch, Operand(src_exponent, LSR, 31));
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00001051 __ cmp(tmp, Operand(30));
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00001052 __ b(gt, not_int32);
1053 // - Bits [21:0] in the mantissa are not null.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001054 __ tst(src_mantissa, Operand(0x3fffff));
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00001055 __ b(ne, not_int32);
1056
1057 // Otherwise the exponent needs to be big enough to shift left all the
1058 // non zero bits left. So we need the (30 - exponent) last bits of the
1059 // 31 higher bits of the mantissa to be null.
1060 // Because bits [21:0] are null, we can check instead that the
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00001061 // (32 - exponent) last bits of the 32 higher bits of the mantissa are null.
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00001062
1063 // Get the 32 higher bits of the mantissa in dst.
1064 __ Ubfx(dst,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001065 src_mantissa,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00001066 HeapNumber::kMantissaBitsInTopWord,
1067 32 - HeapNumber::kMantissaBitsInTopWord);
1068 __ orr(dst,
1069 dst,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001070 Operand(src_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord));
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00001071
1072 // Create the mask and test the lower bits (of the higher bits).
1073 __ rsb(scratch, scratch, Operand(32));
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001074 __ mov(src_mantissa, Operand(1));
1075 __ mov(src_exponent, Operand(src_mantissa, LSL, scratch));
1076 __ sub(src_exponent, src_exponent, Operand(1));
1077 __ tst(dst, src_exponent);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00001078 __ b(ne, not_int32);
1079}
1080
1081
1082void FloatingPointHelper::CallCCodeForDoubleOperation(
1083 MacroAssembler* masm,
1084 Token::Value op,
1085 Register heap_number_result,
1086 Register scratch) {
1087 // Using core registers:
1088 // r0: Left value (least significant part of mantissa).
1089 // r1: Left value (sign, exponent, top of mantissa).
1090 // r2: Right value (least significant part of mantissa).
1091 // r3: Right value (sign, exponent, top of mantissa).
1092
1093 // Assert that heap_number_result is callee-saved.
1094 // We currently always use r5 to pass it.
1095 ASSERT(heap_number_result.is(r5));
1096
1097 // Push the current return address before the C call. Return will be
1098 // through pop(pc) below.
1099 __ push(lr);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00001100 __ PrepareCallCFunction(0, 2, scratch);
1101 if (masm->use_eabi_hardfloat()) {
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00001102 CpuFeatures::Scope scope(VFP2);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00001103 __ vmov(d0, r0, r1);
1104 __ vmov(d1, r2, r3);
1105 }
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00001106 {
1107 AllowExternalCallThatCantCauseGC scope(masm);
1108 __ CallCFunction(
1109 ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
1110 }
karlklose@chromium.org44bc7082011-04-11 12:33:05 +00001111 // Store answer in the overwritable heap number. Double returned in
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00001112 // registers r0 and r1 or in d0.
1113 if (masm->use_eabi_hardfloat()) {
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00001114 CpuFeatures::Scope scope(VFP2);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00001115 __ vstr(d0,
1116 FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
1117 } else {
1118 __ Strd(r0, r1, FieldMemOperand(heap_number_result,
1119 HeapNumber::kValueOffset));
1120 }
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00001121 // Place heap_number_result in r0 and return to the pushed return address.
1122 __ mov(r0, Operand(heap_number_result));
1123 __ pop(pc);
1124}
1125
ricow@chromium.org83aa5492011-02-07 12:42:56 +00001126
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00001127bool WriteInt32ToHeapNumberStub::IsPregenerated() {
1128 // These variants are compiled ahead of time. See next method.
1129 if (the_int_.is(r1) && the_heap_number_.is(r0) && scratch_.is(r2)) {
1130 return true;
1131 }
1132 if (the_int_.is(r2) && the_heap_number_.is(r0) && scratch_.is(r3)) {
1133 return true;
1134 }
1135 // Other register combinations are generated as and when they are needed,
1136 // so it is unsafe to call them from stubs (we can't generate a stub while
1137 // we are generating a stub).
1138 return false;
1139}
1140
1141
1142void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() {
1143 WriteInt32ToHeapNumberStub stub1(r1, r0, r2);
1144 WriteInt32ToHeapNumberStub stub2(r2, r0, r3);
1145 stub1.GetCode()->set_is_pregenerated(true);
1146 stub2.GetCode()->set_is_pregenerated(true);
1147}
1148
1149
ricow@chromium.org65fae842010-08-25 15:26:24 +00001150// See comment for class.
1151void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
1152 Label max_negative_int;
1153 // the_int_ has the answer which is a signed int32 but not a Smi.
1154 // We test for the special value that has a different exponent. This test
1155 // has the neat side effect of setting the flags according to the sign.
1156 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
1157 __ cmp(the_int_, Operand(0x80000000u));
1158 __ b(eq, &max_negative_int);
1159 // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
1160 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
1161 uint32_t non_smi_exponent =
1162 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
1163 __ mov(scratch_, Operand(non_smi_exponent));
1164 // Set the sign bit in scratch_ if the value was negative.
1165 __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
1166 // Subtract from 0 if the value was negative.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00001167 __ rsb(the_int_, the_int_, Operand::Zero(), LeaveCC, cs);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001168 // We should be masking the implict first digit of the mantissa away here,
1169 // but it just ends up combining harmlessly with the last digit of the
1170 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
1171 // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
1172 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
1173 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
1174 __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
1175 __ str(scratch_, FieldMemOperand(the_heap_number_,
1176 HeapNumber::kExponentOffset));
1177 __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
1178 __ str(scratch_, FieldMemOperand(the_heap_number_,
1179 HeapNumber::kMantissaOffset));
1180 __ Ret();
1181
1182 __ bind(&max_negative_int);
1183 // The max negative int32 is stored as a positive number in the mantissa of
1184 // a double because it uses a sign bit instead of using two's complement.
1185 // The actual mantissa bits stored are all 0 because the implicit most
1186 // significant 1 bit is not stored.
1187 non_smi_exponent += 1 << HeapNumber::kExponentShift;
1188 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
1189 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00001190 __ mov(ip, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00001191 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
1192 __ Ret();
1193}
1194
1195
1196// Handle the case where the lhs and rhs are the same object.
1197// Equality is almost reflexive (everything but NaN), so this is a test
1198// for "identity and not NaN".
1199static void EmitIdenticalObjectComparison(MacroAssembler* masm,
1200 Label* slow,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001201 Condition cond) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001202 Label not_identical;
1203 Label heap_number, return_equal;
1204 __ cmp(r0, r1);
1205 __ b(ne, &not_identical);
1206
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001207 // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(),
1208 // so we do the second best thing - test it ourselves.
1209 // They are both equal and they are not both Smis so both of them are not
1210 // Smis. If it's not a heap number, then return equal.
1211 if (cond == lt || cond == gt) {
1212 __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
1213 __ b(ge, slow);
1214 } else {
1215 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
1216 __ b(eq, &heap_number);
1217 // Comparing JS objects with <=, >= is complicated.
1218 if (cond != eq) {
1219 __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
ricow@chromium.org65fae842010-08-25 15:26:24 +00001220 __ b(ge, slow);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001221 // Normally here we fall through to return_equal, but undefined is
1222 // special: (undefined == undefined) == true, but
1223 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
1224 if (cond == le || cond == ge) {
1225 __ cmp(r4, Operand(ODDBALL_TYPE));
1226 __ b(ne, &return_equal);
1227 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1228 __ cmp(r0, r2);
1229 __ b(ne, &return_equal);
1230 if (cond == le) {
1231 // undefined <= undefined should fail.
1232 __ mov(r0, Operand(GREATER));
1233 } else {
1234 // undefined >= undefined should fail.
1235 __ mov(r0, Operand(LESS));
ricow@chromium.org65fae842010-08-25 15:26:24 +00001236 }
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001237 __ Ret();
ricow@chromium.org65fae842010-08-25 15:26:24 +00001238 }
1239 }
1240 }
1241
1242 __ bind(&return_equal);
ager@chromium.org378b34e2011-01-28 08:04:38 +00001243 if (cond == lt) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001244 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
ager@chromium.org378b34e2011-01-28 08:04:38 +00001245 } else if (cond == gt) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001246 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
1247 } else {
1248 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
1249 }
1250 __ Ret();
1251
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001252 // For less and greater we don't have to check for NaN since the result of
1253 // x < x is false regardless. For the others here is some code to check
1254 // for NaN.
1255 if (cond != lt && cond != gt) {
1256 __ bind(&heap_number);
1257 // It is a heap number, so return non-equal if it's NaN and equal if it's
1258 // not NaN.
ricow@chromium.org65fae842010-08-25 15:26:24 +00001259
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001260 // The representation of NaN values has all exponent bits (52..62) set,
1261 // and not all mantissa bits (0..51) clear.
1262 // Read top bits of double representation (second word of value).
1263 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
1264 // Test that exponent bits are all set.
1265 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
1266 // NaNs have all-one exponents so they sign extend to -1.
1267 __ cmp(r3, Operand(-1));
1268 __ b(ne, &return_equal);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001269
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001270 // Shift out flag and all exponent bits, retaining only mantissa.
1271 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
1272 // Or with all low-bits of mantissa.
1273 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
1274 __ orr(r0, r3, Operand(r2), SetCC);
1275 // For equal we already have the right value in r0: Return zero (equal)
1276 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
1277 // not (it's a NaN). For <= and >= we need to load r0 with the failing
1278 // value if it's a NaN.
1279 if (cond != eq) {
1280 // All-zero means Infinity means equal.
1281 __ Ret(eq);
1282 if (cond == le) {
1283 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
1284 } else {
1285 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
ricow@chromium.org65fae842010-08-25 15:26:24 +00001286 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00001287 }
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001288 __ Ret();
ricow@chromium.org65fae842010-08-25 15:26:24 +00001289 }
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001290 // No fall through here.
ricow@chromium.org65fae842010-08-25 15:26:24 +00001291
1292 __ bind(&not_identical);
1293}
1294
1295
1296// See comment at call site.
1297static void EmitSmiNonsmiComparison(MacroAssembler* masm,
1298 Register lhs,
1299 Register rhs,
1300 Label* lhs_not_nan,
1301 Label* slow,
1302 bool strict) {
1303 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1304 (lhs.is(r1) && rhs.is(r0)));
1305
1306 Label rhs_is_smi;
whesse@chromium.org7b260152011-06-20 15:33:18 +00001307 __ JumpIfSmi(rhs, &rhs_is_smi);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001308
1309 // Lhs is a Smi. Check whether the rhs is a heap number.
1310 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
1311 if (strict) {
1312 // If rhs is not a number and lhs is a Smi then strict equality cannot
1313 // succeed. Return non-equal
1314 // If rhs is r0 then there is already a non zero value in it.
1315 if (!rhs.is(r0)) {
1316 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1317 }
1318 __ Ret(ne);
1319 } else {
1320 // Smi compared non-strictly with a non-Smi non-heap-number. Call
1321 // the runtime.
1322 __ b(ne, slow);
1323 }
1324
1325 // Lhs is a smi, rhs is a number.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00001326 if (CpuFeatures::IsSupported(VFP2)) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001327 // Convert lhs to a double in d7.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00001328 CpuFeatures::Scope scope(VFP2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001329 __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
1330 // Load the double from rhs, tagged HeapNumber r0, to d6.
1331 __ sub(r7, rhs, Operand(kHeapObjectTag));
1332 __ vldr(d6, r7, HeapNumber::kValueOffset);
1333 } else {
1334 __ push(lr);
1335 // Convert lhs to a double in r2, r3.
1336 __ mov(r7, Operand(lhs));
1337 ConvertToDoubleStub stub1(r3, r2, r7, r6);
ricow@chromium.org4f693d62011-07-04 14:01:31 +00001338 __ Call(stub1.GetCode());
ricow@chromium.org65fae842010-08-25 15:26:24 +00001339 // Load rhs to a double in r0, r1.
1340 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1341 __ pop(lr);
1342 }
1343
1344 // We now have both loaded as doubles but we can skip the lhs nan check
1345 // since it's a smi.
1346 __ jmp(lhs_not_nan);
1347
1348 __ bind(&rhs_is_smi);
1349 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
1350 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
1351 if (strict) {
1352 // If lhs is not a number and rhs is a smi then strict equality cannot
1353 // succeed. Return non-equal.
1354 // If lhs is r0 then there is already a non zero value in it.
1355 if (!lhs.is(r0)) {
1356 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1357 }
1358 __ Ret(ne);
1359 } else {
1360 // Smi compared non-strictly with a non-smi non-heap-number. Call
1361 // the runtime.
1362 __ b(ne, slow);
1363 }
1364
1365 // Rhs is a smi, lhs is a heap number.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00001366 if (CpuFeatures::IsSupported(VFP2)) {
1367 CpuFeatures::Scope scope(VFP2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001368 // Load the double from lhs, tagged HeapNumber r1, to d7.
1369 __ sub(r7, lhs, Operand(kHeapObjectTag));
1370 __ vldr(d7, r7, HeapNumber::kValueOffset);
1371 // Convert rhs to a double in d6 .
1372 __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
1373 } else {
1374 __ push(lr);
1375 // Load lhs to a double in r2, r3.
1376 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1377 // Convert rhs to a double in r0, r1.
1378 __ mov(r7, Operand(rhs));
1379 ConvertToDoubleStub stub2(r1, r0, r7, r6);
ricow@chromium.org4f693d62011-07-04 14:01:31 +00001380 __ Call(stub2.GetCode());
ricow@chromium.org65fae842010-08-25 15:26:24 +00001381 __ pop(lr);
1382 }
1383 // Fall through to both_loaded_as_doubles.
1384}
1385
1386
ager@chromium.org378b34e2011-01-28 08:04:38 +00001387void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001388 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1389 Register rhs_exponent = exp_first ? r0 : r1;
1390 Register lhs_exponent = exp_first ? r2 : r3;
1391 Register rhs_mantissa = exp_first ? r1 : r0;
1392 Register lhs_mantissa = exp_first ? r3 : r2;
1393 Label one_is_nan, neither_is_nan;
1394
1395 __ Sbfx(r4,
1396 lhs_exponent,
1397 HeapNumber::kExponentShift,
1398 HeapNumber::kExponentBits);
1399 // NaNs have all-one exponents so they sign extend to -1.
1400 __ cmp(r4, Operand(-1));
1401 __ b(ne, lhs_not_nan);
1402 __ mov(r4,
1403 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1404 SetCC);
1405 __ b(ne, &one_is_nan);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00001406 __ cmp(lhs_mantissa, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00001407 __ b(ne, &one_is_nan);
1408
1409 __ bind(lhs_not_nan);
1410 __ Sbfx(r4,
1411 rhs_exponent,
1412 HeapNumber::kExponentShift,
1413 HeapNumber::kExponentBits);
1414 // NaNs have all-one exponents so they sign extend to -1.
1415 __ cmp(r4, Operand(-1));
1416 __ b(ne, &neither_is_nan);
1417 __ mov(r4,
1418 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1419 SetCC);
1420 __ b(ne, &one_is_nan);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00001421 __ cmp(rhs_mantissa, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00001422 __ b(eq, &neither_is_nan);
1423
1424 __ bind(&one_is_nan);
1425 // NaN comparisons always fail.
1426 // Load whatever we need in r0 to make the comparison fail.
ager@chromium.org378b34e2011-01-28 08:04:38 +00001427 if (cond == lt || cond == le) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001428 __ mov(r0, Operand(GREATER));
1429 } else {
1430 __ mov(r0, Operand(LESS));
1431 }
1432 __ Ret();
1433
1434 __ bind(&neither_is_nan);
1435}
1436
1437
1438// See comment at call site.
ager@chromium.org378b34e2011-01-28 08:04:38 +00001439static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm,
1440 Condition cond) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001441 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1442 Register rhs_exponent = exp_first ? r0 : r1;
1443 Register lhs_exponent = exp_first ? r2 : r3;
1444 Register rhs_mantissa = exp_first ? r1 : r0;
1445 Register lhs_mantissa = exp_first ? r3 : r2;
1446
1447 // r0, r1, r2, r3 have the two doubles. Neither is a NaN.
ager@chromium.org378b34e2011-01-28 08:04:38 +00001448 if (cond == eq) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001449 // Doubles are not equal unless they have the same bit pattern.
1450 // Exception: 0 and -0.
1451 __ cmp(rhs_mantissa, Operand(lhs_mantissa));
1452 __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
1453 // Return non-zero if the numbers are unequal.
1454 __ Ret(ne);
1455
1456 __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
1457 // If exponents are equal then return 0.
1458 __ Ret(eq);
1459
1460 // Exponents are unequal. The only way we can return that the numbers
1461 // are equal is if one is -0 and the other is 0. We already dealt
1462 // with the case where both are -0 or both are 0.
1463 // We start by seeing if the mantissas (that are equal) or the bottom
1464 // 31 bits of the rhs exponent are non-zero. If so we return not
1465 // equal.
1466 __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
1467 __ mov(r0, Operand(r4), LeaveCC, ne);
1468 __ Ret(ne);
1469 // Now they are equal if and only if the lhs exponent is zero in its
1470 // low 31 bits.
1471 __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
1472 __ Ret();
1473 } else {
1474 // Call a native function to do a comparison between two non-NaNs.
1475 // Call C routine that may not cause GC or other trouble.
1476 __ push(lr);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00001477 __ PrepareCallCFunction(0, 2, r5);
1478 if (masm->use_eabi_hardfloat()) {
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00001479 CpuFeatures::Scope scope(VFP2);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00001480 __ vmov(d0, r0, r1);
1481 __ vmov(d1, r2, r3);
1482 }
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00001483
1484 AllowExternalCallThatCantCauseGC scope(masm);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00001485 __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
1486 0, 2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001487 __ pop(pc); // Return.
1488 }
1489}
1490
1491
1492// See comment at call site.
1493static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
1494 Register lhs,
1495 Register rhs) {
1496 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1497 (lhs.is(r1) && rhs.is(r0)));
1498
ricow@chromium.orgd2be9012011-06-01 06:00:58 +00001499 // If either operand is a JS object or an oddball value, then they are
ricow@chromium.org65fae842010-08-25 15:26:24 +00001500 // not equal since their pointers are different.
1501 // There is no test for undetectability in strict equality.
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00001502 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001503 Label first_non_object;
1504 // Get the type of the first operand into r2 and compare it with
ricow@chromium.orgd2be9012011-06-01 06:00:58 +00001505 // FIRST_SPEC_OBJECT_TYPE.
1506 __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001507 __ b(lt, &first_non_object);
1508
1509 // Return non-zero (r0 is not zero)
1510 Label return_not_equal;
1511 __ bind(&return_not_equal);
1512 __ Ret();
1513
1514 __ bind(&first_non_object);
1515 // Check for oddballs: true, false, null, undefined.
1516 __ cmp(r2, Operand(ODDBALL_TYPE));
1517 __ b(eq, &return_not_equal);
1518
ricow@chromium.orgd2be9012011-06-01 06:00:58 +00001519 __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001520 __ b(ge, &return_not_equal);
1521
1522 // Check for oddballs: true, false, null, undefined.
1523 __ cmp(r3, Operand(ODDBALL_TYPE));
1524 __ b(eq, &return_not_equal);
1525
1526 // Now that we have the types we might as well check for symbol-symbol.
1527 // Ensure that no non-strings have the symbol bit set.
1528 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
1529 STATIC_ASSERT(kSymbolTag != 0);
1530 __ and_(r2, r2, Operand(r3));
1531 __ tst(r2, Operand(kIsSymbolMask));
1532 __ b(ne, &return_not_equal);
1533}
1534
1535
1536// See comment at call site.
1537static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
1538 Register lhs,
1539 Register rhs,
1540 Label* both_loaded_as_doubles,
1541 Label* not_heap_numbers,
1542 Label* slow) {
1543 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1544 (lhs.is(r1) && rhs.is(r0)));
1545
1546 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
1547 __ b(ne, not_heap_numbers);
1548 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
1549 __ cmp(r2, r3);
1550 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
1551
1552 // Both are heap numbers. Load them up then jump to the code we have
1553 // for that.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00001554 if (CpuFeatures::IsSupported(VFP2)) {
1555 CpuFeatures::Scope scope(VFP2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001556 __ sub(r7, rhs, Operand(kHeapObjectTag));
1557 __ vldr(d6, r7, HeapNumber::kValueOffset);
1558 __ sub(r7, lhs, Operand(kHeapObjectTag));
1559 __ vldr(d7, r7, HeapNumber::kValueOffset);
1560 } else {
1561 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1562 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1563 }
1564 __ jmp(both_loaded_as_doubles);
1565}
1566
1567
1568// Fast negative check for symbol-to-symbol equality.
1569static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
1570 Register lhs,
1571 Register rhs,
1572 Label* possible_strings,
1573 Label* not_both_strings) {
1574 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1575 (lhs.is(r1) && rhs.is(r0)));
1576
1577 // r2 is object type of rhs.
1578 // Ensure that no non-strings have the symbol bit set.
1579 Label object_test;
1580 STATIC_ASSERT(kSymbolTag != 0);
1581 __ tst(r2, Operand(kIsNotStringMask));
1582 __ b(ne, &object_test);
1583 __ tst(r2, Operand(kIsSymbolMask));
1584 __ b(eq, possible_strings);
1585 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
1586 __ b(ge, not_both_strings);
1587 __ tst(r3, Operand(kIsSymbolMask));
1588 __ b(eq, possible_strings);
1589
1590 // Both are symbols. We already checked they weren't the same pointer
1591 // so they are not equal.
1592 __ mov(r0, Operand(NOT_EQUAL));
1593 __ Ret();
1594
1595 __ bind(&object_test);
ricow@chromium.orgd2be9012011-06-01 06:00:58 +00001596 __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
ricow@chromium.org65fae842010-08-25 15:26:24 +00001597 __ b(lt, not_both_strings);
ricow@chromium.orgd2be9012011-06-01 06:00:58 +00001598 __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001599 __ b(lt, not_both_strings);
1600 // If both objects are undetectable, they are equal. Otherwise, they
1601 // are not equal, since they are different objects and an object is not
1602 // equal to undefined.
1603 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
1604 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
1605 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
1606 __ and_(r0, r2, Operand(r3));
1607 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
1608 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
1609 __ Ret();
1610}
1611
1612
1613void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
1614 Register object,
1615 Register result,
1616 Register scratch1,
1617 Register scratch2,
1618 Register scratch3,
1619 bool object_is_smi,
1620 Label* not_found) {
1621 // Use of registers. Register result is used as a temporary.
1622 Register number_string_cache = result;
1623 Register mask = scratch3;
1624
1625 // Load the number string cache.
1626 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
1627
1628 // Make the hash mask from the length of the number string cache. It
1629 // contains two elements (number and string) for each cache entry.
1630 __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
1631 // Divide length by two (length is a smi).
1632 __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
1633 __ sub(mask, mask, Operand(1)); // Make mask.
1634
1635 // Calculate the entry in the number string cache. The hash value in the
1636 // number string cache for smis is just the smi value, and the hash for
1637 // doubles is the xor of the upper and lower words. See
1638 // Heap::GetNumberStringCache.
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00001639 Isolate* isolate = masm->isolate();
ricow@chromium.org65fae842010-08-25 15:26:24 +00001640 Label is_smi;
1641 Label load_result_from_cache;
1642 if (!object_is_smi) {
ager@chromium.org378b34e2011-01-28 08:04:38 +00001643 __ JumpIfSmi(object, &is_smi);
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00001644 if (CpuFeatures::IsSupported(VFP2)) {
1645 CpuFeatures::Scope scope(VFP2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001646 __ CheckMap(object,
1647 scratch1,
1648 Heap::kHeapNumberMapRootIndex,
1649 not_found,
kmillikin@chromium.orgc53e10d2011-05-18 09:12:58 +00001650 DONT_DO_SMI_CHECK);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001651
1652 STATIC_ASSERT(8 == kDoubleSize);
1653 __ add(scratch1,
1654 object,
1655 Operand(HeapNumber::kValueOffset - kHeapObjectTag));
1656 __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
1657 __ eor(scratch1, scratch1, Operand(scratch2));
1658 __ and_(scratch1, scratch1, Operand(mask));
1659
1660 // Calculate address of entry in string cache: each entry consists
1661 // of two pointer sized fields.
1662 __ add(scratch1,
1663 number_string_cache,
1664 Operand(scratch1, LSL, kPointerSizeLog2 + 1));
1665
1666 Register probe = mask;
1667 __ ldr(probe,
1668 FieldMemOperand(scratch1, FixedArray::kHeaderSize));
ager@chromium.org378b34e2011-01-28 08:04:38 +00001669 __ JumpIfSmi(probe, not_found);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001670 __ sub(scratch2, object, Operand(kHeapObjectTag));
1671 __ vldr(d0, scratch2, HeapNumber::kValueOffset);
1672 __ sub(probe, probe, Operand(kHeapObjectTag));
1673 __ vldr(d1, probe, HeapNumber::kValueOffset);
sgjesse@chromium.orgc6c57182011-01-17 12:24:25 +00001674 __ VFPCompareAndSetFlags(d0, d1);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001675 __ b(ne, not_found); // The cache did not contain this value.
1676 __ b(&load_result_from_cache);
1677 } else {
1678 __ b(not_found);
1679 }
1680 }
1681
1682 __ bind(&is_smi);
1683 Register scratch = scratch1;
1684 __ and_(scratch, mask, Operand(object, ASR, 1));
1685 // Calculate address of entry in string cache: each entry consists
1686 // of two pointer sized fields.
1687 __ add(scratch,
1688 number_string_cache,
1689 Operand(scratch, LSL, kPointerSizeLog2 + 1));
1690
1691 // Check if the entry is the smi we are looking for.
1692 Register probe = mask;
1693 __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
1694 __ cmp(object, probe);
1695 __ b(ne, not_found);
1696
1697 // Get the result from the cache.
1698 __ bind(&load_result_from_cache);
1699 __ ldr(result,
1700 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00001701 __ IncrementCounter(isolate->counters()->number_to_string_native(),
ricow@chromium.org65fae842010-08-25 15:26:24 +00001702 1,
1703 scratch1,
1704 scratch2);
1705}
1706
1707
1708void NumberToStringStub::Generate(MacroAssembler* masm) {
1709 Label runtime;
1710
1711 __ ldr(r1, MemOperand(sp, 0));
1712
1713 // Generate code to lookup number in the number string cache.
1714 GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
1715 __ add(sp, sp, Operand(1 * kPointerSize));
1716 __ Ret();
1717
1718 __ bind(&runtime);
1719 // Handle number to string in the runtime system if not found in the cache.
1720 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
1721}
1722
1723
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001724static void ICCompareStub_CheckInputType(MacroAssembler* masm,
1725 Register input,
1726 Register scratch,
1727 CompareIC::State expected,
1728 Label* fail) {
1729 Label ok;
1730 if (expected == CompareIC::SMI) {
1731 __ JumpIfNotSmi(input, fail);
1732 } else if (expected == CompareIC::HEAP_NUMBER) {
1733 __ JumpIfSmi(input, &ok);
1734 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
1735 DONT_DO_SMI_CHECK);
1736 }
1737 // We could be strict about symbol/string here, but as long as
1738 // hydrogen doesn't care, the stub doesn't have to care either.
1739 __ bind(&ok);
1740}
1741
1742
1743// On entry r1 and r2 are the values to be compared.
ricow@chromium.org65fae842010-08-25 15:26:24 +00001744// On exit r0 is 0, positive or negative to indicate the result of
1745// the comparison.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001746void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
1747 Register lhs = r1;
1748 Register rhs = r0;
1749 Condition cc = GetCondition();
1750
1751 Label miss;
1752 ICCompareStub_CheckInputType(masm, lhs, r2, left_, &miss);
1753 ICCompareStub_CheckInputType(masm, rhs, r3, right_, &miss);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001754
1755 Label slow; // Call builtin.
1756 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
1757
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001758 Label not_two_smis, smi_done;
1759 __ orr(r2, r1, r0);
1760 __ JumpIfNotSmi(r2, &not_two_smis);
1761 __ mov(r1, Operand(r1, ASR, 1));
1762 __ sub(r0, r1, Operand(r0, ASR, 1));
1763 __ Ret();
1764 __ bind(&not_two_smis);
erik.corry@gmail.comd88afa22010-09-15 12:33:05 +00001765
ricow@chromium.org65fae842010-08-25 15:26:24 +00001766 // NOTICE! This code is only reached after a smi-fast-case check, so
1767 // it is certain that at least one operand isn't a smi.
1768
1769 // Handle the case where the objects are identical. Either returns the answer
1770 // or goes to slow. Only falls through if the objects were not identical.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001771 EmitIdenticalObjectComparison(masm, &slow, cc);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001772
1773 // If either is a Smi (we know that not both are), then they can only
1774 // be strictly equal if the other is a HeapNumber.
1775 STATIC_ASSERT(kSmiTag == 0);
1776 ASSERT_EQ(0, Smi::FromInt(0));
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001777 __ and_(r2, lhs, Operand(rhs));
whesse@chromium.org7b260152011-06-20 15:33:18 +00001778 __ JumpIfNotSmi(r2, &not_smis);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001779 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
1780 // 1) Return the answer.
1781 // 2) Go to slow.
1782 // 3) Fall through to both_loaded_as_doubles.
1783 // 4) Jump to lhs_not_nan.
1784 // In cases 3 and 4 we have found out we were dealing with a number-number
1785 // comparison. If VFP3 is supported the double values of the numbers have
1786 // been loaded into d7 and d6. Otherwise, the double values have been loaded
1787 // into r0, r1, r2, and r3.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001788 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
ricow@chromium.org65fae842010-08-25 15:26:24 +00001789
1790 __ bind(&both_loaded_as_doubles);
1791 // The arguments have been converted to doubles and stored in d6 and d7, if
1792 // VFP3 is supported, or in r0, r1, r2, and r3.
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00001793 Isolate* isolate = masm->isolate();
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00001794 if (CpuFeatures::IsSupported(VFP2)) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001795 __ bind(&lhs_not_nan);
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00001796 CpuFeatures::Scope scope(VFP2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001797 Label no_nan;
1798 // ARMv7 VFP3 instructions to implement double precision comparison.
sgjesse@chromium.orgc6c57182011-01-17 12:24:25 +00001799 __ VFPCompareAndSetFlags(d7, d6);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001800 Label nan;
1801 __ b(vs, &nan);
1802 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
1803 __ mov(r0, Operand(LESS), LeaveCC, lt);
1804 __ mov(r0, Operand(GREATER), LeaveCC, gt);
1805 __ Ret();
1806
1807 __ bind(&nan);
1808 // If one of the sides was a NaN then the v flag is set. Load r0 with
1809 // whatever it takes to make the comparison fail, since comparisons with NaN
1810 // always fail.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001811 if (cc == lt || cc == le) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001812 __ mov(r0, Operand(GREATER));
1813 } else {
1814 __ mov(r0, Operand(LESS));
1815 }
1816 __ Ret();
1817 } else {
1818 // Checks for NaN in the doubles we have loaded. Can return the answer or
1819 // fall through if neither is a NaN. Also binds lhs_not_nan.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001820 EmitNanCheck(masm, &lhs_not_nan, cc);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001821 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
1822 // answer. Never falls through.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001823 EmitTwoNonNanDoubleComparison(masm, cc);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001824 }
1825
1826 __ bind(&not_smis);
1827 // At this point we know we are dealing with two different objects,
1828 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001829 if (strict()) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001830 // This returns non-equal for some object types, or falls through if it
1831 // was not lucky.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001832 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001833 }
1834
1835 Label check_for_symbols;
1836 Label flat_string_check;
1837 // Check for heap-number-heap-number comparison. Can jump to slow case,
1838 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
1839 // that case. If the inputs are not doubles then jumps to check_for_symbols.
1840 // In this case r2 will contain the type of rhs_. Never falls through.
1841 EmitCheckForTwoHeapNumbers(masm,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001842 lhs,
1843 rhs,
ricow@chromium.org65fae842010-08-25 15:26:24 +00001844 &both_loaded_as_doubles,
1845 &check_for_symbols,
1846 &flat_string_check);
1847
1848 __ bind(&check_for_symbols);
1849 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
1850 // symbols.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001851 if (cc == eq && !strict()) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001852 // Returns an answer for two symbols or two detectable objects.
1853 // Otherwise jumps to string case or not both strings case.
1854 // Assumes that r2 is the type of rhs_ on entry.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001855 EmitCheckForSymbolsOrObjects(masm, lhs, rhs, &flat_string_check, &slow);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001856 }
1857
1858 // Check for both being sequential ASCII strings, and inline if that is the
1859 // case.
1860 __ bind(&flat_string_check);
1861
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001862 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, r2, r3, &slow);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001863
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00001864 __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001865 if (cc == eq) {
lrn@chromium.org1c092762011-05-09 09:42:16 +00001866 StringCompareStub::GenerateFlatAsciiStringEquals(masm,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001867 lhs,
1868 rhs,
ricow@chromium.org65fae842010-08-25 15:26:24 +00001869 r2,
1870 r3,
lrn@chromium.org1c092762011-05-09 09:42:16 +00001871 r4);
1872 } else {
1873 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001874 lhs,
1875 rhs,
lrn@chromium.org1c092762011-05-09 09:42:16 +00001876 r2,
1877 r3,
1878 r4,
1879 r5);
1880 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00001881 // Never falls through to here.
1882
1883 __ bind(&slow);
1884
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001885 __ Push(lhs, rhs);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001886 // Figure out which native to call and setup the arguments.
1887 Builtins::JavaScript native;
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001888 if (cc == eq) {
1889 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
ricow@chromium.org65fae842010-08-25 15:26:24 +00001890 } else {
1891 native = Builtins::COMPARE;
1892 int ncr; // NaN compare result
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001893 if (cc == lt || cc == le) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00001894 ncr = GREATER;
1895 } else {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001896 ASSERT(cc == gt || cc == ge); // remaining cases
ricow@chromium.org65fae842010-08-25 15:26:24 +00001897 ncr = LESS;
1898 }
1899 __ mov(r0, Operand(Smi::FromInt(ncr)));
1900 __ push(r0);
1901 }
1902
1903 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1904 // tagged as a small integer.
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00001905 __ InvokeBuiltin(native, JUMP_FUNCTION);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00001906
1907 __ bind(&miss);
1908 GenerateMiss(masm);
ricow@chromium.org65fae842010-08-25 15:26:24 +00001909}
1910
1911
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001912// The stub expects its argument in the tos_ register and returns its result in
1913// it, too: zero for false, and a non-zero value for true.
ricow@chromium.org65fae842010-08-25 15:26:24 +00001914void ToBooleanStub::Generate(MacroAssembler* masm) {
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00001915 // This stub overrides SometimesSetsUpAFrame() to return false. That means
1916 // we cannot call anything that could cause a GC from this stub.
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001917 Label patch;
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00001918 const Register map = r9.is(tos_) ? r7 : r9;
mstarzinger@chromium.org471f2f12012-08-10 14:46:33 +00001919 const Register temp = map;
ricow@chromium.org65fae842010-08-25 15:26:24 +00001920
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001921 // undefined -> false.
whesse@chromium.org4acdc2c2011-08-15 13:01:23 +00001922 CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
ager@chromium.orgea91cc52011-05-23 06:06:11 +00001923
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001924 // Boolean -> its value.
whesse@chromium.org4acdc2c2011-08-15 13:01:23 +00001925 CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
1926 CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
ager@chromium.orgea91cc52011-05-23 06:06:11 +00001927
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001928 // 'null' -> false.
whesse@chromium.org4acdc2c2011-08-15 13:01:23 +00001929 CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
ager@chromium.orgea91cc52011-05-23 06:06:11 +00001930
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001931 if (types_.Contains(SMI)) {
1932 // Smis: 0 -> false, all other -> true
1933 __ tst(tos_, Operand(kSmiTagMask));
1934 // tos_ contains the correct return value already
1935 __ Ret(eq);
1936 } else if (types_.NeedsMap()) {
1937 // If we need a map later and have a Smi -> patch.
1938 __ JumpIfSmi(tos_, &patch);
1939 }
kasperl@chromium.orga5551262010-12-07 12:49:48 +00001940
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001941 if (types_.NeedsMap()) {
1942 __ ldr(map, FieldMemOperand(tos_, HeapObject::kMapOffset));
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00001943
whesse@chromium.org4acdc2c2011-08-15 13:01:23 +00001944 if (types_.CanBeUndetectable()) {
1945 __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
1946 __ tst(ip, Operand(1 << Map::kIsUndetectable));
1947 // Undetectable -> false.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00001948 __ mov(tos_, Operand::Zero(), LeaveCC, ne);
whesse@chromium.org4acdc2c2011-08-15 13:01:23 +00001949 __ Ret(ne);
1950 }
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001951 }
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00001952
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001953 if (types_.Contains(SPEC_OBJECT)) {
1954 // Spec object -> true.
1955 __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
1956 // tos_ contains the correct non-zero return value already.
1957 __ Ret(ge);
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001958 }
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00001959
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001960 if (types_.Contains(STRING)) {
1961 // String value -> false iff empty.
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00001962 __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001963 __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset), lt);
1964 __ Ret(lt); // the string length is OK as the return value
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001965 }
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00001966
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00001967 if (types_.Contains(HEAP_NUMBER)) {
1968 // Heap number -> false iff +0, -0, or NaN.
1969 Label not_heap_number;
1970 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
1971 __ b(ne, &not_heap_number);
mstarzinger@chromium.org471f2f12012-08-10 14:46:33 +00001972
1973 if (CpuFeatures::IsSupported(VFP2)) {
1974 CpuFeatures::Scope scope(VFP2);
1975
1976 __ vldr(d1, FieldMemOperand(tos_, HeapNumber::kValueOffset));
1977 __ VFPCompareAndSetFlags(d1, 0.0);
1978 // "tos_" is a register, and contains a non zero value by default.
1979 // Hence we only need to overwrite "tos_" with zero to return false for
1980 // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00001981 __ mov(tos_, Operand::Zero(), LeaveCC, eq); // for FP_ZERO
1982 __ mov(tos_, Operand::Zero(), LeaveCC, vs); // for FP_NAN
mstarzinger@chromium.org471f2f12012-08-10 14:46:33 +00001983 } else {
1984 Label done, not_nan, not_zero;
1985 __ ldr(temp, FieldMemOperand(tos_, HeapNumber::kExponentOffset));
1986 // -0 maps to false:
1987 __ bic(
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00001988 temp, temp, Operand(HeapNumber::kSignMask, RelocInfo::NONE32), SetCC);
mstarzinger@chromium.org471f2f12012-08-10 14:46:33 +00001989 __ b(ne, &not_zero);
1990 // If exponent word is zero then the answer depends on the mantissa word.
1991 __ ldr(tos_, FieldMemOperand(tos_, HeapNumber::kMantissaOffset));
1992 __ jmp(&done);
1993
1994 // Check for NaN.
1995 __ bind(&not_zero);
1996 // We already zeroed the sign bit, now shift out the mantissa so we only
1997 // have the exponent left.
1998 __ mov(temp, Operand(temp, LSR, HeapNumber::kMantissaBitsInTopWord));
1999 unsigned int shifted_exponent_mask =
2000 HeapNumber::kExponentMask >> HeapNumber::kMantissaBitsInTopWord;
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002001 __ cmp(temp, Operand(shifted_exponent_mask, RelocInfo::NONE32));
mstarzinger@chromium.org471f2f12012-08-10 14:46:33 +00002002 __ b(ne, &not_nan); // If exponent is not 0x7ff then it can't be a NaN.
2003
2004 // Reload exponent word.
2005 __ ldr(temp, FieldMemOperand(tos_, HeapNumber::kExponentOffset));
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002006 __ tst(temp, Operand(HeapNumber::kMantissaMask, RelocInfo::NONE32));
mstarzinger@chromium.org471f2f12012-08-10 14:46:33 +00002007 // If mantissa is not zero then we have a NaN, so return 0.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002008 __ mov(tos_, Operand::Zero(), LeaveCC, ne);
mstarzinger@chromium.org471f2f12012-08-10 14:46:33 +00002009 __ b(ne, &done);
2010
2011 // Load mantissa word.
2012 __ ldr(temp, FieldMemOperand(tos_, HeapNumber::kMantissaOffset));
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002013 __ cmp(temp, Operand::Zero());
mstarzinger@chromium.org471f2f12012-08-10 14:46:33 +00002014 // If mantissa is not zero then we have a NaN, so return 0.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002015 __ mov(tos_, Operand::Zero(), LeaveCC, ne);
mstarzinger@chromium.org471f2f12012-08-10 14:46:33 +00002016 __ b(ne, &done);
2017
2018 __ bind(&not_nan);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002019 __ mov(tos_, Operand(1, RelocInfo::NONE32));
mstarzinger@chromium.org471f2f12012-08-10 14:46:33 +00002020 __ bind(&done);
2021 }
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00002022 __ Ret();
2023 __ bind(&not_heap_number);
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00002024 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00002025
whesse@chromium.org4acdc2c2011-08-15 13:01:23 +00002026 __ bind(&patch);
2027 GenerateTypeTransition(masm);
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00002028}
2029
2030
2031void ToBooleanStub::CheckOddball(MacroAssembler* masm,
2032 Type type,
2033 Heap::RootListIndex value,
whesse@chromium.org4acdc2c2011-08-15 13:01:23 +00002034 bool result) {
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00002035 if (types_.Contains(type)) {
2036 // If we see an expected oddball, return its ToBoolean value tos_.
2037 __ LoadRoot(ip, value);
2038 __ cmp(tos_, ip);
2039 // The value of a root is never NULL, so we can avoid loading a non-null
2040 // value into tos_ when we want to return 'true'.
2041 if (!result) {
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002042 __ mov(tos_, Operand::Zero(), LeaveCC, eq);
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00002043 }
2044 __ Ret(eq);
kmillikin@chromium.org7c2628c2011-08-10 11:27:35 +00002045 }
2046}
2047
2048
2049void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
2050 if (!tos_.is(r3)) {
2051 __ mov(r3, Operand(tos_));
2052 }
2053 __ mov(r2, Operand(Smi::FromInt(tos_.code())));
2054 __ mov(r1, Operand(Smi::FromInt(types_.ToByte())));
2055 __ Push(r3, r2, r1);
2056 // Patch the caller to an appropriate specialized stub and return the
2057 // operation result to the caller of the stub.
2058 __ TailCallExternalReference(
2059 ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
2060 3,
2061 1);
ricow@chromium.org65fae842010-08-25 15:26:24 +00002062}
2063
2064
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00002065void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
2066 // We don't allow a GC during a store buffer overflow so there is no need to
2067 // store the registers in any particular way, but we do have to store and
2068 // restore them.
2069 __ stm(db_w, sp, kCallerSaved | lr.bit());
yangguo@chromium.org003650e2013-01-24 16:31:08 +00002070
2071 const Register scratch = r1;
2072
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00002073 if (save_doubles_ == kSaveFPRegs) {
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00002074 CpuFeatures::Scope scope(VFP2);
yangguo@chromium.org003650e2013-01-24 16:31:08 +00002075 // Check CPU flags for number of registers, setting the Z condition flag.
2076 __ CheckFor32DRegs(scratch);
2077
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00002078 __ sub(sp, sp, Operand(kDoubleSize * DwVfpRegister::kNumRegisters));
2079 for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
2080 DwVfpRegister reg = DwVfpRegister::from_code(i);
yangguo@chromium.org003650e2013-01-24 16:31:08 +00002081 __ vstr(reg, MemOperand(sp, i * kDoubleSize), i < 16 ? al : ne);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00002082 }
2083 }
2084 const int argument_count = 1;
2085 const int fp_argument_count = 0;
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00002086
2087 AllowExternalCallThatCantCauseGC scope(masm);
2088 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
2089 __ mov(r0, Operand(ExternalReference::isolate_address()));
2090 __ CallCFunction(
2091 ExternalReference::store_buffer_overflow_function(masm->isolate()),
2092 argument_count);
2093 if (save_doubles_ == kSaveFPRegs) {
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00002094 CpuFeatures::Scope scope(VFP2);
yangguo@chromium.org003650e2013-01-24 16:31:08 +00002095
2096 // Check CPU flags for number of registers, setting the Z condition flag.
2097 __ CheckFor32DRegs(scratch);
2098
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00002099 for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
2100 DwVfpRegister reg = DwVfpRegister::from_code(i);
yangguo@chromium.org003650e2013-01-24 16:31:08 +00002101 __ vldr(reg, MemOperand(sp, i * kDoubleSize), i < 16 ? al : ne);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00002102 }
2103 __ add(sp, sp, Operand(kDoubleSize * DwVfpRegister::kNumRegisters));
2104 }
2105 __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0).
2106}
2107
2108
whesse@chromium.org030d38e2011-07-13 13:23:34 +00002109void UnaryOpStub::PrintName(StringStream* stream) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002110 const char* op_name = Token::Name(op_);
2111 const char* overwrite_name = NULL; // Make g++ happy.
2112 switch (mode_) {
2113 case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
2114 case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
2115 }
whesse@chromium.org030d38e2011-07-13 13:23:34 +00002116 stream->Add("UnaryOpStub_%s_%s_%s",
2117 op_name,
2118 overwrite_name,
2119 UnaryOpIC::GetName(operand_type_));
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002120}
2121
2122
2123// TODO(svenpanne): Use virtual functions instead of switch.
danno@chromium.org40cb8782011-05-25 07:58:50 +00002124void UnaryOpStub::Generate(MacroAssembler* masm) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002125 switch (operand_type_) {
danno@chromium.org40cb8782011-05-25 07:58:50 +00002126 case UnaryOpIC::UNINITIALIZED:
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002127 GenerateTypeTransition(masm);
2128 break;
danno@chromium.org40cb8782011-05-25 07:58:50 +00002129 case UnaryOpIC::SMI:
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002130 GenerateSmiStub(masm);
2131 break;
danno@chromium.org40cb8782011-05-25 07:58:50 +00002132 case UnaryOpIC::HEAP_NUMBER:
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002133 GenerateHeapNumberStub(masm);
2134 break;
danno@chromium.org40cb8782011-05-25 07:58:50 +00002135 case UnaryOpIC::GENERIC:
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002136 GenerateGenericStub(masm);
2137 break;
2138 }
2139}
2140
2141
danno@chromium.org40cb8782011-05-25 07:58:50 +00002142void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
ricow@chromium.org4f693d62011-07-04 14:01:31 +00002143 __ mov(r3, Operand(r0)); // the operand
2144 __ mov(r2, Operand(Smi::FromInt(op_)));
2145 __ mov(r1, Operand(Smi::FromInt(mode_)));
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002146 __ mov(r0, Operand(Smi::FromInt(operand_type_)));
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002147 __ Push(r3, r2, r1, r0);
2148
2149 __ TailCallExternalReference(
ricow@chromium.org4f693d62011-07-04 14:01:31 +00002150 ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002151}
2152
2153
2154// TODO(svenpanne): Use virtual functions instead of switch.
danno@chromium.org40cb8782011-05-25 07:58:50 +00002155void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002156 switch (op_) {
2157 case Token::SUB:
2158 GenerateSmiStubSub(masm);
2159 break;
2160 case Token::BIT_NOT:
2161 GenerateSmiStubBitNot(masm);
2162 break;
2163 default:
2164 UNREACHABLE();
2165 }
2166}
2167
2168
danno@chromium.org40cb8782011-05-25 07:58:50 +00002169void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002170 Label non_smi, slow;
2171 GenerateSmiCodeSub(masm, &non_smi, &slow);
2172 __ bind(&non_smi);
2173 __ bind(&slow);
2174 GenerateTypeTransition(masm);
2175}
2176
2177
danno@chromium.org40cb8782011-05-25 07:58:50 +00002178void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002179 Label non_smi;
2180 GenerateSmiCodeBitNot(masm, &non_smi);
2181 __ bind(&non_smi);
2182 GenerateTypeTransition(masm);
2183}
2184
2185
danno@chromium.org40cb8782011-05-25 07:58:50 +00002186void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
2187 Label* non_smi,
2188 Label* slow) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002189 __ JumpIfNotSmi(r0, non_smi);
2190
2191 // The result of negating zero or the smallest negative smi is not a smi.
2192 __ bic(ip, r0, Operand(0x80000000), SetCC);
2193 __ b(eq, slow);
2194
2195 // Return '0 - value'.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002196 __ rsb(r0, r0, Operand::Zero());
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002197 __ Ret();
2198}
2199
2200
danno@chromium.org40cb8782011-05-25 07:58:50 +00002201void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
2202 Label* non_smi) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002203 __ JumpIfNotSmi(r0, non_smi);
2204
2205 // Flip bits and revert inverted smi-tag.
2206 __ mvn(r0, Operand(r0));
2207 __ bic(r0, r0, Operand(kSmiTagMask));
2208 __ Ret();
2209}
2210
2211
2212// TODO(svenpanne): Use virtual functions instead of switch.
danno@chromium.org40cb8782011-05-25 07:58:50 +00002213void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002214 switch (op_) {
2215 case Token::SUB:
2216 GenerateHeapNumberStubSub(masm);
2217 break;
2218 case Token::BIT_NOT:
2219 GenerateHeapNumberStubBitNot(masm);
2220 break;
2221 default:
2222 UNREACHABLE();
2223 }
2224}
2225
2226
danno@chromium.org40cb8782011-05-25 07:58:50 +00002227void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
ager@chromium.orgea91cc52011-05-23 06:06:11 +00002228 Label non_smi, slow, call_builtin;
2229 GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002230 __ bind(&non_smi);
2231 GenerateHeapNumberCodeSub(masm, &slow);
2232 __ bind(&slow);
2233 GenerateTypeTransition(masm);
ager@chromium.orgea91cc52011-05-23 06:06:11 +00002234 __ bind(&call_builtin);
2235 GenerateGenericCodeFallback(masm);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002236}
2237
2238
danno@chromium.org40cb8782011-05-25 07:58:50 +00002239void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002240 Label non_smi, slow;
2241 GenerateSmiCodeBitNot(masm, &non_smi);
2242 __ bind(&non_smi);
2243 GenerateHeapNumberCodeBitNot(masm, &slow);
2244 __ bind(&slow);
2245 GenerateTypeTransition(masm);
2246}
2247
danno@chromium.org40cb8782011-05-25 07:58:50 +00002248void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
2249 Label* slow) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002250 EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
2251 // r0 is a heap number. Get a new heap number in r1.
2252 if (mode_ == UNARY_OVERWRITE) {
2253 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2254 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
2255 __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2256 } else {
2257 Label slow_allocate_heapnumber, heapnumber_allocated;
2258 __ AllocateHeapNumber(r1, r2, r3, r6, &slow_allocate_heapnumber);
2259 __ jmp(&heapnumber_allocated);
2260
2261 __ bind(&slow_allocate_heapnumber);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00002262 {
2263 FrameScope scope(masm, StackFrame::INTERNAL);
2264 __ push(r0);
2265 __ CallRuntime(Runtime::kNumberAlloc, 0);
2266 __ mov(r1, Operand(r0));
2267 __ pop(r0);
2268 }
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002269
2270 __ bind(&heapnumber_allocated);
2271 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
2272 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2273 __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
2274 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
2275 __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
2276 __ mov(r0, Operand(r1));
2277 }
2278 __ Ret();
2279}
2280
2281
danno@chromium.org40cb8782011-05-25 07:58:50 +00002282void UnaryOpStub::GenerateHeapNumberCodeBitNot(
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002283 MacroAssembler* masm, Label* slow) {
ricow@chromium.orgc54d3652011-05-30 09:20:16 +00002284 Label impossible;
2285
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002286 EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
2287 // Convert the heap number is r0 to an untagged integer in r1.
2288 __ ConvertToInt32(r0, r1, r2, r3, d0, slow);
2289
2290 // Do the bitwise operation and check if the result fits in a smi.
2291 Label try_float;
2292 __ mvn(r1, Operand(r1));
2293 __ add(r2, r1, Operand(0x40000000), SetCC);
2294 __ b(mi, &try_float);
2295
2296 // Tag the result as a smi and we're done.
2297 __ mov(r0, Operand(r1, LSL, kSmiTagSize));
2298 __ Ret();
2299
2300 // Try to store the result in a heap number.
2301 __ bind(&try_float);
2302 if (mode_ == UNARY_NO_OVERWRITE) {
2303 Label slow_allocate_heapnumber, heapnumber_allocated;
ricow@chromium.orgc54d3652011-05-30 09:20:16 +00002304 // Allocate a new heap number without zapping r0, which we need if it fails.
2305 __ AllocateHeapNumber(r2, r3, r4, r6, &slow_allocate_heapnumber);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002306 __ jmp(&heapnumber_allocated);
2307
2308 __ bind(&slow_allocate_heapnumber);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00002309 {
2310 FrameScope scope(masm, StackFrame::INTERNAL);
2311 __ push(r0); // Push the heap number, not the untagged int32.
2312 __ CallRuntime(Runtime::kNumberAlloc, 0);
2313 __ mov(r2, r0); // Move the new heap number into r2.
2314 // Get the heap number into r0, now that the new heap number is in r2.
2315 __ pop(r0);
2316 }
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002317
ricow@chromium.orgc54d3652011-05-30 09:20:16 +00002318 // Convert the heap number in r0 to an untagged integer in r1.
2319 // This can't go slow-case because it's the same number we already
2320 // converted once again.
2321 __ ConvertToInt32(r0, r1, r3, r4, d0, &impossible);
2322 __ mvn(r1, Operand(r1));
2323
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002324 __ bind(&heapnumber_allocated);
ricow@chromium.orgc54d3652011-05-30 09:20:16 +00002325 __ mov(r0, r2); // Move newly allocated heap number to r0.
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002326 }
2327
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00002328 if (CpuFeatures::IsSupported(VFP2)) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002329 // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00002330 CpuFeatures::Scope scope(VFP2);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002331 __ vmov(s0, r1);
2332 __ vcvt_f64_s32(d0, s0);
2333 __ sub(r2, r0, Operand(kHeapObjectTag));
2334 __ vstr(d0, r2, HeapNumber::kValueOffset);
2335 __ Ret();
2336 } else {
2337 // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
2338 // have to set up a frame.
2339 WriteInt32ToHeapNumberStub stub(r1, r0, r2);
2340 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2341 }
ricow@chromium.orgc54d3652011-05-30 09:20:16 +00002342
2343 __ bind(&impossible);
2344 if (FLAG_debug_code) {
2345 __ stop("Incorrect assumption in bit-not stub");
2346 }
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002347}
2348
2349
2350// TODO(svenpanne): Use virtual functions instead of switch.
danno@chromium.org40cb8782011-05-25 07:58:50 +00002351void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002352 switch (op_) {
2353 case Token::SUB:
2354 GenerateGenericStubSub(masm);
2355 break;
2356 case Token::BIT_NOT:
2357 GenerateGenericStubBitNot(masm);
2358 break;
2359 default:
2360 UNREACHABLE();
2361 }
2362}
2363
2364
danno@chromium.org40cb8782011-05-25 07:58:50 +00002365void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002366 Label non_smi, slow;
2367 GenerateSmiCodeSub(masm, &non_smi, &slow);
2368 __ bind(&non_smi);
2369 GenerateHeapNumberCodeSub(masm, &slow);
2370 __ bind(&slow);
2371 GenerateGenericCodeFallback(masm);
2372}
2373
2374
danno@chromium.org40cb8782011-05-25 07:58:50 +00002375void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002376 Label non_smi, slow;
2377 GenerateSmiCodeBitNot(masm, &non_smi);
2378 __ bind(&non_smi);
2379 GenerateHeapNumberCodeBitNot(masm, &slow);
2380 __ bind(&slow);
2381 GenerateGenericCodeFallback(masm);
2382}
2383
2384
danno@chromium.org40cb8782011-05-25 07:58:50 +00002385void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) {
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00002386 // Handle the slow case by jumping to the JavaScript builtin.
2387 __ push(r0);
2388 switch (op_) {
2389 case Token::SUB:
2390 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
2391 break;
2392 case Token::BIT_NOT:
2393 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
2394 break;
2395 default:
2396 UNREACHABLE();
2397 }
2398}
2399
2400
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002401void BinaryOpStub::Initialize() {
2402 platform_specific_bit_ = CpuFeatures::IsSupported(VFP2);
2403}
2404
2405
danno@chromium.org40cb8782011-05-25 07:58:50 +00002406void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
ager@chromium.org378b34e2011-01-28 08:04:38 +00002407 Label get_result;
2408
2409 __ Push(r1, r0);
2410
2411 __ mov(r2, Operand(Smi::FromInt(MinorKey())));
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002412 __ push(r2);
ager@chromium.org378b34e2011-01-28 08:04:38 +00002413
2414 __ TailCallExternalReference(
danno@chromium.org40cb8782011-05-25 07:58:50 +00002415 ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00002416 masm->isolate()),
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002417 3,
ager@chromium.org378b34e2011-01-28 08:04:38 +00002418 1);
2419}
2420
2421
danno@chromium.org40cb8782011-05-25 07:58:50 +00002422void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
ager@chromium.org378b34e2011-01-28 08:04:38 +00002423 MacroAssembler* masm) {
kasperl@chromium.orga5551262010-12-07 12:49:48 +00002424 UNIMPLEMENTED();
ager@chromium.org378b34e2011-01-28 08:04:38 +00002425}
2426
2427
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002428void BinaryOpStub_GenerateSmiSmiOperation(MacroAssembler* masm,
2429 Token::Value op) {
ager@chromium.org378b34e2011-01-28 08:04:38 +00002430 Register left = r1;
2431 Register right = r0;
2432 Register scratch1 = r7;
2433 Register scratch2 = r9;
2434
2435 ASSERT(right.is(r0));
2436 STATIC_ASSERT(kSmiTag == 0);
2437
2438 Label not_smi_result;
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002439 switch (op) {
ager@chromium.org378b34e2011-01-28 08:04:38 +00002440 case Token::ADD:
2441 __ add(right, left, Operand(right), SetCC); // Add optimistically.
2442 __ Ret(vc);
2443 __ sub(right, right, Operand(left)); // Revert optimistic add.
2444 break;
2445 case Token::SUB:
2446 __ sub(right, left, Operand(right), SetCC); // Subtract optimistically.
2447 __ Ret(vc);
2448 __ sub(right, left, Operand(right)); // Revert optimistic subtract.
2449 break;
2450 case Token::MUL:
2451 // Remove tag from one of the operands. This way the multiplication result
2452 // will be a smi if it fits the smi range.
2453 __ SmiUntag(ip, right);
2454 // Do multiplication
2455 // scratch1 = lower 32 bits of ip * left.
2456 // scratch2 = higher 32 bits of ip * left.
2457 __ smull(scratch1, scratch2, left, ip);
2458 // Check for overflowing the smi range - no overflow if higher 33 bits of
2459 // the result are identical.
2460 __ mov(ip, Operand(scratch1, ASR, 31));
2461 __ cmp(ip, Operand(scratch2));
2462 __ b(ne, &not_smi_result);
2463 // Go slow on zero result to handle -0.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002464 __ cmp(scratch1, Operand::Zero());
ager@chromium.org378b34e2011-01-28 08:04:38 +00002465 __ mov(right, Operand(scratch1), LeaveCC, ne);
2466 __ Ret(ne);
2467 // We need -0 if we were multiplying a negative number with 0 to get 0.
2468 // We know one of them was zero.
2469 __ add(scratch2, right, Operand(left), SetCC);
2470 __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
2471 __ Ret(pl); // Return smi 0 if the non-zero one was positive.
2472 // We fall through here if we multiplied a negative number with 0, because
2473 // that would mean we should produce -0.
2474 break;
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002475 case Token::DIV: {
2476 Label div_with_sdiv;
2477
2478 // Check for 0 divisor.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002479 __ cmp(right, Operand::Zero());
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002480 __ b(eq, &not_smi_result);
2481
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002482 // Check for power of two on the right hand side.
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002483 __ sub(scratch1, right, Operand(1));
2484 __ tst(scratch1, right);
2485 if (CpuFeatures::IsSupported(SUDIV)) {
2486 __ b(ne, &div_with_sdiv);
2487 // Check for no remainder.
2488 __ tst(left, scratch1);
2489 __ b(ne, &not_smi_result);
2490 // Check for positive left hand side.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002491 __ cmp(left, Operand::Zero());
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002492 __ b(mi, &div_with_sdiv);
2493 } else {
2494 __ b(ne, &not_smi_result);
2495 // Check for positive and no remainder.
2496 __ orr(scratch2, scratch1, Operand(0x80000000u));
2497 __ tst(left, scratch2);
2498 __ b(ne, &not_smi_result);
2499 }
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002500
2501 // Perform division by shifting.
2502 __ CountLeadingZeros(scratch1, scratch1, scratch2);
2503 __ rsb(scratch1, scratch1, Operand(31));
2504 __ mov(right, Operand(left, LSR, scratch1));
2505 __ Ret();
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002506
2507 if (CpuFeatures::IsSupported(SUDIV)) {
2508 Label result_not_zero;
2509
2510 __ bind(&div_with_sdiv);
2511 // Do division.
2512 __ sdiv(scratch1, left, right);
2513 // Check that the remainder is zero.
2514 __ mls(scratch2, scratch1, right, left);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002515 __ cmp(scratch2, Operand::Zero());
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002516 __ b(ne, &not_smi_result);
2517 // Check for negative zero result.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002518 __ cmp(scratch1, Operand::Zero());
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002519 __ b(ne, &result_not_zero);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002520 __ cmp(right, Operand::Zero());
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002521 __ b(lt, &not_smi_result);
2522 __ bind(&result_not_zero);
2523 // Check for the corner case of dividing the most negative smi by -1.
2524 __ cmp(scratch1, Operand(0x40000000));
2525 __ b(eq, &not_smi_result);
2526 // Tag and return the result.
2527 __ SmiTag(right, scratch1);
2528 __ Ret();
2529 }
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002530 break;
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002531 }
2532 case Token::MOD: {
2533 Label modulo_with_sdiv;
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002534
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002535 if (CpuFeatures::IsSupported(SUDIV)) {
2536 // Check for x % 0.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002537 __ cmp(right, Operand::Zero());
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002538 __ b(eq, &not_smi_result);
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002539
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002540 // Check for two positive smis.
2541 __ orr(scratch1, left, Operand(right));
2542 __ tst(scratch1, Operand(0x80000000u));
2543 __ b(ne, &modulo_with_sdiv);
2544
2545 // Check for power of two on the right hand side.
2546 __ sub(scratch1, right, Operand(1));
2547 __ tst(scratch1, right);
2548 __ b(ne, &modulo_with_sdiv);
2549 } else {
2550 // Check for two positive smis.
2551 __ orr(scratch1, left, Operand(right));
2552 __ tst(scratch1, Operand(0x80000000u));
2553 __ b(ne, &not_smi_result);
2554
2555 // Check for power of two on the right hand side.
2556 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
2557 }
2558
2559 // Perform modulus by masking (scratch1 contains right - 1).
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002560 __ and_(right, left, Operand(scratch1));
2561 __ Ret();
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002562
2563 if (CpuFeatures::IsSupported(SUDIV)) {
2564 __ bind(&modulo_with_sdiv);
2565 __ mov(scratch2, right);
2566 // Perform modulus with sdiv and mls.
2567 __ sdiv(scratch1, left, right);
2568 __ mls(right, scratch1, right, left);
2569 // Return if the result is not 0.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002570 __ cmp(right, Operand::Zero());
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002571 __ Ret(ne);
2572 // The result is 0, check for -0 case.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00002573 __ cmp(left, Operand::Zero());
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002574 __ Ret(pl);
2575 // This is a -0 case, restore the value of right.
2576 __ mov(right, scratch2);
2577 // We fall through here to not_smi_result to produce -0.
2578 }
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002579 break;
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00002580 }
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002581 case Token::BIT_OR:
2582 __ orr(right, left, Operand(right));
2583 __ Ret();
2584 break;
2585 case Token::BIT_AND:
2586 __ and_(right, left, Operand(right));
2587 __ Ret();
2588 break;
2589 case Token::BIT_XOR:
2590 __ eor(right, left, Operand(right));
2591 __ Ret();
2592 break;
sgjesse@chromium.org496c03a2011-02-14 12:05:43 +00002593 case Token::SAR:
2594 // Remove tags from right operand.
2595 __ GetLeastBitsFromSmi(scratch1, right, 5);
2596 __ mov(right, Operand(left, ASR, scratch1));
2597 // Smi tag result.
2598 __ bic(right, right, Operand(kSmiTagMask));
2599 __ Ret();
2600 break;
2601 case Token::SHR:
2602 // Remove tags from operands. We can't do this on a 31 bit number
2603 // because then the 0s get shifted into bit 30 instead of bit 31.
2604 __ SmiUntag(scratch1, left);
2605 __ GetLeastBitsFromSmi(scratch2, right, 5);
2606 __ mov(scratch1, Operand(scratch1, LSR, scratch2));
2607 // Unsigned shift is not allowed to produce a negative number, so
2608 // check the sign bit and the sign bit after Smi tagging.
2609 __ tst(scratch1, Operand(0xc0000000));
2610 __ b(ne, &not_smi_result);
2611 // Smi tag result.
2612 __ SmiTag(right, scratch1);
2613 __ Ret();
2614 break;
2615 case Token::SHL:
2616 // Remove tags from operands.
2617 __ SmiUntag(scratch1, left);
2618 __ GetLeastBitsFromSmi(scratch2, right, 5);
2619 __ mov(scratch1, Operand(scratch1, LSL, scratch2));
2620 // Check that the signed result fits in a Smi.
2621 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
2622 __ b(mi, &not_smi_result);
2623 __ SmiTag(right, scratch1);
2624 __ Ret();
2625 break;
ager@chromium.org378b34e2011-01-28 08:04:38 +00002626 default:
2627 UNREACHABLE();
2628 }
2629 __ bind(&not_smi_result);
2630}
2631
2632
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002633void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm,
2634 Register result,
2635 Register heap_number_map,
2636 Register scratch1,
2637 Register scratch2,
2638 Label* gc_required,
2639 OverwriteMode mode);
2640
2641
2642void BinaryOpStub_GenerateFPOperation(MacroAssembler* masm,
2643 BinaryOpIC::TypeInfo left_type,
2644 BinaryOpIC::TypeInfo right_type,
2645 bool smi_operands,
2646 Label* not_numbers,
2647 Label* gc_required,
2648 Label* miss,
2649 Token::Value op,
2650 OverwriteMode mode) {
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002651 Register left = r1;
2652 Register right = r0;
2653 Register scratch1 = r7;
2654 Register scratch2 = r9;
whesse@chromium.orgb08986c2011-03-14 16:13:42 +00002655 Register scratch3 = r4;
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002656
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002657 ASSERT(smi_operands || (not_numbers != NULL));
svenpanne@chromium.orgc859c4f2012-10-15 11:51:39 +00002658 if (smi_operands) {
2659 __ AssertSmi(left);
2660 __ AssertSmi(right);
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002661 }
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002662 if (left_type == BinaryOpIC::SMI) {
2663 __ JumpIfNotSmi(left, miss);
2664 }
2665 if (right_type == BinaryOpIC::SMI) {
2666 __ JumpIfNotSmi(right, miss);
2667 }
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002668
2669 Register heap_number_map = r6;
2670 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2671
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002672 switch (op) {
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002673 case Token::ADD:
2674 case Token::SUB:
2675 case Token::MUL:
2676 case Token::DIV:
2677 case Token::MOD: {
2678 // Load left and right operands into d6 and d7 or r0/r1 and r2/r3
2679 // depending on whether VFP3 is available or not.
2680 FloatingPointHelper::Destination destination =
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00002681 CpuFeatures::IsSupported(VFP2) &&
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002682 op != Token::MOD ?
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002683 FloatingPointHelper::kVFPRegisters :
2684 FloatingPointHelper::kCoreRegisters;
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002685
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002686 // Allocate new heap number for result.
2687 Register result = r5;
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002688 BinaryOpStub_GenerateHeapResultAllocation(
2689 masm, result, heap_number_map, scratch1, scratch2, gc_required, mode);
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002690
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002691 // Load the operands.
2692 if (smi_operands) {
2693 FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
2694 } else {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002695 // Load right operand to d7 or r2/r3.
2696 if (right_type == BinaryOpIC::INT32) {
2697 FloatingPointHelper::LoadNumberAsInt32Double(
2698 masm, right, destination, d7, d8, r2, r3, heap_number_map,
2699 scratch1, scratch2, s0, miss);
2700 } else {
2701 Label* fail = (right_type == BinaryOpIC::HEAP_NUMBER) ? miss
2702 : not_numbers;
2703 FloatingPointHelper::LoadNumber(
2704 masm, destination, right, d7, r2, r3, heap_number_map,
2705 scratch1, scratch2, fail);
2706 }
2707 // Load left operand to d6 or r0/r1. This keeps r0/r1 intact if it
2708 // jumps to |miss|.
2709 if (left_type == BinaryOpIC::INT32) {
2710 FloatingPointHelper::LoadNumberAsInt32Double(
2711 masm, left, destination, d6, d8, r0, r1, heap_number_map,
2712 scratch1, scratch2, s0, miss);
2713 } else {
2714 Label* fail = (left_type == BinaryOpIC::HEAP_NUMBER) ? miss
2715 : not_numbers;
2716 FloatingPointHelper::LoadNumber(
2717 masm, destination, left, d6, r0, r1, heap_number_map,
2718 scratch1, scratch2, fail);
2719 }
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002720 }
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002721
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002722 // Calculate the result.
2723 if (destination == FloatingPointHelper::kVFPRegisters) {
2724 // Using VFP registers:
2725 // d6: Left value
2726 // d7: Right value
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00002727 CpuFeatures::Scope scope(VFP2);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002728 switch (op) {
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002729 case Token::ADD:
2730 __ vadd(d5, d6, d7);
2731 break;
2732 case Token::SUB:
2733 __ vsub(d5, d6, d7);
2734 break;
2735 case Token::MUL:
2736 __ vmul(d5, d6, d7);
2737 break;
2738 case Token::DIV:
2739 __ vdiv(d5, d6, d7);
2740 break;
2741 default:
2742 UNREACHABLE();
2743 }
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002744
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002745 __ sub(r0, result, Operand(kHeapObjectTag));
2746 __ vstr(d5, r0, HeapNumber::kValueOffset);
2747 __ add(r0, r0, Operand(kHeapObjectTag));
2748 __ Ret();
2749 } else {
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00002750 // Call the C function to handle the double operation.
2751 FloatingPointHelper::CallCCodeForDoubleOperation(masm,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002752 op,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00002753 result,
2754 scratch1);
danno@chromium.org160a7b02011-04-18 15:51:38 +00002755 if (FLAG_debug_code) {
2756 __ stop("Unreachable code.");
2757 }
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002758 }
2759 break;
2760 }
2761 case Token::BIT_OR:
2762 case Token::BIT_XOR:
sgjesse@chromium.org496c03a2011-02-14 12:05:43 +00002763 case Token::BIT_AND:
2764 case Token::SAR:
2765 case Token::SHR:
2766 case Token::SHL: {
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002767 if (smi_operands) {
2768 __ SmiUntag(r3, left);
2769 __ SmiUntag(r2, right);
2770 } else {
2771 // Convert operands to 32-bit integers. Right in r2 and left in r3.
whesse@chromium.orgb08986c2011-03-14 16:13:42 +00002772 FloatingPointHelper::ConvertNumberToInt32(masm,
2773 left,
2774 r3,
2775 heap_number_map,
2776 scratch1,
2777 scratch2,
2778 scratch3,
2779 d0,
2780 not_numbers);
2781 FloatingPointHelper::ConvertNumberToInt32(masm,
2782 right,
2783 r2,
2784 heap_number_map,
2785 scratch1,
2786 scratch2,
2787 scratch3,
2788 d0,
2789 not_numbers);
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002790 }
sgjesse@chromium.org496c03a2011-02-14 12:05:43 +00002791
2792 Label result_not_a_smi;
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002793 switch (op) {
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002794 case Token::BIT_OR:
2795 __ orr(r2, r3, Operand(r2));
2796 break;
2797 case Token::BIT_XOR:
2798 __ eor(r2, r3, Operand(r2));
2799 break;
2800 case Token::BIT_AND:
2801 __ and_(r2, r3, Operand(r2));
2802 break;
sgjesse@chromium.org496c03a2011-02-14 12:05:43 +00002803 case Token::SAR:
2804 // Use only the 5 least significant bits of the shift count.
sgjesse@chromium.org496c03a2011-02-14 12:05:43 +00002805 __ GetLeastBitsFromInt32(r2, r2, 5);
2806 __ mov(r2, Operand(r3, ASR, r2));
2807 break;
2808 case Token::SHR:
2809 // Use only the 5 least significant bits of the shift count.
2810 __ GetLeastBitsFromInt32(r2, r2, 5);
2811 __ mov(r2, Operand(r3, LSR, r2), SetCC);
2812 // SHR is special because it is required to produce a positive answer.
2813 // The code below for writing into heap numbers isn't capable of
2814 // writing the register as an unsigned int so we go to slow case if we
2815 // hit this case.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00002816 if (CpuFeatures::IsSupported(VFP2)) {
sgjesse@chromium.org496c03a2011-02-14 12:05:43 +00002817 __ b(mi, &result_not_a_smi);
2818 } else {
2819 __ b(mi, not_numbers);
2820 }
2821 break;
2822 case Token::SHL:
2823 // Use only the 5 least significant bits of the shift count.
2824 __ GetLeastBitsFromInt32(r2, r2, 5);
2825 __ mov(r2, Operand(r3, LSL, r2));
2826 break;
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002827 default:
2828 UNREACHABLE();
2829 }
2830
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002831 // Check that the *signed* result fits in a smi.
2832 __ add(r3, r2, Operand(0x40000000), SetCC);
2833 __ b(mi, &result_not_a_smi);
2834 __ SmiTag(r0, r2);
2835 __ Ret();
2836
2837 // Allocate new heap number for result.
2838 __ bind(&result_not_a_smi);
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00002839 Register result = r5;
2840 if (smi_operands) {
2841 __ AllocateHeapNumber(
2842 result, scratch1, scratch2, heap_number_map, gc_required);
2843 } else {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002844 BinaryOpStub_GenerateHeapResultAllocation(
2845 masm, result, heap_number_map, scratch1, scratch2, gc_required,
2846 mode);
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00002847 }
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002848
2849 // r2: Answer as signed int32.
2850 // r5: Heap number to write answer into.
2851
2852 // Nothing can go wrong now, so move the heap number to r0, which is the
2853 // result.
2854 __ mov(r0, Operand(r5));
2855
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00002856 if (CpuFeatures::IsSupported(VFP2)) {
sgjesse@chromium.org496c03a2011-02-14 12:05:43 +00002857 // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As
2858 // mentioned above SHR needs to always produce a positive result.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00002859 CpuFeatures::Scope scope(VFP2);
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002860 __ vmov(s0, r2);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002861 if (op == Token::SHR) {
sgjesse@chromium.org496c03a2011-02-14 12:05:43 +00002862 __ vcvt_f64_u32(d0, s0);
2863 } else {
2864 __ vcvt_f64_s32(d0, s0);
2865 }
ricow@chromium.org83aa5492011-02-07 12:42:56 +00002866 __ sub(r3, r0, Operand(kHeapObjectTag));
2867 __ vstr(d0, r3, HeapNumber::kValueOffset);
2868 __ Ret();
2869 } else {
2870 // Tail call that writes the int32 in r2 to the heap number in r0, using
2871 // r3 as scratch. r0 is preserved and returned.
2872 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
2873 __ TailCallStub(&stub);
2874 }
2875 break;
2876 }
2877 default:
2878 UNREACHABLE();
ager@chromium.org378b34e2011-01-28 08:04:38 +00002879 }
2880}
2881
2882
2883// Generate the smi code. If the operation on smis are successful this return is
2884// generated. If the result is not a smi and heap number allocation is not
2885// requested the code falls through. If number allocation is requested but a
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002886// heap number cannot be allocated the code jumps to the label gc_required.
2887void BinaryOpStub_GenerateSmiCode(
danno@chromium.org40cb8782011-05-25 07:58:50 +00002888 MacroAssembler* masm,
danno@chromium.org160a7b02011-04-18 15:51:38 +00002889 Label* use_runtime,
ager@chromium.org378b34e2011-01-28 08:04:38 +00002890 Label* gc_required,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002891 Token::Value op,
2892 BinaryOpStub::SmiCodeGenerateHeapNumberResults allow_heapnumber_results,
2893 OverwriteMode mode) {
ager@chromium.org378b34e2011-01-28 08:04:38 +00002894 Label not_smis;
2895
ager@chromium.org378b34e2011-01-28 08:04:38 +00002896 Register left = r1;
2897 Register right = r0;
2898 Register scratch1 = r7;
ager@chromium.org378b34e2011-01-28 08:04:38 +00002899
2900 // Perform combined smi check on both operands.
2901 __ orr(scratch1, left, Operand(right));
2902 STATIC_ASSERT(kSmiTag == 0);
whesse@chromium.org7b260152011-06-20 15:33:18 +00002903 __ JumpIfNotSmi(scratch1, &not_smis);
ager@chromium.org378b34e2011-01-28 08:04:38 +00002904
kmillikin@chromium.org31b12772011-02-02 16:08:26 +00002905 // If the smi-smi operation results in a smi return is generated.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002906 BinaryOpStub_GenerateSmiSmiOperation(masm, op);
ager@chromium.org378b34e2011-01-28 08:04:38 +00002907
2908 // If heap number results are possible generate the result in an allocated
2909 // heap number.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002910 if (allow_heapnumber_results == BinaryOpStub::ALLOW_HEAPNUMBER_RESULTS) {
2911 BinaryOpStub_GenerateFPOperation(
2912 masm, BinaryOpIC::UNINITIALIZED, BinaryOpIC::UNINITIALIZED, true,
2913 use_runtime, gc_required, &not_smis, op, mode);
ager@chromium.org378b34e2011-01-28 08:04:38 +00002914 }
2915 __ bind(&not_smis);
2916}
2917
2918
danno@chromium.org40cb8782011-05-25 07:58:50 +00002919void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
ager@chromium.org378b34e2011-01-28 08:04:38 +00002920 Label not_smis, call_runtime;
2921
danno@chromium.org40cb8782011-05-25 07:58:50 +00002922 if (result_type_ == BinaryOpIC::UNINITIALIZED ||
2923 result_type_ == BinaryOpIC::SMI) {
ager@chromium.org378b34e2011-01-28 08:04:38 +00002924 // Only allow smi results.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002925 BinaryOpStub_GenerateSmiCode(
2926 masm, &call_runtime, NULL, op_, NO_HEAPNUMBER_RESULTS, mode_);
ager@chromium.org378b34e2011-01-28 08:04:38 +00002927 } else {
2928 // Allow heap number result and don't make a transition if a heap number
2929 // cannot be allocated.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002930 BinaryOpStub_GenerateSmiCode(
2931 masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS,
2932 mode_);
ager@chromium.org378b34e2011-01-28 08:04:38 +00002933 }
2934
2935 // Code falls through if the result is not returned as either a smi or heap
2936 // number.
2937 GenerateTypeTransition(masm);
2938
2939 __ bind(&call_runtime);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002940 GenerateRegisterArgsPush(masm);
ager@chromium.org378b34e2011-01-28 08:04:38 +00002941 GenerateCallRuntime(masm);
2942}
2943
2944
danno@chromium.org40cb8782011-05-25 07:58:50 +00002945void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
danno@chromium.org160a7b02011-04-18 15:51:38 +00002946 Label call_runtime;
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002947 ASSERT(left_type_ == BinaryOpIC::STRING && right_type_ == BinaryOpIC::STRING);
danno@chromium.org160a7b02011-04-18 15:51:38 +00002948 ASSERT(op_ == Token::ADD);
2949 // If both arguments are strings, call the string add stub.
2950 // Otherwise, do a transition.
2951
2952 // Registers containing left and right operands respectively.
2953 Register left = r1;
2954 Register right = r0;
2955
2956 // Test if left operand is a string.
2957 __ JumpIfSmi(left, &call_runtime);
2958 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
2959 __ b(ge, &call_runtime);
2960
2961 // Test if right operand is a string.
2962 __ JumpIfSmi(right, &call_runtime);
2963 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
2964 __ b(ge, &call_runtime);
2965
2966 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
2967 GenerateRegisterArgsPush(masm);
2968 __ TailCallStub(&string_add_stub);
2969
2970 __ bind(&call_runtime);
2971 GenerateTypeTransition(masm);
2972}
2973
2974
danno@chromium.org40cb8782011-05-25 07:58:50 +00002975void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002976 ASSERT(Max(left_type_, right_type_) == BinaryOpIC::INT32);
ager@chromium.org378b34e2011-01-28 08:04:38 +00002977
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00002978 Register left = r1;
2979 Register right = r0;
2980 Register scratch1 = r7;
2981 Register scratch2 = r9;
2982 DwVfpRegister double_scratch = d0;
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00002983
2984 Register heap_number_result = no_reg;
2985 Register heap_number_map = r6;
2986 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2987
2988 Label call_runtime;
2989 // Labels for type transition, used for wrong input or output types.
2990 // Both label are currently actually bound to the same position. We use two
2991 // different label to differentiate the cause leading to type transition.
2992 Label transition;
2993
2994 // Smi-smi fast case.
2995 Label skip;
2996 __ orr(scratch1, left, right);
2997 __ JumpIfNotSmi(scratch1, &skip);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00002998 BinaryOpStub_GenerateSmiSmiOperation(masm, op_);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00002999 // Fall through if the result is not a smi.
3000 __ bind(&skip);
3001
3002 switch (op_) {
3003 case Token::ADD:
3004 case Token::SUB:
3005 case Token::MUL:
3006 case Token::DIV:
3007 case Token::MOD: {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003008 // It could be that only SMIs have been seen at either the left
3009 // or the right operand. For precise type feedback, patch the IC
3010 // again if this changes.
3011 if (left_type_ == BinaryOpIC::SMI) {
3012 __ JumpIfNotSmi(left, &transition);
3013 }
3014 if (right_type_ == BinaryOpIC::SMI) {
3015 __ JumpIfNotSmi(right, &transition);
3016 }
whesse@chromium.org7b260152011-06-20 15:33:18 +00003017 // Load both operands and check that they are 32-bit integer.
3018 // Jump to type transition if they are not. The registers r0 and r1 (right
3019 // and left) are preserved for the runtime call.
3020 FloatingPointHelper::Destination destination =
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00003021 (CpuFeatures::IsSupported(VFP2) && op_ != Token::MOD)
whesse@chromium.org7b260152011-06-20 15:33:18 +00003022 ? FloatingPointHelper::kVFPRegisters
3023 : FloatingPointHelper::kCoreRegisters;
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003024
whesse@chromium.org7b260152011-06-20 15:33:18 +00003025 FloatingPointHelper::LoadNumberAsInt32Double(masm,
3026 right,
3027 destination,
3028 d7,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003029 d8,
whesse@chromium.org7b260152011-06-20 15:33:18 +00003030 r2,
3031 r3,
3032 heap_number_map,
3033 scratch1,
3034 scratch2,
3035 s0,
3036 &transition);
3037 FloatingPointHelper::LoadNumberAsInt32Double(masm,
3038 left,
3039 destination,
3040 d6,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003041 d8,
whesse@chromium.org7b260152011-06-20 15:33:18 +00003042 r4,
3043 r5,
3044 heap_number_map,
3045 scratch1,
3046 scratch2,
3047 s0,
3048 &transition);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003049
3050 if (destination == FloatingPointHelper::kVFPRegisters) {
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00003051 CpuFeatures::Scope scope(VFP2);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003052 Label return_heap_number;
3053 switch (op_) {
3054 case Token::ADD:
3055 __ vadd(d5, d6, d7);
3056 break;
3057 case Token::SUB:
3058 __ vsub(d5, d6, d7);
3059 break;
3060 case Token::MUL:
3061 __ vmul(d5, d6, d7);
3062 break;
3063 case Token::DIV:
3064 __ vdiv(d5, d6, d7);
3065 break;
3066 default:
3067 UNREACHABLE();
3068 }
3069
3070 if (op_ != Token::DIV) {
3071 // These operations produce an integer result.
3072 // Try to return a smi if we can.
3073 // Otherwise return a heap number if allowed, or jump to type
3074 // transition.
3075
3076 __ EmitVFPTruncate(kRoundToZero,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003077 scratch1,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003078 d5,
3079 scratch2,
3080 d8);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003081
danno@chromium.org40cb8782011-05-25 07:58:50 +00003082 if (result_type_ <= BinaryOpIC::INT32) {
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003083 // If the ne condition is set, result does
3084 // not fit in a 32-bit integer.
3085 __ b(ne, &transition);
3086 }
3087
3088 // Check if the result fits in a smi.
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003089 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
3090 // If not try to return a heap number.
3091 __ b(mi, &return_heap_number);
lrn@chromium.org7516f052011-03-30 08:52:27 +00003092 // Check for minus zero. Return heap number for minus zero.
3093 Label not_zero;
ricow@chromium.orgddd545c2011-08-24 12:02:41 +00003094 __ cmp(scratch1, Operand::Zero());
lrn@chromium.org7516f052011-03-30 08:52:27 +00003095 __ b(ne, &not_zero);
3096 __ vmov(scratch2, d5.high());
3097 __ tst(scratch2, Operand(HeapNumber::kSignMask));
3098 __ b(ne, &return_heap_number);
3099 __ bind(&not_zero);
3100
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003101 // Tag the result and return.
3102 __ SmiTag(r0, scratch1);
3103 __ Ret();
lrn@chromium.org7516f052011-03-30 08:52:27 +00003104 } else {
3105 // DIV just falls through to allocating a heap number.
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003106 }
3107
erik.corry@gmail.comd6076d92011-06-06 09:39:18 +00003108 __ bind(&return_heap_number);
3109 // Return a heap number, or fall through to type transition or runtime
3110 // call if we can't.
whesse@chromium.org7b260152011-06-20 15:33:18 +00003111 if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER
3112 : BinaryOpIC::INT32)) {
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003113 // We are using vfp registers so r5 is available.
3114 heap_number_result = r5;
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003115 BinaryOpStub_GenerateHeapResultAllocation(masm,
3116 heap_number_result,
3117 heap_number_map,
3118 scratch1,
3119 scratch2,
3120 &call_runtime,
3121 mode_);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003122 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
3123 __ vstr(d5, r0, HeapNumber::kValueOffset);
3124 __ mov(r0, heap_number_result);
3125 __ Ret();
3126 }
3127
3128 // A DIV operation expecting an integer result falls through
3129 // to type transition.
3130
3131 } else {
3132 // We preserved r0 and r1 to be able to call runtime.
3133 // Save the left value on the stack.
3134 __ Push(r5, r4);
3135
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +00003136 Label pop_and_call_runtime;
3137
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003138 // Allocate a heap number to store the result.
3139 heap_number_result = r5;
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003140 BinaryOpStub_GenerateHeapResultAllocation(masm,
3141 heap_number_result,
3142 heap_number_map,
3143 scratch1,
3144 scratch2,
3145 &pop_and_call_runtime,
3146 mode_);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003147
3148 // Load the left value from the value saved on the stack.
3149 __ Pop(r1, r0);
3150
3151 // Call the C function to handle the double operation.
3152 FloatingPointHelper::CallCCodeForDoubleOperation(
3153 masm, op_, heap_number_result, scratch1);
danno@chromium.org160a7b02011-04-18 15:51:38 +00003154 if (FLAG_debug_code) {
3155 __ stop("Unreachable code.");
3156 }
erik.corry@gmail.com3847bd52011-04-27 10:38:56 +00003157
3158 __ bind(&pop_and_call_runtime);
3159 __ Drop(2);
3160 __ b(&call_runtime);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003161 }
3162
3163 break;
3164 }
3165
3166 case Token::BIT_OR:
3167 case Token::BIT_XOR:
3168 case Token::BIT_AND:
3169 case Token::SAR:
3170 case Token::SHR:
3171 case Token::SHL: {
3172 Label return_heap_number;
3173 Register scratch3 = r5;
3174 // Convert operands to 32-bit integers. Right in r2 and left in r3. The
3175 // registers r0 and r1 (right and left) are preserved for the runtime
3176 // call.
3177 FloatingPointHelper::LoadNumberAsInt32(masm,
3178 left,
3179 r3,
3180 heap_number_map,
3181 scratch1,
3182 scratch2,
3183 scratch3,
3184 d0,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003185 d1,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003186 &transition);
3187 FloatingPointHelper::LoadNumberAsInt32(masm,
3188 right,
3189 r2,
3190 heap_number_map,
3191 scratch1,
3192 scratch2,
3193 scratch3,
3194 d0,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003195 d1,
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003196 &transition);
3197
3198 // The ECMA-262 standard specifies that, for shift operations, only the
3199 // 5 least significant bits of the shift value should be used.
3200 switch (op_) {
3201 case Token::BIT_OR:
3202 __ orr(r2, r3, Operand(r2));
3203 break;
3204 case Token::BIT_XOR:
3205 __ eor(r2, r3, Operand(r2));
3206 break;
3207 case Token::BIT_AND:
3208 __ and_(r2, r3, Operand(r2));
3209 break;
3210 case Token::SAR:
3211 __ and_(r2, r2, Operand(0x1f));
3212 __ mov(r2, Operand(r3, ASR, r2));
3213 break;
3214 case Token::SHR:
3215 __ and_(r2, r2, Operand(0x1f));
3216 __ mov(r2, Operand(r3, LSR, r2), SetCC);
3217 // SHR is special because it is required to produce a positive answer.
3218 // We only get a negative result if the shift value (r2) is 0.
3219 // This result cannot be respresented as a signed 32-bit integer, try
3220 // to return a heap number if we can.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00003221 // The non vfp2 code does not support this special case, so jump to
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003222 // runtime if we don't support it.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00003223 if (CpuFeatures::IsSupported(VFP2)) {
danno@chromium.org40cb8782011-05-25 07:58:50 +00003224 __ b(mi, (result_type_ <= BinaryOpIC::INT32)
3225 ? &transition
3226 : &return_heap_number);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003227 } else {
danno@chromium.org40cb8782011-05-25 07:58:50 +00003228 __ b(mi, (result_type_ <= BinaryOpIC::INT32)
3229 ? &transition
3230 : &call_runtime);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003231 }
3232 break;
3233 case Token::SHL:
3234 __ and_(r2, r2, Operand(0x1f));
3235 __ mov(r2, Operand(r3, LSL, r2));
3236 break;
3237 default:
3238 UNREACHABLE();
3239 }
3240
3241 // Check if the result fits in a smi.
3242 __ add(scratch1, r2, Operand(0x40000000), SetCC);
3243 // If not try to return a heap number. (We know the result is an int32.)
3244 __ b(mi, &return_heap_number);
3245 // Tag the result and return.
3246 __ SmiTag(r0, r2);
3247 __ Ret();
3248
3249 __ bind(&return_heap_number);
danno@chromium.org160a7b02011-04-18 15:51:38 +00003250 heap_number_result = r5;
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003251 BinaryOpStub_GenerateHeapResultAllocation(masm,
3252 heap_number_result,
3253 heap_number_map,
3254 scratch1,
3255 scratch2,
3256 &call_runtime,
3257 mode_);
danno@chromium.org160a7b02011-04-18 15:51:38 +00003258
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00003259 if (CpuFeatures::IsSupported(VFP2)) {
3260 CpuFeatures::Scope scope(VFP2);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003261 if (op_ != Token::SHR) {
3262 // Convert the result to a floating point value.
3263 __ vmov(double_scratch.low(), r2);
3264 __ vcvt_f64_s32(double_scratch, double_scratch.low());
3265 } else {
3266 // The result must be interpreted as an unsigned 32-bit integer.
3267 __ vmov(double_scratch.low(), r2);
3268 __ vcvt_f64_u32(double_scratch, double_scratch.low());
3269 }
3270
3271 // Store the result.
3272 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
3273 __ vstr(double_scratch, r0, HeapNumber::kValueOffset);
3274 __ mov(r0, heap_number_result);
3275 __ Ret();
3276 } else {
3277 // Tail call that writes the int32 in r2 to the heap number in r0, using
3278 // r3 as scratch. r0 is preserved and returned.
danno@chromium.org160a7b02011-04-18 15:51:38 +00003279 __ mov(r0, r5);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003280 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
3281 __ TailCallStub(&stub);
3282 }
3283
3284 break;
3285 }
3286
3287 default:
3288 UNREACHABLE();
3289 }
3290
erik.corry@gmail.comd6076d92011-06-06 09:39:18 +00003291 // We never expect DIV to yield an integer result, so we always generate
3292 // type transition code for DIV operations expecting an integer result: the
3293 // code will fall through to this type transition.
3294 if (transition.is_linked() ||
3295 ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003296 __ bind(&transition);
3297 GenerateTypeTransition(masm);
3298 }
3299
3300 __ bind(&call_runtime);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003301 GenerateRegisterArgsPush(masm);
ager@chromium.org9ee27ae2011-03-02 13:43:26 +00003302 GenerateCallRuntime(masm);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003303}
3304
3305
danno@chromium.org40cb8782011-05-25 07:58:50 +00003306void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
lrn@chromium.org7516f052011-03-30 08:52:27 +00003307 Label call_runtime;
3308
3309 if (op_ == Token::ADD) {
3310 // Handle string addition here, because it is the only operation
3311 // that does not do a ToNumber conversion on the operands.
3312 GenerateAddStrings(masm);
3313 }
3314
3315 // Convert oddball arguments to numbers.
3316 Label check, done;
3317 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
3318 __ b(ne, &check);
3319 if (Token::IsBitOp(op_)) {
3320 __ mov(r1, Operand(Smi::FromInt(0)));
3321 } else {
3322 __ LoadRoot(r1, Heap::kNanValueRootIndex);
3323 }
3324 __ jmp(&done);
3325 __ bind(&check);
3326 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
3327 __ b(ne, &done);
3328 if (Token::IsBitOp(op_)) {
3329 __ mov(r0, Operand(Smi::FromInt(0)));
3330 } else {
3331 __ LoadRoot(r0, Heap::kNanValueRootIndex);
3332 }
3333 __ bind(&done);
3334
3335 GenerateHeapNumberStub(masm);
3336}
3337
3338
danno@chromium.org40cb8782011-05-25 07:58:50 +00003339void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003340 Label call_runtime, transition;
3341 BinaryOpStub_GenerateFPOperation(
3342 masm, left_type_, right_type_, false,
3343 &transition, &call_runtime, &transition, op_, mode_);
3344
3345 __ bind(&transition);
3346 GenerateTypeTransition(masm);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003347
3348 __ bind(&call_runtime);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003349 GenerateRegisterArgsPush(masm);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003350 GenerateCallRuntime(masm);
3351}
3352
3353
danno@chromium.org40cb8782011-05-25 07:58:50 +00003354void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003355 Label call_runtime, call_string_add_or_runtime, transition;
ager@chromium.org378b34e2011-01-28 08:04:38 +00003356
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003357 BinaryOpStub_GenerateSmiCode(
3358 masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS, mode_);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003359
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003360 BinaryOpStub_GenerateFPOperation(
3361 masm, left_type_, right_type_, false,
3362 &call_string_add_or_runtime, &call_runtime, &transition, op_, mode_);
3363
3364 __ bind(&transition);
3365 GenerateTypeTransition(masm);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003366
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00003367 __ bind(&call_string_add_or_runtime);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003368 if (op_ == Token::ADD) {
3369 GenerateAddStrings(masm);
3370 }
3371
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00003372 __ bind(&call_runtime);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003373 GenerateRegisterArgsPush(masm);
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00003374 GenerateCallRuntime(masm);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003375}
3376
3377
danno@chromium.org40cb8782011-05-25 07:58:50 +00003378void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
ager@chromium.org378b34e2011-01-28 08:04:38 +00003379 ASSERT(op_ == Token::ADD);
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00003380 Label left_not_string, call_runtime;
ager@chromium.org378b34e2011-01-28 08:04:38 +00003381
3382 Register left = r1;
3383 Register right = r0;
ager@chromium.org378b34e2011-01-28 08:04:38 +00003384
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00003385 // Check if left argument is a string.
3386 __ JumpIfSmi(left, &left_not_string);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003387 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00003388 __ b(ge, &left_not_string);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003389
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00003390 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
3391 GenerateRegisterArgsPush(masm);
3392 __ TailCallStub(&string_add_left_stub);
3393
3394 // Left operand is not a string, test right.
3395 __ bind(&left_not_string);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003396 __ JumpIfSmi(right, &call_runtime);
3397 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
3398 __ b(ge, &call_runtime);
3399
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00003400 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003401 GenerateRegisterArgsPush(masm);
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00003402 __ TailCallStub(&string_add_right_stub);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003403
3404 // At least one argument is not a string.
3405 __ bind(&call_runtime);
3406}
3407
3408
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003409void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm,
3410 Register result,
3411 Register heap_number_map,
3412 Register scratch1,
3413 Register scratch2,
3414 Label* gc_required,
3415 OverwriteMode mode) {
ager@chromium.org378b34e2011-01-28 08:04:38 +00003416 // Code below will scratch result if allocation fails. To keep both arguments
3417 // intact for the runtime call result cannot be one of these.
3418 ASSERT(!result.is(r0) && !result.is(r1));
3419
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003420 if (mode == OVERWRITE_LEFT || mode == OVERWRITE_RIGHT) {
ager@chromium.org378b34e2011-01-28 08:04:38 +00003421 Label skip_allocation, allocated;
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003422 Register overwritable_operand = mode == OVERWRITE_LEFT ? r1 : r0;
ager@chromium.org378b34e2011-01-28 08:04:38 +00003423 // If the overwritable operand is already an object, we skip the
3424 // allocation of a heap number.
3425 __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
3426 // Allocate a heap number for the result.
3427 __ AllocateHeapNumber(
3428 result, scratch1, scratch2, heap_number_map, gc_required);
3429 __ b(&allocated);
3430 __ bind(&skip_allocation);
3431 // Use object holding the overwritable operand for result.
3432 __ mov(result, Operand(overwritable_operand));
3433 __ bind(&allocated);
3434 } else {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00003435 ASSERT(mode == NO_OVERWRITE);
ager@chromium.org378b34e2011-01-28 08:04:38 +00003436 __ AllocateHeapNumber(
3437 result, scratch1, scratch2, heap_number_map, gc_required);
3438 }
3439}
3440
3441
danno@chromium.org40cb8782011-05-25 07:58:50 +00003442void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
ager@chromium.org378b34e2011-01-28 08:04:38 +00003443 __ Push(r1, r0);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00003444}
3445
3446
ricow@chromium.org65fae842010-08-25 15:26:24 +00003447void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003448 // Untagged case: double input in d2, double result goes
3449 // into d2.
3450 // Tagged case: tagged input on top of stack and in r0,
3451 // tagged result (heap number) goes into r0.
3452
ricow@chromium.org65fae842010-08-25 15:26:24 +00003453 Label input_not_smi;
3454 Label loaded;
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003455 Label calculate;
3456 Label invalid_cache;
3457 const Register scratch0 = r9;
3458 const Register scratch1 = r7;
3459 const Register cache_entry = r0;
3460 const bool tagged = (argument_type_ == TAGGED);
ricow@chromium.org65fae842010-08-25 15:26:24 +00003461
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00003462 if (CpuFeatures::IsSupported(VFP2)) {
3463 CpuFeatures::Scope scope(VFP2);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003464 if (tagged) {
3465 // Argument is a number and is on stack and in r0.
3466 // Load argument and check if it is a smi.
3467 __ JumpIfNotSmi(r0, &input_not_smi);
ricow@chromium.org65fae842010-08-25 15:26:24 +00003468
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003469 // Input is a smi. Convert to double and load the low and high words
3470 // of the double into r2, r3.
3471 __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
3472 __ b(&loaded);
ricow@chromium.org65fae842010-08-25 15:26:24 +00003473
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003474 __ bind(&input_not_smi);
3475 // Check if input is a HeapNumber.
3476 __ CheckMap(r0,
3477 r1,
3478 Heap::kHeapNumberMapRootIndex,
3479 &calculate,
kmillikin@chromium.orgc53e10d2011-05-18 09:12:58 +00003480 DONT_DO_SMI_CHECK);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003481 // Input is a HeapNumber. Load it to a double register and store the
3482 // low and high words into r2, r3.
3483 __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
3484 __ vmov(r2, r3, d0);
3485 } else {
3486 // Input is untagged double in d2. Output goes to d2.
3487 __ vmov(r2, r3, d2);
3488 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00003489 __ bind(&loaded);
3490 // r2 = low 32 bits of double value
3491 // r3 = high 32 bits of double value
3492 // Compute hash (the shifts are arithmetic):
3493 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
3494 __ eor(r1, r2, Operand(r3));
3495 __ eor(r1, r1, Operand(r1, ASR, 16));
3496 __ eor(r1, r1, Operand(r1, ASR, 8));
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00003497 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
3498 __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
ricow@chromium.org65fae842010-08-25 15:26:24 +00003499
3500 // r2 = low 32 bits of double value.
3501 // r3 = high 32 bits of double value.
3502 // r1 = TranscendentalCache::hash(double value).
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00003503 Isolate* isolate = masm->isolate();
3504 ExternalReference cache_array =
3505 ExternalReference::transcendental_cache_array_address(isolate);
3506 __ mov(cache_entry, Operand(cache_array));
3507 // cache_entry points to cache array.
3508 int cache_array_index
3509 = type_ * sizeof(isolate->transcendental_cache()->caches_[0]);
3510 __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index));
ricow@chromium.org65fae842010-08-25 15:26:24 +00003511 // r0 points to the cache for the type type_.
3512 // If NULL, the cache hasn't been initialized yet, so go through runtime.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00003513 __ cmp(cache_entry, Operand::Zero());
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003514 __ b(eq, &invalid_cache);
ricow@chromium.org65fae842010-08-25 15:26:24 +00003515
3516#ifdef DEBUG
3517 // Check that the layout of cache elements match expectations.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00003518 { TranscendentalCache::SubCache::Element test_elem[2];
ricow@chromium.org65fae842010-08-25 15:26:24 +00003519 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
3520 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
3521 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
3522 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
3523 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
3524 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
3525 CHECK_EQ(0, elem_in0 - elem_start);
3526 CHECK_EQ(kIntSize, elem_in1 - elem_start);
3527 CHECK_EQ(2 * kIntSize, elem_out - elem_start);
3528 }
3529#endif
3530
3531 // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
3532 __ add(r1, r1, Operand(r1, LSL, 1));
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003533 __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
ricow@chromium.org65fae842010-08-25 15:26:24 +00003534 // Check if cache matches: Double value is stored in uint32_t[2] array.
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003535 __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
ricow@chromium.org65fae842010-08-25 15:26:24 +00003536 __ cmp(r2, r4);
danno@chromium.orgfa458e42012-02-01 10:48:36 +00003537 __ cmp(r3, r5, eq);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003538 __ b(ne, &calculate);
3539 // Cache hit. Load result, cleanup and return.
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00003540 Counters* counters = masm->isolate()->counters();
3541 __ IncrementCounter(
3542 counters->transcendental_cache_hit(), 1, scratch0, scratch1);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003543 if (tagged) {
3544 // Pop input value from stack and load result into r0.
3545 __ pop();
3546 __ mov(r0, Operand(r6));
3547 } else {
3548 // Load result into d2.
3549 __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3550 }
3551 __ Ret();
kmillikin@chromium.orgc36ce6e2011-04-04 08:25:31 +00003552 } // if (CpuFeatures::IsSupported(VFP3))
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003553
3554 __ bind(&calculate);
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00003555 Counters* counters = masm->isolate()->counters();
3556 __ IncrementCounter(
3557 counters->transcendental_cache_miss(), 1, scratch0, scratch1);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003558 if (tagged) {
3559 __ bind(&invalid_cache);
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00003560 ExternalReference runtime_function =
3561 ExternalReference(RuntimeFunction(), masm->isolate());
3562 __ TailCallExternalReference(runtime_function, 1, 1);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003563 } else {
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00003564 ASSERT(CpuFeatures::IsSupported(VFP2));
3565 CpuFeatures::Scope scope(VFP2);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003566
3567 Label no_update;
3568 Label skip_cache;
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003569
3570 // Call C function to calculate the result and update the cache.
jkummerow@chromium.org28583c92012-07-16 11:31:55 +00003571 // r0: precalculated cache entry address.
3572 // r2 and r3: parts of the double value.
3573 // Store r0, r2 and r3 on stack for later before calling C function.
3574 __ Push(r3, r2, cache_entry);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003575 GenerateCallCFunction(masm, scratch0);
3576 __ GetCFunctionDoubleResult(d2);
3577
3578 // Try to update the cache. If we cannot allocate a
3579 // heap number, we return the result without updating.
jkummerow@chromium.org28583c92012-07-16 11:31:55 +00003580 __ Pop(r3, r2, cache_entry);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003581 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3582 __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
3583 __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3584 __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
3585 __ Ret();
3586
3587 __ bind(&invalid_cache);
3588 // The cache is invalid. Call runtime which will recreate the
3589 // cache.
3590 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3591 __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
3592 __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00003593 {
3594 FrameScope scope(masm, StackFrame::INTERNAL);
3595 __ push(r0);
3596 __ CallRuntime(RuntimeFunction(), 1);
3597 }
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003598 __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
3599 __ Ret();
3600
3601 __ bind(&skip_cache);
3602 // Call C function to calculate the result and answer directly
3603 // without updating the cache.
3604 GenerateCallCFunction(masm, scratch0);
3605 __ GetCFunctionDoubleResult(d2);
3606 __ bind(&no_update);
3607
3608 // We return the value in d2 without adding it to the cache, but
3609 // we cause a scavenging GC so that future allocations will succeed.
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00003610 {
3611 FrameScope scope(masm, StackFrame::INTERNAL);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003612
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00003613 // Allocate an aligned object larger than a HeapNumber.
3614 ASSERT(4 * kPointerSize >= HeapNumber::kSize);
3615 __ mov(scratch0, Operand(4 * kPointerSize));
3616 __ push(scratch0);
3617 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
3618 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00003619 __ Ret();
3620 }
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003621}
ricow@chromium.org65fae842010-08-25 15:26:24 +00003622
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003623
3624void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
3625 Register scratch) {
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00003626 ASSERT(CpuFeatures::IsEnabled(VFP2));
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00003627 Isolate* isolate = masm->isolate();
3628
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003629 __ push(lr);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00003630 __ PrepareCallCFunction(0, 1, scratch);
3631 if (masm->use_eabi_hardfloat()) {
3632 __ vmov(d0, d2);
3633 } else {
3634 __ vmov(r0, r1, d2);
3635 }
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00003636 AllowExternalCallThatCantCauseGC scope(masm);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003637 switch (type_) {
3638 case TranscendentalCache::SIN:
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00003639 __ CallCFunction(ExternalReference::math_sin_double_function(isolate),
3640 0, 1);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003641 break;
3642 case TranscendentalCache::COS:
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00003643 __ CallCFunction(ExternalReference::math_cos_double_function(isolate),
3644 0, 1);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003645 break;
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00003646 case TranscendentalCache::TAN:
3647 __ CallCFunction(ExternalReference::math_tan_double_function(isolate),
3648 0, 1);
3649 break;
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003650 case TranscendentalCache::LOG:
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00003651 __ CallCFunction(ExternalReference::math_log_double_function(isolate),
3652 0, 1);
karlklose@chromium.org8f806e82011-03-07 14:06:08 +00003653 break;
3654 default:
3655 UNIMPLEMENTED();
3656 break;
3657 }
3658 __ pop(lr);
ricow@chromium.org65fae842010-08-25 15:26:24 +00003659}
3660
3661
3662Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
3663 switch (type_) {
3664 // Add more cases when necessary.
3665 case TranscendentalCache::SIN: return Runtime::kMath_sin;
3666 case TranscendentalCache::COS: return Runtime::kMath_cos;
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00003667 case TranscendentalCache::TAN: return Runtime::kMath_tan;
kasperl@chromium.orga5551262010-12-07 12:49:48 +00003668 case TranscendentalCache::LOG: return Runtime::kMath_log;
ricow@chromium.org65fae842010-08-25 15:26:24 +00003669 default:
3670 UNIMPLEMENTED();
3671 return Runtime::kAbort;
3672 }
3673}
3674
3675
3676void StackCheckStub::Generate(MacroAssembler* masm) {
whesse@chromium.org4a5224e2010-10-20 12:37:07 +00003677 __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
ricow@chromium.org65fae842010-08-25 15:26:24 +00003678}
3679
3680
yangguo@chromium.org56454712012-02-16 15:33:53 +00003681void InterruptStub::Generate(MacroAssembler* masm) {
3682 __ TailCallRuntime(Runtime::kInterrupt, 0, 1);
3683}
3684
3685
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003686void MathPowStub::Generate(MacroAssembler* masm) {
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00003687 CpuFeatures::Scope vfp2_scope(VFP2);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003688 const Register base = r1;
3689 const Register exponent = r2;
3690 const Register heapnumbermap = r5;
3691 const Register heapnumber = r0;
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00003692 const DwVfpRegister double_base = d1;
3693 const DwVfpRegister double_exponent = d2;
3694 const DwVfpRegister double_result = d3;
3695 const DwVfpRegister double_scratch = d0;
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003696 const SwVfpRegister single_scratch = s0;
3697 const Register scratch = r9;
3698 const Register scratch2 = r7;
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003699
danno@chromium.orgfa458e42012-02-01 10:48:36 +00003700 Label call_runtime, done, int_exponent;
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003701 if (exponent_type_ == ON_STACK) {
3702 Label base_is_smi, unpack_exponent;
3703 // The exponent and base are supplied as arguments on the stack.
3704 // This can only happen if the stub is called from non-optimized code.
3705 // Load input parameters from stack to double registers.
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003706 __ ldr(base, MemOperand(sp, 1 * kPointerSize));
3707 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
3708
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003709 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003710
danno@chromium.orgfa458e42012-02-01 10:48:36 +00003711 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003712 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
3713 __ cmp(scratch, heapnumbermap);
3714 __ b(ne, &call_runtime);
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003715
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003716 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
3717 __ jmp(&unpack_exponent);
3718
3719 __ bind(&base_is_smi);
danno@chromium.orgfa458e42012-02-01 10:48:36 +00003720 __ vmov(single_scratch, scratch);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003721 __ vcvt_f64_s32(double_base, single_scratch);
3722 __ bind(&unpack_exponent);
3723
danno@chromium.orgfa458e42012-02-01 10:48:36 +00003724 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003725
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003726 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
3727 __ cmp(scratch, heapnumbermap);
3728 __ b(ne, &call_runtime);
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003729 __ vldr(double_exponent,
3730 FieldMemOperand(exponent, HeapNumber::kValueOffset));
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003731 } else if (exponent_type_ == TAGGED) {
3732 // Base is already in double_base.
danno@chromium.orgfa458e42012-02-01 10:48:36 +00003733 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003734
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003735 __ vldr(double_exponent,
3736 FieldMemOperand(exponent, HeapNumber::kValueOffset));
3737 }
3738
3739 if (exponent_type_ != INTEGER) {
3740 Label int_exponent_convert;
3741 // Detect integer exponents stored as double.
3742 __ vcvt_u32_f64(single_scratch, double_exponent);
3743 // We do not check for NaN or Infinity here because comparing numbers on
3744 // ARM correctly distinguishes NaNs. We end up calling the built-in.
3745 __ vcvt_f64_u32(double_scratch, single_scratch);
3746 __ VFPCompareAndSetFlags(double_scratch, double_exponent);
3747 __ b(eq, &int_exponent_convert);
3748
3749 if (exponent_type_ == ON_STACK) {
3750 // Detect square root case. Crankshaft detects constant +/-0.5 at
3751 // compile time and uses DoMathPowHalf instead. We then skip this check
3752 // for non-constant cases of +/-0.5 as these hardly occur.
3753 Label not_plus_half;
3754
3755 // Test for 0.5.
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003756 __ vmov(double_scratch, 0.5, scratch);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003757 __ VFPCompareAndSetFlags(double_exponent, double_scratch);
3758 __ b(ne, &not_plus_half);
3759
3760 // Calculates square root of base. Check for the special case of
3761 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003762 __ vmov(double_scratch, -V8_INFINITY, scratch);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003763 __ VFPCompareAndSetFlags(double_base, double_scratch);
3764 __ vneg(double_result, double_scratch, eq);
3765 __ b(eq, &done);
3766
3767 // Add +0 to convert -0 to +0.
3768 __ vadd(double_scratch, double_base, kDoubleRegZero);
3769 __ vsqrt(double_result, double_scratch);
3770 __ jmp(&done);
3771
3772 __ bind(&not_plus_half);
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003773 __ vmov(double_scratch, -0.5, scratch);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003774 __ VFPCompareAndSetFlags(double_exponent, double_scratch);
3775 __ b(ne, &call_runtime);
3776
3777 // Calculates square root of base. Check for the special case of
3778 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003779 __ vmov(double_scratch, -V8_INFINITY, scratch);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003780 __ VFPCompareAndSetFlags(double_base, double_scratch);
3781 __ vmov(double_result, kDoubleRegZero, eq);
3782 __ b(eq, &done);
3783
3784 // Add +0 to convert -0 to +0.
3785 __ vadd(double_scratch, double_base, kDoubleRegZero);
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003786 __ vmov(double_result, 1.0, scratch);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003787 __ vsqrt(double_scratch, double_scratch);
3788 __ vdiv(double_result, double_result, double_scratch);
3789 __ jmp(&done);
3790 }
3791
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003792 __ push(lr);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00003793 {
3794 AllowExternalCallThatCantCauseGC scope(masm);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003795 __ PrepareCallCFunction(0, 2, scratch);
3796 __ SetCallCDoubleArguments(double_base, double_exponent);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00003797 __ CallCFunction(
3798 ExternalReference::power_double_double_function(masm->isolate()),
3799 0, 2);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00003800 }
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003801 __ pop(lr);
3802 __ GetCFunctionDoubleResult(double_result);
3803 __ jmp(&done);
3804
3805 __ bind(&int_exponent_convert);
3806 __ vcvt_u32_f64(single_scratch, double_exponent);
danno@chromium.orgfa458e42012-02-01 10:48:36 +00003807 __ vmov(scratch, single_scratch);
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003808 }
3809
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003810 // Calculate power with integer exponent.
3811 __ bind(&int_exponent);
3812
danno@chromium.orgfa458e42012-02-01 10:48:36 +00003813 // Get two copies of exponent in the registers scratch and exponent.
3814 if (exponent_type_ == INTEGER) {
3815 __ mov(scratch, exponent);
3816 } else {
3817 // Exponent has previously been stored into scratch as untagged integer.
3818 __ mov(exponent, scratch);
3819 }
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003820 __ vmov(double_scratch, double_base); // Back up base.
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003821 __ vmov(double_result, 1.0, scratch2);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003822
3823 // Get absolute value of exponent.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00003824 __ cmp(scratch, Operand::Zero());
3825 __ mov(scratch2, Operand::Zero(), LeaveCC, mi);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003826 __ sub(scratch, scratch2, scratch, LeaveCC, mi);
3827
3828 Label while_true;
3829 __ bind(&while_true);
3830 __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
3831 __ vmul(double_result, double_result, double_scratch, cs);
3832 __ vmul(double_scratch, double_scratch, double_scratch, ne);
3833 __ b(ne, &while_true);
3834
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00003835 __ cmp(exponent, Operand::Zero());
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003836 __ b(ge, &done);
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00003837 __ vmov(double_scratch, 1.0, scratch);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00003838 __ vdiv(double_result, double_scratch, double_result);
3839 // Test whether result is zero. Bail out to check for subnormal result.
3840 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
3841 __ VFPCompareAndSetFlags(double_result, 0.0);
3842 __ b(ne, &done);
3843 // double_exponent may not containe the exponent value if the input was a
3844 // smi. We set it with exponent value before bailing out.
3845 __ vmov(single_scratch, exponent);
3846 __ vcvt_f64_s32(double_exponent, single_scratch);
3847
3848 // Returning or bailing out.
3849 Counters* counters = masm->isolate()->counters();
3850 if (exponent_type_ == ON_STACK) {
3851 // The arguments are still on the stack.
3852 __ bind(&call_runtime);
3853 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
3854
3855 // The stub is called from non-optimized code, which expects the result
3856 // as heap number in exponent.
3857 __ bind(&done);
3858 __ AllocateHeapNumber(
3859 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
3860 __ vstr(double_result,
3861 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
3862 ASSERT(heapnumber.is(r0));
3863 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3864 __ Ret(2);
3865 } else {
3866 __ push(lr);
3867 {
3868 AllowExternalCallThatCantCauseGC scope(masm);
3869 __ PrepareCallCFunction(0, 2, scratch);
3870 __ SetCallCDoubleArguments(double_base, double_exponent);
3871 __ CallCFunction(
3872 ExternalReference::power_double_double_function(masm->isolate()),
3873 0, 2);
3874 }
3875 __ pop(lr);
3876 __ GetCFunctionDoubleResult(double_result);
3877
3878 __ bind(&done);
3879 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3880 __ Ret();
3881 }
danno@chromium.org4d3fe4e2011-03-10 10:14:28 +00003882}
3883
3884
3885bool CEntryStub::NeedsImmovableCode() {
3886 return true;
3887}
3888
3889
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00003890bool CEntryStub::IsPregenerated() {
3891 return (!save_doubles_ || ISOLATE->fp_stubs_generated()) &&
3892 result_size_ == 1;
3893}
3894
3895
3896void CodeStub::GenerateStubsAheadOfTime() {
3897 CEntryStub::GenerateAheadOfTime();
3898 WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime();
3899 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
3900 RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
3901}
3902
3903
3904void CodeStub::GenerateFPStubs() {
yangguo@chromium.orga6bbcc82012-12-21 12:35:02 +00003905 SaveFPRegsMode mode = CpuFeatures::IsSupported(VFP2)
3906 ? kSaveFPRegs
3907 : kDontSaveFPRegs;
3908 CEntryStub save_doubles(1, mode);
3909 StoreBufferOverflowStub stub(mode);
3910 // These stubs might already be in the snapshot, detect that and don't
3911 // regenerate, which would lead to code stub initialization state being messed
3912 // up.
3913 Code* save_doubles_code = NULL;
3914 Code* store_buffer_overflow_code = NULL;
3915 if (!save_doubles.FindCodeInCache(&save_doubles_code, ISOLATE)) {
3916 if (CpuFeatures::IsSupported(VFP2)) {
3917 CpuFeatures::Scope scope2(VFP2);
3918 save_doubles_code = *save_doubles.GetCode();
3919 store_buffer_overflow_code = *stub.GetCode();
3920 } else {
3921 save_doubles_code = *save_doubles.GetCode();
3922 store_buffer_overflow_code = *stub.GetCode();
3923 }
3924 save_doubles_code->set_is_pregenerated(true);
3925 store_buffer_overflow_code->set_is_pregenerated(true);
3926 }
3927 ISOLATE->set_fp_stubs_generated(true);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00003928}
3929
3930
3931void CEntryStub::GenerateAheadOfTime() {
3932 CEntryStub stub(1, kDontSaveFPRegs);
3933 Handle<Code> code = stub.GetCode();
3934 code->set_is_pregenerated(true);
3935}
3936
3937
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00003938static void JumpIfOOM(MacroAssembler* masm,
3939 Register value,
3940 Register scratch,
3941 Label* oom_label) {
3942 STATIC_ASSERT(Failure::OUT_OF_MEMORY_EXCEPTION == 3);
3943 STATIC_ASSERT(kFailureTag == 3);
3944 __ and_(scratch, value, Operand(0xf));
3945 __ cmp(scratch, Operand(0xf));
3946 __ b(eq, oom_label);
3947}
3948
3949
ricow@chromium.org65fae842010-08-25 15:26:24 +00003950void CEntryStub::GenerateCore(MacroAssembler* masm,
3951 Label* throw_normal_exception,
3952 Label* throw_termination_exception,
3953 Label* throw_out_of_memory_exception,
3954 bool do_gc,
ager@chromium.org0ee099b2011-01-25 14:06:47 +00003955 bool always_allocate) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00003956 // r0: result parameter for PerformGC, if any
3957 // r4: number of arguments including receiver (C callee-saved)
3958 // r5: pointer to builtin function (C callee-saved)
3959 // r6: pointer to the first argument (C callee-saved)
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00003960 Isolate* isolate = masm->isolate();
ricow@chromium.org65fae842010-08-25 15:26:24 +00003961
3962 if (do_gc) {
3963 // Passing r0.
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00003964 __ PrepareCallCFunction(1, 0, r1);
3965 __ CallCFunction(ExternalReference::perform_gc_function(isolate),
3966 1, 0);
ricow@chromium.org65fae842010-08-25 15:26:24 +00003967 }
3968
3969 ExternalReference scope_depth =
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00003970 ExternalReference::heap_always_allocate_scope_depth(isolate);
ricow@chromium.org65fae842010-08-25 15:26:24 +00003971 if (always_allocate) {
3972 __ mov(r0, Operand(scope_depth));
3973 __ ldr(r1, MemOperand(r0));
3974 __ add(r1, r1, Operand(1));
3975 __ str(r1, MemOperand(r0));
3976 }
3977
3978 // Call C built-in.
3979 // r0 = argc, r1 = argv
3980 __ mov(r0, Operand(r4));
3981 __ mov(r1, Operand(r6));
3982
ager@chromium.org0ee099b2011-01-25 14:06:47 +00003983#if defined(V8_HOST_ARCH_ARM)
ricow@chromium.org65fae842010-08-25 15:26:24 +00003984 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
3985 int frame_alignment_mask = frame_alignment - 1;
ricow@chromium.org65fae842010-08-25 15:26:24 +00003986 if (FLAG_debug_code) {
3987 if (frame_alignment > kPointerSize) {
3988 Label alignment_as_expected;
3989 ASSERT(IsPowerOf2(frame_alignment));
ager@chromium.org378b34e2011-01-28 08:04:38 +00003990 __ tst(sp, Operand(frame_alignment_mask));
ricow@chromium.org65fae842010-08-25 15:26:24 +00003991 __ b(eq, &alignment_as_expected);
3992 // Don't use Check here, as it will call Runtime_Abort re-entering here.
3993 __ stop("Unexpected alignment");
3994 __ bind(&alignment_as_expected);
3995 }
3996 }
3997#endif
3998
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00003999 __ mov(r2, Operand(ExternalReference::isolate_address()));
4000
svenpanne@chromium.org6d786c92011-06-15 10:58:27 +00004001 // To let the GC traverse the return address of the exit frames, we need to
4002 // know where the return address is. The CEntryStub is unmovable, so
4003 // we can store the address on the stack to be able to find it again and
4004 // we never have to restore it, because it will not change.
ager@chromium.org0ee099b2011-01-25 14:06:47 +00004005 // Compute the return address in lr to return to after the jump below. Pc is
4006 // already at '+ 8' from the current instruction but return is after three
4007 // instructions so add another 4 to pc to get the return address.
mmassi@chromium.org7028c052012-06-13 11:51:58 +00004008 {
4009 // Prevent literal pool emission before return address.
4010 Assembler::BlockConstPoolScope block_const_pool(masm);
4011 masm->add(lr, pc, Operand(4));
4012 __ str(lr, MemOperand(sp, 0));
4013 masm->Jump(r5);
4014 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00004015
4016 if (always_allocate) {
4017 // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
4018 // though (contain the result).
4019 __ mov(r2, Operand(scope_depth));
4020 __ ldr(r3, MemOperand(r2));
4021 __ sub(r3, r3, Operand(1));
4022 __ str(r3, MemOperand(r2));
4023 }
4024
4025 // check for failure result
4026 Label failure_returned;
4027 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
4028 // Lower 2 bits of r2 are 0 iff r0 has failure tag.
4029 __ add(r2, r0, Operand(1));
4030 __ tst(r2, Operand(kFailureTagMask));
4031 __ b(eq, &failure_returned);
4032
4033 // Exit C frame and return.
4034 // r0:r1: result
4035 // sp: stack pointer
4036 // fp: frame pointer
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00004037 // Callee-saved register r4 still holds argc.
4038 __ LeaveExitFrame(save_doubles_, r4);
4039 __ mov(pc, lr);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004040
4041 // check if we should retry or throw exception
4042 Label retry;
4043 __ bind(&failure_returned);
4044 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
4045 __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
4046 __ b(eq, &retry);
4047
4048 // Special handling of out of memory exceptions.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00004049 JumpIfOOM(masm, r0, ip, throw_out_of_memory_exception);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004050
4051 // Retrieve the pending exception and clear the variable.
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00004052 __ mov(r3, Operand(isolate->factory()->the_hole_value()));
kmillikin@chromium.org83e16822011-09-13 08:21:47 +00004053 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00004054 isolate)));
ricow@chromium.org65fae842010-08-25 15:26:24 +00004055 __ ldr(r0, MemOperand(ip));
4056 __ str(r3, MemOperand(ip));
4057
4058 // Special handling of termination exceptions which are uncatchable
4059 // by javascript code.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00004060 __ cmp(r0, Operand(isolate->factory()->termination_exception()));
ricow@chromium.org65fae842010-08-25 15:26:24 +00004061 __ b(eq, throw_termination_exception);
4062
4063 // Handle normal exception.
4064 __ jmp(throw_normal_exception);
4065
4066 __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
4067}
4068
4069
4070void CEntryStub::Generate(MacroAssembler* masm) {
4071 // Called from JavaScript; parameters are on stack as if calling JS function
4072 // r0: number of arguments including receiver
4073 // r1: pointer to builtin function
4074 // fp: frame pointer (restored after C call)
4075 // sp: stack pointer (restored as callee's sp after C call)
4076 // cp: current context (C callee-saved)
4077
4078 // Result returned in r0 or r0+r1 by default.
4079
4080 // NOTE: Invocations of builtins may return failure objects
4081 // instead of a proper result. The builtin entry handles
4082 // this by performing a garbage collection and retrying the
4083 // builtin once.
4084
ricow@chromium.org83aa5492011-02-07 12:42:56 +00004085 // Compute the argv pointer in a callee-saved register.
4086 __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
4087 __ sub(r6, r6, Operand(kPointerSize));
4088
ricow@chromium.org65fae842010-08-25 15:26:24 +00004089 // Enter the exit frame that transitions from JavaScript to C++.
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00004090 FrameScope scope(masm, StackFrame::MANUAL);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00004091 __ EnterExitFrame(save_doubles_);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004092
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00004093 // Set up argc and the builtin function in callee-saved registers.
ricow@chromium.org83aa5492011-02-07 12:42:56 +00004094 __ mov(r4, Operand(r0));
4095 __ mov(r5, Operand(r1));
4096
ricow@chromium.org65fae842010-08-25 15:26:24 +00004097 // r4: number of arguments (C callee-saved)
4098 // r5: pointer to builtin function (C callee-saved)
4099 // r6: pointer to first argument (C callee-saved)
4100
4101 Label throw_normal_exception;
4102 Label throw_termination_exception;
4103 Label throw_out_of_memory_exception;
4104
4105 // Call into the runtime system.
4106 GenerateCore(masm,
4107 &throw_normal_exception,
4108 &throw_termination_exception,
4109 &throw_out_of_memory_exception,
4110 false,
ager@chromium.org0ee099b2011-01-25 14:06:47 +00004111 false);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004112
4113 // Do space-specific GC and retry runtime call.
4114 GenerateCore(masm,
4115 &throw_normal_exception,
4116 &throw_termination_exception,
4117 &throw_out_of_memory_exception,
4118 true,
ager@chromium.org0ee099b2011-01-25 14:06:47 +00004119 false);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004120
4121 // Do full GC and retry runtime call one final time.
4122 Failure* failure = Failure::InternalError();
4123 __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
4124 GenerateCore(masm,
4125 &throw_normal_exception,
4126 &throw_termination_exception,
4127 &throw_out_of_memory_exception,
4128 true,
ager@chromium.org0ee099b2011-01-25 14:06:47 +00004129 true);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004130
4131 __ bind(&throw_out_of_memory_exception);
ulan@chromium.org65a89c22012-02-14 11:46:07 +00004132 // Set external caught exception to false.
4133 Isolate* isolate = masm->isolate();
4134 ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
4135 isolate);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00004136 __ mov(r0, Operand(false, RelocInfo::NONE32));
ulan@chromium.org65a89c22012-02-14 11:46:07 +00004137 __ mov(r2, Operand(external_caught));
4138 __ str(r0, MemOperand(r2));
4139
4140 // Set pending exception and r0 to out of memory exception.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00004141 Label already_have_failure;
4142 JumpIfOOM(masm, r0, ip, &already_have_failure);
4143 Failure* out_of_memory = Failure::OutOfMemoryException(0x1);
ulan@chromium.org65a89c22012-02-14 11:46:07 +00004144 __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00004145 __ bind(&already_have_failure);
ulan@chromium.org65a89c22012-02-14 11:46:07 +00004146 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
4147 isolate)));
4148 __ str(r0, MemOperand(r2));
4149 // Fall through to the next label.
ricow@chromium.org65fae842010-08-25 15:26:24 +00004150
4151 __ bind(&throw_termination_exception);
ulan@chromium.org65a89c22012-02-14 11:46:07 +00004152 __ ThrowUncatchable(r0);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004153
4154 __ bind(&throw_normal_exception);
ulan@chromium.org65a89c22012-02-14 11:46:07 +00004155 __ Throw(r0);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004156}
4157
4158
4159void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
4160 // r0: code entry
4161 // r1: function
4162 // r2: receiver
4163 // r3: argc
4164 // [sp+0]: argv
4165
jkummerow@chromium.org04e4f1e2011-11-14 13:36:17 +00004166 Label invoke, handler_entry, exit;
ricow@chromium.org65fae842010-08-25 15:26:24 +00004167
4168 // Called from C, so do not pop argc and args on exit (preserve sp)
4169 // No need to save register-passed args
4170 // Save callee-saved registers (incl. cp and fp), sp, and lr
4171 __ stm(db_w, sp, kCalleeSaved | lr.bit());
4172
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00004173 if (CpuFeatures::IsSupported(VFP2)) {
4174 CpuFeatures::Scope scope(VFP2);
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00004175 // Save callee-saved vfp registers.
4176 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
vegorov@chromium.org3cf47312011-06-29 13:20:01 +00004177 // Set up the reserved register for 0.0.
4178 __ vmov(kDoubleRegZero, 0.0);
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00004179 }
4180
ricow@chromium.org65fae842010-08-25 15:26:24 +00004181 // Get address of argv, see stm above.
4182 // r0: code entry
4183 // r1: function
4184 // r2: receiver
4185 // r3: argc
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00004186
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00004187 // Set up argv in r4.
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00004188 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00004189 if (CpuFeatures::IsSupported(VFP2)) {
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00004190 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
4191 }
4192 __ ldr(r4, MemOperand(sp, offset_to_argv));
ricow@chromium.org65fae842010-08-25 15:26:24 +00004193
4194 // Push a frame with special values setup to mark it as an entry frame.
4195 // r0: code entry
4196 // r1: function
4197 // r2: receiver
4198 // r3: argc
4199 // r4: argv
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00004200 Isolate* isolate = masm->isolate();
ricow@chromium.org65fae842010-08-25 15:26:24 +00004201 __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
4202 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
4203 __ mov(r7, Operand(Smi::FromInt(marker)));
4204 __ mov(r6, Operand(Smi::FromInt(marker)));
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00004205 __ mov(r5,
kmillikin@chromium.org83e16822011-09-13 08:21:47 +00004206 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
ricow@chromium.org65fae842010-08-25 15:26:24 +00004207 __ ldr(r5, MemOperand(r5));
4208 __ Push(r8, r7, r6, r5);
4209
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00004210 // Set up frame pointer for the frame to be pushed.
ricow@chromium.org65fae842010-08-25 15:26:24 +00004211 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
4212
kasperl@chromium.orga5551262010-12-07 12:49:48 +00004213 // If this is the outermost JS call, set js_entry_sp value.
kmillikin@chromium.orgc53e10d2011-05-18 09:12:58 +00004214 Label non_outermost_js;
kmillikin@chromium.org83e16822011-09-13 08:21:47 +00004215 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00004216 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
4217 __ ldr(r6, MemOperand(r5));
ricow@chromium.orgddd545c2011-08-24 12:02:41 +00004218 __ cmp(r6, Operand::Zero());
kmillikin@chromium.orgc53e10d2011-05-18 09:12:58 +00004219 __ b(ne, &non_outermost_js);
4220 __ str(fp, MemOperand(r5));
4221 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
4222 Label cont;
4223 __ b(&cont);
4224 __ bind(&non_outermost_js);
4225 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
4226 __ bind(&cont);
4227 __ push(ip);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00004228
jkummerow@chromium.org04e4f1e2011-11-14 13:36:17 +00004229 // Jump to a faked try block that does the invoke, with a faked catch
4230 // block that sets the pending exception.
4231 __ jmp(&invoke);
mmassi@chromium.org7028c052012-06-13 11:51:58 +00004232
4233 // Block literal pool emission whilst taking the position of the handler
4234 // entry. This avoids making the assumption that literal pools are always
4235 // emitted after an instruction is emitted, rather than before.
4236 {
4237 Assembler::BlockConstPoolScope block_const_pool(masm);
4238 __ bind(&handler_entry);
4239 handler_offset_ = handler_entry.pos();
4240 // Caught exception: Store result (exception) in the pending exception
4241 // field in the JSEnv and return a failure sentinel. Coming in here the
4242 // fp will be invalid because the PushTryHandler below sets it to 0 to
4243 // signal the existence of the JSEntry frame.
4244 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
4245 isolate)));
4246 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00004247 __ str(r0, MemOperand(ip));
4248 __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
4249 __ b(&exit);
4250
jkummerow@chromium.org04e4f1e2011-11-14 13:36:17 +00004251 // Invoke: Link this frame into the handler chain. There's only one
4252 // handler block in this code object, so its index is 0.
ricow@chromium.org65fae842010-08-25 15:26:24 +00004253 __ bind(&invoke);
4254 // Must preserve r0-r4, r5-r7 are available.
yangguo@chromium.org78d1ad42012-02-09 13:53:47 +00004255 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004256 // If an exception not caught by another handler occurs, this handler
4257 // returns control to the code after the bl(&invoke) above, which
4258 // restores all kCalleeSaved registers (including cp and fp) to their
4259 // saved values before returning a failure to C.
4260
4261 // Clear any pending exceptions.
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00004262 __ mov(r5, Operand(isolate->factory()->the_hole_value()));
kmillikin@chromium.org83e16822011-09-13 08:21:47 +00004263 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00004264 isolate)));
ricow@chromium.org65fae842010-08-25 15:26:24 +00004265 __ str(r5, MemOperand(ip));
4266
4267 // Invoke the function by calling through JS entry trampoline builtin.
4268 // Notice that we cannot store a reference to the trampoline code directly in
4269 // this stub, because runtime stubs are not traversed when doing GC.
4270
4271 // Expected registers by Builtins::JSEntryTrampoline
4272 // r0: code entry
4273 // r1: function
4274 // r2: receiver
4275 // r3: argc
4276 // r4: argv
4277 if (is_construct) {
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00004278 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00004279 isolate);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004280 __ mov(ip, Operand(construct_entry));
4281 } else {
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00004282 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004283 __ mov(ip, Operand(entry));
4284 }
4285 __ ldr(ip, MemOperand(ip)); // deref address
4286
4287 // Branch and link to JSEntryTrampoline. We don't use the double underscore
4288 // macro for the add instruction because we don't want the coverage tool
mmassi@chromium.org7028c052012-06-13 11:51:58 +00004289 // inserting instructions here after we read the pc. We block literal pool
4290 // emission for the same reason.
4291 {
4292 Assembler::BlockConstPoolScope block_const_pool(masm);
4293 __ mov(lr, Operand(pc));
4294 masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
4295 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00004296
kmillikin@chromium.orgc53e10d2011-05-18 09:12:58 +00004297 // Unlink this frame from the handler chain.
4298 __ PopTryHandler();
ricow@chromium.org65fae842010-08-25 15:26:24 +00004299
4300 __ bind(&exit); // r0 holds result
kmillikin@chromium.orgc53e10d2011-05-18 09:12:58 +00004301 // Check if the current stack frame is marked as the outermost JS frame.
4302 Label non_outermost_js_2;
4303 __ pop(r5);
4304 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
4305 __ b(ne, &non_outermost_js_2);
ricow@chromium.orgddd545c2011-08-24 12:02:41 +00004306 __ mov(r6, Operand::Zero());
kmillikin@chromium.orgc53e10d2011-05-18 09:12:58 +00004307 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
4308 __ str(r6, MemOperand(r5));
4309 __ bind(&non_outermost_js_2);
kmillikin@chromium.orgc53e10d2011-05-18 09:12:58 +00004310
ricow@chromium.org65fae842010-08-25 15:26:24 +00004311 // Restore the top frame descriptors from the stack.
4312 __ pop(r3);
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00004313 __ mov(ip,
kmillikin@chromium.org83e16822011-09-13 08:21:47 +00004314 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
ricow@chromium.org65fae842010-08-25 15:26:24 +00004315 __ str(r3, MemOperand(ip));
4316
4317 // Reset the stack to the callee saved registers.
4318 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
4319
4320 // Restore callee-saved registers and return.
4321#ifdef DEBUG
4322 if (FLAG_debug_code) {
4323 __ mov(lr, Operand(pc));
4324 }
4325#endif
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00004326
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00004327 if (CpuFeatures::IsSupported(VFP2)) {
4328 CpuFeatures::Scope scope(VFP2);
lrn@chromium.orgac2828d2011-06-23 06:29:21 +00004329 // Restore callee-saved vfp registers.
4330 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
4331 }
4332
ricow@chromium.org65fae842010-08-25 15:26:24 +00004333 __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
4334}
4335
4336
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004337// Uses registers r0 to r4.
4338// Expected input (depending on whether args are in registers or on the stack):
4339// * object: r0 or at sp + 1 * kPointerSize.
4340// * function: r1 or at sp.
4341//
4342// An inlined call site may have been generated before calling this stub.
4343// In this case the offset to the inline site to patch is passed on the stack,
4344// in the safepoint slot for register r4.
4345// (See LCodeGen::DoInstanceOfKnownGlobal)
ricow@chromium.org65fae842010-08-25 15:26:24 +00004346void InstanceofStub::Generate(MacroAssembler* masm) {
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004347 // Call site inlining and patching implies arguments in registers.
4348 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
4349 // ReturnTrueFalse is only implemented for inlined call sites.
4350 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
4351
whesse@chromium.org023421e2010-12-21 12:19:12 +00004352 // Fixed register usage throughout the stub:
fschneider@chromium.org9e3e0b62011-01-03 10:16:46 +00004353 const Register object = r0; // Object (lhs).
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004354 Register map = r3; // Map of the object.
fschneider@chromium.org9e3e0b62011-01-03 10:16:46 +00004355 const Register function = r1; // Function (rhs).
whesse@chromium.org023421e2010-12-21 12:19:12 +00004356 const Register prototype = r4; // Prototype of the function.
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004357 const Register inline_site = r9;
whesse@chromium.org023421e2010-12-21 12:19:12 +00004358 const Register scratch = r2;
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004359
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00004360 const int32_t kDeltaToLoadBoolResult = 4 * kPointerSize;
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004361
whesse@chromium.org023421e2010-12-21 12:19:12 +00004362 Label slow, loop, is_instance, is_not_instance, not_js_object;
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004363
kmillikin@chromium.orgd2c22f02011-01-10 08:15:37 +00004364 if (!HasArgsInRegisters()) {
fschneider@chromium.org9e3e0b62011-01-03 10:16:46 +00004365 __ ldr(object, MemOperand(sp, 1 * kPointerSize));
4366 __ ldr(function, MemOperand(sp, 0));
whesse@chromium.org023421e2010-12-21 12:19:12 +00004367 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00004368
whesse@chromium.org023421e2010-12-21 12:19:12 +00004369 // Check that the left hand is a JS object and load map.
ager@chromium.org378b34e2011-01-28 08:04:38 +00004370 __ JumpIfSmi(object, &not_js_object);
fschneider@chromium.org9e3e0b62011-01-03 10:16:46 +00004371 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004372
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004373 // If there is a call site cache don't look in the global cache, but do the
4374 // real lookup and update the call site cache.
4375 if (!HasCallSiteInlineCheck()) {
4376 Label miss;
danno@chromium.orgfa458e42012-02-01 10:48:36 +00004377 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004378 __ b(ne, &miss);
danno@chromium.orgfa458e42012-02-01 10:48:36 +00004379 __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004380 __ b(ne, &miss);
4381 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4382 __ Ret(HasArgsInRegisters() ? 0 : 2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004383
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004384 __ bind(&miss);
4385 }
4386
4387 // Get the prototype of the function.
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +00004388 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004389
4390 // Check that the function prototype is a JS object.
ager@chromium.org378b34e2011-01-28 08:04:38 +00004391 __ JumpIfSmi(prototype, &slow);
whesse@chromium.org023421e2010-12-21 12:19:12 +00004392 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004393
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004394 // Update the global instanceof or call site inlined cache with the current
4395 // map and function. The cached answer will be set when it is known below.
4396 if (!HasCallSiteInlineCheck()) {
4397 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
4398 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
4399 } else {
4400 ASSERT(HasArgsInRegisters());
4401 // Patch the (relocated) inlined map check.
4402
4403 // The offset was stored in r4 safepoint slot.
4404 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00004405 __ LoadFromSafepointRegisterSlot(scratch, r4);
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004406 __ sub(inline_site, lr, scratch);
4407 // Get the map location in scratch and patch it.
4408 __ GetRelocatedValueLocation(inline_site, scratch);
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00004409 __ ldr(scratch, MemOperand(scratch));
4410 __ str(map, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004411 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00004412
4413 // Register mapping: r3 is object map and r4 is function prototype.
4414 // Get prototype of object into r2.
whesse@chromium.org023421e2010-12-21 12:19:12 +00004415 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
ricow@chromium.org65fae842010-08-25 15:26:24 +00004416
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004417 // We don't need map any more. Use it as a scratch register.
4418 Register scratch2 = map;
4419 map = no_reg;
4420
ricow@chromium.org65fae842010-08-25 15:26:24 +00004421 // Loop through the prototype chain looking for the function prototype.
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004422 __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004423 __ bind(&loop);
whesse@chromium.org023421e2010-12-21 12:19:12 +00004424 __ cmp(scratch, Operand(prototype));
ricow@chromium.org65fae842010-08-25 15:26:24 +00004425 __ b(eq, &is_instance);
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004426 __ cmp(scratch, scratch2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004427 __ b(eq, &is_not_instance);
whesse@chromium.org023421e2010-12-21 12:19:12 +00004428 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
4429 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
ricow@chromium.org65fae842010-08-25 15:26:24 +00004430 __ jmp(&loop);
4431
4432 __ bind(&is_instance);
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004433 if (!HasCallSiteInlineCheck()) {
4434 __ mov(r0, Operand(Smi::FromInt(0)));
4435 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4436 } else {
4437 // Patch the call site to return true.
4438 __ LoadRoot(r0, Heap::kTrueValueRootIndex);
4439 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4440 // Get the boolean result location in scratch and patch it.
4441 __ GetRelocatedValueLocation(inline_site, scratch);
4442 __ str(r0, MemOperand(scratch));
4443
4444 if (!ReturnTrueFalseObject()) {
4445 __ mov(r0, Operand(Smi::FromInt(0)));
4446 }
4447 }
kmillikin@chromium.orgd2c22f02011-01-10 08:15:37 +00004448 __ Ret(HasArgsInRegisters() ? 0 : 2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004449
4450 __ bind(&is_not_instance);
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004451 if (!HasCallSiteInlineCheck()) {
4452 __ mov(r0, Operand(Smi::FromInt(1)));
4453 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4454 } else {
4455 // Patch the call site to return false.
4456 __ LoadRoot(r0, Heap::kFalseValueRootIndex);
4457 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4458 // Get the boolean result location in scratch and patch it.
4459 __ GetRelocatedValueLocation(inline_site, scratch);
4460 __ str(r0, MemOperand(scratch));
4461
4462 if (!ReturnTrueFalseObject()) {
4463 __ mov(r0, Operand(Smi::FromInt(1)));
4464 }
4465 }
kmillikin@chromium.orgd2c22f02011-01-10 08:15:37 +00004466 __ Ret(HasArgsInRegisters() ? 0 : 2);
whesse@chromium.org023421e2010-12-21 12:19:12 +00004467
4468 Label object_not_null, object_not_null_or_smi;
4469 __ bind(&not_js_object);
4470 // Before null, smi and string value checks, check that the rhs is a function
4471 // as for a non-function rhs an exception needs to be thrown.
ager@chromium.org378b34e2011-01-28 08:04:38 +00004472 __ JumpIfSmi(function, &slow);
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004473 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
whesse@chromium.org023421e2010-12-21 12:19:12 +00004474 __ b(ne, &slow);
4475
4476 // Null is not instance of anything.
danno@chromium.org160a7b02011-04-18 15:51:38 +00004477 __ cmp(scratch, Operand(masm->isolate()->factory()->null_value()));
whesse@chromium.org023421e2010-12-21 12:19:12 +00004478 __ b(ne, &object_not_null);
4479 __ mov(r0, Operand(Smi::FromInt(1)));
kmillikin@chromium.orgd2c22f02011-01-10 08:15:37 +00004480 __ Ret(HasArgsInRegisters() ? 0 : 2);
whesse@chromium.org023421e2010-12-21 12:19:12 +00004481
4482 __ bind(&object_not_null);
4483 // Smi values are not instances of anything.
ager@chromium.org378b34e2011-01-28 08:04:38 +00004484 __ JumpIfNotSmi(object, &object_not_null_or_smi);
whesse@chromium.org023421e2010-12-21 12:19:12 +00004485 __ mov(r0, Operand(Smi::FromInt(1)));
kmillikin@chromium.orgd2c22f02011-01-10 08:15:37 +00004486 __ Ret(HasArgsInRegisters() ? 0 : 2);
whesse@chromium.org023421e2010-12-21 12:19:12 +00004487
4488 __ bind(&object_not_null_or_smi);
4489 // String values are not instances of anything.
4490 __ IsObjectJSStringType(object, scratch, &slow);
4491 __ mov(r0, Operand(Smi::FromInt(1)));
kmillikin@chromium.orgd2c22f02011-01-10 08:15:37 +00004492 __ Ret(HasArgsInRegisters() ? 0 : 2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004493
4494 // Slow-case. Tail call builtin.
kmillikin@chromium.orgd2c22f02011-01-10 08:15:37 +00004495 __ bind(&slow);
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004496 if (!ReturnTrueFalseObject()) {
4497 if (HasArgsInRegisters()) {
4498 __ Push(r0, r1);
4499 }
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00004500 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004501 } else {
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00004502 {
4503 FrameScope scope(masm, StackFrame::INTERNAL);
4504 __ Push(r0, r1);
4505 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
4506 }
ricow@chromium.orgddd545c2011-08-24 12:02:41 +00004507 __ cmp(r0, Operand::Zero());
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004508 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
4509 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
4510 __ Ret(HasArgsInRegisters() ? 0 : 2);
4511 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00004512}
4513
4514
mvstanton@chromium.org6bec0092013-01-23 13:46:53 +00004515void ArrayLengthStub::Generate(MacroAssembler* masm) {
4516 Label miss;
4517 Register receiver;
4518 if (kind() == Code::KEYED_LOAD_IC) {
4519 // ----------- S t a t e -------------
4520 // -- lr : return address
4521 // -- r0 : key
4522 // -- r1 : receiver
4523 // -----------------------------------
4524 __ cmp(r0, Operand(masm->isolate()->factory()->length_symbol()));
4525 __ b(ne, &miss);
4526 receiver = r1;
4527 } else {
4528 ASSERT(kind() == Code::LOAD_IC);
4529 // ----------- S t a t e -------------
4530 // -- r2 : name
4531 // -- lr : return address
4532 // -- r0 : receiver
4533 // -- sp[0] : receiver
4534 // -----------------------------------
4535 receiver = r0;
4536 }
4537
4538 StubCompiler::GenerateLoadArrayLength(masm, receiver, r3, &miss);
4539 __ bind(&miss);
4540 StubCompiler::GenerateLoadMiss(masm, kind());
4541}
4542
4543
4544void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
4545 Label miss;
4546 Register receiver;
4547 if (kind() == Code::KEYED_LOAD_IC) {
4548 // ----------- S t a t e -------------
4549 // -- lr : return address
4550 // -- r0 : key
4551 // -- r1 : receiver
4552 // -----------------------------------
4553 __ cmp(r0, Operand(masm->isolate()->factory()->prototype_symbol()));
4554 __ b(ne, &miss);
4555 receiver = r1;
4556 } else {
4557 ASSERT(kind() == Code::LOAD_IC);
4558 // ----------- S t a t e -------------
4559 // -- r2 : name
4560 // -- lr : return address
4561 // -- r0 : receiver
4562 // -- sp[0] : receiver
4563 // -----------------------------------
4564 receiver = r0;
4565 }
4566
4567 StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3, r4, &miss);
4568 __ bind(&miss);
4569 StubCompiler::GenerateLoadMiss(masm, kind());
4570}
4571
4572
4573void StringLengthStub::Generate(MacroAssembler* masm) {
4574 Label miss;
4575 Register receiver;
4576 if (kind() == Code::KEYED_LOAD_IC) {
4577 // ----------- S t a t e -------------
4578 // -- lr : return address
4579 // -- r0 : key
4580 // -- r1 : receiver
4581 // -----------------------------------
4582 __ cmp(r0, Operand(masm->isolate()->factory()->length_symbol()));
4583 __ b(ne, &miss);
4584 receiver = r1;
4585 } else {
4586 ASSERT(kind() == Code::LOAD_IC);
4587 // ----------- S t a t e -------------
4588 // -- r2 : name
4589 // -- lr : return address
4590 // -- r0 : receiver
4591 // -- sp[0] : receiver
4592 // -----------------------------------
4593 receiver = r0;
4594 }
4595
4596 StubCompiler::GenerateLoadStringLength(masm, receiver, r3, r4, &miss,
4597 support_wrapper_);
4598
4599 __ bind(&miss);
4600 StubCompiler::GenerateLoadMiss(masm, kind());
4601}
4602
4603
mvstanton@chromium.orgd16d8532013-01-25 13:29:10 +00004604void StoreArrayLengthStub::Generate(MacroAssembler* masm) {
4605 // This accepts as a receiver anything JSArray::SetElementsLength accepts
4606 // (currently anything except for external arrays which means anything with
4607 // elements of FixedArray type). Value must be a number, but only smis are
4608 // accepted as the most common case.
4609 Label miss;
4610
4611 Register receiver;
4612 Register value;
4613 if (kind() == Code::KEYED_STORE_IC) {
4614 // ----------- S t a t e -------------
4615 // -- lr : return address
4616 // -- r0 : value
4617 // -- r1 : key
4618 // -- r2 : receiver
4619 // -----------------------------------
4620 __ cmp(r1, Operand(masm->isolate()->factory()->length_symbol()));
4621 __ b(ne, &miss);
4622 receiver = r2;
4623 value = r0;
4624 } else {
4625 ASSERT(kind() == Code::STORE_IC);
4626 // ----------- S t a t e -------------
4627 // -- lr : return address
4628 // -- r0 : value
4629 // -- r1 : receiver
4630 // -- r2 : key
4631 // -----------------------------------
4632 receiver = r1;
4633 value = r0;
4634 }
4635 Register scratch = r3;
4636
4637 // Check that the receiver isn't a smi.
4638 __ JumpIfSmi(receiver, &miss);
4639
4640 // Check that the object is a JS array.
4641 __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE);
4642 __ b(ne, &miss);
4643
4644 // Check that elements are FixedArray.
4645 // We rely on StoreIC_ArrayLength below to deal with all types of
4646 // fast elements (including COW).
4647 __ ldr(scratch, FieldMemOperand(receiver, JSArray::kElementsOffset));
4648 __ CompareObjectType(scratch, scratch, scratch, FIXED_ARRAY_TYPE);
4649 __ b(ne, &miss);
4650
4651 // Check that the array has fast properties, otherwise the length
4652 // property might have been redefined.
4653 __ ldr(scratch, FieldMemOperand(receiver, JSArray::kPropertiesOffset));
4654 __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kMapOffset));
4655 __ CompareRoot(scratch, Heap::kHashTableMapRootIndex);
4656 __ b(eq, &miss);
4657
4658 // Check that value is a smi.
4659 __ JumpIfNotSmi(value, &miss);
4660
4661 // Prepare tail call to StoreIC_ArrayLength.
4662 __ Push(receiver, value);
4663
4664 ExternalReference ref =
4665 ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength), masm->isolate());
4666 __ TailCallExternalReference(ref, 2, 1);
4667
4668 __ bind(&miss);
4669
4670 StubCompiler::GenerateStoreMiss(masm, kind());
4671}
4672
4673
vegorov@chromium.org0a4e9012011-01-24 12:33:13 +00004674Register InstanceofStub::left() { return r0; }
4675
4676
4677Register InstanceofStub::right() { return r1; }
4678
4679
ricow@chromium.org65fae842010-08-25 15:26:24 +00004680void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
4681 // The displacement is the offset of the last parameter (if any)
4682 // relative to the frame pointer.
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00004683 const int kDisplacement =
ricow@chromium.org65fae842010-08-25 15:26:24 +00004684 StandardFrameConstants::kCallerSPOffset - kPointerSize;
4685
4686 // Check that the key is a smi.
4687 Label slow;
ager@chromium.org378b34e2011-01-28 08:04:38 +00004688 __ JumpIfNotSmi(r1, &slow);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004689
4690 // Check if the calling frame is an arguments adaptor frame.
4691 Label adaptor;
4692 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4693 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
4694 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4695 __ b(eq, &adaptor);
4696
4697 // Check index against formal parameters count limit passed in
4698 // through register r0. Use unsigned comparison to get negative
4699 // check for free.
4700 __ cmp(r1, r0);
kmillikin@chromium.orgd2c22f02011-01-10 08:15:37 +00004701 __ b(hs, &slow);
ricow@chromium.org65fae842010-08-25 15:26:24 +00004702
4703 // Read the argument from the stack and return it.
4704 __ sub(r3, r0, r1);
4705 __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
4706 __ ldr(r0, MemOperand(r3, kDisplacement));
4707 __ Jump(lr);
4708
4709 // Arguments adaptor case: Check index against actual arguments
4710 // limit found in the arguments adaptor frame. Use unsigned
4711 // comparison to get negative check for free.
4712 __ bind(&adaptor);
4713 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4714 __ cmp(r1, r0);
4715 __ b(cs, &slow);
4716
4717 // Read the argument from the adaptor frame and return it.
4718 __ sub(r3, r0, r1);
4719 __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
4720 __ ldr(r0, MemOperand(r3, kDisplacement));
4721 __ Jump(lr);
4722
4723 // Slow-case: Handle non-smi or out-of-bounds access to arguments
4724 // by calling the runtime system.
4725 __ bind(&slow);
4726 __ push(r1);
4727 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
4728}
4729
4730
whesse@chromium.org7b260152011-06-20 15:33:18 +00004731void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00004732 // sp[0] : number of parameters
4733 // sp[4] : receiver displacement
4734 // sp[8] : function
4735
4736 // Check if the calling frame is an arguments adaptor frame.
whesse@chromium.org7b260152011-06-20 15:33:18 +00004737 Label runtime;
4738 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4739 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
4740 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4741 __ b(ne, &runtime);
4742
4743 // Patch the arguments.length and the parameters pointer in the current frame.
4744 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4745 __ str(r2, MemOperand(sp, 0 * kPointerSize));
4746 __ add(r3, r3, Operand(r2, LSL, 1));
4747 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4748 __ str(r3, MemOperand(sp, 1 * kPointerSize));
4749
4750 __ bind(&runtime);
4751 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4752}
4753
4754
4755void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
4756 // Stack layout:
4757 // sp[0] : number of parameters (tagged)
4758 // sp[4] : address of receiver argument
4759 // sp[8] : function
4760 // Registers used over whole function:
4761 // r6 : allocated object (tagged)
4762 // r9 : mapped parameter count (tagged)
4763
4764 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
4765 // r1 = parameter count (tagged)
4766
4767 // Check if the calling frame is an arguments adaptor frame.
4768 Label runtime;
4769 Label adaptor_frame, try_allocate;
4770 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4771 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
4772 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4773 __ b(eq, &adaptor_frame);
4774
4775 // No adaptor, parameter count = argument count.
4776 __ mov(r2, r1);
4777 __ b(&try_allocate);
4778
4779 // We have an adaptor frame. Patch the parameters pointer.
4780 __ bind(&adaptor_frame);
4781 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4782 __ add(r3, r3, Operand(r2, LSL, 1));
4783 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4784 __ str(r3, MemOperand(sp, 1 * kPointerSize));
4785
4786 // r1 = parameter count (tagged)
4787 // r2 = argument count (tagged)
4788 // Compute the mapped parameter count = min(r1, r2) in r1.
4789 __ cmp(r1, Operand(r2));
4790 __ mov(r1, Operand(r2), LeaveCC, gt);
4791
4792 __ bind(&try_allocate);
4793
4794 // Compute the sizes of backing store, parameter map, and arguments object.
4795 // 1. Parameter map, has 2 extra words containing context and backing store.
4796 const int kParameterMapHeaderSize =
4797 FixedArray::kHeaderSize + 2 * kPointerSize;
4798 // If there are no mapped parameters, we do not need the parameter_map.
4799 __ cmp(r1, Operand(Smi::FromInt(0)));
ricow@chromium.orgddd545c2011-08-24 12:02:41 +00004800 __ mov(r9, Operand::Zero(), LeaveCC, eq);
whesse@chromium.org7b260152011-06-20 15:33:18 +00004801 __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
4802 __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
4803
4804 // 2. Backing store.
4805 __ add(r9, r9, Operand(r2, LSL, 1));
4806 __ add(r9, r9, Operand(FixedArray::kHeaderSize));
4807
4808 // 3. Arguments object.
4809 __ add(r9, r9, Operand(Heap::kArgumentsObjectSize));
4810
4811 // Do the allocation of all three objects in one go.
4812 __ AllocateInNewSpace(r9, r0, r3, r4, &runtime, TAG_OBJECT);
4813
4814 // r0 = address of new object(s) (tagged)
4815 // r2 = argument count (tagged)
yangguo@chromium.org46839fb2012-08-28 09:06:19 +00004816 // Get the arguments boilerplate from the current native context into r4.
whesse@chromium.org7b260152011-06-20 15:33:18 +00004817 const int kNormalOffset =
4818 Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
4819 const int kAliasedOffset =
4820 Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
4821
yangguo@chromium.org46839fb2012-08-28 09:06:19 +00004822 __ ldr(r4, MemOperand(r8, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
4823 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
ricow@chromium.orgddd545c2011-08-24 12:02:41 +00004824 __ cmp(r1, Operand::Zero());
whesse@chromium.org7b260152011-06-20 15:33:18 +00004825 __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
4826 __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
4827
4828 // r0 = address of new object (tagged)
4829 // r1 = mapped parameter count (tagged)
4830 // r2 = argument count (tagged)
4831 // r4 = address of boilerplate object (tagged)
4832 // Copy the JS object part.
4833 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
4834 __ ldr(r3, FieldMemOperand(r4, i));
4835 __ str(r3, FieldMemOperand(r0, i));
4836 }
4837
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00004838 // Set up the callee in-object property.
whesse@chromium.org7b260152011-06-20 15:33:18 +00004839 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
4840 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
4841 const int kCalleeOffset = JSObject::kHeaderSize +
4842 Heap::kArgumentsCalleeIndex * kPointerSize;
4843 __ str(r3, FieldMemOperand(r0, kCalleeOffset));
4844
4845 // Use the length (smi tagged) and set that as an in-object property too.
4846 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
4847 const int kLengthOffset = JSObject::kHeaderSize +
4848 Heap::kArgumentsLengthIndex * kPointerSize;
4849 __ str(r2, FieldMemOperand(r0, kLengthOffset));
4850
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00004851 // Set up the elements pointer in the allocated arguments object.
whesse@chromium.org7b260152011-06-20 15:33:18 +00004852 // If we allocated a parameter map, r4 will point there, otherwise
4853 // it will point to the backing store.
4854 __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
4855 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
4856
4857 // r0 = address of new object (tagged)
4858 // r1 = mapped parameter count (tagged)
4859 // r2 = argument count (tagged)
4860 // r4 = address of parameter map or backing store (tagged)
4861 // Initialize parameter map. If there are no mapped arguments, we're done.
4862 Label skip_parameter_map;
4863 __ cmp(r1, Operand(Smi::FromInt(0)));
4864 // Move backing store address to r3, because it is
4865 // expected there when filling in the unmapped arguments.
4866 __ mov(r3, r4, LeaveCC, eq);
4867 __ b(eq, &skip_parameter_map);
4868
4869 __ LoadRoot(r6, Heap::kNonStrictArgumentsElementsMapRootIndex);
4870 __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
4871 __ add(r6, r1, Operand(Smi::FromInt(2)));
4872 __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
4873 __ str(r8, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
4874 __ add(r6, r4, Operand(r1, LSL, 1));
4875 __ add(r6, r6, Operand(kParameterMapHeaderSize));
4876 __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
4877
4878 // Copy the parameter slots and the holes in the arguments.
4879 // We need to fill in mapped_parameter_count slots. They index the context,
4880 // where parameters are stored in reverse order, at
4881 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4882 // The mapped parameter thus need to get indices
4883 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
4884 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4885 // We loop from right to left.
4886 Label parameters_loop, parameters_test;
4887 __ mov(r6, r1);
4888 __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
4889 __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
4890 __ sub(r9, r9, Operand(r1));
4891 __ LoadRoot(r7, Heap::kTheHoleValueRootIndex);
4892 __ add(r3, r4, Operand(r6, LSL, 1));
4893 __ add(r3, r3, Operand(kParameterMapHeaderSize));
4894
4895 // r6 = loop variable (tagged)
4896 // r1 = mapping index (tagged)
4897 // r3 = address of backing store (tagged)
4898 // r4 = address of parameter map (tagged)
4899 // r5 = temporary scratch (a.o., for address calculation)
4900 // r7 = the hole value
4901 __ jmp(&parameters_test);
4902
4903 __ bind(&parameters_loop);
4904 __ sub(r6, r6, Operand(Smi::FromInt(1)));
4905 __ mov(r5, Operand(r6, LSL, 1));
4906 __ add(r5, r5, Operand(kParameterMapHeaderSize - kHeapObjectTag));
4907 __ str(r9, MemOperand(r4, r5));
4908 __ sub(r5, r5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
4909 __ str(r7, MemOperand(r3, r5));
4910 __ add(r9, r9, Operand(Smi::FromInt(1)));
4911 __ bind(&parameters_test);
4912 __ cmp(r6, Operand(Smi::FromInt(0)));
4913 __ b(ne, &parameters_loop);
4914
4915 __ bind(&skip_parameter_map);
4916 // r2 = argument count (tagged)
4917 // r3 = address of backing store (tagged)
4918 // r5 = scratch
4919 // Copy arguments header and remaining slots (if there are any).
4920 __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
4921 __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
4922 __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
4923
4924 Label arguments_loop, arguments_test;
4925 __ mov(r9, r1);
4926 __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
4927 __ sub(r4, r4, Operand(r9, LSL, 1));
4928 __ jmp(&arguments_test);
4929
4930 __ bind(&arguments_loop);
4931 __ sub(r4, r4, Operand(kPointerSize));
4932 __ ldr(r6, MemOperand(r4, 0));
4933 __ add(r5, r3, Operand(r9, LSL, 1));
4934 __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
4935 __ add(r9, r9, Operand(Smi::FromInt(1)));
4936
4937 __ bind(&arguments_test);
4938 __ cmp(r9, Operand(r2));
4939 __ b(lt, &arguments_loop);
4940
4941 // Return and remove the on-stack parameters.
4942 __ add(sp, sp, Operand(3 * kPointerSize));
4943 __ Ret();
4944
4945 // Do the runtime call to allocate the arguments object.
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00004946 // r2 = argument count (tagged)
whesse@chromium.org7b260152011-06-20 15:33:18 +00004947 __ bind(&runtime);
4948 __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
4949 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4950}
4951
4952
4953void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
4954 // sp[0] : number of parameters
4955 // sp[4] : receiver displacement
4956 // sp[8] : function
4957 // Check if the calling frame is an arguments adaptor frame.
ricow@chromium.org65fae842010-08-25 15:26:24 +00004958 Label adaptor_frame, try_allocate, runtime;
4959 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4960 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
4961 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4962 __ b(eq, &adaptor_frame);
4963
4964 // Get the length from the frame.
4965 __ ldr(r1, MemOperand(sp, 0));
4966 __ b(&try_allocate);
4967
4968 // Patch the arguments.length and the parameters pointer.
4969 __ bind(&adaptor_frame);
4970 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4971 __ str(r1, MemOperand(sp, 0));
4972 __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
4973 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4974 __ str(r3, MemOperand(sp, 1 * kPointerSize));
4975
4976 // Try the new space allocation. Start out with computing the size
4977 // of the arguments object and the elements array in words.
4978 Label add_arguments_object;
4979 __ bind(&try_allocate);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00004980 __ cmp(r1, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00004981 __ b(eq, &add_arguments_object);
4982 __ mov(r1, Operand(r1, LSR, kSmiTagSize));
4983 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
4984 __ bind(&add_arguments_object);
whesse@chromium.org7b260152011-06-20 15:33:18 +00004985 __ add(r1, r1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
ricow@chromium.org65fae842010-08-25 15:26:24 +00004986
4987 // Do the allocation of both objects in one go.
whesse@chromium.org7b260152011-06-20 15:33:18 +00004988 __ AllocateInNewSpace(r1,
4989 r0,
4990 r2,
4991 r3,
4992 &runtime,
4993 static_cast<AllocationFlags>(TAG_OBJECT |
4994 SIZE_IN_WORDS));
ricow@chromium.org65fae842010-08-25 15:26:24 +00004995
yangguo@chromium.org46839fb2012-08-28 09:06:19 +00004996 // Get the arguments boilerplate from the current native context.
4997 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
4998 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
whesse@chromium.org7b260152011-06-20 15:33:18 +00004999 __ ldr(r4, MemOperand(r4, Context::SlotOffset(
5000 Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005001
5002 // Copy the JS object part.
5003 __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
5004
ricow@chromium.org65fae842010-08-25 15:26:24 +00005005 // Get the length (smi tagged) and set that as an in-object property too.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00005006 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005007 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00005008 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
whesse@chromium.org7b260152011-06-20 15:33:18 +00005009 Heap::kArgumentsLengthIndex * kPointerSize));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005010
5011 // If there are no actual arguments, we're done.
5012 Label done;
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005013 __ cmp(r1, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00005014 __ b(eq, &done);
5015
5016 // Get the parameters pointer from the stack.
5017 __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
5018
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00005019 // Set up the elements pointer in the allocated arguments object and
ricow@chromium.org65fae842010-08-25 15:26:24 +00005020 // initialize the header in the elements fixed array.
whesse@chromium.org7b260152011-06-20 15:33:18 +00005021 __ add(r4, r0, Operand(Heap::kArgumentsObjectSizeStrict));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005022 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
5023 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
5024 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
5025 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
whesse@chromium.org7b260152011-06-20 15:33:18 +00005026 // Untag the length for the loop.
5027 __ mov(r1, Operand(r1, LSR, kSmiTagSize));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005028
5029 // Copy the fixed array slots.
5030 Label loop;
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00005031 // Set up r4 to point to the first array slot.
ricow@chromium.org65fae842010-08-25 15:26:24 +00005032 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
5033 __ bind(&loop);
5034 // Pre-decrement r2 with kPointerSize on each iteration.
5035 // Pre-decrement in order to skip receiver.
5036 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
5037 // Post-increment r4 with kPointerSize on each iteration.
5038 __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
5039 __ sub(r1, r1, Operand(1));
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005040 __ cmp(r1, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00005041 __ b(ne, &loop);
5042
5043 // Return and remove the on-stack parameters.
5044 __ bind(&done);
5045 __ add(sp, sp, Operand(3 * kPointerSize));
5046 __ Ret();
5047
5048 // Do the runtime call to allocate the arguments object.
5049 __ bind(&runtime);
whesse@chromium.org7b260152011-06-20 15:33:18 +00005050 __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005051}
5052
5053
5054void RegExpExecStub::Generate(MacroAssembler* masm) {
5055 // Just jump directly to runtime if native RegExp is not selected at compile
5056 // time or if regexp entry in generated code is turned off runtime switch or
5057 // at compilation.
5058#ifdef V8_INTERPRETED_REGEXP
5059 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
5060#else // V8_INTERPRETED_REGEXP
ricow@chromium.org65fae842010-08-25 15:26:24 +00005061
5062 // Stack frame on entry.
5063 // sp[0]: last_match_info (expected JSArray)
5064 // sp[4]: previous index
5065 // sp[8]: subject string
5066 // sp[12]: JSRegExp object
5067
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00005068 const int kLastMatchInfoOffset = 0 * kPointerSize;
5069 const int kPreviousIndexOffset = 1 * kPointerSize;
5070 const int kSubjectOffset = 2 * kPointerSize;
5071 const int kJSRegExpOffset = 3 * kPointerSize;
ricow@chromium.org65fae842010-08-25 15:26:24 +00005072
5073 Label runtime, invoke_regexp;
5074
5075 // Allocation of registers for this function. These are in callee save
5076 // registers and will be preserved by the call to the native RegExp code, as
5077 // this code is called using the normal C calling convention. When calling
5078 // directly from generated code the native RegExp code will not do a GC and
5079 // therefore the content of these registers are safe to use after the call.
5080 Register subject = r4;
5081 Register regexp_data = r5;
5082 Register last_match_info_elements = r6;
5083
5084 // Ensure that a RegExp stack is allocated.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00005085 Isolate* isolate = masm->isolate();
ricow@chromium.org65fae842010-08-25 15:26:24 +00005086 ExternalReference address_of_regexp_stack_memory_address =
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00005087 ExternalReference::address_of_regexp_stack_memory_address(isolate);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005088 ExternalReference address_of_regexp_stack_memory_size =
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00005089 ExternalReference::address_of_regexp_stack_memory_size(isolate);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005090 __ mov(r0, Operand(address_of_regexp_stack_memory_size));
5091 __ ldr(r0, MemOperand(r0, 0));
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005092 __ cmp(r0, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00005093 __ b(eq, &runtime);
5094
5095 // Check that the first argument is a JSRegExp object.
5096 __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
5097 STATIC_ASSERT(kSmiTag == 0);
whesse@chromium.org7b260152011-06-20 15:33:18 +00005098 __ JumpIfSmi(r0, &runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005099 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
5100 __ b(ne, &runtime);
5101
5102 // Check that the RegExp has been compiled (data contains a fixed array).
5103 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
5104 if (FLAG_debug_code) {
5105 __ tst(regexp_data, Operand(kSmiTagMask));
ager@chromium.org378b34e2011-01-28 08:04:38 +00005106 __ Check(ne, "Unexpected type for RegExp data, FixedArray expected");
ricow@chromium.org65fae842010-08-25 15:26:24 +00005107 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
5108 __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
5109 }
5110
5111 // regexp_data: RegExp data (FixedArray)
5112 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
5113 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
5114 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
5115 __ b(ne, &runtime);
5116
5117 // regexp_data: RegExp data (FixedArray)
5118 // Check that the number of captures fit in the static offsets vector buffer.
5119 __ ldr(r2,
5120 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
5121 // Calculate number of capture registers (number_of_captures + 1) * 2. This
5122 // uses the asumption that smis are 2 * their untagged value.
5123 STATIC_ASSERT(kSmiTag == 0);
5124 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
5125 __ add(r2, r2, Operand(2)); // r2 was a smi.
5126 // Check that the static offsets vector buffer is large enough.
yangguo@chromium.org355cfd12012-08-29 15:32:24 +00005127 __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005128 __ b(hi, &runtime);
5129
5130 // r2: Number of capture registers
5131 // regexp_data: RegExp data (FixedArray)
5132 // Check that the second argument is a string.
5133 __ ldr(subject, MemOperand(sp, kSubjectOffset));
whesse@chromium.org7b260152011-06-20 15:33:18 +00005134 __ JumpIfSmi(subject, &runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005135 Condition is_string = masm->IsObjectStringType(subject, r0);
5136 __ b(NegateCondition(is_string), &runtime);
5137 // Get the length of the string to r3.
5138 __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
5139
5140 // r2: Number of capture registers
5141 // r3: Length of subject string as a smi
5142 // subject: Subject string
5143 // regexp_data: RegExp data (FixedArray)
5144 // Check that the third argument is a positive smi less than the subject
5145 // string length. A negative value will be greater (unsigned comparison).
5146 __ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
whesse@chromium.org7b260152011-06-20 15:33:18 +00005147 __ JumpIfNotSmi(r0, &runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005148 __ cmp(r3, Operand(r0));
5149 __ b(ls, &runtime);
5150
5151 // r2: Number of capture registers
5152 // subject: Subject string
5153 // regexp_data: RegExp data (FixedArray)
5154 // Check that the fourth object is a JSArray object.
5155 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
whesse@chromium.org7b260152011-06-20 15:33:18 +00005156 __ JumpIfSmi(r0, &runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005157 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
5158 __ b(ne, &runtime);
5159 // Check that the JSArray is in fast case.
5160 __ ldr(last_match_info_elements,
5161 FieldMemOperand(r0, JSArray::kElementsOffset));
5162 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005163 __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005164 __ b(ne, &runtime);
5165 // Check that the last match info has space for the capture registers and the
5166 // additional information.
5167 __ ldr(r0,
5168 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
5169 __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
5170 __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
5171 __ b(gt, &runtime);
5172
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00005173 // Reset offset for possibly sliced string.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005174 __ mov(r9, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00005175 // subject: Subject string
5176 // regexp_data: RegExp data (FixedArray)
5177 // Check the representation and encoding of the subject string.
5178 Label seq_string;
5179 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
5180 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005181 // First check for flat string. None of the following string type tests will
5182 // succeed if subject is not a string or a short external string.
5183 __ and_(r1,
5184 r0,
5185 Operand(kIsNotStringMask |
5186 kStringRepresentationMask |
5187 kShortExternalStringMask),
5188 SetCC);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005189 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
5190 __ b(eq, &seq_string);
5191
5192 // subject: Subject string
5193 // regexp_data: RegExp data (FixedArray)
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005194 // r1: whether subject is a string and if yes, its string representation
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00005195 // Check for flat cons string or sliced string.
ricow@chromium.org65fae842010-08-25 15:26:24 +00005196 // A flat cons string is a cons string where the second part is the empty
5197 // string. In that case the subject string is just the first part of the cons
5198 // string. Also in this case the first part of the cons string is known to be
5199 // a sequential string or an external string.
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00005200 // In the case of a sliced string its offset has to be taken into account.
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005201 Label cons_string, external_string, check_encoding;
yangguo@chromium.org80c42ed2011-08-31 09:03:56 +00005202 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
5203 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005204 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
5205 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00005206 __ cmp(r1, Operand(kExternalStringTag));
5207 __ b(lt, &cons_string);
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005208 __ b(eq, &external_string);
5209
5210 // Catch non-string subject or short external string.
5211 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
5212 __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
5213 __ b(ne, &runtime);
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00005214
5215 // String is sliced.
5216 __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
5217 __ mov(r9, Operand(r9, ASR, kSmiTagSize));
5218 __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
5219 // r9: offset of sliced string, smi-tagged.
5220 __ jmp(&check_encoding);
5221 // String is a cons string, check whether it is flat.
5222 __ bind(&cons_string);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005223 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005224 __ CompareRoot(r0, Heap::kEmptyStringRootIndex);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005225 __ b(ne, &runtime);
5226 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00005227 // Is first part of cons or parent of slice a flat string?
5228 __ bind(&check_encoding);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005229 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
5230 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005231 STATIC_ASSERT(kSeqStringTag == 0);
5232 __ tst(r0, Operand(kStringRepresentationMask));
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005233 __ b(ne, &external_string);
5234
ricow@chromium.org65fae842010-08-25 15:26:24 +00005235 __ bind(&seq_string);
5236 // subject: Subject string
5237 // regexp_data: RegExp data (FixedArray)
5238 // r0: Instance type of subject string
mvstanton@chromium.orge4ac3ef2012-11-12 14:53:34 +00005239 STATIC_ASSERT(4 == kOneByteStringTag);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005240 STATIC_ASSERT(kTwoByteStringTag == 0);
5241 // Find the code object based on the assumptions above.
5242 __ and_(r0, r0, Operand(kStringEncodingMask));
5243 __ mov(r3, Operand(r0, ASR, 2), SetCC);
5244 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
5245 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
5246
5247 // Check that the irregexp code has been generated for the actual string
5248 // encoding. If it has, the field contains a code object otherwise it contains
jkummerow@chromium.orgddda9e82011-07-06 11:27:02 +00005249 // a smi (code flushing support).
5250 __ JumpIfSmi(r7, &runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005251
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00005252 // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005253 // r7: code
5254 // subject: Subject string
5255 // regexp_data: RegExp data (FixedArray)
5256 // Load used arguments before starting to push arguments for call to native
5257 // RegExp code to avoid handling changing stack height.
5258 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
5259 __ mov(r1, Operand(r1, ASR, kSmiTagSize));
5260
5261 // r1: previous index
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00005262 // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005263 // r7: code
5264 // subject: Subject string
5265 // regexp_data: RegExp data (FixedArray)
5266 // All checks done. Now push arguments for native regexp code.
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00005267 __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005268
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00005269 // Isolates: note we add an additional parameter here (isolate pointer).
mstarzinger@chromium.org15613d02012-05-23 12:04:37 +00005270 const int kRegExpExecuteArguments = 9;
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00005271 const int kParameterRegisters = 4;
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005272 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005273
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005274 // Stack pointer now points to cell where return address is to be written.
5275 // Arguments are before that on the stack or in registers.
5276
mstarzinger@chromium.org15613d02012-05-23 12:04:37 +00005277 // Argument 9 (sp[20]): Pass current isolate address.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00005278 __ mov(r0, Operand(ExternalReference::isolate_address()));
mstarzinger@chromium.org15613d02012-05-23 12:04:37 +00005279 __ str(r0, MemOperand(sp, 5 * kPointerSize));
5280
5281 // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
5282 __ mov(r0, Operand(1));
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00005283 __ str(r0, MemOperand(sp, 4 * kPointerSize));
5284
mstarzinger@chromium.org15613d02012-05-23 12:04:37 +00005285 // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
ricow@chromium.org65fae842010-08-25 15:26:24 +00005286 __ mov(r0, Operand(address_of_regexp_stack_memory_address));
5287 __ ldr(r0, MemOperand(r0, 0));
5288 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
5289 __ ldr(r2, MemOperand(r2, 0));
5290 __ add(r0, r0, Operand(r2));
mstarzinger@chromium.org15613d02012-05-23 12:04:37 +00005291 __ str(r0, MemOperand(sp, 3 * kPointerSize));
5292
5293 // Argument 6: Set the number of capture registers to zero to force global
5294 // regexps to behave as non-global. This does not affect non-global regexps.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005295 __ mov(r0, Operand::Zero());
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005296 __ str(r0, MemOperand(sp, 2 * kPointerSize));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005297
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005298 // Argument 5 (sp[4]): static offsets vector buffer.
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00005299 __ mov(r0,
5300 Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005301 __ str(r0, MemOperand(sp, 1 * kPointerSize));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005302
5303 // For arguments 4 and 3 get string length, calculate start of string data and
5304 // calculate the shift of the index (0 for ASCII and 1 for two byte).
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00005305 __ add(r8, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005306 __ eor(r3, r3, Operand(1));
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00005307 // Load the length from the original subject string from the previous stack
5308 // frame. Therefore we have to use fp, which points exactly to two pointer
5309 // sizes below the previous sp. (Because creating a new stack frame pushes
5310 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
fschneider@chromium.org1805e212011-09-05 10:49:12 +00005311 __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00005312 // If slice offset is not 0, load the length from the original sliced string.
5313 // Argument 4, r3: End of string data
5314 // Argument 3, r2: Start of string data
5315 // Prepare start and end index of the input.
5316 __ add(r9, r8, Operand(r9, LSL, r3));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005317 __ add(r2, r9, Operand(r1, LSL, r3));
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00005318
fschneider@chromium.org1805e212011-09-05 10:49:12 +00005319 __ ldr(r8, FieldMemOperand(subject, String::kLengthOffset));
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00005320 __ mov(r8, Operand(r8, ASR, kSmiTagSize));
5321 __ add(r3, r9, Operand(r8, LSL, r3));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005322
5323 // Argument 2 (r1): Previous index.
5324 // Already there
5325
5326 // Argument 1 (r0): Subject string.
fschneider@chromium.org1805e212011-09-05 10:49:12 +00005327 __ mov(r0, subject);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005328
5329 // Locate the code entry and call it.
5330 __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005331 DirectCEntryStub stub;
5332 stub.GenerateCall(masm, r7);
5333
5334 __ LeaveExitFrame(false, no_reg);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005335
5336 // r0: result
5337 // subject: subject string (callee saved)
5338 // regexp_data: RegExp data (callee saved)
5339 // last_match_info_elements: Last match info elements (callee saved)
5340
5341 // Check the result.
5342 Label success;
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005343
mstarzinger@chromium.org15613d02012-05-23 12:04:37 +00005344 __ cmp(r0, Operand(1));
5345 // We expect exactly one result since we force the called regexp to behave
5346 // as non-global.
ricow@chromium.org65fae842010-08-25 15:26:24 +00005347 __ b(eq, &success);
5348 Label failure;
fschneider@chromium.org1805e212011-09-05 10:49:12 +00005349 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005350 __ b(eq, &failure);
fschneider@chromium.org1805e212011-09-05 10:49:12 +00005351 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005352 // If not exception it can only be retry. Handle that in the runtime system.
5353 __ b(ne, &runtime);
5354 // Result must now be exception. If there is no pending exception already a
5355 // stack overflow (on the backtrack stack) was detected in RegExp code but
5356 // haven't created the exception yet. Handle that in the runtime system.
5357 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00005358 __ mov(r1, Operand(isolate->factory()->the_hole_value()));
kmillikin@chromium.org83e16822011-09-13 08:21:47 +00005359 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00005360 isolate)));
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005361 __ ldr(r0, MemOperand(r2, 0));
fschneider@chromium.org1805e212011-09-05 10:49:12 +00005362 __ cmp(r0, r1);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005363 __ b(eq, &runtime);
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005364
5365 __ str(r1, MemOperand(r2, 0)); // Clear pending exception.
5366
5367 // Check if the exception is a termination. If so, throw as uncatchable.
fschneider@chromium.org1805e212011-09-05 10:49:12 +00005368 __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
5369
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005370 Label termination_exception;
5371 __ b(eq, &termination_exception);
5372
ulan@chromium.org65a89c22012-02-14 11:46:07 +00005373 __ Throw(r0);
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005374
5375 __ bind(&termination_exception);
ulan@chromium.org65a89c22012-02-14 11:46:07 +00005376 __ ThrowUncatchable(r0);
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00005377
ricow@chromium.org65fae842010-08-25 15:26:24 +00005378 __ bind(&failure);
5379 // For failure and exception return null.
danno@chromium.org160a7b02011-04-18 15:51:38 +00005380 __ mov(r0, Operand(masm->isolate()->factory()->null_value()));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005381 __ add(sp, sp, Operand(4 * kPointerSize));
5382 __ Ret();
5383
5384 // Process the result from the native regexp code.
5385 __ bind(&success);
5386 __ ldr(r1,
5387 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
5388 // Calculate number of capture registers (number_of_captures + 1) * 2.
5389 STATIC_ASSERT(kSmiTag == 0);
5390 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
5391 __ add(r1, r1, Operand(2)); // r1 was a smi.
5392
5393 // r1: number of capture registers
5394 // r4: subject string
5395 // Store the capture count.
5396 __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi.
5397 __ str(r2, FieldMemOperand(last_match_info_elements,
5398 RegExpImpl::kLastCaptureCountOffset));
5399 // Store last subject and last input.
ricow@chromium.org65fae842010-08-25 15:26:24 +00005400 __ str(subject,
5401 FieldMemOperand(last_match_info_elements,
5402 RegExpImpl::kLastSubjectOffset));
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00005403 __ mov(r2, subject);
5404 __ RecordWriteField(last_match_info_elements,
5405 RegExpImpl::kLastSubjectOffset,
5406 r2,
5407 r7,
5408 kLRHasNotBeenSaved,
5409 kDontSaveFPRegs);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005410 __ str(subject,
5411 FieldMemOperand(last_match_info_elements,
5412 RegExpImpl::kLastInputOffset));
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00005413 __ RecordWriteField(last_match_info_elements,
5414 RegExpImpl::kLastInputOffset,
5415 subject,
5416 r7,
5417 kLRHasNotBeenSaved,
5418 kDontSaveFPRegs);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005419
5420 // Get the static offsets vector filled by the native regexp code.
5421 ExternalReference address_of_static_offsets_vector =
sgjesse@chromium.orgea88ce92011-03-23 11:19:56 +00005422 ExternalReference::address_of_static_offsets_vector(isolate);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005423 __ mov(r2, Operand(address_of_static_offsets_vector));
5424
5425 // r1: number of capture registers
5426 // r2: offsets vector
5427 Label next_capture, done;
5428 // Capture register counter starts from number of capture registers and
5429 // counts down until wraping after zero.
5430 __ add(r0,
5431 last_match_info_elements,
5432 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
5433 __ bind(&next_capture);
5434 __ sub(r1, r1, Operand(1), SetCC);
5435 __ b(mi, &done);
5436 // Read the value from the static offsets vector buffer.
5437 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
5438 // Store the smi value in the last match info.
5439 __ mov(r3, Operand(r3, LSL, kSmiTagSize));
5440 __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
5441 __ jmp(&next_capture);
5442 __ bind(&done);
5443
5444 // Return last match info.
5445 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
5446 __ add(sp, sp, Operand(4 * kPointerSize));
5447 __ Ret();
5448
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005449 // External string. Short external strings have already been ruled out.
5450 // r0: scratch
5451 __ bind(&external_string);
5452 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
5453 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
5454 if (FLAG_debug_code) {
5455 // Assert that we do not have a cons or slice (indirect strings) here.
5456 // Sequential strings have already been ruled out.
5457 __ tst(r0, Operand(kIsIndirectStringMask));
5458 __ Assert(eq, "external string expected, but not found");
5459 }
5460 __ ldr(subject,
5461 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
5462 // Move the pointer so that offset-wise, it looks like a sequential string.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00005463 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005464 __ sub(subject,
5465 subject,
5466 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5467 __ jmp(&seq_string);
5468
ricow@chromium.org65fae842010-08-25 15:26:24 +00005469 // Do the runtime call to execute the regexp.
5470 __ bind(&runtime);
5471 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
5472#endif // V8_INTERPRETED_REGEXP
5473}
5474
5475
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005476void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
5477 const int kMaxInlineLength = 100;
5478 Label slowcase;
5479 Label done;
danno@chromium.org160a7b02011-04-18 15:51:38 +00005480 Factory* factory = masm->isolate()->factory();
5481
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005482 __ ldr(r1, MemOperand(sp, kPointerSize * 2));
5483 STATIC_ASSERT(kSmiTag == 0);
5484 STATIC_ASSERT(kSmiTagSize == 1);
whesse@chromium.org7b260152011-06-20 15:33:18 +00005485 __ JumpIfNotSmi(r1, &slowcase);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005486 __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
5487 __ b(hi, &slowcase);
5488 // Smi-tagging is equivalent to multiplying by 2.
5489 // Allocate RegExpResult followed by FixedArray with size in ebx.
5490 // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
5491 // Elements: [Map][Length][..elements..]
5492 // Size of JSArray with two in-object properties and the header of a
5493 // FixedArray.
5494 int objects_size =
5495 (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
5496 __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize));
5497 __ add(r2, r5, Operand(objects_size));
5498 __ AllocateInNewSpace(
5499 r2, // In: Size, in words.
5500 r0, // Out: Start of allocation (tagged).
5501 r3, // Scratch register.
5502 r4, // Scratch register.
5503 &slowcase,
5504 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
5505 // r0: Start of allocated area, object-tagged.
5506 // r1: Number of elements in array, as smi.
5507 // r5: Number of elements, untagged.
5508
5509 // Set JSArray map to global.regexp_result_map().
5510 // Set empty properties FixedArray.
5511 // Set elements to point to FixedArray allocated right after the JSArray.
5512 // Interleave operations for better latency.
yangguo@chromium.org46839fb2012-08-28 09:06:19 +00005513 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005514 __ add(r3, r0, Operand(JSRegExpResult::kSize));
danno@chromium.org160a7b02011-04-18 15:51:38 +00005515 __ mov(r4, Operand(factory->empty_fixed_array()));
yangguo@chromium.org46839fb2012-08-28 09:06:19 +00005516 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kNativeContextOffset));
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005517 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
5518 __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
5519 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
5520 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
5521
5522 // Set input, index and length fields from arguments.
5523 __ ldr(r1, MemOperand(sp, kPointerSize * 0));
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005524 __ ldr(r2, MemOperand(sp, kPointerSize * 1));
5525 __ ldr(r6, MemOperand(sp, kPointerSize * 2));
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005526 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005527 __ str(r2, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
5528 __ str(r6, FieldMemOperand(r0, JSArray::kLengthOffset));
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005529
5530 // Fill out the elements FixedArray.
5531 // r0: JSArray, tagged.
5532 // r3: FixedArray, tagged.
5533 // r5: Number of elements in array, untagged.
5534
5535 // Set map.
danno@chromium.org160a7b02011-04-18 15:51:38 +00005536 __ mov(r2, Operand(factory->fixed_array_map()));
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005537 __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
5538 // Set FixedArray length.
5539 __ mov(r6, Operand(r5, LSL, kSmiTagSize));
5540 __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
ulan@chromium.org56c14af2012-09-20 12:51:09 +00005541 // Fill contents of fixed-array with undefined.
5542 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005543 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
ulan@chromium.org56c14af2012-09-20 12:51:09 +00005544 // Fill fixed array elements with undefined.
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005545 // r0: JSArray, tagged.
ulan@chromium.org56c14af2012-09-20 12:51:09 +00005546 // r2: undefined.
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005547 // r3: Start of elements in FixedArray.
5548 // r5: Number of elements to fill.
5549 Label loop;
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005550 __ cmp(r5, Operand::Zero());
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005551 __ bind(&loop);
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005552 __ b(le, &done); // Jump if r5 is negative or zero.
kasperl@chromium.orga5551262010-12-07 12:49:48 +00005553 __ sub(r5, r5, Operand(1), SetCC);
5554 __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
5555 __ jmp(&loop);
5556
5557 __ bind(&done);
5558 __ add(sp, sp, Operand(3 * kPointerSize));
5559 __ Ret();
5560
5561 __ bind(&slowcase);
5562 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
5563}
5564
5565
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005566static void GenerateRecordCallTarget(MacroAssembler* masm) {
5567 // Cache the called function in a global property cell. Cache states
5568 // are uninitialized, monomorphic (indicated by a JSFunction), and
5569 // megamorphic.
5570 // r1 : the function to call
5571 // r2 : cache cell for call target
5572 Label done;
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00005573
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005574 ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
5575 masm->isolate()->heap()->undefined_value());
5576 ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()),
5577 masm->isolate()->heap()->the_hole_value());
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00005578
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005579 // Load the cache state into r3.
5580 __ ldr(r3, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00005581
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005582 // A monomorphic cache hit or an already megamorphic state: invoke the
5583 // function without changing the state.
5584 __ cmp(r3, r1);
5585 __ b(eq, &done);
5586 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
5587 __ b(eq, &done);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00005588
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005589 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
5590 // megamorphic.
5591 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
5592 // MegamorphicSentinel is an immortal immovable object (undefined) so no
5593 // write-barrier is needed.
5594 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex, ne);
5595 __ str(ip, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), ne);
5596
5597 // An uninitialized cache is patched with the function.
5598 __ str(r1, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), eq);
5599 // No need for a write barrier here - cells are rescanned.
5600
5601 __ bind(&done);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00005602}
5603
5604
ricow@chromium.org65fae842010-08-25 15:26:24 +00005605void CallFunctionStub::Generate(MacroAssembler* masm) {
danno@chromium.orgc612e022011-11-10 11:38:15 +00005606 // r1 : the function to call
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005607 // r2 : cache cell for call target
lrn@chromium.org34e60782011-09-15 07:25:40 +00005608 Label slow, non_function;
ricow@chromium.org65fae842010-08-25 15:26:24 +00005609
danno@chromium.org40cb8782011-05-25 07:58:50 +00005610 // The receiver might implicitly be the global object. This is
5611 // indicated by passing the hole as the receiver to the call
5612 // function stub.
5613 if (ReceiverMightBeImplicit()) {
5614 Label call;
ricow@chromium.org65fae842010-08-25 15:26:24 +00005615 // Get the receiver from the stack.
5616 // function, receiver [, arguments]
danno@chromium.org40cb8782011-05-25 07:58:50 +00005617 __ ldr(r4, MemOperand(sp, argc_ * kPointerSize));
5618 // Call as function is indicated with the hole.
5619 __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
5620 __ b(ne, &call);
5621 // Patch the receiver on the stack with the global receiver object.
yangguo@chromium.org46839fb2012-08-28 09:06:19 +00005622 __ ldr(r3,
5623 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
mstarzinger@chromium.org88d326b2012-04-23 12:57:22 +00005624 __ ldr(r3, FieldMemOperand(r3, GlobalObject::kGlobalReceiverOffset));
5625 __ str(r3, MemOperand(sp, argc_ * kPointerSize));
danno@chromium.org40cb8782011-05-25 07:58:50 +00005626 __ bind(&call);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005627 }
5628
ricow@chromium.org65fae842010-08-25 15:26:24 +00005629 // Check that the function is really a JavaScript function.
5630 // r1: pushed function (to be verified)
lrn@chromium.org34e60782011-09-15 07:25:40 +00005631 __ JumpIfSmi(r1, &non_function);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005632 // Get the map of the function object.
mstarzinger@chromium.org88d326b2012-04-23 12:57:22 +00005633 __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005634 __ b(ne, &slow);
5635
mstarzinger@chromium.org88d326b2012-04-23 12:57:22 +00005636 if (RecordCallTarget()) {
5637 GenerateRecordCallTarget(masm);
5638 }
5639
ricow@chromium.org65fae842010-08-25 15:26:24 +00005640 // Fast-case: Invoke the function now.
5641 // r1: pushed function
5642 ParameterCount actual(argc_);
danno@chromium.org40cb8782011-05-25 07:58:50 +00005643
5644 if (ReceiverMightBeImplicit()) {
5645 Label call_as_function;
5646 __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
5647 __ b(eq, &call_as_function);
ricow@chromium.orgd2be9012011-06-01 06:00:58 +00005648 __ InvokeFunction(r1,
5649 actual,
5650 JUMP_FUNCTION,
5651 NullCallWrapper(),
5652 CALL_AS_METHOD);
danno@chromium.org40cb8782011-05-25 07:58:50 +00005653 __ bind(&call_as_function);
5654 }
5655 __ InvokeFunction(r1,
5656 actual,
5657 JUMP_FUNCTION,
5658 NullCallWrapper(),
5659 CALL_AS_FUNCTION);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005660
5661 // Slow-case: Non-function called.
5662 __ bind(&slow);
mstarzinger@chromium.org88d326b2012-04-23 12:57:22 +00005663 if (RecordCallTarget()) {
5664 // If there is a call target cache, mark it megamorphic in the
5665 // non-function case. MegamorphicSentinel is an immortal immovable
5666 // object (undefined) so no write barrier is needed.
5667 ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
5668 masm->isolate()->heap()->undefined_value());
5669 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
5670 __ str(ip, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
5671 }
lrn@chromium.org34e60782011-09-15 07:25:40 +00005672 // Check for function proxy.
mstarzinger@chromium.org88d326b2012-04-23 12:57:22 +00005673 __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE));
lrn@chromium.org34e60782011-09-15 07:25:40 +00005674 __ b(ne, &non_function);
5675 __ push(r1); // put proxy as additional argument
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005676 __ mov(r0, Operand(argc_ + 1, RelocInfo::NONE32));
5677 __ mov(r2, Operand::Zero());
lrn@chromium.org34e60782011-09-15 07:25:40 +00005678 __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
danno@chromium.orgc612e022011-11-10 11:38:15 +00005679 __ SetCallKind(r5, CALL_AS_METHOD);
lrn@chromium.org34e60782011-09-15 07:25:40 +00005680 {
5681 Handle<Code> adaptor =
5682 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
5683 __ Jump(adaptor, RelocInfo::CODE_TARGET);
5684 }
5685
ricow@chromium.org65fae842010-08-25 15:26:24 +00005686 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
5687 // of the original receiver from the call site).
lrn@chromium.org34e60782011-09-15 07:25:40 +00005688 __ bind(&non_function);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005689 __ str(r1, MemOperand(sp, argc_ * kPointerSize));
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00005690 __ mov(r0, Operand(argc_)); // Set up the number of arguments.
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005691 __ mov(r2, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00005692 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
rossberg@chromium.org717967f2011-07-20 13:44:42 +00005693 __ SetCallKind(r5, CALL_AS_METHOD);
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00005694 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
ricow@chromium.org65fae842010-08-25 15:26:24 +00005695 RelocInfo::CODE_TARGET);
5696}
5697
5698
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005699void CallConstructStub::Generate(MacroAssembler* masm) {
5700 // r0 : number of arguments
5701 // r1 : the function to call
5702 // r2 : cache cell for call target
5703 Label slow, non_function_call;
5704
5705 // Check that the function is not a smi.
5706 __ JumpIfSmi(r1, &non_function_call);
5707 // Check that the function is a JSFunction.
5708 __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
5709 __ b(ne, &slow);
5710
5711 if (RecordCallTarget()) {
5712 GenerateRecordCallTarget(masm);
5713 }
5714
5715 // Jump to the function-specific construct stub.
5716 __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
5717 __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset));
5718 __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
5719
5720 // r0: number of arguments
5721 // r1: called object
5722 // r3: object type
5723 Label do_call;
5724 __ bind(&slow);
5725 __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE));
5726 __ b(ne, &non_function_call);
5727 __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
5728 __ jmp(&do_call);
5729
5730 __ bind(&non_function_call);
5731 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
5732 __ bind(&do_call);
5733 // Set expected number of arguments to zero (not changing r0).
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005734 __ mov(r2, Operand::Zero());
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005735 __ SetCallKind(r5, CALL_AS_METHOD);
5736 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
5737 RelocInfo::CODE_TARGET);
5738}
5739
5740
ricow@chromium.org65fae842010-08-25 15:26:24 +00005741// StringCharCodeAtGenerator
ricow@chromium.org65fae842010-08-25 15:26:24 +00005742void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
5743 Label flat_string;
5744 Label ascii_string;
5745 Label got_char_code;
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00005746 Label sliced_string;
ricow@chromium.org65fae842010-08-25 15:26:24 +00005747
5748 // If the receiver is a smi trigger the non-string case.
ager@chromium.org378b34e2011-01-28 08:04:38 +00005749 __ JumpIfSmi(object_, receiver_not_string_);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005750
5751 // Fetch the instance type of the receiver into result register.
5752 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5753 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5754 // If the receiver is not a string trigger the non-string case.
5755 __ tst(result_, Operand(kIsNotStringMask));
5756 __ b(ne, receiver_not_string_);
5757
5758 // If the index is non-smi trigger the non-smi case.
ager@chromium.org378b34e2011-01-28 08:04:38 +00005759 __ JumpIfNotSmi(index_, &index_not_smi_);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005760 __ bind(&got_smi_index_);
5761
5762 // Check for index out of range.
5763 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
danno@chromium.orgc612e022011-11-10 11:38:15 +00005764 __ cmp(ip, Operand(index_));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005765 __ b(ls, index_out_of_range_);
5766
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005767 __ mov(index_, Operand(index_, ASR, kSmiTagSize));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005768
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005769 StringCharLoadGenerator::Generate(masm,
5770 object_,
5771 index_,
5772 result_,
5773 &call_runtime_);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005774
ricow@chromium.org65fae842010-08-25 15:26:24 +00005775 __ mov(result_, Operand(result_, LSL, kSmiTagSize));
5776 __ bind(&exit_);
5777}
5778
5779
5780void StringCharCodeAtGenerator::GenerateSlow(
jkummerow@chromium.orgc3b37122011-11-07 10:14:12 +00005781 MacroAssembler* masm,
5782 const RuntimeCallHelper& call_helper) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00005783 __ Abort("Unexpected fallthrough to CharCodeAt slow case");
5784
5785 // Index is not a smi.
5786 __ bind(&index_not_smi_);
5787 // If index is a heap number, try converting it to an integer.
5788 __ CheckMap(index_,
danno@chromium.orgc612e022011-11-10 11:38:15 +00005789 result_,
ricow@chromium.org65fae842010-08-25 15:26:24 +00005790 Heap::kHeapNumberMapRootIndex,
5791 index_not_number_,
kmillikin@chromium.orgc53e10d2011-05-18 09:12:58 +00005792 DONT_DO_SMI_CHECK);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005793 call_helper.BeforeCall(masm);
danno@chromium.orgc612e022011-11-10 11:38:15 +00005794 __ push(object_);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005795 __ push(index_); // Consumed by runtime conversion function.
5796 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
5797 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
5798 } else {
5799 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
5800 // NumberToSmi discards numbers that are not exact integers.
5801 __ CallRuntime(Runtime::kNumberToSmi, 1);
5802 }
5803 // Save the conversion result before the pop instructions below
5804 // have a chance to overwrite it.
danno@chromium.orgc612e022011-11-10 11:38:15 +00005805 __ Move(index_, r0);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005806 __ pop(object_);
5807 // Reload the instance type.
5808 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5809 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5810 call_helper.AfterCall(masm);
5811 // If index is still not a smi, it must be out of range.
danno@chromium.orgc612e022011-11-10 11:38:15 +00005812 __ JumpIfNotSmi(index_, index_out_of_range_);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005813 // Otherwise, return to the fast path.
5814 __ jmp(&got_smi_index_);
5815
5816 // Call runtime. We get here when the receiver is a string and the
5817 // index is a number, but the code of getting the actual character
5818 // is too complex (e.g., when the string needs to be flattened).
5819 __ bind(&call_runtime_);
5820 call_helper.BeforeCall(masm);
mstarzinger@chromium.org1b3afd12011-11-29 14:28:56 +00005821 __ mov(index_, Operand(index_, LSL, kSmiTagSize));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005822 __ Push(object_, index_);
5823 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
5824 __ Move(result_, r0);
5825 call_helper.AfterCall(masm);
5826 __ jmp(&exit_);
5827
5828 __ Abort("Unexpected fallthrough from CharCodeAt slow case");
5829}
5830
5831
5832// -------------------------------------------------------------------------
5833// StringCharFromCodeGenerator
5834
5835void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
5836 // Fast case of Heap::LookupSingleCharacterStringFromCode.
5837 STATIC_ASSERT(kSmiTag == 0);
5838 STATIC_ASSERT(kSmiShiftSize == 0);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005839 ASSERT(IsPowerOf2(String::kMaxOneByteCharCode + 1));
ricow@chromium.org65fae842010-08-25 15:26:24 +00005840 __ tst(code_,
5841 Operand(kSmiTagMask |
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005842 ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
ager@chromium.org378b34e2011-01-28 08:04:38 +00005843 __ b(ne, &slow_case_);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005844
5845 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00005846 // At this point code register contains smi tagged ASCII char code.
ricow@chromium.org65fae842010-08-25 15:26:24 +00005847 STATIC_ASSERT(kSmiTag == 0);
5848 __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
5849 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
danno@chromium.orgfa458e42012-02-01 10:48:36 +00005850 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
ricow@chromium.org65fae842010-08-25 15:26:24 +00005851 __ b(eq, &slow_case_);
5852 __ bind(&exit_);
5853}
5854
5855
5856void StringCharFromCodeGenerator::GenerateSlow(
jkummerow@chromium.orgc3b37122011-11-07 10:14:12 +00005857 MacroAssembler* masm,
5858 const RuntimeCallHelper& call_helper) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00005859 __ Abort("Unexpected fallthrough to CharFromCode slow case");
5860
5861 __ bind(&slow_case_);
5862 call_helper.BeforeCall(masm);
5863 __ push(code_);
5864 __ CallRuntime(Runtime::kCharFromCode, 1);
5865 __ Move(result_, r0);
5866 call_helper.AfterCall(masm);
5867 __ jmp(&exit_);
5868
5869 __ Abort("Unexpected fallthrough from CharFromCode slow case");
5870}
5871
5872
5873// -------------------------------------------------------------------------
5874// StringCharAtGenerator
5875
5876void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
5877 char_code_at_generator_.GenerateFast(masm);
5878 char_from_code_generator_.GenerateFast(masm);
5879}
5880
5881
5882void StringCharAtGenerator::GenerateSlow(
jkummerow@chromium.orgc3b37122011-11-07 10:14:12 +00005883 MacroAssembler* masm,
5884 const RuntimeCallHelper& call_helper) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00005885 char_code_at_generator_.GenerateSlow(masm, call_helper);
5886 char_from_code_generator_.GenerateSlow(masm, call_helper);
5887}
5888
5889
ricow@chromium.org65fae842010-08-25 15:26:24 +00005890void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
5891 Register dest,
5892 Register src,
5893 Register count,
5894 Register scratch,
5895 bool ascii) {
5896 Label loop;
5897 Label done;
5898 // This loop just copies one character at a time, as it is only used for very
5899 // short strings.
5900 if (!ascii) {
5901 __ add(count, count, Operand(count), SetCC);
5902 } else {
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005903 __ cmp(count, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00005904 }
5905 __ b(eq, &done);
5906
5907 __ bind(&loop);
5908 __ ldrb(scratch, MemOperand(src, 1, PostIndex));
5909 // Perform sub between load and dependent store to get the load time to
5910 // complete.
5911 __ sub(count, count, Operand(1), SetCC);
5912 __ strb(scratch, MemOperand(dest, 1, PostIndex));
5913 // last iteration.
5914 __ b(gt, &loop);
5915
5916 __ bind(&done);
5917}
5918
5919
5920enum CopyCharactersFlags {
5921 COPY_ASCII = 1,
5922 DEST_ALWAYS_ALIGNED = 2
5923};
5924
5925
5926void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
5927 Register dest,
5928 Register src,
5929 Register count,
5930 Register scratch1,
5931 Register scratch2,
5932 Register scratch3,
5933 Register scratch4,
5934 Register scratch5,
5935 int flags) {
5936 bool ascii = (flags & COPY_ASCII) != 0;
5937 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
5938
5939 if (dest_always_aligned && FLAG_debug_code) {
5940 // Check that destination is actually word aligned if the flag says
5941 // that it is.
5942 __ tst(dest, Operand(kPointerAlignmentMask));
5943 __ Check(eq, "Destination of copy not aligned.");
5944 }
5945
5946 const int kReadAlignment = 4;
5947 const int kReadAlignmentMask = kReadAlignment - 1;
5948 // Ensure that reading an entire aligned word containing the last character
5949 // of a string will not read outside the allocated area (because we pad up
5950 // to kObjectAlignment).
5951 STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
5952 // Assumes word reads and writes are little endian.
5953 // Nothing to do for zero characters.
5954 Label done;
5955 if (!ascii) {
5956 __ add(count, count, Operand(count), SetCC);
5957 } else {
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00005958 __ cmp(count, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00005959 }
5960 __ b(eq, &done);
5961
5962 // Assume that you cannot read (or write) unaligned.
5963 Label byte_loop;
5964 // Must copy at least eight bytes, otherwise just do it one byte at a time.
5965 __ cmp(count, Operand(8));
5966 __ add(count, dest, Operand(count));
5967 Register limit = count; // Read until src equals this.
5968 __ b(lt, &byte_loop);
5969
5970 if (!dest_always_aligned) {
5971 // Align dest by byte copying. Copies between zero and three bytes.
5972 __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
5973 Label dest_aligned;
5974 __ b(eq, &dest_aligned);
5975 __ cmp(scratch4, Operand(2));
5976 __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
5977 __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
5978 __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
5979 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5980 __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
5981 __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
5982 __ bind(&dest_aligned);
5983 }
5984
5985 Label simple_loop;
5986
5987 __ sub(scratch4, dest, Operand(src));
5988 __ and_(scratch4, scratch4, Operand(0x03), SetCC);
5989 __ b(eq, &simple_loop);
5990 // Shift register is number of bits in a source word that
5991 // must be combined with bits in the next source word in order
5992 // to create a destination word.
5993
5994 // Complex loop for src/dst that are not aligned the same way.
5995 {
5996 Label loop;
5997 __ mov(scratch4, Operand(scratch4, LSL, 3));
5998 Register left_shift = scratch4;
5999 __ and_(src, src, Operand(~3)); // Round down to load previous word.
6000 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
6001 // Store the "shift" most significant bits of scratch in the least
6002 // signficant bits (i.e., shift down by (32-shift)).
6003 __ rsb(scratch2, left_shift, Operand(32));
6004 Register right_shift = scratch2;
6005 __ mov(scratch1, Operand(scratch1, LSR, right_shift));
6006
6007 __ bind(&loop);
6008 __ ldr(scratch3, MemOperand(src, 4, PostIndex));
6009 __ sub(scratch5, limit, Operand(dest));
6010 __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
6011 __ str(scratch1, MemOperand(dest, 4, PostIndex));
6012 __ mov(scratch1, Operand(scratch3, LSR, right_shift));
6013 // Loop if four or more bytes left to copy.
6014 // Compare to eight, because we did the subtract before increasing dst.
6015 __ sub(scratch5, scratch5, Operand(8), SetCC);
6016 __ b(ge, &loop);
6017 }
6018 // There is now between zero and three bytes left to copy (negative that
6019 // number is in scratch5), and between one and three bytes already read into
6020 // scratch1 (eight times that number in scratch4). We may have read past
6021 // the end of the string, but because objects are aligned, we have not read
6022 // past the end of the object.
6023 // Find the minimum of remaining characters to move and preloaded characters
6024 // and write those as bytes.
6025 __ add(scratch5, scratch5, Operand(4), SetCC);
6026 __ b(eq, &done);
6027 __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
6028 // Move minimum of bytes read and bytes left to copy to scratch4.
6029 __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
6030 // Between one and three (value in scratch5) characters already read into
6031 // scratch ready to write.
6032 __ cmp(scratch5, Operand(2));
6033 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
6034 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
6035 __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
6036 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
6037 __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
6038 // Copy any remaining bytes.
6039 __ b(&byte_loop);
6040
6041 // Simple loop.
6042 // Copy words from src to dst, until less than four bytes left.
6043 // Both src and dest are word aligned.
6044 __ bind(&simple_loop);
6045 {
6046 Label loop;
6047 __ bind(&loop);
6048 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
6049 __ sub(scratch3, limit, Operand(dest));
6050 __ str(scratch1, MemOperand(dest, 4, PostIndex));
6051 // Compare to 8, not 4, because we do the substraction before increasing
6052 // dest.
6053 __ cmp(scratch3, Operand(8));
6054 __ b(ge, &loop);
6055 }
6056
6057 // Copy bytes from src to dst until dst hits limit.
6058 __ bind(&byte_loop);
6059 __ cmp(dest, Operand(limit));
6060 __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
6061 __ b(ge, &done);
6062 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
6063 __ b(&byte_loop);
6064
6065 __ bind(&done);
6066}
6067
6068
6069void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
6070 Register c1,
6071 Register c2,
6072 Register scratch1,
6073 Register scratch2,
6074 Register scratch3,
6075 Register scratch4,
6076 Register scratch5,
6077 Label* not_found) {
6078 // Register scratch3 is the general scratch register in this function.
6079 Register scratch = scratch3;
6080
6081 // Make sure that both characters are not digits as such strings has a
6082 // different hash algorithm. Don't try to look for these in the symbol table.
6083 Label not_array_index;
6084 __ sub(scratch, c1, Operand(static_cast<int>('0')));
6085 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
6086 __ b(hi, &not_array_index);
6087 __ sub(scratch, c2, Operand(static_cast<int>('0')));
6088 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
6089
6090 // If check failed combine both characters into single halfword.
6091 // This is required by the contract of the method: code at the
6092 // not_found branch expects this combination in c1 register
6093 __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
6094 __ b(ls, not_found);
6095
6096 __ bind(&not_array_index);
6097 // Calculate the two character string hash.
6098 Register hash = scratch1;
6099 StringHelper::GenerateHashInit(masm, hash, c1);
6100 StringHelper::GenerateHashAddCharacter(masm, hash, c2);
6101 StringHelper::GenerateHashGetHash(masm, hash);
6102
6103 // Collect the two characters in a register.
6104 Register chars = c1;
6105 __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
6106
6107 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
6108 // hash: hash of two character string.
6109
6110 // Load symbol table
6111 // Load address of first element of the symbol table.
6112 Register symbol_table = c2;
6113 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
6114
ricow@chromium.org65fae842010-08-25 15:26:24 +00006115 Register undefined = scratch4;
6116 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
6117
6118 // Calculate capacity mask from the symbol table capacity.
6119 Register mask = scratch2;
6120 __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
6121 __ mov(mask, Operand(mask, ASR, 1));
6122 __ sub(mask, mask, Operand(1));
6123
6124 // Calculate untagged address of the first element of the symbol table.
6125 Register first_symbol_table_element = symbol_table;
6126 __ add(first_symbol_table_element, symbol_table,
6127 Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
6128
6129 // Registers
6130 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
6131 // hash: hash of two character string
6132 // mask: capacity mask
6133 // first_symbol_table_element: address of the first element of
6134 // the symbol table
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00006135 // undefined: the undefined object
ricow@chromium.org65fae842010-08-25 15:26:24 +00006136 // scratch: -
6137
6138 // Perform a number of probes in the symbol table.
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00006139 const int kProbes = 4;
ricow@chromium.org65fae842010-08-25 15:26:24 +00006140 Label found_in_symbol_table;
6141 Label next_probe[kProbes];
danno@chromium.org2c456792011-11-11 12:00:53 +00006142 Register candidate = scratch5; // Scratch register contains candidate.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006143 for (int i = 0; i < kProbes; i++) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00006144 // Calculate entry in symbol table.
6145 if (i > 0) {
6146 __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
6147 } else {
6148 __ mov(candidate, hash);
6149 }
6150
6151 __ and_(candidate, candidate, Operand(mask));
6152
6153 // Load the entry from the symble table.
6154 STATIC_ASSERT(SymbolTable::kEntrySize == 1);
6155 __ ldr(candidate,
6156 MemOperand(first_symbol_table_element,
6157 candidate,
6158 LSL,
6159 kPointerSizeLog2));
6160
6161 // If entry is undefined no string with this hash can be found.
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00006162 Label is_string;
6163 __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE);
6164 __ b(ne, &is_string);
6165
6166 __ cmp(undefined, candidate);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006167 __ b(eq, not_found);
danno@chromium.org2c456792011-11-11 12:00:53 +00006168 // Must be the hole (deleted entry).
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00006169 if (FLAG_debug_code) {
danno@chromium.org2c456792011-11-11 12:00:53 +00006170 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00006171 __ cmp(ip, candidate);
danno@chromium.org2c456792011-11-11 12:00:53 +00006172 __ Assert(eq, "oddball in symbol table is not undefined or the hole");
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00006173 }
6174 __ jmp(&next_probe[i]);
6175
6176 __ bind(&is_string);
6177
6178 // Check that the candidate is a non-external ASCII string. The instance
6179 // type is still in the scratch register from the CompareObjectType
6180 // operation.
6181 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006182
6183 // If length is not 2 the string is not a candidate.
6184 __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
6185 __ cmp(scratch, Operand(Smi::FromInt(2)));
6186 __ b(ne, &next_probe[i]);
6187
ricow@chromium.org65fae842010-08-25 15:26:24 +00006188 // Check if the two characters match.
6189 // Assumes that word load is little endian.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006190 __ ldrh(scratch, FieldMemOperand(candidate, SeqOneByteString::kHeaderSize));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006191 __ cmp(chars, scratch);
6192 __ b(eq, &found_in_symbol_table);
6193 __ bind(&next_probe[i]);
6194 }
6195
6196 // No matching 2 character string found by probing.
6197 __ jmp(not_found);
6198
6199 // Scratch register contains result when we fall through to here.
danno@chromium.org2c456792011-11-11 12:00:53 +00006200 Register result = candidate;
ricow@chromium.org65fae842010-08-25 15:26:24 +00006201 __ bind(&found_in_symbol_table);
6202 __ Move(r0, result);
6203}
6204
6205
6206void StringHelper::GenerateHashInit(MacroAssembler* masm,
6207 Register hash,
6208 Register character) {
6209 // hash = character + (character << 10);
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00006210 __ LoadRoot(hash, Heap::kHashSeedRootIndex);
rossberg@chromium.orgfab14982012-01-05 15:02:15 +00006211 // Untag smi seed and add the character.
6212 __ add(hash, character, Operand(hash, LSR, kSmiTagSize));
6213 // hash += hash << 10;
6214 __ add(hash, hash, Operand(hash, LSL, 10));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006215 // hash ^= hash >> 6;
danno@chromium.org2c456792011-11-11 12:00:53 +00006216 __ eor(hash, hash, Operand(hash, LSR, 6));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006217}
6218
6219
6220void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
6221 Register hash,
6222 Register character) {
6223 // hash += character;
6224 __ add(hash, hash, Operand(character));
6225 // hash += hash << 10;
6226 __ add(hash, hash, Operand(hash, LSL, 10));
6227 // hash ^= hash >> 6;
danno@chromium.org2c456792011-11-11 12:00:53 +00006228 __ eor(hash, hash, Operand(hash, LSR, 6));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006229}
6230
6231
6232void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
6233 Register hash) {
6234 // hash += hash << 3;
6235 __ add(hash, hash, Operand(hash, LSL, 3));
6236 // hash ^= hash >> 11;
danno@chromium.org2c456792011-11-11 12:00:53 +00006237 __ eor(hash, hash, Operand(hash, LSR, 11));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006238 // hash += hash << 15;
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00006239 __ add(hash, hash, Operand(hash, LSL, 15));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006240
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00006241 __ and_(hash, hash, Operand(String::kHashBitMask), SetCC);
danno@chromium.org2c456792011-11-11 12:00:53 +00006242
ricow@chromium.org65fae842010-08-25 15:26:24 +00006243 // if (hash == 0) hash = 27;
erik.corry@gmail.comf2038fb2012-01-16 11:42:08 +00006244 __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006245}
6246
6247
6248void SubStringStub::Generate(MacroAssembler* masm) {
6249 Label runtime;
6250
6251 // Stack frame on entry.
6252 // lr: return address
6253 // sp[0]: to
6254 // sp[4]: from
6255 // sp[8]: string
6256
6257 // This stub is called from the native-call %_SubString(...), so
6258 // nothing can be assumed about the arguments. It is tested that:
6259 // "string" is a sequential string,
6260 // both "from" and "to" are smis, and
6261 // 0 <= from <= to <= string.length.
6262 // If any of these assumptions fail, we call the runtime system.
6263
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00006264 const int kToOffset = 0 * kPointerSize;
6265 const int kFromOffset = 1 * kPointerSize;
6266 const int kStringOffset = 2 * kPointerSize;
ricow@chromium.org65fae842010-08-25 15:26:24 +00006267
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006268 __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
erik.corry@gmail.comd88afa22010-09-15 12:33:05 +00006269 STATIC_ASSERT(kFromOffset == kToOffset + 4);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006270 STATIC_ASSERT(kSmiTag == 0);
6271 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
ricow@chromium.org4668a2c2011-08-29 10:41:00 +00006272
mvstanton@chromium.orge4ac3ef2012-11-12 14:53:34 +00006273 // Arithmetic shift right by one un-smi-tags. In this case we rotate right
6274 // instead because we bail out on non-smi values: ROR and ASR are equivalent
6275 // for smis but they set the flags in a way that's easier to optimize.
6276 __ mov(r2, Operand(r2, ROR, 1), SetCC);
6277 __ mov(r3, Operand(r3, ROR, 1), SetCC, cc);
6278 // If either to or from had the smi tag bit set, then C is set now, and N
6279 // has the same value: we rotated by 1, so the bottom bit is now the top bit.
danno@chromium.orgfa458e42012-02-01 10:48:36 +00006280 // We want to bailout to runtime here if From is negative. In that case, the
6281 // next instruction is not executed and we fall through to bailing out to
mvstanton@chromium.orge4ac3ef2012-11-12 14:53:34 +00006282 // runtime.
6283 // Executed if both r2 and r3 are untagged integers.
6284 __ sub(r2, r2, Operand(r3), SetCC, cc);
6285 // One of the above un-smis or the above SUB could have set N==1.
6286 __ b(mi, &runtime); // Either "from" or "to" is not an smi, or from > to.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006287
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006288 // Make sure first argument is a string.
fschneider@chromium.org1805e212011-09-05 10:49:12 +00006289 __ ldr(r0, MemOperand(sp, kStringOffset));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006290 STATIC_ASSERT(kSmiTag == 0);
mvstanton@chromium.orge4ac3ef2012-11-12 14:53:34 +00006291 // Do a JumpIfSmi, but fold its jump into the subsequent string test.
6292 __ tst(r0, Operand(kSmiTagMask));
6293 Condition is_string = masm->IsObjectStringType(r0, r1, ne);
6294 ASSERT(is_string == eq);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006295 __ b(NegateCondition(is_string), &runtime);
6296
fschneider@chromium.org1805e212011-09-05 10:49:12 +00006297 // Short-cut for the case of trivial substring.
6298 Label return_r0;
6299 // r0: original string
6300 // r2: result string length
6301 __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
6302 __ cmp(r2, Operand(r4, ASR, 1));
erik.corry@gmail.comed49e962012-04-17 11:57:53 +00006303 // Return original string.
fschneider@chromium.org1805e212011-09-05 10:49:12 +00006304 __ b(eq, &return_r0);
erik.corry@gmail.comed49e962012-04-17 11:57:53 +00006305 // Longer than original string's length or negative: unsafe arguments.
6306 __ b(hi, &runtime);
6307 // Shorter than original string's length: an actual substring.
fschneider@chromium.org1805e212011-09-05 10:49:12 +00006308
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006309 // Deal with different string types: update the index if necessary
6310 // and put the underlying string into r5.
6311 // r0: original string
6312 // r1: instance type
6313 // r2: length
6314 // r3: from index (untagged)
6315 Label underlying_unpacked, sliced_string, seq_or_external_string;
6316 // If the string is not indirect, it can only be sequential or external.
6317 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
6318 STATIC_ASSERT(kIsIndirectStringMask != 0);
6319 __ tst(r1, Operand(kIsIndirectStringMask));
6320 __ b(eq, &seq_or_external_string);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006321
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006322 __ tst(r1, Operand(kSlicedNotConsMask));
6323 __ b(ne, &sliced_string);
6324 // Cons string. Check whether it is flat, then fetch first part.
6325 __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
6326 __ CompareRoot(r5, Heap::kEmptyStringRootIndex);
6327 __ b(ne, &runtime);
6328 __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
6329 // Update instance type.
6330 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
6331 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
6332 __ jmp(&underlying_unpacked);
fschneider@chromium.org1805e212011-09-05 10:49:12 +00006333
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006334 __ bind(&sliced_string);
6335 // Sliced string. Fetch parent and correct start index by offset.
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006336 __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
erik.corry@gmail.combbceb572012-03-09 10:52:05 +00006337 __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
danno@chromium.orgfa458e42012-02-01 10:48:36 +00006338 __ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index.
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006339 // Update instance type.
6340 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
6341 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
6342 __ jmp(&underlying_unpacked);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006343
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006344 __ bind(&seq_or_external_string);
6345 // Sequential or external string. Just move string to the expected register.
6346 __ mov(r5, r0);
6347
6348 __ bind(&underlying_unpacked);
6349
6350 if (FLAG_string_slices) {
6351 Label copy_routine;
6352 // r5: underlying subject string
6353 // r1: instance type of underlying subject string
6354 // r2: length
6355 // r3: adjusted start index (untagged)
6356 __ cmp(r2, Operand(SlicedString::kMinLength));
6357 // Short slice. Copy instead of slicing.
6358 __ b(lt, &copy_routine);
6359 // Allocate new sliced string. At this point we do not reload the instance
6360 // type including the string encoding because we simply rely on the info
6361 // provided by the original string. It does not matter if the original
6362 // string's encoding is wrong because we always have to recheck encoding of
6363 // the newly created string's parent anyways due to externalized strings.
6364 Label two_byte_slice, set_slice_header;
mvstanton@chromium.orge4ac3ef2012-11-12 14:53:34 +00006365 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006366 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
6367 __ tst(r1, Operand(kStringEncodingMask));
6368 __ b(eq, &two_byte_slice);
6369 __ AllocateAsciiSlicedString(r0, r2, r6, r7, &runtime);
6370 __ jmp(&set_slice_header);
6371 __ bind(&two_byte_slice);
6372 __ AllocateTwoByteSlicedString(r0, r2, r6, r7, &runtime);
6373 __ bind(&set_slice_header);
6374 __ mov(r3, Operand(r3, LSL, 1));
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006375 __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
erik.corry@gmail.combbceb572012-03-09 10:52:05 +00006376 __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006377 __ jmp(&return_r0);
6378
6379 __ bind(&copy_routine);
6380 }
6381
6382 // r5: underlying subject string
6383 // r1: instance type of underlying subject string
6384 // r2: length
6385 // r3: adjusted start index (untagged)
6386 Label two_byte_sequential, sequential_string, allocate_result;
6387 STATIC_ASSERT(kExternalStringTag != 0);
6388 STATIC_ASSERT(kSeqStringTag == 0);
6389 __ tst(r1, Operand(kExternalStringTag));
6390 __ b(eq, &sequential_string);
6391
6392 // Handle external string.
6393 // Rule out short external strings.
6394 STATIC_CHECK(kShortExternalStringTag != 0);
6395 __ tst(r1, Operand(kShortExternalStringTag));
6396 __ b(ne, &runtime);
6397 __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
6398 // r5 already points to the first character of underlying string.
6399 __ jmp(&allocate_result);
6400
6401 __ bind(&sequential_string);
6402 // Locate first character of underlying subject string.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006403 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
6404 __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006405
6406 __ bind(&allocate_result);
6407 // Sequential acii string. Allocate the result.
mvstanton@chromium.orge4ac3ef2012-11-12 14:53:34 +00006408 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006409 __ tst(r1, Operand(kStringEncodingMask));
6410 __ b(eq, &two_byte_sequential);
6411
ulan@chromium.org2efb9002012-01-19 15:36:35 +00006412 // Allocate and copy the resulting ASCII string.
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006413 __ AllocateAsciiString(r0, r2, r4, r6, r7, &runtime);
6414
6415 // Locate first character of substring to copy.
6416 __ add(r5, r5, r3);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006417 // Locate first character of result.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006418 __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006419
fschneider@chromium.org1805e212011-09-05 10:49:12 +00006420 // r0: result string
6421 // r1: first character of result string
6422 // r2: result string length
6423 // r5: first character of substring to copy
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006424 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006425 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
6426 COPY_ASCII | DEST_ALWAYS_ALIGNED);
fschneider@chromium.org1805e212011-09-05 10:49:12 +00006427 __ jmp(&return_r0);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006428
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006429 // Allocate and copy the resulting two-byte string.
6430 __ bind(&two_byte_sequential);
6431 __ AllocateTwoByteString(r0, r2, r4, r6, r7, &runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006432
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006433 // Locate first character of substring to copy.
fschneider@chromium.org1805e212011-09-05 10:49:12 +00006434 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006435 __ add(r5, r5, Operand(r3, LSL, 1));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006436 // Locate first character of result.
6437 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
fschneider@chromium.org1805e212011-09-05 10:49:12 +00006438
ricow@chromium.org65fae842010-08-25 15:26:24 +00006439 // r0: result string.
6440 // r1: first character of result.
6441 // r2: result length.
fschneider@chromium.org1805e212011-09-05 10:49:12 +00006442 // r5: first character of substring to copy.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006443 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
erik.corry@gmail.comd88afa22010-09-15 12:33:05 +00006444 StringHelper::GenerateCopyCharactersLong(
6445 masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED);
fschneider@chromium.org1805e212011-09-05 10:49:12 +00006446
6447 __ bind(&return_r0);
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006448 Counters* counters = masm->isolate()->counters();
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00006449 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006450 __ add(sp, sp, Operand(3 * kPointerSize));
6451 __ Ret();
6452
6453 // Just jump to runtime to create the sub string.
6454 __ bind(&runtime);
6455 __ TailCallRuntime(Runtime::kSubString, 3, 1);
6456}
6457
6458
lrn@chromium.org1c092762011-05-09 09:42:16 +00006459void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
6460 Register left,
6461 Register right,
6462 Register scratch1,
6463 Register scratch2,
6464 Register scratch3) {
6465 Register length = scratch1;
6466
6467 // Compare lengths.
6468 Label strings_not_equal, check_zero_length;
6469 __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
6470 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
6471 __ cmp(length, scratch2);
6472 __ b(eq, &check_zero_length);
6473 __ bind(&strings_not_equal);
6474 __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
6475 __ Ret();
6476
6477 // Check if the length is zero.
6478 Label compare_chars;
6479 __ bind(&check_zero_length);
6480 STATIC_ASSERT(kSmiTag == 0);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00006481 __ cmp(length, Operand::Zero());
lrn@chromium.org1c092762011-05-09 09:42:16 +00006482 __ b(ne, &compare_chars);
6483 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
6484 __ Ret();
6485
6486 // Compare characters.
6487 __ bind(&compare_chars);
6488 GenerateAsciiCharsCompareLoop(masm,
6489 left, right, length, scratch2, scratch3,
6490 &strings_not_equal);
6491
6492 // Characters are equal.
6493 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
6494 __ Ret();
6495}
6496
6497
ricow@chromium.org65fae842010-08-25 15:26:24 +00006498void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
6499 Register left,
6500 Register right,
6501 Register scratch1,
6502 Register scratch2,
6503 Register scratch3,
6504 Register scratch4) {
lrn@chromium.org1c092762011-05-09 09:42:16 +00006505 Label result_not_equal, compare_lengths;
ricow@chromium.org65fae842010-08-25 15:26:24 +00006506 // Find minimum length and length difference.
6507 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
6508 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
6509 __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
6510 Register length_delta = scratch3;
6511 __ mov(scratch1, scratch2, LeaveCC, gt);
6512 Register min_length = scratch1;
6513 STATIC_ASSERT(kSmiTag == 0);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00006514 __ cmp(min_length, Operand::Zero());
ricow@chromium.org65fae842010-08-25 15:26:24 +00006515 __ b(eq, &compare_lengths);
6516
lrn@chromium.org1c092762011-05-09 09:42:16 +00006517 // Compare loop.
6518 GenerateAsciiCharsCompareLoop(masm,
6519 left, right, min_length, scratch2, scratch4,
6520 &result_not_equal);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006521
lrn@chromium.org1c092762011-05-09 09:42:16 +00006522 // Compare lengths - strings up to min-length are equal.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006523 __ bind(&compare_lengths);
6524 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
lrn@chromium.org1c092762011-05-09 09:42:16 +00006525 // Use length_delta as result if it's zero.
6526 __ mov(r0, Operand(length_delta), SetCC);
6527 __ bind(&result_not_equal);
6528 // Conditionally update the result based either on length_delta or
6529 // the last comparion performed in the loop above.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006530 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
6531 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
6532 __ Ret();
6533}
6534
6535
lrn@chromium.org1c092762011-05-09 09:42:16 +00006536void StringCompareStub::GenerateAsciiCharsCompareLoop(
6537 MacroAssembler* masm,
6538 Register left,
6539 Register right,
6540 Register length,
6541 Register scratch1,
6542 Register scratch2,
6543 Label* chars_not_equal) {
6544 // Change index to run from -length to -1 by adding length to string
6545 // start. This means that loop ends when index reaches zero, which
6546 // doesn't need an additional compare.
6547 __ SmiUntag(length);
6548 __ add(scratch1, length,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006549 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
lrn@chromium.org1c092762011-05-09 09:42:16 +00006550 __ add(left, left, Operand(scratch1));
6551 __ add(right, right, Operand(scratch1));
ricow@chromium.orgddd545c2011-08-24 12:02:41 +00006552 __ rsb(length, length, Operand::Zero());
lrn@chromium.org1c092762011-05-09 09:42:16 +00006553 Register index = length; // index = -length;
6554
6555 // Compare loop.
6556 Label loop;
6557 __ bind(&loop);
6558 __ ldrb(scratch1, MemOperand(left, index));
6559 __ ldrb(scratch2, MemOperand(right, index));
6560 __ cmp(scratch1, scratch2);
6561 __ b(ne, chars_not_equal);
6562 __ add(index, index, Operand(1), SetCC);
6563 __ b(ne, &loop);
6564}
6565
6566
ricow@chromium.org65fae842010-08-25 15:26:24 +00006567void StringCompareStub::Generate(MacroAssembler* masm) {
6568 Label runtime;
6569
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00006570 Counters* counters = masm->isolate()->counters();
6571
ricow@chromium.org65fae842010-08-25 15:26:24 +00006572 // Stack frame on entry.
6573 // sp[0]: right string
6574 // sp[4]: left string
erik.corry@gmail.comd88afa22010-09-15 12:33:05 +00006575 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006576
6577 Label not_same;
6578 __ cmp(r0, r1);
6579 __ b(ne, &not_same);
6580 STATIC_ASSERT(EQUAL == 0);
6581 STATIC_ASSERT(kSmiTag == 0);
6582 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00006583 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006584 __ add(sp, sp, Operand(2 * kPointerSize));
6585 __ Ret();
6586
6587 __ bind(&not_same);
6588
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00006589 // Check that both objects are sequential ASCII strings.
erik.corry@gmail.comd88afa22010-09-15 12:33:05 +00006590 __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006591
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00006592 // Compare flat ASCII strings natively. Remove arguments from stack first.
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00006593 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006594 __ add(sp, sp, Operand(2 * kPointerSize));
erik.corry@gmail.comd88afa22010-09-15 12:33:05 +00006595 GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006596
6597 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
6598 // tagged as a small integer.
6599 __ bind(&runtime);
6600 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
6601}
6602
6603
6604void StringAddStub::Generate(MacroAssembler* masm) {
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006605 Label call_runtime, call_builtin;
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006606 Builtins::JavaScript builtin_id = Builtins::ADD;
6607
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00006608 Counters* counters = masm->isolate()->counters();
6609
ricow@chromium.org65fae842010-08-25 15:26:24 +00006610 // Stack on entry:
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006611 // sp[0]: second argument (right).
6612 // sp[4]: first argument (left).
ricow@chromium.org65fae842010-08-25 15:26:24 +00006613
6614 // Load the two arguments.
6615 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
6616 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
6617
6618 // Make sure that both arguments are strings if not known in advance.
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006619 if (flags_ == NO_STRING_ADD_FLAGS) {
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006620 __ JumpIfEitherSmi(r0, r1, &call_runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006621 // Load instance types.
6622 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6623 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6624 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6625 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6626 STATIC_ASSERT(kStringTag == 0);
6627 // If either is not a string, go to runtime.
6628 __ tst(r4, Operand(kIsNotStringMask));
6629 __ tst(r5, Operand(kIsNotStringMask), eq);
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006630 __ b(ne, &call_runtime);
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006631 } else {
6632 // Here at least one of the arguments is definitely a string.
6633 // We convert the one that is not known to be a string.
6634 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
6635 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
6636 GenerateConvertArgument(
6637 masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
6638 builtin_id = Builtins::STRING_ADD_RIGHT;
6639 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
6640 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
6641 GenerateConvertArgument(
6642 masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
6643 builtin_id = Builtins::STRING_ADD_LEFT;
6644 }
ricow@chromium.org65fae842010-08-25 15:26:24 +00006645 }
6646
6647 // Both arguments are strings.
6648 // r0: first string
6649 // r1: second string
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006650 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6651 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
ricow@chromium.org65fae842010-08-25 15:26:24 +00006652 {
6653 Label strings_not_empty;
6654 // Check if either of the strings are empty. In that case return the other.
6655 __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
6656 __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
6657 STATIC_ASSERT(kSmiTag == 0);
6658 __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
6659 __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
6660 STATIC_ASSERT(kSmiTag == 0);
6661 // Else test if second string is empty.
6662 __ cmp(r3, Operand(Smi::FromInt(0)), ne);
6663 __ b(ne, &strings_not_empty); // If either string was empty, return r0.
6664
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00006665 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006666 __ add(sp, sp, Operand(2 * kPointerSize));
6667 __ Ret();
6668
6669 __ bind(&strings_not_empty);
6670 }
6671
6672 __ mov(r2, Operand(r2, ASR, kSmiTagSize));
6673 __ mov(r3, Operand(r3, ASR, kSmiTagSize));
6674 // Both strings are non-empty.
6675 // r0: first string
6676 // r1: second string
6677 // r2: length of first string
6678 // r3: length of second string
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006679 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6680 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
ricow@chromium.org65fae842010-08-25 15:26:24 +00006681 // Look at the length of the result of adding the two strings.
6682 Label string_add_flat_result, longer_than_two;
6683 // Adding two lengths can't overflow.
6684 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
6685 __ add(r6, r2, Operand(r3));
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00006686 // Use the symbol table when adding two one character strings, as it
6687 // helps later optimizations to return a symbol here.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006688 __ cmp(r6, Operand(2));
6689 __ b(ne, &longer_than_two);
6690
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00006691 // Check that both strings are non-external ASCII strings.
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006692 if (flags_ != NO_STRING_ADD_FLAGS) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00006693 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6694 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6695 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6696 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6697 }
6698 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006699 &call_runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006700
6701 // Get the two characters forming the sub string.
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006702 __ ldrb(r2, FieldMemOperand(r0, SeqOneByteString::kHeaderSize));
6703 __ ldrb(r3, FieldMemOperand(r1, SeqOneByteString::kHeaderSize));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006704
6705 // Try to lookup two character string in symbol table. If it is not found
6706 // just allocate a new one.
6707 Label make_two_character_string;
6708 StringHelper::GenerateTwoCharacterSymbolTableProbe(
6709 masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00006710 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006711 __ add(sp, sp, Operand(2 * kPointerSize));
6712 __ Ret();
6713
6714 __ bind(&make_two_character_string);
6715 // Resulting string has length 2 and first chars of two strings
6716 // are combined into single halfword in r2 register.
6717 // So we can fill resulting string without two loops by a single
6718 // halfword store instruction (which assumes that processor is
6719 // in a little endian mode)
6720 __ mov(r6, Operand(2));
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006721 __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006722 __ strh(r2, FieldMemOperand(r0, SeqOneByteString::kHeaderSize));
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00006723 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006724 __ add(sp, sp, Operand(2 * kPointerSize));
6725 __ Ret();
6726
6727 __ bind(&longer_than_two);
6728 // Check if resulting string will be flat.
ulan@chromium.org2efb9002012-01-19 15:36:35 +00006729 __ cmp(r6, Operand(ConsString::kMinLength));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006730 __ b(lt, &string_add_flat_result);
6731 // Handle exceptionally long strings in the runtime system.
6732 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
6733 ASSERT(IsPowerOf2(String::kMaxLength + 1));
6734 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
6735 __ cmp(r6, Operand(String::kMaxLength + 1));
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006736 __ b(hs, &call_runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006737
6738 // If result is not supposed to be flat, allocate a cons string object.
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00006739 // If both strings are ASCII the result is an ASCII cons string.
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006740 if (flags_ != NO_STRING_ADD_FLAGS) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00006741 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6742 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6743 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6744 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6745 }
6746 Label non_ascii, allocated, ascii_data;
6747 STATIC_ASSERT(kTwoByteStringTag == 0);
6748 __ tst(r4, Operand(kStringEncodingMask));
6749 __ tst(r5, Operand(kStringEncodingMask), ne);
6750 __ b(eq, &non_ascii);
6751
6752 // Allocate an ASCII cons string.
6753 __ bind(&ascii_data);
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006754 __ AllocateAsciiConsString(r7, r6, r4, r5, &call_runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006755 __ bind(&allocated);
6756 // Fill the fields of the cons string.
6757 __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
6758 __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
6759 __ mov(r0, Operand(r7));
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00006760 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006761 __ add(sp, sp, Operand(2 * kPointerSize));
6762 __ Ret();
6763
6764 __ bind(&non_ascii);
6765 // At least one of the strings is two-byte. Check whether it happens
ricow@chromium.orgbadaffc2011-03-17 12:15:27 +00006766 // to contain only ASCII characters.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006767 // r4: first instance type.
6768 // r5: second instance type.
6769 __ tst(r4, Operand(kAsciiDataHintMask));
6770 __ tst(r5, Operand(kAsciiDataHintMask), ne);
6771 __ b(ne, &ascii_data);
yangguo@chromium.org46a2a512013-01-18 16:29:40 +00006772 __ eor(r4, r4, Operand(r5));
6773 STATIC_ASSERT(kOneByteStringTag != 0 && kAsciiDataHintTag != 0);
6774 __ and_(r4, r4, Operand(kOneByteStringTag | kAsciiDataHintTag));
6775 __ cmp(r4, Operand(kOneByteStringTag | kAsciiDataHintTag));
6776 __ b(eq, &ascii_data);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006777
6778 // Allocate a two byte cons string.
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006779 __ AllocateTwoByteConsString(r7, r6, r4, r5, &call_runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006780 __ jmp(&allocated);
6781
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006782 // We cannot encounter sliced strings or cons strings here since:
ulan@chromium.org2efb9002012-01-19 15:36:35 +00006783 STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006784 // Handle creating a flat result from either external or sequential strings.
6785 // Locate the first characters' locations.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006786 // r0: first string
6787 // r1: second string
6788 // r2: length of first string
6789 // r3: length of second string
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006790 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6791 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
ricow@chromium.org65fae842010-08-25 15:26:24 +00006792 // r6: sum of lengths.
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006793 Label first_prepared, second_prepared;
ricow@chromium.org65fae842010-08-25 15:26:24 +00006794 __ bind(&string_add_flat_result);
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006795 if (flags_ != NO_STRING_ADD_FLAGS) {
ricow@chromium.org65fae842010-08-25 15:26:24 +00006796 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6797 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6798 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6799 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6800 }
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006801
6802 // Check whether both strings have same encoding
ricow@chromium.org65fae842010-08-25 15:26:24 +00006803 __ eor(r7, r4, Operand(r5));
6804 __ tst(r7, Operand(kStringEncodingMask));
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006805 __ b(ne, &call_runtime);
6806
6807 STATIC_ASSERT(kSeqStringTag == 0);
6808 __ tst(r4, Operand(kStringRepresentationMask));
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006809 STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006810 __ add(r7,
6811 r0,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006812 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag),
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006813 LeaveCC,
6814 eq);
6815 __ b(eq, &first_prepared);
6816 // External string: rule out short external string and load string resource.
6817 STATIC_ASSERT(kShortExternalStringTag != 0);
6818 __ tst(r4, Operand(kShortExternalStringMask));
6819 __ b(ne, &call_runtime);
6820 __ ldr(r7, FieldMemOperand(r0, ExternalString::kResourceDataOffset));
6821 __ bind(&first_prepared);
6822
6823 STATIC_ASSERT(kSeqStringTag == 0);
6824 __ tst(r5, Operand(kStringRepresentationMask));
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006825 STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006826 __ add(r1,
6827 r1,
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006828 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag),
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006829 LeaveCC,
6830 eq);
6831 __ b(eq, &second_prepared);
6832 // External string: rule out short external string and load string resource.
6833 STATIC_ASSERT(kShortExternalStringTag != 0);
6834 __ tst(r5, Operand(kShortExternalStringMask));
6835 __ b(ne, &call_runtime);
6836 __ ldr(r1, FieldMemOperand(r1, ExternalString::kResourceDataOffset));
6837 __ bind(&second_prepared);
6838
6839 Label non_ascii_string_add_flat_result;
6840 // r7: first character of first string
6841 // r1: first character of second string
6842 // r2: length of first string.
6843 // r3: length of second string.
6844 // r6: sum of lengths.
6845 // Both strings have the same encoding.
6846 STATIC_ASSERT(kTwoByteStringTag == 0);
6847 __ tst(r5, Operand(kStringEncodingMask));
ricow@chromium.org65fae842010-08-25 15:26:24 +00006848 __ b(eq, &non_ascii_string_add_flat_result);
6849
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006850 __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006851 __ add(r6, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006852 // r0: result string.
6853 // r7: first character of first string.
6854 // r1: first character of second string.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006855 // r2: length of first string.
6856 // r3: length of second string.
6857 // r6: first character of result.
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006858 StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, true);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006859 // r6: next character of result.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006860 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00006861 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006862 __ add(sp, sp, Operand(2 * kPointerSize));
6863 __ Ret();
6864
6865 __ bind(&non_ascii_string_add_flat_result);
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006866 __ AllocateTwoByteString(r0, r6, r4, r5, r9, &call_runtime);
6867 __ add(r6, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6868 // r0: result string.
6869 // r7: first character of first string.
6870 // r1: first character of second string.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006871 // r2: length of first string.
6872 // r3: length of second string.
6873 // r6: first character of result.
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006874 StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, false);
6875 // r6: next character of result.
ricow@chromium.org65fae842010-08-25 15:26:24 +00006876 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
fschneider@chromium.org7979bbb2011-03-28 10:47:03 +00006877 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006878 __ add(sp, sp, Operand(2 * kPointerSize));
6879 __ Ret();
6880
6881 // Just jump to runtime to add the two strings.
ricow@chromium.org7ad65222011-12-19 12:13:11 +00006882 __ bind(&call_runtime);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006883 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006884
6885 if (call_builtin.is_linked()) {
6886 __ bind(&call_builtin);
sgjesse@chromium.org8e8294a2011-05-02 14:30:53 +00006887 __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
fschneider@chromium.org3a5fd782011-02-24 10:10:44 +00006888 }
6889}
6890
6891
6892void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
6893 int stack_offset,
6894 Register arg,
6895 Register scratch1,
6896 Register scratch2,
6897 Register scratch3,
6898 Register scratch4,
6899 Label* slow) {
6900 // First check if the argument is already a string.
6901 Label not_string, done;
6902 __ JumpIfSmi(arg, &not_string);
6903 __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
6904 __ b(lt, &done);
6905
6906 // Check the number to string cache.
6907 Label not_cached;
6908 __ bind(&not_string);
6909 // Puts the cached result into scratch1.
6910 NumberToStringStub::GenerateLookupNumberStringCache(masm,
6911 arg,
6912 scratch1,
6913 scratch2,
6914 scratch3,
6915 scratch4,
6916 false,
6917 &not_cached);
6918 __ mov(arg, scratch1);
6919 __ str(arg, MemOperand(sp, stack_offset));
6920 __ jmp(&done);
6921
6922 // Check if the argument is a safe string wrapper.
6923 __ bind(&not_cached);
6924 __ JumpIfSmi(arg, slow);
6925 __ CompareObjectType(
6926 arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1.
6927 __ b(ne, slow);
6928 __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
6929 __ and_(scratch2,
6930 scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6931 __ cmp(scratch2,
6932 Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6933 __ b(ne, slow);
6934 __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset));
6935 __ str(arg, MemOperand(sp, stack_offset));
6936
6937 __ bind(&done);
ricow@chromium.org65fae842010-08-25 15:26:24 +00006938}
6939
6940
kasperl@chromium.orga5551262010-12-07 12:49:48 +00006941void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006942 ASSERT(state_ == CompareIC::SMI);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00006943 Label miss;
6944 __ orr(r2, r1, r0);
whesse@chromium.org7b260152011-06-20 15:33:18 +00006945 __ JumpIfNotSmi(r2, &miss);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00006946
6947 if (GetCondition() == eq) {
6948 // For equality we do not care about the sign of the result.
6949 __ sub(r0, r0, r1, SetCC);
6950 } else {
sgjesse@chromium.org496c03a2011-02-14 12:05:43 +00006951 // Untag before subtracting to avoid handling overflow.
6952 __ SmiUntag(r1);
6953 __ sub(r0, r1, SmiUntagOperand(r0));
kasperl@chromium.orga5551262010-12-07 12:49:48 +00006954 }
6955 __ Ret();
6956
6957 __ bind(&miss);
6958 GenerateMiss(masm);
6959}
6960
6961
6962void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006963 ASSERT(state_ == CompareIC::HEAP_NUMBER);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00006964
6965 Label generic_stub;
ulan@chromium.org9a21ec42012-03-06 08:42:24 +00006966 Label unordered, maybe_undefined1, maybe_undefined2;
kasperl@chromium.orga5551262010-12-07 12:49:48 +00006967 Label miss;
kasperl@chromium.orga5551262010-12-07 12:49:48 +00006968
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006969 if (left_ == CompareIC::SMI) {
6970 __ JumpIfNotSmi(r1, &miss);
6971 }
6972 if (right_ == CompareIC::SMI) {
6973 __ JumpIfNotSmi(r0, &miss);
6974 }
kasperl@chromium.orga5551262010-12-07 12:49:48 +00006975
6976 // Inlining the double comparison and falling back to the general compare
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006977 // stub if NaN is involved or VFP2 is unsupported.
verwaest@chromium.orgb6d052d2012-07-27 08:03:27 +00006978 if (CpuFeatures::IsSupported(VFP2)) {
6979 CpuFeatures::Scope scope(VFP2);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00006980
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006981 // Load left and right operand.
6982 Label done, left, left_smi, right_smi;
6983 __ JumpIfSmi(r0, &right_smi);
6984 __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
6985 DONT_DO_SMI_CHECK);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00006986 __ sub(r2, r0, Operand(kHeapObjectTag));
6987 __ vldr(d1, r2, HeapNumber::kValueOffset);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006988 __ b(&left);
6989 __ bind(&right_smi);
6990 __ SmiUntag(r2, r0); // Can't clobber r0 yet.
6991 SwVfpRegister single_scratch = d2.low();
6992 __ vmov(single_scratch, r2);
6993 __ vcvt_f64_s32(d1, single_scratch);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00006994
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00006995 __ bind(&left);
6996 __ JumpIfSmi(r1, &left_smi);
6997 __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
6998 DONT_DO_SMI_CHECK);
6999 __ sub(r2, r1, Operand(kHeapObjectTag));
7000 __ vldr(d0, r2, HeapNumber::kValueOffset);
7001 __ b(&done);
7002 __ bind(&left_smi);
7003 __ SmiUntag(r2, r1); // Can't clobber r1 yet.
7004 single_scratch = d3.low();
7005 __ vmov(single_scratch, r2);
7006 __ vcvt_f64_s32(d0, single_scratch);
7007
7008 __ bind(&done);
7009 // Compare operands.
sgjesse@chromium.orgc6c57182011-01-17 12:24:25 +00007010 __ VFPCompareAndSetFlags(d0, d1);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00007011
7012 // Don't base result on status bits when a NaN is involved.
7013 __ b(vs, &unordered);
7014
7015 // Return a result of -1, 0, or 1, based on status bits.
7016 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
7017 __ mov(r0, Operand(LESS), LeaveCC, lt);
7018 __ mov(r0, Operand(GREATER), LeaveCC, gt);
7019 __ Ret();
kasperl@chromium.orga5551262010-12-07 12:49:48 +00007020 }
7021
ulan@chromium.org9a21ec42012-03-06 08:42:24 +00007022 __ bind(&unordered);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00007023 __ bind(&generic_stub);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00007024 ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC,
7025 CompareIC::GENERIC);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00007026 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
7027
ulan@chromium.org9a21ec42012-03-06 08:42:24 +00007028 __ bind(&maybe_undefined1);
7029 if (Token::IsOrderedRelationalCompareOp(op_)) {
7030 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
7031 __ b(ne, &miss);
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00007032 __ JumpIfSmi(r1, &unordered);
ulan@chromium.org9a21ec42012-03-06 08:42:24 +00007033 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
7034 __ b(ne, &maybe_undefined2);
7035 __ jmp(&unordered);
7036 }
7037
7038 __ bind(&maybe_undefined2);
7039 if (Token::IsOrderedRelationalCompareOp(op_)) {
7040 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
7041 __ b(eq, &unordered);
7042 }
7043
kasperl@chromium.orga5551262010-12-07 12:49:48 +00007044 __ bind(&miss);
7045 GenerateMiss(masm);
7046}
7047
7048
karlklose@chromium.org83a47282011-05-11 11:54:09 +00007049void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00007050 ASSERT(state_ == CompareIC::SYMBOL);
karlklose@chromium.org83a47282011-05-11 11:54:09 +00007051 Label miss;
7052
7053 // Registers containing left and right operands respectively.
7054 Register left = r1;
7055 Register right = r0;
7056 Register tmp1 = r2;
7057 Register tmp2 = r3;
7058
7059 // Check that both operands are heap objects.
7060 __ JumpIfEitherSmi(left, right, &miss);
7061
7062 // Check that both operands are symbols.
7063 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
7064 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
7065 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
7066 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
7067 STATIC_ASSERT(kSymbolTag != 0);
7068 __ and_(tmp1, tmp1, Operand(tmp2));
7069 __ tst(tmp1, Operand(kIsSymbolMask));
7070 __ b(eq, &miss);
7071
7072 // Symbols are compared by identity.
7073 __ cmp(left, right);
7074 // Make sure r0 is non-zero. At this point input operands are
7075 // guaranteed to be non-zero.
7076 ASSERT(right.is(r0));
7077 STATIC_ASSERT(EQUAL == 0);
7078 STATIC_ASSERT(kSmiTag == 0);
7079 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
7080 __ Ret();
7081
7082 __ bind(&miss);
7083 GenerateMiss(masm);
7084}
7085
7086
lrn@chromium.org1c092762011-05-09 09:42:16 +00007087void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00007088 ASSERT(state_ == CompareIC::STRING);
lrn@chromium.org1c092762011-05-09 09:42:16 +00007089 Label miss;
7090
svenpanne@chromium.org4efbdb12012-03-12 08:18:42 +00007091 bool equality = Token::IsEqualityOp(op_);
7092
lrn@chromium.org1c092762011-05-09 09:42:16 +00007093 // Registers containing left and right operands respectively.
7094 Register left = r1;
7095 Register right = r0;
7096 Register tmp1 = r2;
7097 Register tmp2 = r3;
7098 Register tmp3 = r4;
7099 Register tmp4 = r5;
7100
7101 // Check that both operands are heap objects.
7102 __ JumpIfEitherSmi(left, right, &miss);
7103
7104 // Check that both operands are strings. This leaves the instance
7105 // types loaded in tmp1 and tmp2.
7106 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
7107 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
7108 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
7109 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
7110 STATIC_ASSERT(kNotStringTag != 0);
7111 __ orr(tmp3, tmp1, tmp2);
7112 __ tst(tmp3, Operand(kIsNotStringMask));
7113 __ b(ne, &miss);
7114
7115 // Fast check for identical strings.
7116 __ cmp(left, right);
7117 STATIC_ASSERT(EQUAL == 0);
7118 STATIC_ASSERT(kSmiTag == 0);
7119 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
7120 __ Ret(eq);
7121
7122 // Handle not identical strings.
7123
7124 // Check that both strings are symbols. If they are, we're done
7125 // because we already know they are not identical.
svenpanne@chromium.org4efbdb12012-03-12 08:18:42 +00007126 if (equality) {
7127 ASSERT(GetCondition() == eq);
7128 STATIC_ASSERT(kSymbolTag != 0);
7129 __ and_(tmp3, tmp1, Operand(tmp2));
7130 __ tst(tmp3, Operand(kIsSymbolMask));
7131 // Make sure r0 is non-zero. At this point input operands are
7132 // guaranteed to be non-zero.
7133 ASSERT(right.is(r0));
7134 __ Ret(ne);
7135 }
lrn@chromium.org1c092762011-05-09 09:42:16 +00007136
7137 // Check that both strings are sequential ASCII.
7138 Label runtime;
svenpanne@chromium.org4efbdb12012-03-12 08:18:42 +00007139 __ JumpIfBothInstanceTypesAreNotSequentialAscii(
7140 tmp1, tmp2, tmp3, tmp4, &runtime);
lrn@chromium.org1c092762011-05-09 09:42:16 +00007141
7142 // Compare flat ASCII strings. Returns when done.
svenpanne@chromium.org4efbdb12012-03-12 08:18:42 +00007143 if (equality) {
7144 StringCompareStub::GenerateFlatAsciiStringEquals(
7145 masm, left, right, tmp1, tmp2, tmp3);
7146 } else {
7147 StringCompareStub::GenerateCompareFlatAsciiStrings(
7148 masm, left, right, tmp1, tmp2, tmp3, tmp4);
7149 }
lrn@chromium.org1c092762011-05-09 09:42:16 +00007150
7151 // Handle more complex cases in runtime.
7152 __ bind(&runtime);
7153 __ Push(left, right);
svenpanne@chromium.org4efbdb12012-03-12 08:18:42 +00007154 if (equality) {
7155 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
7156 } else {
7157 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
7158 }
lrn@chromium.org1c092762011-05-09 09:42:16 +00007159
7160 __ bind(&miss);
7161 GenerateMiss(masm);
7162}
7163
7164
kasperl@chromium.orga5551262010-12-07 12:49:48 +00007165void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00007166 ASSERT(state_ == CompareIC::OBJECT);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00007167 Label miss;
7168 __ and_(r2, r1, Operand(r0));
whesse@chromium.org7b260152011-06-20 15:33:18 +00007169 __ JumpIfSmi(r2, &miss);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00007170
7171 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
7172 __ b(ne, &miss);
7173 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
7174 __ b(ne, &miss);
7175
7176 ASSERT(GetCondition() == eq);
7177 __ sub(r0, r0, Operand(r1));
7178 __ Ret();
7179
7180 __ bind(&miss);
7181 GenerateMiss(masm);
7182}
7183
7184
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00007185void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
7186 Label miss;
7187 __ and_(r2, r1, Operand(r0));
7188 __ JumpIfSmi(r2, &miss);
7189 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
7190 __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
7191 __ cmp(r2, Operand(known_map_));
7192 __ b(ne, &miss);
7193 __ cmp(r3, Operand(known_map_));
7194 __ b(ne, &miss);
kasperl@chromium.orga5551262010-12-07 12:49:48 +00007195
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00007196 __ sub(r0, r0, Operand(r1));
7197 __ Ret();
7198
7199 __ bind(&miss);
7200 GenerateMiss(masm);
7201}
7202
7203
7204
7205void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007206 {
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00007207 // Call the runtime system in a fresh internal frame.
7208 ExternalReference miss =
7209 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
7210
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007211 FrameScope scope(masm, StackFrame::INTERNAL);
7212 __ Push(r1, r0);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00007213 __ push(lr);
7214 __ Push(r1, r0);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007215 __ mov(ip, Operand(Smi::FromInt(op_)));
7216 __ push(ip);
7217 __ CallExternalReference(miss, 3);
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00007218 // Compute the entry point of the rewritten stub.
7219 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
7220 // Restore registers.
7221 __ pop(lr);
7222 __ pop(r0);
7223 __ pop(r1);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007224 }
ricow@chromium.org64e3a4b2011-12-13 08:07:27 +00007225
kasperl@chromium.orga5551262010-12-07 12:49:48 +00007226 __ Jump(r2);
7227}
7228
7229
ricow@chromium.org83aa5492011-02-07 12:42:56 +00007230void DirectCEntryStub::Generate(MacroAssembler* masm) {
7231 __ ldr(pc, MemOperand(sp, 0));
7232}
7233
7234
7235void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
vegorov@chromium.org5d6c1f52011-02-28 13:13:38 +00007236 ExternalReference function) {
vegorov@chromium.org5d6c1f52011-02-28 13:13:38 +00007237 __ mov(r2, Operand(function));
danno@chromium.orgb6451162011-08-17 14:33:23 +00007238 GenerateCall(masm, r2);
ricow@chromium.org83aa5492011-02-07 12:42:56 +00007239}
7240
7241
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00007242void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
7243 Register target) {
7244 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
7245 RelocInfo::CODE_TARGET));
mmassi@chromium.org7028c052012-06-13 11:51:58 +00007246
7247 // Prevent literal pool emission during calculation of return address.
7248 Assembler::BlockConstPoolScope block_const_pool(masm);
7249
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00007250 // Push return address (accessible to GC through exit frame pc).
whesse@chromium.org4acdc2c2011-08-15 13:01:23 +00007251 // Note that using pc with str is deprecated.
danno@chromium.orgb6451162011-08-17 14:33:23 +00007252 Label start;
7253 __ bind(&start);
7254 __ add(ip, pc, Operand(Assembler::kInstrSize));
whesse@chromium.org4acdc2c2011-08-15 13:01:23 +00007255 __ str(ip, MemOperand(sp, 0));
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00007256 __ Jump(target); // Call the C++ function.
danno@chromium.orgb6451162011-08-17 14:33:23 +00007257 ASSERT_EQ(Assembler::kInstrSize + Assembler::kPcLoadDelta,
7258 masm->SizeOfCodeGeneratedSince(&start));
kmillikin@chromium.org49edbdf2011-02-16 12:32:18 +00007259}
7260
7261
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +00007262void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
7263 Label* miss,
7264 Label* done,
7265 Register receiver,
7266 Register properties,
7267 Handle<String> name,
7268 Register scratch0) {
7269 // If names of slots in range from 1 to kProbes - 1 for the hash value are
7270 // not equal to the name and kProbes-th slot is not used (its name is the
7271 // undefined value), it guarantees the hash table doesn't contain the
7272 // property. It's true even if some slots represent deleted properties
ulan@chromium.org967e2702012-02-28 09:49:15 +00007273 // (their names are the hole value).
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +00007274 for (int i = 0; i < kInlinedProbes; i++) {
7275 // scratch0 points to properties hash.
7276 // Compute the masked index: (hash + i + i * i) & mask.
7277 Register index = scratch0;
7278 // Capacity is smi 2^n.
7279 __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
7280 __ sub(index, index, Operand(1));
7281 __ and_(index, index, Operand(
7282 Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
7283
7284 // Scale the index by multiplying by the entry size.
7285 ASSERT(StringDictionary::kEntrySize == 3);
7286 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
7287
7288 Register entity_name = scratch0;
7289 // Having undefined at this place means the name is not contained.
7290 ASSERT_EQ(kSmiTagSize, 1);
7291 Register tmp = properties;
7292 __ add(tmp, properties, Operand(index, LSL, 1));
7293 __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
7294
7295 ASSERT(!tmp.is(entity_name));
7296 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
7297 __ cmp(entity_name, tmp);
7298 __ b(eq, done);
7299
7300 if (i != kInlinedProbes - 1) {
ulan@chromium.org967e2702012-02-28 09:49:15 +00007301 // Load the hole ready for use below:
7302 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
7303
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +00007304 // Stop if found the property.
7305 __ cmp(entity_name, Operand(Handle<String>(name)));
7306 __ b(eq, miss);
7307
ulan@chromium.org967e2702012-02-28 09:49:15 +00007308 Label the_hole;
7309 __ cmp(entity_name, tmp);
7310 __ b(eq, &the_hole);
7311
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +00007312 // Check if the entry name is not a symbol.
7313 __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
7314 __ ldrb(entity_name,
7315 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
7316 __ tst(entity_name, Operand(kIsSymbolMask));
7317 __ b(eq, miss);
7318
ulan@chromium.org967e2702012-02-28 09:49:15 +00007319 __ bind(&the_hole);
7320
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +00007321 // Restore the properties.
7322 __ ldr(properties,
7323 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
7324 }
7325 }
7326
7327 const int spill_mask =
7328 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
7329 r2.bit() | r1.bit() | r0.bit());
7330
7331 __ stm(db_w, sp, spill_mask);
7332 __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
7333 __ mov(r1, Operand(Handle<String>(name)));
7334 StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
7335 __ CallStub(&stub);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00007336 __ cmp(r0, Operand::Zero());
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +00007337 __ ldm(ia_w, sp, spill_mask);
7338
7339 __ b(eq, done);
7340 __ b(ne, miss);
7341}
7342
7343
lrn@chromium.org1c092762011-05-09 09:42:16 +00007344// Probe the string dictionary in the |elements| register. Jump to the
7345// |done| label if a property with the given name is found. Jump to
7346// the |miss| label otherwise.
7347// If lookup was successful |scratch2| will be equal to elements + 4 * index.
7348void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
7349 Label* miss,
7350 Label* done,
7351 Register elements,
7352 Register name,
7353 Register scratch1,
7354 Register scratch2) {
erik.corry@gmail.com6e28b562011-10-27 14:20:17 +00007355 ASSERT(!elements.is(scratch1));
7356 ASSERT(!elements.is(scratch2));
7357 ASSERT(!name.is(scratch1));
7358 ASSERT(!name.is(scratch2));
7359
svenpanne@chromium.orgc859c4f2012-10-15 11:51:39 +00007360 __ AssertString(name);
lrn@chromium.org1c092762011-05-09 09:42:16 +00007361
7362 // Compute the capacity mask.
7363 __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
7364 __ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize)); // convert smi to int
7365 __ sub(scratch1, scratch1, Operand(1));
7366
7367 // Generate an unrolled loop that performs a few probes before
7368 // giving up. Measurements done on Gmail indicate that 2 probes
7369 // cover ~93% of loads from dictionaries.
7370 for (int i = 0; i < kInlinedProbes; i++) {
7371 // Compute the masked index: (hash + i + i * i) & mask.
7372 __ ldr(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
7373 if (i > 0) {
7374 // Add the probe offset (i + i * i) left shifted to avoid right shifting
7375 // the hash in a separate instruction. The value hash + i + i * i is right
7376 // shifted in the following and instruction.
7377 ASSERT(StringDictionary::GetProbeOffset(i) <
7378 1 << (32 - String::kHashFieldOffset));
7379 __ add(scratch2, scratch2, Operand(
7380 StringDictionary::GetProbeOffset(i) << String::kHashShift));
7381 }
7382 __ and_(scratch2, scratch1, Operand(scratch2, LSR, String::kHashShift));
7383
7384 // Scale the index by multiplying by the element size.
7385 ASSERT(StringDictionary::kEntrySize == 3);
7386 // scratch2 = scratch2 * 3.
7387 __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
7388
7389 // Check if the key is identical to the name.
7390 __ add(scratch2, elements, Operand(scratch2, LSL, 2));
7391 __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
7392 __ cmp(name, Operand(ip));
7393 __ b(eq, done);
7394 }
7395
7396 const int spill_mask =
7397 (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
7398 r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
7399 ~(scratch1.bit() | scratch2.bit());
7400
7401 __ stm(db_w, sp, spill_mask);
erik.corry@gmail.com6e28b562011-10-27 14:20:17 +00007402 if (name.is(r0)) {
7403 ASSERT(!elements.is(r1));
7404 __ Move(r1, name);
7405 __ Move(r0, elements);
7406 } else {
7407 __ Move(r0, elements);
7408 __ Move(r1, name);
7409 }
lrn@chromium.org1c092762011-05-09 09:42:16 +00007410 StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
7411 __ CallStub(&stub);
jkummerow@chromium.org59297c72013-01-09 16:32:23 +00007412 __ cmp(r0, Operand::Zero());
lrn@chromium.org1c092762011-05-09 09:42:16 +00007413 __ mov(scratch2, Operand(r2));
7414 __ ldm(ia_w, sp, spill_mask);
7415
7416 __ b(ne, done);
7417 __ b(eq, miss);
7418}
7419
7420
7421void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007422 // This stub overrides SometimesSetsUpAFrame() to return false. That means
7423 // we cannot call anything that could cause a GC from this stub.
lrn@chromium.org1c092762011-05-09 09:42:16 +00007424 // Registers:
7425 // result: StringDictionary to probe
7426 // r1: key
7427 // : StringDictionary to probe.
7428 // index_: will hold an index of entry if lookup is successful.
7429 // might alias with result_.
7430 // Returns:
7431 // result_ is zero if lookup failed, non zero otherwise.
7432
7433 Register result = r0;
7434 Register dictionary = r0;
7435 Register key = r1;
7436 Register index = r2;
7437 Register mask = r3;
7438 Register hash = r4;
7439 Register undefined = r5;
7440 Register entry_key = r6;
7441
7442 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
7443
7444 __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
7445 __ mov(mask, Operand(mask, ASR, kSmiTagSize));
7446 __ sub(mask, mask, Operand(1));
7447
7448 __ ldr(hash, FieldMemOperand(key, String::kHashFieldOffset));
7449
7450 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
7451
7452 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
7453 // Compute the masked index: (hash + i + i * i) & mask.
7454 // Capacity is smi 2^n.
7455 if (i > 0) {
7456 // Add the probe offset (i + i * i) left shifted to avoid right shifting
7457 // the hash in a separate instruction. The value hash + i + i * i is right
7458 // shifted in the following and instruction.
7459 ASSERT(StringDictionary::GetProbeOffset(i) <
7460 1 << (32 - String::kHashFieldOffset));
7461 __ add(index, hash, Operand(
7462 StringDictionary::GetProbeOffset(i) << String::kHashShift));
7463 } else {
7464 __ mov(index, Operand(hash));
7465 }
7466 __ and_(index, mask, Operand(index, LSR, String::kHashShift));
7467
7468 // Scale the index by multiplying by the entry size.
7469 ASSERT(StringDictionary::kEntrySize == 3);
7470 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
7471
7472 ASSERT_EQ(kSmiTagSize, 1);
7473 __ add(index, dictionary, Operand(index, LSL, 2));
7474 __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
7475
7476 // Having undefined at this place means the name is not contained.
7477 __ cmp(entry_key, Operand(undefined));
7478 __ b(eq, &not_in_dictionary);
7479
7480 // Stop if found the property.
7481 __ cmp(entry_key, Operand(key));
7482 __ b(eq, &in_dictionary);
7483
7484 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
7485 // Check if the entry name is not a symbol.
7486 __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
7487 __ ldrb(entry_key,
7488 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
7489 __ tst(entry_key, Operand(kIsSymbolMask));
7490 __ b(eq, &maybe_in_dictionary);
7491 }
7492 }
7493
7494 __ bind(&maybe_in_dictionary);
7495 // If we are doing negative lookup then probing failure should be
7496 // treated as a lookup success. For positive lookup probing failure
7497 // should be treated as lookup failure.
7498 if (mode_ == POSITIVE_LOOKUP) {
ricow@chromium.orgddd545c2011-08-24 12:02:41 +00007499 __ mov(result, Operand::Zero());
lrn@chromium.org1c092762011-05-09 09:42:16 +00007500 __ Ret();
7501 }
7502
7503 __ bind(&in_dictionary);
7504 __ mov(result, Operand(1));
7505 __ Ret();
7506
7507 __ bind(&not_in_dictionary);
ricow@chromium.orgddd545c2011-08-24 12:02:41 +00007508 __ mov(result, Operand::Zero());
lrn@chromium.org1c092762011-05-09 09:42:16 +00007509 __ Ret();
7510}
7511
7512
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007513struct AheadOfTimeWriteBarrierStubList {
7514 Register object, value, address;
7515 RememberedSetAction action;
7516};
7517
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007518#define REG(Name) { kRegister_ ## Name ## _Code }
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007519
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007520static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007521 // Used in RegExpExecStub.
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007522 { REG(r6), REG(r4), REG(r7), EMIT_REMEMBERED_SET },
7523 { REG(r6), REG(r2), REG(r7), EMIT_REMEMBERED_SET },
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007524 // Used in CompileArrayPushCall.
7525 // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore.
7526 // Also used in KeyedStoreIC::GenerateGeneric.
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007527 { REG(r3), REG(r4), REG(r5), EMIT_REMEMBERED_SET },
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007528 // Used in CompileStoreGlobal.
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007529 { REG(r4), REG(r1), REG(r2), OMIT_REMEMBERED_SET },
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007530 // Used in StoreStubCompiler::CompileStoreField via GenerateStoreField.
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007531 { REG(r1), REG(r2), REG(r3), EMIT_REMEMBERED_SET },
7532 { REG(r3), REG(r2), REG(r1), EMIT_REMEMBERED_SET },
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007533 // Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007534 { REG(r2), REG(r1), REG(r3), EMIT_REMEMBERED_SET },
7535 { REG(r3), REG(r1), REG(r2), EMIT_REMEMBERED_SET },
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007536 // KeyedStoreStubCompiler::GenerateStoreFastElement.
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007537 { REG(r3), REG(r2), REG(r4), EMIT_REMEMBERED_SET },
7538 { REG(r2), REG(r3), REG(r4), EMIT_REMEMBERED_SET },
svenpanne@chromium.org830d30c2012-05-29 13:20:14 +00007539 // ElementsTransitionGenerator::GenerateMapChangeElementTransition
7540 // and ElementsTransitionGenerator::GenerateSmiToDouble
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +00007541 // and ElementsTransitionGenerator::GenerateDoubleToObject
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007542 { REG(r2), REG(r3), REG(r9), EMIT_REMEMBERED_SET },
7543 { REG(r2), REG(r3), REG(r9), OMIT_REMEMBERED_SET },
erik.corry@gmail.com394dbcf2011-10-27 07:38:48 +00007544 // ElementsTransitionGenerator::GenerateDoubleToObject
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007545 { REG(r6), REG(r2), REG(r0), EMIT_REMEMBERED_SET },
7546 { REG(r2), REG(r6), REG(r9), EMIT_REMEMBERED_SET },
jkummerow@chromium.org04e4f1e2011-11-14 13:36:17 +00007547 // StoreArrayLiteralElementStub::Generate
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007548 { REG(r5), REG(r0), REG(r6), EMIT_REMEMBERED_SET },
yangguo@chromium.org5a11aaf2012-06-20 11:29:00 +00007549 // FastNewClosureStub::Generate
7550 { REG(r2), REG(r4), REG(r1), EMIT_REMEMBERED_SET },
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007551 // Null termination.
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007552 { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007553};
7554
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007555#undef REG
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007556
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00007557
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007558bool RecordWriteStub::IsPregenerated() {
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007559 for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007560 !entry->object.is(no_reg);
7561 entry++) {
7562 if (object_.is(entry->object) &&
7563 value_.is(entry->value) &&
7564 address_.is(entry->address) &&
7565 remembered_set_action_ == entry->action &&
7566 save_fp_regs_mode_ == kDontSaveFPRegs) {
7567 return true;
7568 }
7569 }
7570 return false;
7571}
7572
7573
7574bool StoreBufferOverflowStub::IsPregenerated() {
7575 return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated();
7576}
7577
7578
7579void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
7580 StoreBufferOverflowStub stub1(kDontSaveFPRegs);
7581 stub1.GetCode()->set_is_pregenerated(true);
7582}
7583
7584
7585void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
jkummerow@chromium.org1456e702012-03-30 08:38:13 +00007586 for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007587 !entry->object.is(no_reg);
7588 entry++) {
7589 RecordWriteStub stub(entry->object,
7590 entry->value,
7591 entry->address,
7592 entry->action,
7593 kDontSaveFPRegs);
7594 stub.GetCode()->set_is_pregenerated(true);
7595 }
7596}
7597
7598
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00007599bool CodeStub::CanUseFPRegisters() {
7600 return CpuFeatures::IsSupported(VFP2);
7601}
7602
7603
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007604// Takes the input in 3 registers: address_ value_ and object_. A pointer to
7605// the value has just been written into the object, now this stub makes sure
7606// we keep the GC informed. The word in the object where the value has been
7607// written is in the address register.
7608void RecordWriteStub::Generate(MacroAssembler* masm) {
7609 Label skip_to_incremental_noncompacting;
7610 Label skip_to_incremental_compacting;
7611
7612 // The first two instructions are generated with labels so as to get the
7613 // offset fixed up correctly by the bind(Label*) call. We patch it back and
7614 // forth between a compare instructions (a nop in this position) and the
7615 // real branch when we start and stop incremental heap marking.
7616 // See RecordWriteStub::Patch for details.
mmassi@chromium.org7028c052012-06-13 11:51:58 +00007617 {
7618 // Block literal pool emission, as the position of these two instructions
7619 // is assumed by the patching code.
7620 Assembler::BlockConstPoolScope block_const_pool(masm);
7621 __ b(&skip_to_incremental_noncompacting);
7622 __ b(&skip_to_incremental_compacting);
7623 }
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007624
7625 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7626 __ RememberedSetHelper(object_,
7627 address_,
7628 value_,
7629 save_fp_regs_mode_,
7630 MacroAssembler::kReturnAtEnd);
7631 }
7632 __ Ret();
7633
7634 __ bind(&skip_to_incremental_noncompacting);
7635 GenerateIncremental(masm, INCREMENTAL);
7636
7637 __ bind(&skip_to_incremental_compacting);
7638 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
7639
7640 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
7641 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
7642 ASSERT(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
7643 ASSERT(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
7644 PatchBranchIntoNop(masm, 0);
7645 PatchBranchIntoNop(masm, Assembler::kInstrSize);
7646}
7647
7648
7649void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
7650 regs_.Save(masm);
7651
7652 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7653 Label dont_need_remembered_set;
7654
7655 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
7656 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
7657 regs_.scratch0(),
7658 &dont_need_remembered_set);
7659
7660 __ CheckPageFlag(regs_.object(),
7661 regs_.scratch0(),
7662 1 << MemoryChunk::SCAN_ON_SCAVENGE,
7663 ne,
7664 &dont_need_remembered_set);
7665
7666 // First notify the incremental marker if necessary, then update the
7667 // remembered set.
7668 CheckNeedsToInformIncrementalMarker(
7669 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
7670 InformIncrementalMarker(masm, mode);
7671 regs_.Restore(masm);
7672 __ RememberedSetHelper(object_,
7673 address_,
7674 value_,
7675 save_fp_regs_mode_,
7676 MacroAssembler::kReturnAtEnd);
7677
7678 __ bind(&dont_need_remembered_set);
7679 }
7680
7681 CheckNeedsToInformIncrementalMarker(
7682 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
7683 InformIncrementalMarker(masm, mode);
7684 regs_.Restore(masm);
7685 __ Ret();
7686}
7687
7688
7689void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
7690 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
7691 int argument_count = 3;
7692 __ PrepareCallCFunction(argument_count, regs_.scratch0());
7693 Register address =
7694 r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
7695 ASSERT(!address.is(regs_.object()));
7696 ASSERT(!address.is(r0));
7697 __ Move(address, regs_.address());
7698 __ Move(r0, regs_.object());
ulan@chromium.org8e8d8822012-11-23 14:36:46 +00007699 __ Move(r1, address);
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007700 __ mov(r2, Operand(ExternalReference::isolate_address()));
7701
7702 AllowExternalCallThatCantCauseGC scope(masm);
7703 if (mode == INCREMENTAL_COMPACTION) {
7704 __ CallCFunction(
7705 ExternalReference::incremental_evacuation_record_write_function(
7706 masm->isolate()),
7707 argument_count);
7708 } else {
7709 ASSERT(mode == INCREMENTAL);
7710 __ CallCFunction(
7711 ExternalReference::incremental_marking_record_write_function(
7712 masm->isolate()),
7713 argument_count);
7714 }
7715 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
7716}
7717
7718
7719void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
7720 MacroAssembler* masm,
7721 OnNoNeedToInformIncrementalMarker on_no_need,
7722 Mode mode) {
7723 Label on_black;
7724 Label need_incremental;
7725 Label need_incremental_pop_scratch;
7726
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00007727 __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
7728 __ ldr(regs_.scratch1(),
7729 MemOperand(regs_.scratch0(),
7730 MemoryChunk::kWriteBarrierCounterOffset));
7731 __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC);
7732 __ str(regs_.scratch1(),
7733 MemOperand(regs_.scratch0(),
7734 MemoryChunk::kWriteBarrierCounterOffset));
7735 __ b(mi, &need_incremental);
7736
erik.corry@gmail.comc3b670f2011-10-05 21:44:48 +00007737 // Let's look at the color of the object: If it is not black we don't have
7738 // to inform the incremental marker.
7739 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
7740
7741 regs_.Restore(masm);
7742 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7743 __ RememberedSetHelper(object_,
7744 address_,
7745 value_,
7746 save_fp_regs_mode_,
7747 MacroAssembler::kReturnAtEnd);
7748 } else {
7749 __ Ret();
7750 }
7751
7752 __ bind(&on_black);
7753
7754 // Get the value from the slot.
7755 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
7756
7757 if (mode == INCREMENTAL_COMPACTION) {
7758 Label ensure_not_white;
7759
7760 __ CheckPageFlag(regs_.scratch0(), // Contains value.
7761 regs_.scratch1(), // Scratch.
7762 MemoryChunk::kEvacuationCandidateMask,
7763 eq,
7764 &ensure_not_white);
7765
7766 __ CheckPageFlag(regs_.object(),
7767 regs_.scratch1(), // Scratch.
7768 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
7769 eq,
7770 &need_incremental);
7771
7772 __ bind(&ensure_not_white);
7773 }
7774
7775 // We need extra registers for this, so we push the object and the address
7776 // register temporarily.
7777 __ Push(regs_.object(), regs_.address());
7778 __ EnsureNotWhite(regs_.scratch0(), // The value.
7779 regs_.scratch1(), // Scratch.
7780 regs_.object(), // Scratch.
7781 regs_.address(), // Scratch.
7782 &need_incremental_pop_scratch);
7783 __ Pop(regs_.object(), regs_.address());
7784
7785 regs_.Restore(masm);
7786 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7787 __ RememberedSetHelper(object_,
7788 address_,
7789 value_,
7790 save_fp_regs_mode_,
7791 MacroAssembler::kReturnAtEnd);
7792 } else {
7793 __ Ret();
7794 }
7795
7796 __ bind(&need_incremental_pop_scratch);
7797 __ Pop(regs_.object(), regs_.address());
7798
7799 __ bind(&need_incremental);
7800
7801 // Fall through when we need to inform the incremental marker.
7802}
7803
jkummerow@chromium.org04e4f1e2011-11-14 13:36:17 +00007804
7805void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
7806 // ----------- S t a t e -------------
7807 // -- r0 : element value to store
7808 // -- r1 : array literal
7809 // -- r2 : map of array literal
7810 // -- r3 : element index as smi
7811 // -- r4 : array literal index in function as smi
7812 // -----------------------------------
7813
7814 Label element_done;
7815 Label double_elements;
7816 Label smi_element;
7817 Label slow_elements;
7818 Label fast_elements;
7819
7820 __ CheckFastElements(r2, r5, &double_elements);
svenpanne@chromium.org830d30c2012-05-29 13:20:14 +00007821 // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
jkummerow@chromium.org04e4f1e2011-11-14 13:36:17 +00007822 __ JumpIfSmi(r0, &smi_element);
svenpanne@chromium.org830d30c2012-05-29 13:20:14 +00007823 __ CheckFastSmiElements(r2, r5, &fast_elements);
jkummerow@chromium.org04e4f1e2011-11-14 13:36:17 +00007824
7825 // Store into the array literal requires a elements transition. Call into
7826 // the runtime.
7827 __ bind(&slow_elements);
7828 // call.
7829 __ Push(r1, r3, r0);
7830 __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
7831 __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
7832 __ Push(r5, r4);
7833 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
7834
svenpanne@chromium.org830d30c2012-05-29 13:20:14 +00007835 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
jkummerow@chromium.org04e4f1e2011-11-14 13:36:17 +00007836 __ bind(&fast_elements);
7837 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
7838 __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
7839 __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
7840 __ str(r0, MemOperand(r6, 0));
7841 // Update the write barrier for the array store.
7842 __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
7843 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
7844 __ Ret();
7845
svenpanne@chromium.org830d30c2012-05-29 13:20:14 +00007846 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
7847 // and value is Smi.
jkummerow@chromium.org04e4f1e2011-11-14 13:36:17 +00007848 __ bind(&smi_element);
7849 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
7850 __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
7851 __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
7852 __ Ret();
7853
7854 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
7855 __ bind(&double_elements);
7856 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
yangguo@chromium.orgfb377212012-11-16 14:43:43 +00007857 __ StoreNumberToDoubleElements(r0, r3,
verwaest@chromium.org33e09c82012-10-10 17:07:22 +00007858 // Overwrites all regs after this.
7859 r5, r6, r7, r9, r2,
jkummerow@chromium.org04e4f1e2011-11-14 13:36:17 +00007860 &slow_elements);
7861 __ Ret();
7862}
7863
verwaest@chromium.org753aee42012-07-17 16:15:42 +00007864
mstarzinger@chromium.org068ea0a2013-01-30 09:39:44 +00007865void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
7866 ASSERT(!Serializer::enabled());
7867 bool save_fp_regs = CpuFeatures::IsSupported(VFP2);
7868 CEntryStub ces(1, save_fp_regs ? kSaveFPRegs : kDontSaveFPRegs);
7869 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
7870 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
7871 __ Ret();
7872}
7873
7874
verwaest@chromium.org753aee42012-07-17 16:15:42 +00007875void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
7876 if (entry_hook_ != NULL) {
ulan@chromium.org8e8d8822012-11-23 14:36:46 +00007877 PredictableCodeSizeScope predictable(masm, 4 * Assembler::kInstrSize);
verwaest@chromium.org753aee42012-07-17 16:15:42 +00007878 ProfileEntryHookStub stub;
7879 __ push(lr);
7880 __ CallStub(&stub);
7881 __ pop(lr);
7882 }
7883}
7884
7885
7886void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
7887 // The entry hook is a "push lr" instruction, followed by a call.
7888 const int32_t kReturnAddressDistanceFromFunctionStart =
rossberg@chromium.org89e18f52012-10-22 13:09:53 +00007889 3 * Assembler::kInstrSize;
verwaest@chromium.org753aee42012-07-17 16:15:42 +00007890
7891 // Save live volatile registers.
7892 __ Push(lr, r5, r1);
7893 const int32_t kNumSavedRegs = 3;
7894
7895 // Compute the function's address for the first argument.
7896 __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
7897
7898 // The caller's return address is above the saved temporaries.
7899 // Grab that for the second argument to the hook.
7900 __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
7901
7902 // Align the stack if necessary.
7903 int frame_alignment = masm->ActivationFrameAlignment();
7904 if (frame_alignment > kPointerSize) {
7905 __ mov(r5, sp);
7906 ASSERT(IsPowerOf2(frame_alignment));
7907 __ and_(sp, sp, Operand(-frame_alignment));
7908 }
7909
7910#if defined(V8_HOST_ARCH_ARM)
7911 __ mov(ip, Operand(reinterpret_cast<int32_t>(&entry_hook_)));
7912 __ ldr(ip, MemOperand(ip));
7913#else
7914 // Under the simulator we need to indirect the entry hook through a
7915 // trampoline function at a known address.
7916 Address trampoline_address = reinterpret_cast<Address>(
7917 reinterpret_cast<intptr_t>(EntryHookTrampoline));
7918 ApiFunction dispatcher(trampoline_address);
7919 __ mov(ip, Operand(ExternalReference(&dispatcher,
7920 ExternalReference::BUILTIN_CALL,
7921 masm->isolate())));
7922#endif
7923 __ Call(ip);
7924
7925 // Restore the stack pointer if needed.
7926 if (frame_alignment > kPointerSize) {
7927 __ mov(sp, r5);
7928 }
7929
7930 __ Pop(lr, r5, r1);
7931 __ Ret();
7932}
7933
ricow@chromium.org65fae842010-08-25 15:26:24 +00007934#undef __
7935
7936} } // namespace v8::internal
7937
7938#endif // V8_TARGET_ARCH_ARM