blob: c208f0c7b552e4e77dbdf1ab9359c2fbe7899572 [file] [log] [blame]
// GRSimpleVals.cpp - Transfer functions for tracking simple values -*- C++ -*--
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines GRSimpleVals, a sub-class of GRTransferFuncs that
// provides transfer functions for performing simple value tracking with
// limited support for symbolics.
//
//===----------------------------------------------------------------------===//
#include "GRSimpleVals.h"
#include "BasicObjCFoundationChecks.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Analysis/PathDiagnostic.h"
#include "clang/Analysis/PathSensitive/ValueState.h"
#include "clang/Analysis/PathSensitive/BugReporter.h"
#include "clang/Analysis/LocalCheckers.h"
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "llvm/Support/Compiler.h"
#include <sstream>
using namespace clang;
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
template <typename ITERATOR> inline
ExplodedNode<ValueState>* GetNode(ITERATOR I) {
return *I;
}
template <> inline
ExplodedNode<ValueState>* GetNode(GRExprEngine::undef_arg_iterator I) {
return I->first;
}
template <typename ITER>
void GenericEmitWarnings(BugReporter& BR, BugType& D, ITER I, ITER E) {
for (; I != E; ++I) {
BugReport R(D, GetNode(I));
BR.EmitWarning(R);
}
}
//===----------------------------------------------------------------------===//
// Bug Descriptions.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN NullDeref : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "null dereference";
}
virtual const char* getDescription() const {
return "Dereference of null pointer.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.null_derefs_begin(),
Eng.null_derefs_end());
}
};
class VISIBILITY_HIDDEN UndefDeref : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "bad dereference";
}
virtual const char* getDescription() const {
return "Dereference of undefined value.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.undef_derefs_begin(),
Eng.undef_derefs_end());
}
};
class VISIBILITY_HIDDEN UndefBranch : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "uninitialized value";
}
virtual const char* getDescription() const {
return "Branch condition evaluates to an uninitialized value.";
}
virtual void EmitWarnings(BugReporter& BR);
};
class VISIBILITY_HIDDEN DivZero : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "divide-by-zero";
}
virtual const char* getDescription() const {
return "Division by zero/undefined value.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.explicit_bad_divides_begin(),
Eng.explicit_bad_divides_end());
}
};
class VISIBILITY_HIDDEN UndefResult : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "undefined result";
}
virtual const char* getDescription() const {
return "Result of operation is undefined.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.undef_results_begin(),
Eng.undef_results_end());
}
};
class VISIBILITY_HIDDEN BadCall : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "invalid function call";
}
virtual const char* getDescription() const {
return "Called function is a NULL or undefined function pointer value.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.bad_calls_begin(),
Eng.bad_calls_end());
}
};
class VISIBILITY_HIDDEN BadArg : public BugTypeCacheLocation {
public:
virtual ~BadArg() {}
virtual const char* getName() const {
return "bad argument";
}
virtual const char* getDescription() const {
return "Pass-by-value argument in function is undefined.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
for (GRExprEngine::UndefArgsTy::iterator I = Eng.undef_arg_begin(),
E = Eng.undef_arg_end(); I!=E; ++I) {
// Generate a report for this bug.
RangedBugReport report(*this, I->first);
report.addRange(I->second->getSourceRange());
// Emit the warning.
BR.EmitWarning(report);
}
}
};
class VISIBILITY_HIDDEN BadMsgExprArg : public BadArg {
public:
virtual const char* getName() const {
return "bad argument";
}
virtual const char* getDescription() const {
return "Pass-by-value argument in message expression is undefined.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
for (GRExprEngine::UndefArgsTy::iterator I=Eng.msg_expr_undef_arg_begin(),
E = Eng.msg_expr_undef_arg_end(); I!=E; ++I) {
// Generate a report for this bug.
RangedBugReport report(*this, I->first);
report.addRange(I->second->getSourceRange());
// Emit the warning.
BR.EmitWarning(report);
}
}
};
class VISIBILITY_HIDDEN BadReceiver : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "bad receiver";
}
virtual const char* getDescription() const {
return "Receiver in message expression is an uninitialized value.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
for (GRExprEngine::UndefReceiversTy::iterator I=Eng.undef_receivers_begin(),
End = Eng.undef_receivers_end(); I!=End; ++I) {
// Generate a report for this bug.
RangedBugReport report(*this, *I);
ExplodedNode<ValueState>* N = *I;
Stmt *S = cast<PostStmt>(N->getLocation()).getStmt();
Expr* E = cast<ObjCMessageExpr>(S)->getReceiver();
assert (E && "Receiver cannot be NULL");
report.addRange(E->getSourceRange());
// Emit the warning.
BR.EmitWarning(report);
}
}
};
class VISIBILITY_HIDDEN RetStack : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "return of stack address";
}
virtual const char* getDescription() const {
return "Address of stack-allocated variable returned.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.ret_stackaddr_begin(),
Eng.ret_stackaddr_end());
}
};
} // end anonymous namespace
namespace {
struct VISIBILITY_HIDDEN FindUndefExpr {
ValueStateManager& VM;
ValueState* St;
FindUndefExpr(ValueStateManager& V, ValueState* S) : VM(V), St(S) {}
Expr* FindExpr(Expr* Ex) {
if (!MatchesCriteria(Ex))
return 0;
for (Stmt::child_iterator I=Ex->child_begin(), E=Ex->child_end(); I!=E; ++I)
if (Expr* ExI = dyn_cast_or_null<Expr>(*I)) {
Expr* E2 = FindExpr(ExI);
if (E2) return E2;
}
return Ex;
}
bool MatchesCriteria(Expr* Ex) { return VM.GetRVal(St, Ex).isUndef(); }
};
} // end anonymous namespace
void UndefBranch::EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
for (GRExprEngine::undef_branch_iterator I=Eng.undef_branches_begin(),
E=Eng.undef_branches_end(); I!=E; ++I) {
// What's going on here: we want to highlight the subexpression of the
// condition that is the most likely source of the "uninitialized
// branch condition." We do a recursive walk of the condition's
// subexpressions and roughly look for the most nested subexpression
// that binds to Undefined. We then highlight that expression's range.
BlockEdge B = cast<BlockEdge>((*I)->getLocation());
Expr* Ex = cast<Expr>(B.getSrc()->getTerminatorCondition());
assert (Ex && "Block must have a terminator.");
// Get the predecessor node and check if is a PostStmt with the Stmt
// being the terminator condition. We want to inspect the state
// of that node instead because it will contain main information about
// the subexpressions.
assert (!(*I)->pred_empty());
// Note: any predecessor will do. They should have identical state,
// since all the BlockEdge did was act as an error sink since the value
// had to already be undefined.
ExplodedNode<ValueState> *N = *(*I)->pred_begin();
ProgramPoint P = N->getLocation();
ValueState* St = (*I)->getState();
if (PostStmt* PS = dyn_cast<PostStmt>(&P))
if (PS->getStmt() == Ex)
St = N->getState();
FindUndefExpr FindIt(Eng.getStateManager(), St);
Ex = FindIt.FindExpr(Ex);
RangedBugReport R(*this, *I);
R.addRange(Ex->getSourceRange());
BR.EmitWarning(R);
}
}
void GRSimpleVals::RegisterChecks(GRExprEngine& Eng) {
// Path-sensitive checks.
Eng.Register(new NullDeref());
Eng.Register(new UndefDeref());
Eng.Register(new UndefBranch());
Eng.Register(new DivZero());
Eng.Register(new UndefResult());
Eng.Register(new BadCall());
Eng.Register(new RetStack());
Eng.Register(new BadArg());
Eng.Register(new BadMsgExprArg());
Eng.Register(new BadReceiver());
// Flow-sensitive checks.
Eng.Register(MakeDeadStoresChecker());
// Add extra checkers.
ASTContext& Ctx = Eng.getContext();
ValueStateManager* VMgr = &Eng.getStateManager();
GRSimpleAPICheck* Check = CreateBasicObjCFoundationChecks(Ctx, VMgr);
Eng.AddObjCMessageExprCheck(Check);
Check = CreateAuditCFNumberCreate(Ctx, VMgr);
Eng.AddCallCheck(Check);
}
//===----------------------------------------------------------------------===//
// Transfer Function creation for External clients.
//===----------------------------------------------------------------------===//
GRTransferFuncs* clang::MakeGRSimpleValsTF() { return new GRSimpleVals(); }
//===----------------------------------------------------------------------===//
// Transfer function for Casts.
//===----------------------------------------------------------------------===//
RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, NonLVal X, QualType T) {
if (!isa<nonlval::ConcreteInt>(X))
return UnknownVal();
BasicValueFactory& BasicVals = Eng.getBasicVals();
llvm::APSInt V = cast<nonlval::ConcreteInt>(X).getValue();
V.setIsUnsigned(T->isUnsignedIntegerType() || LVal::IsLValType(T));
V.extOrTrunc(Eng.getContext().getTypeSize(T));
if (LVal::IsLValType(T))
return lval::ConcreteInt(BasicVals.getValue(V));
else
return nonlval::ConcreteInt(BasicVals.getValue(V));
}
// Casts.
RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, LVal X, QualType T) {
// Casts from pointers -> pointers, just return the lval.
//
// Casts from pointers -> references, just return the lval. These
// can be introduced by the frontend for corner cases, e.g
// casting from va_list* to __builtin_va_list&.
//
if (LVal::IsLValType(T) || T->isReferenceType())
return X;
assert (T->isIntegerType());
if (!isa<lval::ConcreteInt>(X))
return UnknownVal();
BasicValueFactory& BasicVals = Eng.getBasicVals();
llvm::APSInt V = cast<lval::ConcreteInt>(X).getValue();
V.setIsUnsigned(T->isUnsignedIntegerType() || LVal::IsLValType(T));
V.extOrTrunc(Eng.getContext().getTypeSize(T));
return nonlval::ConcreteInt(BasicVals.getValue(V));
}
// Unary operators.
RVal GRSimpleVals::EvalMinus(GRExprEngine& Eng, UnaryOperator* U, NonLVal X){
switch (X.getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(X).EvalMinus(Eng.getBasicVals(), U);
default:
return UnknownVal();
}
}
RVal GRSimpleVals::EvalComplement(GRExprEngine& Eng, NonLVal X) {
switch (X.getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(X).EvalComplement(Eng.getBasicVals());
default:
return UnknownVal();
}
}
// Binary operators.
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
NonLVal L, NonLVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
while (1) {
switch (L.getSubKind()) {
default:
return UnknownVal();
case nonlval::ConcreteIntKind:
if (isa<nonlval::ConcreteInt>(R)) {
const nonlval::ConcreteInt& L_CI = cast<nonlval::ConcreteInt>(L);
const nonlval::ConcreteInt& R_CI = cast<nonlval::ConcreteInt>(R);
return L_CI.EvalBinOp(BasicVals, Op, R_CI);
}
else {
NonLVal tmp = R;
R = L;
L = tmp;
continue;
}
case nonlval::SymbolValKind: {
if (isa<nonlval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<nonlval::SymbolVal>(L).getSymbol(), Op,
cast<nonlval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
else
return UnknownVal();
}
}
}
}
// Binary Operators (except assignments and comma).
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
LVal L, LVal R) {
switch (Op) {
default:
return UnknownVal();
case BinaryOperator::EQ:
return EvalEQ(Eng, L, R);
case BinaryOperator::NE:
return EvalNE(Eng, L, R);
}
}
// Pointer arithmetic.
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
LVal L, NonLVal R) {
return UnknownVal();
}
// Equality operators for LVals.
RVal GRSimpleVals::EvalEQ(GRExprEngine& Eng, LVal L, LVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
switch (L.getSubKind()) {
default:
assert(false && "EQ not implemented for this LVal.");
return UnknownVal();
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(R)) {
bool b = cast<lval::ConcreteInt>(L).getValue() ==
cast<lval::ConcreteInt>(R).getValue();
return NonLVal::MakeIntTruthVal(BasicVals, b);
}
else if (isa<lval::SymbolVal>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(L).getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
// FIXME: Implement == for lval Symbols. This is mainly useful
// in iterator loops when traversing a buffer, e.g. while(z != zTerm).
// Since this is not useful for many checkers we'll punt on this for
// now.
return UnknownVal();
}
// FIXME: Different offsets can map to the same memory cell.
case lval::ArrayOffsetKind:
case lval::FieldOffsetKind:
// Fall-through.
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
case lval::StringLiteralValKind:
return NonLVal::MakeIntTruthVal(BasicVals, L == R);
}
return NonLVal::MakeIntTruthVal(BasicVals, false);
}
RVal GRSimpleVals::EvalNE(GRExprEngine& Eng, LVal L, LVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
switch (L.getSubKind()) {
default:
assert(false && "NE not implemented for this LVal.");
return UnknownVal();
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(R)) {
bool b = cast<lval::ConcreteInt>(L).getValue() !=
cast<lval::ConcreteInt>(R).getValue();
return NonLVal::MakeIntTruthVal(BasicVals, b);
}
else if (isa<lval::SymbolVal>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(L).getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
// FIXME: Implement != for lval Symbols. This is mainly useful
// in iterator loops when traversing a buffer, e.g. while(z != zTerm).
// Since this is not useful for many checkers we'll punt on this for
// now.
return UnknownVal();
break;
}
// FIXME: Different offsets can map to the same memory cell.
case lval::ArrayOffsetKind:
case lval::FieldOffsetKind:
// Fall-through.
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
case lval::StringLiteralValKind:
return NonLVal::MakeIntTruthVal(BasicVals, L != R);
}
return NonLVal::MakeIntTruthVal(BasicVals, true);
}
//===----------------------------------------------------------------------===//
// Transfer function for function calls.
//===----------------------------------------------------------------------===//
void GRSimpleVals::EvalCall(ExplodedNodeSet<ValueState>& Dst,
GRExprEngine& Eng,
GRStmtNodeBuilder<ValueState>& Builder,
CallExpr* CE, RVal L,
ExplodedNode<ValueState>* Pred) {
ValueStateManager& StateMgr = Eng.getStateManager();
ValueState* St = Builder.GetState(Pred);
// Invalidate all arguments passed in by reference (LVals).
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I) {
RVal V = StateMgr.GetRVal(St, *I);
if (isa<LVal>(V))
St = StateMgr.SetRVal(St, cast<LVal>(V), UnknownVal());
else if (isa<nonlval::LValAsInteger>(V))
St = StateMgr.SetRVal(St, cast<nonlval::LValAsInteger>(V).getLVal(),
UnknownVal());
}
// Make up a symbol for the return value of this function.
if (CE->getType() != Eng.getContext().VoidTy) {
unsigned Count = Builder.getCurrentBlockCount();
SymbolID Sym = Eng.getSymbolManager().getConjuredSymbol(CE, Count);
RVal X = LVal::IsLValType(CE->getType())
? cast<RVal>(lval::SymbolVal(Sym))
: cast<RVal>(nonlval::SymbolVal(Sym));
St = StateMgr.SetRVal(St, CE, X, Eng.getCFG().isBlkExpr(CE), false);
}
Builder.MakeNode(Dst, CE, Pred, St);
}
//===----------------------------------------------------------------------===//
// Transfer function for Objective-C message expressions.
//===----------------------------------------------------------------------===//
void GRSimpleVals::EvalObjCMessageExpr(ExplodedNodeSet<ValueState>& Dst,
GRExprEngine& Eng,
GRStmtNodeBuilder<ValueState>& Builder,
ObjCMessageExpr* ME,
ExplodedNode<ValueState>* Pred) {
// The basic transfer function logic for message expressions does nothing.
// We just invalidate all arguments passed in by references.
ValueStateManager& StateMgr = Eng.getStateManager();
ValueState* St = Builder.GetState(Pred);
for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end();
I != E; ++I) {
RVal V = StateMgr.GetRVal(St, *I);
if (isa<LVal>(V))
St = StateMgr.SetRVal(St, cast<LVal>(V), UnknownVal());
}
Builder.MakeNode(Dst, ME, Pred, St);
}