blob: 28656873ab0596c858b4b3c4668db315909899bf [file] [log] [blame]
//===--- DeclBase.cpp - Declaration AST Node Implementation ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl and DeclContext classes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
#include "llvm/ADT/DenseMap.h"
#include <algorithm>
#include <functional>
#include <vector>
using namespace clang;
//===----------------------------------------------------------------------===//
// Statistics
//===----------------------------------------------------------------------===//
// temporary statistics gathering
static unsigned nFuncs = 0;
static unsigned nVars = 0;
static unsigned nParmVars = 0;
static unsigned nOriginalParmVars = 0;
static unsigned nSUC = 0;
static unsigned nCXXSUC = 0;
static unsigned nEnumConst = 0;
static unsigned nEnumDecls = 0;
static unsigned nNamespaces = 0;
static unsigned nOverFuncs = 0;
static unsigned nTypedef = 0;
static unsigned nFieldDecls = 0;
static unsigned nInterfaceDecls = 0;
static unsigned nClassDecls = 0;
static unsigned nMethodDecls = 0;
static unsigned nProtocolDecls = 0;
static unsigned nForwardProtocolDecls = 0;
static unsigned nCategoryDecls = 0;
static unsigned nIvarDecls = 0;
static unsigned nAtDefsFieldDecls = 0;
static unsigned nObjCImplementationDecls = 0;
static unsigned nObjCCategoryImpl = 0;
static unsigned nObjCCompatibleAlias = 0;
static unsigned nObjCPropertyDecl = 0;
static unsigned nObjCPropertyImplDecl = 0;
static unsigned nLinkageSpecDecl = 0;
static unsigned nFileScopeAsmDecl = 0;
static unsigned nBlockDecls = 0;
static bool StatSwitch = false;
// This keeps track of all decl attributes. Since so few decls have attrs, we
// keep them in a hash map instead of wasting space in the Decl class.
typedef llvm::DenseMap<const Decl*, Attr*> DeclAttrMapTy;
static DeclAttrMapTy *DeclAttrs = 0;
const char *Decl::getDeclKindName() const {
switch (DeclKind) {
default: assert(0 && "Unknown decl kind!");
case Namespace: return "Namespace";
case OverloadedFunction: return "OverloadedFunction";
case Typedef: return "Typedef";
case Function: return "Function";
case Var: return "Var";
case ParmVar: return "ParmVar";
case OriginalParmVar: return "OriginalParmVar";
case EnumConstant: return "EnumConstant";
case ObjCIvar: return "ObjCIvar";
case ObjCInterface: return "ObjCInterface";
case ObjCImplementation: return "ObjCImplementation";
case ObjCClass: return "ObjCClass";
case ObjCMethod: return "ObjCMethod";
case ObjCProtocol: return "ObjCProtocol";
case ObjCProperty: return "ObjCProperty";
case ObjCPropertyImpl: return "ObjCPropertyImpl";
case ObjCForwardProtocol: return "ObjCForwardProtocol";
case Record: return "Record";
case CXXRecord: return "CXXRecord";
case Enum: return "Enum";
case Block: return "Block";
case Field: return "Field";
}
}
bool Decl::CollectingStats(bool Enable) {
if (Enable)
StatSwitch = true;
return StatSwitch;
}
void Decl::PrintStats() {
fprintf(stderr, "*** Decl Stats:\n");
fprintf(stderr, " %d decls total.\n",
int(nFuncs+nVars+nParmVars+nOriginalParmVars+nFieldDecls+nSUC+nCXXSUC+
nEnumDecls+nEnumConst+nTypedef+nInterfaceDecls+nClassDecls+
nMethodDecls+nProtocolDecls+nCategoryDecls+nIvarDecls+
nAtDefsFieldDecls+nNamespaces+nOverFuncs));
fprintf(stderr, " %d namespace decls, %d each (%d bytes)\n",
nNamespaces, (int)sizeof(NamespaceDecl),
int(nNamespaces*sizeof(NamespaceDecl)));
fprintf(stderr, " %d overloaded function decls, %d each (%d bytes)\n",
nOverFuncs, (int)sizeof(OverloadedFunctionDecl),
int(nOverFuncs*sizeof(OverloadedFunctionDecl)));
fprintf(stderr, " %d function decls, %d each (%d bytes)\n",
nFuncs, (int)sizeof(FunctionDecl), int(nFuncs*sizeof(FunctionDecl)));
fprintf(stderr, " %d variable decls, %d each (%d bytes)\n",
nVars, (int)sizeof(VarDecl),
int(nVars*sizeof(VarDecl)));
fprintf(stderr, " %d parameter variable decls, %d each (%d bytes)\n",
nParmVars, (int)sizeof(ParmVarDecl),
int(nParmVars*sizeof(ParmVarDecl)));
fprintf(stderr, " %d original parameter variable decls, %d each (%d bytes)\n",
nOriginalParmVars, (int)sizeof(ParmVarWithOriginalTypeDecl),
int(nOriginalParmVars*sizeof(ParmVarWithOriginalTypeDecl)));
fprintf(stderr, " %d field decls, %d each (%d bytes)\n",
nFieldDecls, (int)sizeof(FieldDecl),
int(nFieldDecls*sizeof(FieldDecl)));
fprintf(stderr, " %d @defs generated field decls, %d each (%d bytes)\n",
nAtDefsFieldDecls, (int)sizeof(ObjCAtDefsFieldDecl),
int(nAtDefsFieldDecls*sizeof(ObjCAtDefsFieldDecl)));
fprintf(stderr, " %d struct/union/class decls, %d each (%d bytes)\n",
nSUC, (int)sizeof(RecordDecl),
int(nSUC*sizeof(RecordDecl)));
fprintf(stderr, " %d C++ struct/union/class decls, %d each (%d bytes)\n",
nCXXSUC, (int)sizeof(CXXRecordDecl),
int(nCXXSUC*sizeof(CXXRecordDecl)));
fprintf(stderr, " %d enum decls, %d each (%d bytes)\n",
nEnumDecls, (int)sizeof(EnumDecl),
int(nEnumDecls*sizeof(EnumDecl)));
fprintf(stderr, " %d enum constant decls, %d each (%d bytes)\n",
nEnumConst, (int)sizeof(EnumConstantDecl),
int(nEnumConst*sizeof(EnumConstantDecl)));
fprintf(stderr, " %d typedef decls, %d each (%d bytes)\n",
nTypedef, (int)sizeof(TypedefDecl),int(nTypedef*sizeof(TypedefDecl)));
// Objective-C decls...
fprintf(stderr, " %d interface decls, %d each (%d bytes)\n",
nInterfaceDecls, (int)sizeof(ObjCInterfaceDecl),
int(nInterfaceDecls*sizeof(ObjCInterfaceDecl)));
fprintf(stderr, " %d instance variable decls, %d each (%d bytes)\n",
nIvarDecls, (int)sizeof(ObjCIvarDecl),
int(nIvarDecls*sizeof(ObjCIvarDecl)));
fprintf(stderr, " %d class decls, %d each (%d bytes)\n",
nClassDecls, (int)sizeof(ObjCClassDecl),
int(nClassDecls*sizeof(ObjCClassDecl)));
fprintf(stderr, " %d method decls, %d each (%d bytes)\n",
nMethodDecls, (int)sizeof(ObjCMethodDecl),
int(nMethodDecls*sizeof(ObjCMethodDecl)));
fprintf(stderr, " %d protocol decls, %d each (%d bytes)\n",
nProtocolDecls, (int)sizeof(ObjCProtocolDecl),
int(nProtocolDecls*sizeof(ObjCProtocolDecl)));
fprintf(stderr, " %d forward protocol decls, %d each (%d bytes)\n",
nForwardProtocolDecls, (int)sizeof(ObjCForwardProtocolDecl),
int(nForwardProtocolDecls*sizeof(ObjCForwardProtocolDecl)));
fprintf(stderr, " %d category decls, %d each (%d bytes)\n",
nCategoryDecls, (int)sizeof(ObjCCategoryDecl),
int(nCategoryDecls*sizeof(ObjCCategoryDecl)));
fprintf(stderr, " %d class implementation decls, %d each (%d bytes)\n",
nObjCImplementationDecls, (int)sizeof(ObjCImplementationDecl),
int(nObjCImplementationDecls*sizeof(ObjCImplementationDecl)));
fprintf(stderr, " %d class implementation decls, %d each (%d bytes)\n",
nObjCCategoryImpl, (int)sizeof(ObjCCategoryImplDecl),
int(nObjCCategoryImpl*sizeof(ObjCCategoryImplDecl)));
fprintf(stderr, " %d compatibility alias decls, %d each (%d bytes)\n",
nObjCCompatibleAlias, (int)sizeof(ObjCCompatibleAliasDecl),
int(nObjCCompatibleAlias*sizeof(ObjCCompatibleAliasDecl)));
fprintf(stderr, " %d property decls, %d each (%d bytes)\n",
nObjCPropertyDecl, (int)sizeof(ObjCPropertyDecl),
int(nObjCPropertyDecl*sizeof(ObjCPropertyDecl)));
fprintf(stderr, " %d property implementation decls, %d each (%d bytes)\n",
nObjCPropertyImplDecl, (int)sizeof(ObjCPropertyImplDecl),
int(nObjCPropertyImplDecl*sizeof(ObjCPropertyImplDecl)));
fprintf(stderr, "Total bytes = %d\n",
int(nFuncs*sizeof(FunctionDecl)+
nVars*sizeof(VarDecl)+nParmVars*sizeof(ParmVarDecl)+
nOriginalParmVars*sizeof(ParmVarWithOriginalTypeDecl)+
nFieldDecls*sizeof(FieldDecl)+nSUC*sizeof(RecordDecl)+
nCXXSUC*sizeof(CXXRecordDecl)+
nEnumDecls*sizeof(EnumDecl)+nEnumConst*sizeof(EnumConstantDecl)+
nTypedef*sizeof(TypedefDecl)+
nInterfaceDecls*sizeof(ObjCInterfaceDecl)+
nIvarDecls*sizeof(ObjCIvarDecl)+
nClassDecls*sizeof(ObjCClassDecl)+
nMethodDecls*sizeof(ObjCMethodDecl)+
nProtocolDecls*sizeof(ObjCProtocolDecl)+
nForwardProtocolDecls*sizeof(ObjCForwardProtocolDecl)+
nCategoryDecls*sizeof(ObjCCategoryDecl)+
nObjCImplementationDecls*sizeof(ObjCImplementationDecl)+
nObjCCategoryImpl*sizeof(ObjCCategoryImplDecl)+
nObjCCompatibleAlias*sizeof(ObjCCompatibleAliasDecl)+
nObjCPropertyDecl*sizeof(ObjCPropertyDecl)+
nObjCPropertyImplDecl*sizeof(ObjCPropertyImplDecl)+
nLinkageSpecDecl*sizeof(LinkageSpecDecl)+
nFileScopeAsmDecl*sizeof(FileScopeAsmDecl)+
nNamespaces*sizeof(NamespaceDecl)+
nOverFuncs*sizeof(OverloadedFunctionDecl)));
}
void Decl::addDeclKind(Kind k) {
switch (k) {
case Namespace: nNamespaces++; break;
case OverloadedFunction: nOverFuncs++; break;
case Typedef: nTypedef++; break;
case Function: nFuncs++; break;
case Var: nVars++; break;
case ParmVar: nParmVars++; break;
case OriginalParmVar: nOriginalParmVars++; break;
case EnumConstant: nEnumConst++; break;
case Field: nFieldDecls++; break;
case Record: nSUC++; break;
case Enum: nEnumDecls++; break;
case ObjCContainer: break; // is abstract...no need to account for.
case ObjCInterface: nInterfaceDecls++; break;
case ObjCClass: nClassDecls++; break;
case ObjCMethod: nMethodDecls++; break;
case ObjCProtocol: nProtocolDecls++; break;
case ObjCForwardProtocol: nForwardProtocolDecls++; break;
case ObjCCategory: nCategoryDecls++; break;
case ObjCIvar: nIvarDecls++; break;
case ObjCAtDefsField: nAtDefsFieldDecls++; break;
case ObjCImplementation: nObjCImplementationDecls++; break;
case ObjCCategoryImpl: nObjCCategoryImpl++; break;
case ObjCCompatibleAlias: nObjCCompatibleAlias++; break;
case ObjCProperty: nObjCPropertyDecl++; break;
case ObjCPropertyImpl: nObjCPropertyImplDecl++; break;
case LinkageSpec: nLinkageSpecDecl++; break;
case FileScopeAsm: nFileScopeAsmDecl++; break;
case Block: nBlockDecls++; break;
case ImplicitParam:
case TranslationUnit: break;
case CXXRecord: nCXXSUC++; break;
// FIXME: Statistics for C++ decls.
case TemplateTypeParm:
case NonTypeTemplateParm:
case CXXMethod:
case CXXConstructor:
case CXXDestructor:
case CXXConversion:
case CXXClassVar:
break;
}
}
//===----------------------------------------------------------------------===//
// Decl Implementation
//===----------------------------------------------------------------------===//
// Out-of-line virtual method providing a home for Decl.
Decl::~Decl() {
if (!HasAttrs)
return;
DeclAttrMapTy::iterator it = DeclAttrs->find(this);
assert(it != DeclAttrs->end() && "No attrs found but HasAttrs is true!");
// release attributes.
delete it->second;
invalidateAttrs();
}
void Decl::addAttr(Attr *NewAttr) {
if (!DeclAttrs)
DeclAttrs = new DeclAttrMapTy();
Attr *&ExistingAttr = (*DeclAttrs)[this];
NewAttr->setNext(ExistingAttr);
ExistingAttr = NewAttr;
HasAttrs = true;
}
void Decl::invalidateAttrs() {
if (!HasAttrs) return;
HasAttrs = false;
(*DeclAttrs)[this] = 0;
DeclAttrs->erase(this);
if (DeclAttrs->empty()) {
delete DeclAttrs;
DeclAttrs = 0;
}
}
const Attr *Decl::getAttrs() const {
if (!HasAttrs)
return 0;
return (*DeclAttrs)[this];
}
void Decl::swapAttrs(Decl *RHS) {
bool HasLHSAttr = this->HasAttrs;
bool HasRHSAttr = RHS->HasAttrs;
// Usually, neither decl has attrs, nothing to do.
if (!HasLHSAttr && !HasRHSAttr) return;
// If 'this' has no attrs, swap the other way.
if (!HasLHSAttr)
return RHS->swapAttrs(this);
// Handle the case when both decls have attrs.
if (HasRHSAttr) {
std::swap((*DeclAttrs)[this], (*DeclAttrs)[RHS]);
return;
}
// Otherwise, LHS has an attr and RHS doesn't.
(*DeclAttrs)[RHS] = (*DeclAttrs)[this];
(*DeclAttrs).erase(this);
this->HasAttrs = false;
RHS->HasAttrs = true;
}
void Decl::Destroy(ASTContext& C) {
#if 0
// FIXME: This causes double-destroys in some cases, so it is
// disabled at the moment.
if (ScopedDecl* SD = dyn_cast<ScopedDecl>(this)) {
// Observe the unrolled recursion. By setting N->NextDeclarator = 0x0
// within the loop, only the Destroy method for the first ScopedDecl
// will deallocate all of the ScopedDecls in a chain.
ScopedDecl* N = SD->getNextDeclarator();
while (N) {
ScopedDecl* Tmp = N->getNextDeclarator();
N->NextDeclarator = 0x0;
N->Destroy(C);
N = Tmp;
}
}
#endif
this->~Decl();
C.getAllocator().Deallocate((void *)this);
}
Decl *Decl::castFromDeclContext (const DeclContext *D) {
return DeclContext::CastTo<Decl>(D);
}
DeclContext *Decl::castToDeclContext(const Decl *D) {
return DeclContext::CastTo<DeclContext>(D);
}
//===----------------------------------------------------------------------===//
// DeclContext Implementation
//===----------------------------------------------------------------------===//
const DeclContext *DeclContext::getParent() const {
if (const ScopedDecl *SD = dyn_cast<ScopedDecl>(this))
return SD->getDeclContext();
else if (const BlockDecl *BD = dyn_cast<BlockDecl>(this))
return BD->getParentContext();
else
return NULL;
}
const DeclContext *DeclContext::getLexicalParent() const {
if (const ScopedDecl *SD = dyn_cast<ScopedDecl>(this))
return SD->getLexicalDeclContext();
return getParent();
}
// FIXME: We really want to use a DenseSet here to eliminate the
// redundant storage of the declaration names, but (1) it doesn't give
// us the ability to search based on DeclarationName, (2) we really
// need something more like a DenseMultiSet, and (3) it's
// implemented in terms of DenseMap anyway. However, this data
// structure is really space-inefficient, so we'll have to do
// something.
typedef llvm::DenseMap<DeclarationName, std::vector<ScopedDecl*> >
StoredDeclsMap;
DeclContext::~DeclContext() {
unsigned Size = LookupPtr.getInt();
if (Size == LookupIsMap) {
StoredDeclsMap *Map = static_cast<StoredDeclsMap*>(LookupPtr.getPointer());
delete Map;
} else {
ScopedDecl **Array = static_cast<ScopedDecl**>(LookupPtr.getPointer());
delete [] Array;
}
}
void DeclContext::DestroyDecls(ASTContext &C) {
for (decl_iterator D = decls_begin(); D != decls_end(); ) {
// FIXME: assert that this condition holds.
if ((*D)->getLexicalDeclContext() == this)
// Advance the cursor (via NextDeclInScope) *before* doing the Destroy.
(*D++)->Destroy(C);
else
++D;
}
}
bool DeclContext::isTransparentContext() const {
if (DeclKind == Decl::Enum)
return true; // FIXME: Check for C++0x scoped enums
else if (DeclKind == Decl::LinkageSpec)
return true;
else if (DeclKind == Decl::Record || DeclKind == Decl::CXXRecord)
return cast<RecordDecl>(this)->isAnonymousStructOrUnion();
else if (DeclKind == Decl::Namespace)
return false; // FIXME: Check for C++0x inline namespaces
return false;
}
DeclContext *DeclContext::getPrimaryContext() {
switch (DeclKind) {
case Decl::TranslationUnit:
case Decl::LinkageSpec:
case Decl::Block:
// There is only one DeclContext for these entities.
return this;
case Decl::Namespace:
// The original namespace is our primary context.
return static_cast<NamespaceDecl*>(this)->getOriginalNamespace();
case Decl::Enum:
case Decl::Record:
case Decl::CXXRecord:
// If this is a tag type that has a definition or is currently
// being defined, that definition is our primary context.
if (TagType *TagT = cast_or_null<TagType>(cast<TagDecl>(this)->TypeForDecl))
if (TagT->isBeingDefined() ||
(TagT->getDecl() && TagT->getDecl()->isDefinition()))
return TagT->getDecl();
return this;
case Decl::ObjCMethod:
return this;
case Decl::ObjCInterface:
case Decl::ObjCProtocol:
case Decl::ObjCCategory:
// FIXME: Can Objective-C interfaces be forward-declared?
return this;
case Decl::ObjCImplementation:
case Decl::ObjCCategoryImpl:
return this;
default:
assert(DeclKind >= Decl::FunctionFirst && DeclKind <= Decl::FunctionLast &&
"Unknown DeclContext kind");
return this;
}
}
DeclContext *DeclContext::getNextContext() {
switch (DeclKind) {
case Decl::TranslationUnit:
case Decl::Enum:
case Decl::Record:
case Decl::CXXRecord:
case Decl::ObjCMethod:
case Decl::ObjCInterface:
case Decl::ObjCCategory:
case Decl::ObjCProtocol:
case Decl::ObjCImplementation:
case Decl::ObjCCategoryImpl:
case Decl::LinkageSpec:
case Decl::Block:
// There is only one DeclContext for these entities.
return 0;
case Decl::Namespace:
// Return the next namespace
return static_cast<NamespaceDecl*>(this)->getNextNamespace();
default:
assert(DeclKind >= Decl::FunctionFirst && DeclKind <= Decl::FunctionLast &&
"Unknown DeclContext kind");
return 0;
}
}
void DeclContext::addDecl(ScopedDecl *D) {
assert(D->getLexicalDeclContext() == this && "Decl inserted into wrong lexical context");
assert(!D->NextDeclInScope && D != LastDecl &&
"Decl already inserted into a DeclContext");
if (FirstDecl) {
LastDecl->NextDeclInScope = D;
LastDecl = D;
} else {
FirstDecl = LastDecl = D;
}
D->getDeclContext()->insert(D);
}
/// buildLookup - Build the lookup data structure with all of the
/// declarations in DCtx (and any other contexts linked to it or
/// transparent contexts nested within it).
void DeclContext::buildLookup(DeclContext *DCtx) {
for (; DCtx; DCtx = DCtx->getNextContext()) {
for (decl_iterator D = DCtx->decls_begin(), DEnd = DCtx->decls_end();
D != DEnd; ++D) {
// Insert this declaration into the lookup structure
insertImpl(*D);
// If this declaration is itself a transparent declaration context,
// add its members (recursively).
if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D))
if (InnerCtx->isTransparentContext())
buildLookup(InnerCtx->getPrimaryContext());
}
}
}
DeclContext::lookup_result
DeclContext::lookup(DeclarationName Name) {
DeclContext *PrimaryContext = getPrimaryContext();
if (PrimaryContext != this)
return PrimaryContext->lookup(Name);
/// If there is no lookup data structure, build one now by walking
/// all of the linked DeclContexts (in declaration order!) and
/// inserting their values.
if (LookupPtr.getPointer() == 0)
buildLookup(this);
if (isLookupMap()) {
StoredDeclsMap *Map = static_cast<StoredDeclsMap*>(LookupPtr.getPointer());
StoredDeclsMap::iterator Pos = Map->find(Name);
if (Pos != Map->end())
return lookup_result(&Pos->second.front(),
&Pos->second.front() + Pos->second.size());
return lookup_result(0, 0);
}
// We have a small array. Look into it.
unsigned Size = LookupPtr.getInt();
ScopedDecl **Array = static_cast<ScopedDecl**>(LookupPtr.getPointer());
for (unsigned Idx = 0; Idx != Size; ++Idx)
if (Array[Idx]->getDeclName() == Name) {
unsigned Last = Idx + 1;
while (Last != Size && Array[Last]->getDeclName() == Name)
++Last;
return lookup_result(&Array[Idx], &Array[Last]);
}
return lookup_result(0, 0);
}
DeclContext::lookup_const_result
DeclContext::lookup(DeclarationName Name) const {
return const_cast<DeclContext*>(this)->lookup(Name);
}
const DeclContext *DeclContext::getLookupContext() const {
const DeclContext *Ctx = this;
// Skip through transparent contexts.
while (Ctx->isTransparentContext())
Ctx = Ctx->getParent();
return Ctx;
}
void DeclContext::insert(ScopedDecl *D) {
DeclContext *PrimaryContext = getPrimaryContext();
if (PrimaryContext != this) {
PrimaryContext->insert(D);
return;
}
// If we already have a lookup data structure, perform the insertion
// into it. Otherwise, be lazy and don't build that structure until
// someone asks for it.
if (LookupPtr.getPointer())
insertImpl(D);
// If we are a transparent context, insert into our parent context,
// too. This operation is recursive.
if (isTransparentContext())
getParent()->insert(D);
}
void DeclContext::insertImpl(ScopedDecl *D) {
// Skip unnamed declarations.
if (!D->getDeclName())
return;
bool MayBeRedeclaration = true;
if (!isLookupMap()) {
unsigned Size = LookupPtr.getInt();
// The lookup data is stored as an array. Search through the array
// to find the insertion location.
ScopedDecl **Array;
if (Size == 0) {
Array = new ScopedDecl*[LookupIsMap - 1];
LookupPtr.setPointer(Array);
} else {
Array = static_cast<ScopedDecl **>(LookupPtr.getPointer());
}
// We always keep declarations of the same name next to each other
// in the array, so that it is easy to return multiple results
// from lookup().
unsigned FirstMatch;
for (FirstMatch = 0; FirstMatch != Size; ++FirstMatch)
if (Array[FirstMatch]->getDeclName() == D->getDeclName())
break;
unsigned InsertPos = FirstMatch;
if (FirstMatch != Size) {
// We found another declaration with the same name. First
// determine whether this is a redeclaration of an existing
// declaration in this scope, in which case we will replace the
// existing declaration.
unsigned LastMatch = FirstMatch;
for (; LastMatch != Size; ++LastMatch) {
if (Array[LastMatch]->getDeclName() != D->getDeclName())
break;
if (D->declarationReplaces(Array[LastMatch])) {
// D is a redeclaration of an existing element in the
// array. Replace that element with D.
Array[LastMatch] = D;
return;
}
}
// [FirstMatch, LastMatch) contains the set of declarations that
// have the same name as this declaration. Determine where the
// declaration D will be inserted into this range.
if (D->getIdentifierNamespace() == Decl::IDNS_Tag)
InsertPos = LastMatch;
else if (Array[LastMatch-1]->getIdentifierNamespace() == Decl::IDNS_Tag)
InsertPos = LastMatch - 1;
else
InsertPos = LastMatch;
}
if (Size < LookupIsMap - 1) {
// The new declaration will fit in the array. Insert the new
// declaration at the position Match in the array.
for (unsigned Idx = Size; Idx > InsertPos; --Idx)
Array[Idx] = Array[Idx-1];
Array[InsertPos] = D;
LookupPtr.setInt(Size + 1);
return;
}
// We've reached capacity in this array. Create a map and copy in
// all of the declarations that were stored in the array.
StoredDeclsMap *Map = new StoredDeclsMap(16);
LookupPtr.setPointer(Map);
LookupPtr.setInt(LookupIsMap);
for (unsigned Idx = 0; Idx != LookupIsMap - 1; ++Idx)
insertImpl(Array[Idx]);
delete [] Array;
// Fall through to perform insertion into the map.
MayBeRedeclaration = false;
}
// Insert this declaration into the map.
StoredDeclsMap *Map = static_cast<StoredDeclsMap*>(LookupPtr.getPointer());
StoredDeclsMap::iterator Pos = Map->find(D->getDeclName());
if (Pos != Map->end()) {
if (MayBeRedeclaration) {
// Determine if this declaration is actually a redeclaration.
std::vector<ScopedDecl *>::iterator Redecl
= std::find_if(Pos->second.begin(), Pos->second.end(),
std::bind1st(std::mem_fun(&ScopedDecl::declarationReplaces),
D));
if (Redecl != Pos->second.end()) {
*Redecl = D;
return;
}
}
// Put this declaration into the appropriate slot.
if (D->getIdentifierNamespace() == Decl::IDNS_Tag || Pos->second.empty())
Pos->second.push_back(D);
else if (Pos->second.back()->getIdentifierNamespace() == Decl::IDNS_Tag) {
ScopedDecl *TagD = Pos->second.back();
Pos->second.back() = D;
Pos->second.push_back(TagD);
} else
Pos->second.push_back(D);
} else {
(*Map)[D->getDeclName()].push_back(D);
}
}