Move name mangling support from CodeGen to AST.  In the
process, perform a number of refactorings:

- Move MiscNameMangler member functions to MangleContext
- Remove GlobalDecl dependency from MangleContext
- Make MangleContext abstract and move Itanium/Microsoft functionality
  to their own classes/files
- Implement ASTContext::createMangleContext and have CodeGen use it

No (intended) functionality change.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@123386 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/AST/ItaniumMangle.cpp b/lib/AST/ItaniumMangle.cpp
new file mode 100644
index 0000000..8daba88
--- /dev/null
+++ b/lib/AST/ItaniumMangle.cpp
@@ -0,0 +1,2625 @@
+//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements C++ name mangling according to the Itanium C++ ABI,
+// which is used in GCC 3.2 and newer (and many compilers that are
+// ABI-compatible with GCC):
+//
+//   http://www.codesourcery.com/public/cxx-abi/abi.html
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/Mangle.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Basic/ABI.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/ErrorHandling.h"
+
+#define MANGLE_CHECKER 0
+
+#if MANGLE_CHECKER
+#include <cxxabi.h>
+#endif
+
+using namespace clang;
+
+namespace {
+
+static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
+  const DeclContext *DC = dyn_cast<DeclContext>(ND);
+  if (!DC)
+    DC = ND->getDeclContext();
+  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
+    if (isa<FunctionDecl>(DC->getParent()))
+      return dyn_cast<CXXRecordDecl>(DC);
+    DC = DC->getParent();
+  }
+  return 0;
+}
+
+static const CXXMethodDecl *getStructor(const CXXMethodDecl *MD) {
+  assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
+         "Passed in decl is not a ctor or dtor!");
+
+  if (const TemplateDecl *TD = MD->getPrimaryTemplate()) {
+    MD = cast<CXXMethodDecl>(TD->getTemplatedDecl());
+
+    assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
+           "Templated decl is not a ctor or dtor!");
+  }
+
+  return MD;
+}
+
+static const unsigned UnknownArity = ~0U;
+
+class ItaniumMangleContext : public MangleContext {
+  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
+  unsigned Discriminator;
+  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
+  
+public:
+  explicit ItaniumMangleContext(ASTContext &Context,
+                                Diagnostic &Diags)
+    : MangleContext(Context, Diags) { }
+
+  uint64_t getAnonymousStructId(const TagDecl *TD) {
+    std::pair<llvm::DenseMap<const TagDecl *,
+      uint64_t>::iterator, bool> Result =
+      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
+    return Result.first->second;
+  }
+
+  void startNewFunction() {
+    MangleContext::startNewFunction();
+    mangleInitDiscriminator();
+  }
+
+  /// @name Mangler Entry Points
+  /// @{
+
+  bool shouldMangleDeclName(const NamedDecl *D);
+  void mangleName(const NamedDecl *D, llvm::SmallVectorImpl<char> &);
+  void mangleThunk(const CXXMethodDecl *MD,
+                   const ThunkInfo &Thunk,
+                   llvm::SmallVectorImpl<char> &);
+  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
+                          const ThisAdjustment &ThisAdjustment,
+                          llvm::SmallVectorImpl<char> &);
+  void mangleReferenceTemporary(const VarDecl *D,
+                                llvm::SmallVectorImpl<char> &);
+  void mangleCXXVTable(const CXXRecordDecl *RD,
+                       llvm::SmallVectorImpl<char> &);
+  void mangleCXXVTT(const CXXRecordDecl *RD,
+                    llvm::SmallVectorImpl<char> &);
+  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
+                           const CXXRecordDecl *Type,
+                           llvm::SmallVectorImpl<char> &);
+  void mangleCXXRTTI(QualType T, llvm::SmallVectorImpl<char> &);
+  void mangleCXXRTTIName(QualType T, llvm::SmallVectorImpl<char> &);
+  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
+                     llvm::SmallVectorImpl<char> &);
+  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
+                     llvm::SmallVectorImpl<char> &);
+
+  void mangleItaniumGuardVariable(const VarDecl *D,
+                                  llvm::SmallVectorImpl<char> &);
+
+  void mangleInitDiscriminator() {
+    Discriminator = 0;
+  }
+
+  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
+    unsigned &discriminator = Uniquifier[ND];
+    if (!discriminator)
+      discriminator = ++Discriminator;
+    if (discriminator == 1)
+      return false;
+    disc = discriminator-2;
+    return true;
+  }
+  /// @}
+};
+
+/// CXXNameMangler - Manage the mangling of a single name.
+class CXXNameMangler {
+  ItaniumMangleContext &Context;
+  llvm::raw_svector_ostream Out;
+
+  const CXXMethodDecl *Structor;
+  unsigned StructorType;
+
+  /// SeqID - The next subsitution sequence number.
+  unsigned SeqID;
+
+  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
+
+  ASTContext &getASTContext() const { return Context.getASTContext(); }
+
+public:
+  CXXNameMangler(ItaniumMangleContext &C, llvm::SmallVectorImpl<char> &Res)
+    : Context(C), Out(Res), Structor(0), StructorType(0), SeqID(0) { }
+  CXXNameMangler(ItaniumMangleContext &C, llvm::SmallVectorImpl<char> &Res,
+                 const CXXConstructorDecl *D, CXXCtorType Type)
+    : Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type),
+    SeqID(0) { }
+  CXXNameMangler(ItaniumMangleContext &C, llvm::SmallVectorImpl<char> &Res,
+                 const CXXDestructorDecl *D, CXXDtorType Type)
+    : Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type),
+    SeqID(0) { }
+
+#if MANGLE_CHECKER
+  ~CXXNameMangler() {
+    if (Out.str()[0] == '\01')
+      return;
+
+    int status = 0;
+    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
+    assert(status == 0 && "Could not demangle mangled name!");
+    free(result);
+  }
+#endif
+  llvm::raw_svector_ostream &getStream() { return Out; }
+
+  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z");
+  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
+  void mangleNumber(const llvm::APSInt &I);
+  void mangleNumber(int64_t Number);
+  void mangleFloat(const llvm::APFloat &F);
+  void mangleFunctionEncoding(const FunctionDecl *FD);
+  void mangleName(const NamedDecl *ND);
+  void mangleType(QualType T);
+  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
+  
+private:
+  bool mangleSubstitution(const NamedDecl *ND);
+  bool mangleSubstitution(QualType T);
+  bool mangleSubstitution(TemplateName Template);
+  bool mangleSubstitution(uintptr_t Ptr);
+
+  bool mangleStandardSubstitution(const NamedDecl *ND);
+
+  void addSubstitution(const NamedDecl *ND) {
+    ND = cast<NamedDecl>(ND->getCanonicalDecl());
+
+    addSubstitution(reinterpret_cast<uintptr_t>(ND));
+  }
+  void addSubstitution(QualType T);
+  void addSubstitution(TemplateName Template);
+  void addSubstitution(uintptr_t Ptr);
+
+  void mangleUnresolvedScope(NestedNameSpecifier *Qualifier);
+  void mangleUnresolvedName(NestedNameSpecifier *Qualifier,
+                            DeclarationName Name,
+                            unsigned KnownArity = UnknownArity);
+
+  void mangleName(const TemplateDecl *TD,
+                  const TemplateArgument *TemplateArgs,
+                  unsigned NumTemplateArgs);
+  void mangleUnqualifiedName(const NamedDecl *ND) {
+    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
+  }
+  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
+                             unsigned KnownArity);
+  void mangleUnscopedName(const NamedDecl *ND);
+  void mangleUnscopedTemplateName(const TemplateDecl *ND);
+  void mangleUnscopedTemplateName(TemplateName);
+  void mangleSourceName(const IdentifierInfo *II);
+  void mangleLocalName(const NamedDecl *ND);
+  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
+                        bool NoFunction=false);
+  void mangleNestedName(const TemplateDecl *TD,
+                        const TemplateArgument *TemplateArgs,
+                        unsigned NumTemplateArgs);
+  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
+  void mangleTemplatePrefix(const TemplateDecl *ND);
+  void mangleTemplatePrefix(TemplateName Template);
+  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
+  void mangleQualifiers(Qualifiers Quals);
+
+  void mangleObjCMethodName(const ObjCMethodDecl *MD);
+
+  // Declare manglers for every type class.
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT)
+#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
+#include "clang/AST/TypeNodes.def"
+
+  void mangleType(const TagType*);
+  void mangleType(TemplateName);
+  void mangleBareFunctionType(const FunctionType *T,
+                              bool MangleReturnType);
+  void mangleNeonVectorType(const VectorType *T);
+
+  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
+  void mangleMemberExpr(const Expr *Base, bool IsArrow,
+                        NestedNameSpecifier *Qualifier,
+                        DeclarationName Name,
+                        unsigned KnownArity);
+  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
+  void mangleCXXCtorType(CXXCtorType T);
+  void mangleCXXDtorType(CXXDtorType T);
+
+  void mangleTemplateArgs(const ExplicitTemplateArgumentList &TemplateArgs);
+  void mangleTemplateArgs(TemplateName Template,
+                          const TemplateArgument *TemplateArgs,
+                          unsigned NumTemplateArgs);  
+  void mangleTemplateArgs(const TemplateParameterList &PL,
+                          const TemplateArgument *TemplateArgs,
+                          unsigned NumTemplateArgs);
+  void mangleTemplateArgs(const TemplateParameterList &PL,
+                          const TemplateArgumentList &AL);
+  void mangleTemplateArg(const NamedDecl *P, const TemplateArgument &A);
+
+  void mangleTemplateParameter(unsigned Index);
+};
+
+}
+
+static bool isInCLinkageSpecification(const Decl *D) {
+  D = D->getCanonicalDecl();
+  for (const DeclContext *DC = D->getDeclContext();
+       !DC->isTranslationUnit(); DC = DC->getParent()) {
+    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
+      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
+  }
+
+  return false;
+}
+
+bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
+  // In C, functions with no attributes never need to be mangled. Fastpath them.
+  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
+    return false;
+
+  // Any decl can be declared with __asm("foo") on it, and this takes precedence
+  // over all other naming in the .o file.
+  if (D->hasAttr<AsmLabelAttr>())
+    return true;
+
+  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
+  // (always) as does passing a C++ member function and a function
+  // whose name is not a simple identifier.
+  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
+             !FD->getDeclName().isIdentifier()))
+    return true;
+
+  // Otherwise, no mangling is done outside C++ mode.
+  if (!getASTContext().getLangOptions().CPlusPlus)
+    return false;
+
+  // Variables at global scope with non-internal linkage are not mangled
+  if (!FD) {
+    const DeclContext *DC = D->getDeclContext();
+    // Check for extern variable declared locally.
+    if (DC->isFunctionOrMethod() && D->hasLinkage())
+      while (!DC->isNamespace() && !DC->isTranslationUnit())
+        DC = DC->getParent();
+    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
+      return false;
+  }
+
+  // Class members are always mangled.
+  if (D->getDeclContext()->isRecord())
+    return true;
+
+  // C functions and "main" are not mangled.
+  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
+    return false;
+
+  return true;
+}
+
+void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) {
+  // Any decl can be declared with __asm("foo") on it, and this takes precedence
+  // over all other naming in the .o file.
+  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
+    // If we have an asm name, then we use it as the mangling.
+    Out << '\01';  // LLVM IR Marker for __asm("foo")
+    Out << ALA->getLabel();
+    return;
+  }
+
+  // <mangled-name> ::= _Z <encoding>
+  //            ::= <data name>
+  //            ::= <special-name>
+  Out << Prefix;
+  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+    mangleFunctionEncoding(FD);
+  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+    mangleName(VD);
+  else
+    mangleName(cast<FieldDecl>(D));
+}
+
+void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
+  // <encoding> ::= <function name> <bare-function-type>
+  mangleName(FD);
+
+  // Don't mangle in the type if this isn't a decl we should typically mangle.
+  if (!Context.shouldMangleDeclName(FD))
+    return;
+
+  // Whether the mangling of a function type includes the return type depends on
+  // the context and the nature of the function. The rules for deciding whether
+  // the return type is included are:
+  //
+  //   1. Template functions (names or types) have return types encoded, with
+  //   the exceptions listed below.
+  //   2. Function types not appearing as part of a function name mangling,
+  //   e.g. parameters, pointer types, etc., have return type encoded, with the
+  //   exceptions listed below.
+  //   3. Non-template function names do not have return types encoded.
+  //
+  // The exceptions mentioned in (1) and (2) above, for which the return type is
+  // never included, are
+  //   1. Constructors.
+  //   2. Destructors.
+  //   3. Conversion operator functions, e.g. operator int.
+  bool MangleReturnType = false;
+  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
+    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
+          isa<CXXConversionDecl>(FD)))
+      MangleReturnType = true;
+
+    // Mangle the type of the primary template.
+    FD = PrimaryTemplate->getTemplatedDecl();
+  }
+
+  // Do the canonicalization out here because parameter types can
+  // undergo additional canonicalization (e.g. array decay).
+  FunctionType *FT = cast<FunctionType>(Context.getASTContext()
+                                          .getCanonicalType(FD->getType()));
+
+  mangleBareFunctionType(FT, MangleReturnType);
+}
+
+static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
+  while (isa<LinkageSpecDecl>(DC)) {
+    DC = DC->getParent();
+  }
+
+  return DC;
+}
+
+/// isStd - Return whether a given namespace is the 'std' namespace.
+static bool isStd(const NamespaceDecl *NS) {
+  if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
+    return false;
+  
+  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
+  return II && II->isStr("std");
+}
+
+// isStdNamespace - Return whether a given decl context is a toplevel 'std'
+// namespace.
+static bool isStdNamespace(const DeclContext *DC) {
+  if (!DC->isNamespace())
+    return false;
+
+  return isStd(cast<NamespaceDecl>(DC));
+}
+
+static const TemplateDecl *
+isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
+  // Check if we have a function template.
+  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
+    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
+      TemplateArgs = FD->getTemplateSpecializationArgs();
+      return TD;
+    }
+  }
+
+  // Check if we have a class template.
+  if (const ClassTemplateSpecializationDecl *Spec =
+        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+    TemplateArgs = &Spec->getTemplateArgs();
+    return Spec->getSpecializedTemplate();
+  }
+
+  return 0;
+}
+
+void CXXNameMangler::mangleName(const NamedDecl *ND) {
+  //  <name> ::= <nested-name>
+  //         ::= <unscoped-name>
+  //         ::= <unscoped-template-name> <template-args>
+  //         ::= <local-name>
+  //
+  const DeclContext *DC = ND->getDeclContext();
+
+  // If this is an extern variable declared locally, the relevant DeclContext
+  // is that of the containing namespace, or the translation unit.
+  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
+    while (!DC->isNamespace() && !DC->isTranslationUnit())
+      DC = DC->getParent();
+  else if (GetLocalClassDecl(ND)) {
+    mangleLocalName(ND);
+    return;
+  }
+
+  while (isa<LinkageSpecDecl>(DC))
+    DC = DC->getParent();
+
+  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
+    // Check if we have a template.
+    const TemplateArgumentList *TemplateArgs = 0;
+    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+      mangleUnscopedTemplateName(TD);
+      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
+      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
+      return;
+    }
+
+    mangleUnscopedName(ND);
+    return;
+  }
+
+  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
+    mangleLocalName(ND);
+    return;
+  }
+
+  mangleNestedName(ND, DC);
+}
+void CXXNameMangler::mangleName(const TemplateDecl *TD,
+                                const TemplateArgument *TemplateArgs,
+                                unsigned NumTemplateArgs) {
+  const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
+
+  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
+    mangleUnscopedTemplateName(TD);
+    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
+    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
+  } else {
+    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
+  }
+}
+
+void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
+  //  <unscoped-name> ::= <unqualified-name>
+  //                  ::= St <unqualified-name>   # ::std::
+  if (isStdNamespace(ND->getDeclContext()))
+    Out << "St";
+
+  mangleUnqualifiedName(ND);
+}
+
+void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
+  //     <unscoped-template-name> ::= <unscoped-name>
+  //                              ::= <substitution>
+  if (mangleSubstitution(ND))
+    return;
+
+  // <template-template-param> ::= <template-param>
+  if (const TemplateTemplateParmDecl *TTP
+                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
+    mangleTemplateParameter(TTP->getIndex());
+    return;
+  }
+
+  mangleUnscopedName(ND->getTemplatedDecl());
+  addSubstitution(ND);
+}
+
+void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
+  //     <unscoped-template-name> ::= <unscoped-name>
+  //                              ::= <substitution>
+  if (TemplateDecl *TD = Template.getAsTemplateDecl())
+    return mangleUnscopedTemplateName(TD);
+  
+  if (mangleSubstitution(Template))
+    return;
+
+  // FIXME: How to cope with operators here?
+  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
+  assert(Dependent && "Not a dependent template name?");
+  if (!Dependent->isIdentifier()) {
+    // FIXME: We can't possibly know the arity of the operator here!
+    Diagnostic &Diags = Context.getDiags();
+    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
+                                      "cannot mangle dependent operator name");
+    Diags.Report(DiagID);
+    return;
+  }
+  
+  mangleSourceName(Dependent->getIdentifier());
+  addSubstitution(Template);
+}
+
+void CXXNameMangler::mangleFloat(const llvm::APFloat &F) {
+  // TODO: avoid this copy with careful stream management.
+  llvm::SmallString<20> Buffer;
+  F.bitcastToAPInt().toString(Buffer, 16, false);
+  Out.write(Buffer.data(), Buffer.size());
+}
+
+void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
+  if (Value.isSigned() && Value.isNegative()) {
+    Out << 'n';
+    Value.abs().print(Out, true);
+  } else
+    Value.print(Out, Value.isSigned());
+}
+
+void CXXNameMangler::mangleNumber(int64_t Number) {
+  //  <number> ::= [n] <non-negative decimal integer>
+  if (Number < 0) {
+    Out << 'n';
+    Number = -Number;
+  }
+
+  Out << Number;
+}
+
+void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
+  //  <call-offset>  ::= h <nv-offset> _
+  //                 ::= v <v-offset> _
+  //  <nv-offset>    ::= <offset number>        # non-virtual base override
+  //  <v-offset>     ::= <offset number> _ <virtual offset number>
+  //                      # virtual base override, with vcall offset
+  if (!Virtual) {
+    Out << 'h';
+    mangleNumber(NonVirtual);
+    Out << '_';
+    return;
+  }
+
+  Out << 'v';
+  mangleNumber(NonVirtual);
+  Out << '_';
+  mangleNumber(Virtual);
+  Out << '_';
+}
+
+void CXXNameMangler::mangleUnresolvedScope(NestedNameSpecifier *Qualifier) {
+  Qualifier = getASTContext().getCanonicalNestedNameSpecifier(Qualifier);
+  switch (Qualifier->getKind()) {
+  case NestedNameSpecifier::Global:
+    // nothing
+    break;
+  case NestedNameSpecifier::Namespace:
+    mangleName(Qualifier->getAsNamespace());
+    break;
+  case NestedNameSpecifier::TypeSpec:
+  case NestedNameSpecifier::TypeSpecWithTemplate: {
+    const Type *QTy = Qualifier->getAsType();
+
+    if (const TemplateSpecializationType *TST =
+        dyn_cast<TemplateSpecializationType>(QTy)) {
+      if (!mangleSubstitution(QualType(TST, 0))) {
+        mangleTemplatePrefix(TST->getTemplateName());
+        
+        // FIXME: GCC does not appear to mangle the template arguments when
+        // the template in question is a dependent template name. Should we
+        // emulate that badness?
+        mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
+                           TST->getNumArgs());
+        addSubstitution(QualType(TST, 0));
+      }
+    } else {
+      // We use the QualType mangle type variant here because it handles
+      // substitutions.
+      mangleType(QualType(QTy, 0));
+    }
+  }
+    break;
+  case NestedNameSpecifier::Identifier:
+    // Member expressions can have these without prefixes.
+    if (Qualifier->getPrefix())
+      mangleUnresolvedScope(Qualifier->getPrefix());
+    mangleSourceName(Qualifier->getAsIdentifier());
+    break;
+  }
+}
+
+/// Mangles a name which was not resolved to a specific entity.
+void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *Qualifier,
+                                          DeclarationName Name,
+                                          unsigned KnownArity) {
+  if (Qualifier)
+    mangleUnresolvedScope(Qualifier);
+  // FIXME: ambiguity of unqualified lookup with ::
+
+  mangleUnqualifiedName(0, Name, KnownArity);
+}
+
+static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
+  assert(RD->isAnonymousStructOrUnion() &&
+         "Expected anonymous struct or union!");
+  
+  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
+       I != E; ++I) {
+    const FieldDecl *FD = *I;
+    
+    if (FD->getIdentifier())
+      return FD;
+    
+    if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
+      if (const FieldDecl *NamedDataMember = 
+          FindFirstNamedDataMember(RT->getDecl()))
+        return NamedDataMember;
+    }
+  }
+
+  // We didn't find a named data member.
+  return 0;
+}
+
+void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
+                                           DeclarationName Name,
+                                           unsigned KnownArity) {
+  //  <unqualified-name> ::= <operator-name>
+  //                     ::= <ctor-dtor-name>
+  //                     ::= <source-name>
+  switch (Name.getNameKind()) {
+  case DeclarationName::Identifier: {
+    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
+      // We must avoid conflicts between internally- and externally-
+      // linked variable declaration names in the same TU.
+      // This naming convention is the same as that followed by GCC, though it
+      // shouldn't actually matter.
+      if (ND && isa<VarDecl>(ND) && ND->getLinkage() == InternalLinkage &&
+          ND->getDeclContext()->isFileContext())
+        Out << 'L';
+
+      mangleSourceName(II);
+      break;
+    }
+
+    // Otherwise, an anonymous entity.  We must have a declaration.
+    assert(ND && "mangling empty name without declaration");
+
+    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+      if (NS->isAnonymousNamespace()) {
+        // This is how gcc mangles these names.
+        Out << "12_GLOBAL__N_1";
+        break;
+      }
+    }
+
+    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
+      // We must have an anonymous union or struct declaration.
+      const RecordDecl *RD = 
+        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
+      
+      // Itanium C++ ABI 5.1.2:
+      //
+      //   For the purposes of mangling, the name of an anonymous union is
+      //   considered to be the name of the first named data member found by a
+      //   pre-order, depth-first, declaration-order walk of the data members of
+      //   the anonymous union. If there is no such data member (i.e., if all of
+      //   the data members in the union are unnamed), then there is no way for
+      //   a program to refer to the anonymous union, and there is therefore no
+      //   need to mangle its name.
+      const FieldDecl *FD = FindFirstNamedDataMember(RD);
+
+      // It's actually possible for various reasons for us to get here
+      // with an empty anonymous struct / union.  Fortunately, it
+      // doesn't really matter what name we generate.
+      if (!FD) break;
+      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
+      
+      mangleSourceName(FD->getIdentifier());
+      break;
+    }
+    
+    // We must have an anonymous struct.
+    const TagDecl *TD = cast<TagDecl>(ND);
+    if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
+      assert(TD->getDeclContext() == D->getDeclContext() &&
+             "Typedef should not be in another decl context!");
+      assert(D->getDeclName().getAsIdentifierInfo() &&
+             "Typedef was not named!");
+      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
+      break;
+    }
+
+    // Get a unique id for the anonymous struct.
+    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
+
+    // Mangle it as a source name in the form
+    // [n] $_<id>
+    // where n is the length of the string.
+    llvm::SmallString<8> Str;
+    Str += "$_";
+    Str += llvm::utostr(AnonStructId);
+
+    Out << Str.size();
+    Out << Str.str();
+    break;
+  }
+
+  case DeclarationName::ObjCZeroArgSelector:
+  case DeclarationName::ObjCOneArgSelector:
+  case DeclarationName::ObjCMultiArgSelector:
+    assert(false && "Can't mangle Objective-C selector names here!");
+    break;
+
+  case DeclarationName::CXXConstructorName:
+    if (ND == Structor)
+      // If the named decl is the C++ constructor we're mangling, use the type
+      // we were given.
+      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
+    else
+      // Otherwise, use the complete constructor name. This is relevant if a
+      // class with a constructor is declared within a constructor.
+      mangleCXXCtorType(Ctor_Complete);
+    break;
+
+  case DeclarationName::CXXDestructorName:
+    if (ND == Structor)
+      // If the named decl is the C++ destructor we're mangling, use the type we
+      // were given.
+      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
+    else
+      // Otherwise, use the complete destructor name. This is relevant if a
+      // class with a destructor is declared within a destructor.
+      mangleCXXDtorType(Dtor_Complete);
+    break;
+
+  case DeclarationName::CXXConversionFunctionName:
+    // <operator-name> ::= cv <type>    # (cast)
+    Out << "cv";
+    mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType()));
+    break;
+
+  case DeclarationName::CXXOperatorName: {
+    unsigned Arity;
+    if (ND) {
+      Arity = cast<FunctionDecl>(ND)->getNumParams();
+
+      // If we have a C++ member function, we need to include the 'this' pointer.
+      // FIXME: This does not make sense for operators that are static, but their
+      // names stay the same regardless of the arity (operator new for instance).
+      if (isa<CXXMethodDecl>(ND))
+        Arity++;
+    } else
+      Arity = KnownArity;
+
+    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
+    break;
+  }
+
+  case DeclarationName::CXXLiteralOperatorName:
+    // FIXME: This mangling is not yet official.
+    Out << "li";
+    mangleSourceName(Name.getCXXLiteralIdentifier());
+    break;
+
+  case DeclarationName::CXXUsingDirective:
+    assert(false && "Can't mangle a using directive name!");
+    break;
+  }
+}
+
+void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
+  // <source-name> ::= <positive length number> <identifier>
+  // <number> ::= [n] <non-negative decimal integer>
+  // <identifier> ::= <unqualified source code identifier>
+  Out << II->getLength() << II->getName();
+}
+
+void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
+                                      const DeclContext *DC,
+                                      bool NoFunction) {
+  // <nested-name> ::= N [<CV-qualifiers>] <prefix> <unqualified-name> E
+  //               ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
+
+  Out << 'N';
+  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND))
+    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
+
+  // Check if we have a template.
+  const TemplateArgumentList *TemplateArgs = 0;
+  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+    mangleTemplatePrefix(TD);
+    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
+    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
+  }
+  else {
+    manglePrefix(DC, NoFunction);
+    mangleUnqualifiedName(ND);
+  }
+
+  Out << 'E';
+}
+void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
+                                      const TemplateArgument *TemplateArgs,
+                                      unsigned NumTemplateArgs) {
+  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
+
+  Out << 'N';
+
+  mangleTemplatePrefix(TD);
+  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
+  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
+
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
+  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
+  //              := Z <function encoding> E s [<discriminator>]
+  // <discriminator> := _ <non-negative number>
+  const DeclContext *DC = ND->getDeclContext();
+  Out << 'Z';
+
+  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
+   mangleObjCMethodName(MD);
+  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
+    mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
+    Out << 'E';
+
+    // Mangle the name relative to the closest enclosing function.
+    if (ND == RD) // equality ok because RD derived from ND above
+      mangleUnqualifiedName(ND);
+    else
+      mangleNestedName(ND, DC, true /*NoFunction*/);
+
+    unsigned disc;
+    if (Context.getNextDiscriminator(RD, disc)) {
+      if (disc < 10)
+        Out << '_' << disc;
+      else
+        Out << "__" << disc << '_';
+    }
+
+    return;
+  }
+  else
+    mangleFunctionEncoding(cast<FunctionDecl>(DC));
+
+  Out << 'E';
+  mangleUnqualifiedName(ND);
+}
+
+void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
+  //  <prefix> ::= <prefix> <unqualified-name>
+  //           ::= <template-prefix> <template-args>
+  //           ::= <template-param>
+  //           ::= # empty
+  //           ::= <substitution>
+
+  while (isa<LinkageSpecDecl>(DC))
+    DC = DC->getParent();
+
+  if (DC->isTranslationUnit())
+    return;
+
+  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
+    manglePrefix(DC->getParent(), NoFunction);    
+    llvm::SmallString<64> Name;
+    Context.mangleBlock(Block, Name);
+    Out << Name.size() << Name;
+    return;
+  }
+  
+  if (mangleSubstitution(cast<NamedDecl>(DC)))
+    return;
+
+  // Check if we have a template.
+  const TemplateArgumentList *TemplateArgs = 0;
+  if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
+    mangleTemplatePrefix(TD);
+    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
+    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
+  }
+  else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
+    return;
+  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
+    mangleObjCMethodName(Method);
+  else {
+    manglePrefix(DC->getParent(), NoFunction);
+    mangleUnqualifiedName(cast<NamedDecl>(DC));
+  }
+
+  addSubstitution(cast<NamedDecl>(DC));
+}
+
+void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
+  // <template-prefix> ::= <prefix> <template unqualified-name>
+  //                   ::= <template-param>
+  //                   ::= <substitution>
+  if (TemplateDecl *TD = Template.getAsTemplateDecl())
+    return mangleTemplatePrefix(TD);
+
+  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
+    mangleUnresolvedScope(Qualified->getQualifier());
+  
+  if (OverloadedTemplateStorage *Overloaded
+                                      = Template.getAsOverloadedTemplate()) {
+    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(), 
+                          UnknownArity);
+    return;
+  }
+   
+  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
+  assert(Dependent && "Unknown template name kind?");
+  mangleUnresolvedScope(Dependent->getQualifier());
+  mangleUnscopedTemplateName(Template);
+}
+
+void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
+  // <template-prefix> ::= <prefix> <template unqualified-name>
+  //                   ::= <template-param>
+  //                   ::= <substitution>
+  // <template-template-param> ::= <template-param>
+  //                               <substitution>
+
+  if (mangleSubstitution(ND))
+    return;
+
+  // <template-template-param> ::= <template-param>
+  if (const TemplateTemplateParmDecl *TTP
+                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
+    mangleTemplateParameter(TTP->getIndex());
+    return;
+  }
+
+  manglePrefix(ND->getDeclContext());
+  mangleUnqualifiedName(ND->getTemplatedDecl());
+  addSubstitution(ND);
+}
+
+/// Mangles a template name under the production <type>.  Required for
+/// template template arguments.
+///   <type> ::= <class-enum-type>
+///          ::= <template-param>
+///          ::= <substitution>
+void CXXNameMangler::mangleType(TemplateName TN) {
+  if (mangleSubstitution(TN))
+    return;
+      
+  TemplateDecl *TD = 0;
+
+  switch (TN.getKind()) {
+  case TemplateName::QualifiedTemplate:
+    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
+    goto HaveDecl;
+
+  case TemplateName::Template:
+    TD = TN.getAsTemplateDecl();
+    goto HaveDecl;
+
+  HaveDecl:
+    if (isa<TemplateTemplateParmDecl>(TD))
+      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
+    else
+      mangleName(TD);
+    break;
+
+  case TemplateName::OverloadedTemplate:
+    llvm_unreachable("can't mangle an overloaded template name as a <type>");
+    break;
+
+  case TemplateName::DependentTemplate: {
+    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
+    assert(Dependent->isIdentifier());
+
+    // <class-enum-type> ::= <name>
+    // <name> ::= <nested-name>
+    mangleUnresolvedScope(Dependent->getQualifier());
+    mangleSourceName(Dependent->getIdentifier());
+    break;
+  }
+
+  }
+
+  addSubstitution(TN);
+}
+
+void
+CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
+  switch (OO) {
+  // <operator-name> ::= nw     # new
+  case OO_New: Out << "nw"; break;
+  //              ::= na        # new[]
+  case OO_Array_New: Out << "na"; break;
+  //              ::= dl        # delete
+  case OO_Delete: Out << "dl"; break;
+  //              ::= da        # delete[]
+  case OO_Array_Delete: Out << "da"; break;
+  //              ::= ps        # + (unary)
+  //              ::= pl        # + (binary or unknown)
+  case OO_Plus:
+    Out << (Arity == 1? "ps" : "pl"); break;
+  //              ::= ng        # - (unary)
+  //              ::= mi        # - (binary or unknown)
+  case OO_Minus:
+    Out << (Arity == 1? "ng" : "mi"); break;
+  //              ::= ad        # & (unary)
+  //              ::= an        # & (binary or unknown)
+  case OO_Amp:
+    Out << (Arity == 1? "ad" : "an"); break;
+  //              ::= de        # * (unary)
+  //              ::= ml        # * (binary or unknown)
+  case OO_Star:
+    // Use binary when unknown.
+    Out << (Arity == 1? "de" : "ml"); break;
+  //              ::= co        # ~
+  case OO_Tilde: Out << "co"; break;
+  //              ::= dv        # /
+  case OO_Slash: Out << "dv"; break;
+  //              ::= rm        # %
+  case OO_Percent: Out << "rm"; break;
+  //              ::= or        # |
+  case OO_Pipe: Out << "or"; break;
+  //              ::= eo        # ^
+  case OO_Caret: Out << "eo"; break;
+  //              ::= aS        # =
+  case OO_Equal: Out << "aS"; break;
+  //              ::= pL        # +=
+  case OO_PlusEqual: Out << "pL"; break;
+  //              ::= mI        # -=
+  case OO_MinusEqual: Out << "mI"; break;
+  //              ::= mL        # *=
+  case OO_StarEqual: Out << "mL"; break;
+  //              ::= dV        # /=
+  case OO_SlashEqual: Out << "dV"; break;
+  //              ::= rM        # %=
+  case OO_PercentEqual: Out << "rM"; break;
+  //              ::= aN        # &=
+  case OO_AmpEqual: Out << "aN"; break;
+  //              ::= oR        # |=
+  case OO_PipeEqual: Out << "oR"; break;
+  //              ::= eO        # ^=
+  case OO_CaretEqual: Out << "eO"; break;
+  //              ::= ls        # <<
+  case OO_LessLess: Out << "ls"; break;
+  //              ::= rs        # >>
+  case OO_GreaterGreater: Out << "rs"; break;
+  //              ::= lS        # <<=
+  case OO_LessLessEqual: Out << "lS"; break;
+  //              ::= rS        # >>=
+  case OO_GreaterGreaterEqual: Out << "rS"; break;
+  //              ::= eq        # ==
+  case OO_EqualEqual: Out << "eq"; break;
+  //              ::= ne        # !=
+  case OO_ExclaimEqual: Out << "ne"; break;
+  //              ::= lt        # <
+  case OO_Less: Out << "lt"; break;
+  //              ::= gt        # >
+  case OO_Greater: Out << "gt"; break;
+  //              ::= le        # <=
+  case OO_LessEqual: Out << "le"; break;
+  //              ::= ge        # >=
+  case OO_GreaterEqual: Out << "ge"; break;
+  //              ::= nt        # !
+  case OO_Exclaim: Out << "nt"; break;
+  //              ::= aa        # &&
+  case OO_AmpAmp: Out << "aa"; break;
+  //              ::= oo        # ||
+  case OO_PipePipe: Out << "oo"; break;
+  //              ::= pp        # ++
+  case OO_PlusPlus: Out << "pp"; break;
+  //              ::= mm        # --
+  case OO_MinusMinus: Out << "mm"; break;
+  //              ::= cm        # ,
+  case OO_Comma: Out << "cm"; break;
+  //              ::= pm        # ->*
+  case OO_ArrowStar: Out << "pm"; break;
+  //              ::= pt        # ->
+  case OO_Arrow: Out << "pt"; break;
+  //              ::= cl        # ()
+  case OO_Call: Out << "cl"; break;
+  //              ::= ix        # []
+  case OO_Subscript: Out << "ix"; break;
+
+  //              ::= qu        # ?
+  // The conditional operator can't be overloaded, but we still handle it when
+  // mangling expressions.
+  case OO_Conditional: Out << "qu"; break;
+
+  case OO_None:
+  case NUM_OVERLOADED_OPERATORS:
+    assert(false && "Not an overloaded operator");
+    break;
+  }
+}
+
+void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
+  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
+  if (Quals.hasRestrict())
+    Out << 'r';
+  if (Quals.hasVolatile())
+    Out << 'V';
+  if (Quals.hasConst())
+    Out << 'K';
+
+  if (Quals.hasAddressSpace()) {
+    // Extension:
+    //
+    //   <type> ::= U <address-space-number>
+    // 
+    // where <address-space-number> is a source name consisting of 'AS' 
+    // followed by the address space <number>.
+    llvm::SmallString<64> ASString;
+    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
+    Out << 'U' << ASString.size() << ASString;
+  }
+  
+  // FIXME: For now, just drop all extension qualifiers on the floor.
+}
+
+void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
+  llvm::SmallString<64> Buffer;
+  Context.mangleObjCMethodName(MD, Buffer);
+  Out << Buffer;
+}
+
+void CXXNameMangler::mangleType(QualType T) {
+  // Only operate on the canonical type!
+  T = Context.getASTContext().getCanonicalType(T);
+
+  bool IsSubstitutable = T.hasLocalQualifiers() || !isa<BuiltinType>(T);
+  if (IsSubstitutable && mangleSubstitution(T))
+    return;
+
+  if (Qualifiers Quals = T.getLocalQualifiers()) {
+    mangleQualifiers(Quals);
+    // Recurse:  even if the qualified type isn't yet substitutable,
+    // the unqualified type might be.
+    mangleType(T.getLocalUnqualifiedType());
+  } else {
+    switch (T->getTypeClass()) {
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT) \
+    case Type::CLASS: \
+      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
+      return;
+#define TYPE(CLASS, PARENT) \
+    case Type::CLASS: \
+      mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \
+      break;
+#include "clang/AST/TypeNodes.def"
+    }
+  }
+
+  // Add the substitution.
+  if (IsSubstitutable)
+    addSubstitution(T);
+}
+
+void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
+  if (!mangleStandardSubstitution(ND))
+    mangleName(ND);
+}
+
+void CXXNameMangler::mangleType(const BuiltinType *T) {
+  //  <type>         ::= <builtin-type>
+  //  <builtin-type> ::= v  # void
+  //                 ::= w  # wchar_t
+  //                 ::= b  # bool
+  //                 ::= c  # char
+  //                 ::= a  # signed char
+  //                 ::= h  # unsigned char
+  //                 ::= s  # short
+  //                 ::= t  # unsigned short
+  //                 ::= i  # int
+  //                 ::= j  # unsigned int
+  //                 ::= l  # long
+  //                 ::= m  # unsigned long
+  //                 ::= x  # long long, __int64
+  //                 ::= y  # unsigned long long, __int64
+  //                 ::= n  # __int128
+  // UNSUPPORTED:    ::= o  # unsigned __int128
+  //                 ::= f  # float
+  //                 ::= d  # double
+  //                 ::= e  # long double, __float80
+  // UNSUPPORTED:    ::= g  # __float128
+  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
+  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
+  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
+  // UNSUPPORTED:    ::= Dh # IEEE 754r half-precision floating point (16 bits)
+  //                 ::= Di # char32_t
+  //                 ::= Ds # char16_t
+  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
+  //                 ::= u <source-name>    # vendor extended type
+  switch (T->getKind()) {
+  case BuiltinType::Void: Out << 'v'; break;
+  case BuiltinType::Bool: Out << 'b'; break;
+  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
+  case BuiltinType::UChar: Out << 'h'; break;
+  case BuiltinType::UShort: Out << 't'; break;
+  case BuiltinType::UInt: Out << 'j'; break;
+  case BuiltinType::ULong: Out << 'm'; break;
+  case BuiltinType::ULongLong: Out << 'y'; break;
+  case BuiltinType::UInt128: Out << 'o'; break;
+  case BuiltinType::SChar: Out << 'a'; break;
+  case BuiltinType::WChar_S:
+  case BuiltinType::WChar_U: Out << 'w'; break;
+  case BuiltinType::Char16: Out << "Ds"; break;
+  case BuiltinType::Char32: Out << "Di"; break;
+  case BuiltinType::Short: Out << 's'; break;
+  case BuiltinType::Int: Out << 'i'; break;
+  case BuiltinType::Long: Out << 'l'; break;
+  case BuiltinType::LongLong: Out << 'x'; break;
+  case BuiltinType::Int128: Out << 'n'; break;
+  case BuiltinType::Float: Out << 'f'; break;
+  case BuiltinType::Double: Out << 'd'; break;
+  case BuiltinType::LongDouble: Out << 'e'; break;
+  case BuiltinType::NullPtr: Out << "Dn"; break;
+
+  case BuiltinType::Overload:
+  case BuiltinType::Dependent:
+    assert(false &&
+           "Overloaded and dependent types shouldn't get to name mangling");
+    break;
+  case BuiltinType::UndeducedAuto:
+    assert(0 && "Should not see undeduced auto here");
+    break;
+  case BuiltinType::ObjCId: Out << "11objc_object"; break;
+  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
+  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
+  }
+}
+
+// <type>          ::= <function-type>
+// <function-type> ::= F [Y] <bare-function-type> E
+void CXXNameMangler::mangleType(const FunctionProtoType *T) {
+  Out << 'F';
+  // FIXME: We don't have enough information in the AST to produce the 'Y'
+  // encoding for extern "C" function types.
+  mangleBareFunctionType(T, /*MangleReturnType=*/true);
+  Out << 'E';
+}
+void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
+  llvm_unreachable("Can't mangle K&R function prototypes");
+}
+void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
+                                            bool MangleReturnType) {
+  // We should never be mangling something without a prototype.
+  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
+
+  // <bare-function-type> ::= <signature type>+
+  if (MangleReturnType)
+    mangleType(Proto->getResultType());
+
+  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
+    //   <builtin-type> ::= v   # void
+    Out << 'v';
+    return;
+  }
+
+  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
+                                         ArgEnd = Proto->arg_type_end();
+       Arg != ArgEnd; ++Arg)
+    mangleType(*Arg);
+
+  // <builtin-type>      ::= z  # ellipsis
+  if (Proto->isVariadic())
+    Out << 'z';
+}
+
+// <type>            ::= <class-enum-type>
+// <class-enum-type> ::= <name>
+void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
+  mangleName(T->getDecl());
+}
+
+// <type>            ::= <class-enum-type>
+// <class-enum-type> ::= <name>
+void CXXNameMangler::mangleType(const EnumType *T) {
+  mangleType(static_cast<const TagType*>(T));
+}
+void CXXNameMangler::mangleType(const RecordType *T) {
+  mangleType(static_cast<const TagType*>(T));
+}
+void CXXNameMangler::mangleType(const TagType *T) {
+  mangleName(T->getDecl());
+}
+
+// <type>       ::= <array-type>
+// <array-type> ::= A <positive dimension number> _ <element type>
+//              ::= A [<dimension expression>] _ <element type>
+void CXXNameMangler::mangleType(const ConstantArrayType *T) {
+  Out << 'A' << T->getSize() << '_';
+  mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const VariableArrayType *T) {
+  Out << 'A';
+  // decayed vla types (size 0) will just be skipped.
+  if (T->getSizeExpr())
+    mangleExpression(T->getSizeExpr());
+  Out << '_';
+  mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
+  Out << 'A';
+  mangleExpression(T->getSizeExpr());
+  Out << '_';
+  mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
+  Out << "A_";
+  mangleType(T->getElementType());
+}
+
+// <type>                   ::= <pointer-to-member-type>
+// <pointer-to-member-type> ::= M <class type> <member type>
+void CXXNameMangler::mangleType(const MemberPointerType *T) {
+  Out << 'M';
+  mangleType(QualType(T->getClass(), 0));
+  QualType PointeeType = T->getPointeeType();
+  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
+    mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
+    mangleType(FPT);
+    
+    // Itanium C++ ABI 5.1.8:
+    //
+    //   The type of a non-static member function is considered to be different,
+    //   for the purposes of substitution, from the type of a namespace-scope or
+    //   static member function whose type appears similar. The types of two
+    //   non-static member functions are considered to be different, for the
+    //   purposes of substitution, if the functions are members of different
+    //   classes. In other words, for the purposes of substitution, the class of 
+    //   which the function is a member is considered part of the type of 
+    //   function.
+
+    // We increment the SeqID here to emulate adding an entry to the
+    // substitution table. We can't actually add it because we don't want this
+    // particular function type to be substituted.
+    ++SeqID;
+  } else
+    mangleType(PointeeType);
+}
+
+// <type>           ::= <template-param>
+void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
+  mangleTemplateParameter(T->getIndex());
+}
+
+// <type> ::= P <type>   # pointer-to
+void CXXNameMangler::mangleType(const PointerType *T) {
+  Out << 'P';
+  mangleType(T->getPointeeType());
+}
+void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
+  Out << 'P';
+  mangleType(T->getPointeeType());
+}
+
+// <type> ::= R <type>   # reference-to
+void CXXNameMangler::mangleType(const LValueReferenceType *T) {
+  Out << 'R';
+  mangleType(T->getPointeeType());
+}
+
+// <type> ::= O <type>   # rvalue reference-to (C++0x)
+void CXXNameMangler::mangleType(const RValueReferenceType *T) {
+  Out << 'O';
+  mangleType(T->getPointeeType());
+}
+
+// <type> ::= C <type>   # complex pair (C 2000)
+void CXXNameMangler::mangleType(const ComplexType *T) {
+  Out << 'C';
+  mangleType(T->getElementType());
+}
+
+// ARM's ABI for Neon vector types specifies that they should be mangled as
+// if they are structs (to match ARM's initial implementation).  The
+// vector type must be one of the special types predefined by ARM.
+void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
+  QualType EltType = T->getElementType();
+  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
+  const char *EltName = 0;
+  if (T->getVectorKind() == VectorType::NeonPolyVector) {
+    switch (cast<BuiltinType>(EltType)->getKind()) {
+    case BuiltinType::SChar:     EltName = "poly8_t"; break;
+    case BuiltinType::Short:     EltName = "poly16_t"; break;
+    default: llvm_unreachable("unexpected Neon polynomial vector element type");
+    }
+  } else {
+    switch (cast<BuiltinType>(EltType)->getKind()) {
+    case BuiltinType::SChar:     EltName = "int8_t"; break;
+    case BuiltinType::UChar:     EltName = "uint8_t"; break;
+    case BuiltinType::Short:     EltName = "int16_t"; break;
+    case BuiltinType::UShort:    EltName = "uint16_t"; break;
+    case BuiltinType::Int:       EltName = "int32_t"; break;
+    case BuiltinType::UInt:      EltName = "uint32_t"; break;
+    case BuiltinType::LongLong:  EltName = "int64_t"; break;
+    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
+    case BuiltinType::Float:     EltName = "float32_t"; break;
+    default: llvm_unreachable("unexpected Neon vector element type");
+    }
+  }
+  const char *BaseName = 0;
+  unsigned BitSize = (T->getNumElements() *
+                      getASTContext().getTypeSize(EltType));
+  if (BitSize == 64)
+    BaseName = "__simd64_";
+  else {
+    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
+    BaseName = "__simd128_";
+  }
+  Out << strlen(BaseName) + strlen(EltName);
+  Out << BaseName << EltName;
+}
+
+// GNU extension: vector types
+// <type>                  ::= <vector-type>
+// <vector-type>           ::= Dv <positive dimension number> _
+//                                    <extended element type>
+//                         ::= Dv [<dimension expression>] _ <element type>
+// <extended element type> ::= <element type>
+//                         ::= p # AltiVec vector pixel
+void CXXNameMangler::mangleType(const VectorType *T) {
+  if ((T->getVectorKind() == VectorType::NeonVector ||
+       T->getVectorKind() == VectorType::NeonPolyVector)) {
+    mangleNeonVectorType(T);
+    return;
+  }
+  Out << "Dv" << T->getNumElements() << '_';
+  if (T->getVectorKind() == VectorType::AltiVecPixel)
+    Out << 'p';
+  else if (T->getVectorKind() == VectorType::AltiVecBool)
+    Out << 'b';
+  else
+    mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const ExtVectorType *T) {
+  mangleType(static_cast<const VectorType*>(T));
+}
+void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
+  Out << "Dv";
+  mangleExpression(T->getSizeExpr());
+  Out << '_';
+  mangleType(T->getElementType());
+}
+
+void CXXNameMangler::mangleType(const PackExpansionType *T) {
+  // <type>  ::= Dp <type>          # pack expansion (C++0x)
+  Out << "Dp";
+  mangleType(T->getPattern());
+}
+
+void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
+  mangleSourceName(T->getDecl()->getIdentifier());
+}
+
+void CXXNameMangler::mangleType(const ObjCObjectType *T) {
+  // We don't allow overloading by different protocol qualification,
+  // so mangling them isn't necessary.
+  mangleType(T->getBaseType());
+}
+
+void CXXNameMangler::mangleType(const BlockPointerType *T) {
+  Out << "U13block_pointer";
+  mangleType(T->getPointeeType());
+}
+
+void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
+  // Mangle injected class name types as if the user had written the
+  // specialization out fully.  It may not actually be possible to see
+  // this mangling, though.
+  mangleType(T->getInjectedSpecializationType());
+}
+
+void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
+  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
+    mangleName(TD, T->getArgs(), T->getNumArgs());
+  } else {
+    if (mangleSubstitution(QualType(T, 0)))
+      return;
+    
+    mangleTemplatePrefix(T->getTemplateName());
+    
+    // FIXME: GCC does not appear to mangle the template arguments when
+    // the template in question is a dependent template name. Should we
+    // emulate that badness?
+    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
+    addSubstitution(QualType(T, 0));
+  }
+}
+
+void CXXNameMangler::mangleType(const DependentNameType *T) {
+  // Typename types are always nested
+  Out << 'N';
+  mangleUnresolvedScope(T->getQualifier());
+  mangleSourceName(T->getIdentifier());    
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
+  // Dependently-scoped template types are always nested
+  Out << 'N';
+
+  // TODO: avoid making this TemplateName.
+  TemplateName Prefix =
+    getASTContext().getDependentTemplateName(T->getQualifier(),
+                                             T->getIdentifier());
+  mangleTemplatePrefix(Prefix);
+
+  // FIXME: GCC does not appear to mangle the template arguments when
+  // the template in question is a dependent template name. Should we
+  // emulate that badness?
+  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());    
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const TypeOfType *T) {
+  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
+  // "extension with parameters" mangling.
+  Out << "u6typeof";
+}
+
+void CXXNameMangler::mangleType(const TypeOfExprType *T) {
+  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
+  // "extension with parameters" mangling.
+  Out << "u6typeof";
+}
+
+void CXXNameMangler::mangleType(const DecltypeType *T) {
+  Expr *E = T->getUnderlyingExpr();
+
+  // type ::= Dt <expression> E  # decltype of an id-expression
+  //                             #   or class member access
+  //      ::= DT <expression> E  # decltype of an expression
+
+  // This purports to be an exhaustive list of id-expressions and
+  // class member accesses.  Note that we do not ignore parentheses;
+  // parentheses change the semantics of decltype for these
+  // expressions (and cause the mangler to use the other form).
+  if (isa<DeclRefExpr>(E) ||
+      isa<MemberExpr>(E) ||
+      isa<UnresolvedLookupExpr>(E) ||
+      isa<DependentScopeDeclRefExpr>(E) ||
+      isa<CXXDependentScopeMemberExpr>(E) ||
+      isa<UnresolvedMemberExpr>(E))
+    Out << "Dt";
+  else
+    Out << "DT";
+  mangleExpression(E);
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleIntegerLiteral(QualType T,
+                                          const llvm::APSInt &Value) {
+  //  <expr-primary> ::= L <type> <value number> E # integer literal
+  Out << 'L';
+
+  mangleType(T);
+  if (T->isBooleanType()) {
+    // Boolean values are encoded as 0/1.
+    Out << (Value.getBoolValue() ? '1' : '0');
+  } else {
+    mangleNumber(Value);
+  }
+  Out << 'E';
+
+}
+
+/// Mangles a member expression.  Implicit accesses are not handled,
+/// but that should be okay, because you shouldn't be able to
+/// make an implicit access in a function template declaration.
+void CXXNameMangler::mangleMemberExpr(const Expr *Base,
+                                      bool IsArrow,
+                                      NestedNameSpecifier *Qualifier,
+                                      DeclarationName Member,
+                                      unsigned Arity) {
+  // gcc-4.4 uses 'dt' for dot expressions, which is reasonable.
+  // OTOH, gcc also mangles the name as an expression.
+  Out << (IsArrow ? "pt" : "dt");
+  mangleExpression(Base);
+  mangleUnresolvedName(Qualifier, Member, Arity);
+}
+
+void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
+  // <expression> ::= <unary operator-name> <expression>
+  //              ::= <binary operator-name> <expression> <expression>
+  //              ::= <trinary operator-name> <expression> <expression> <expression>
+  //              ::= cl <expression>* E             # call
+  //              ::= cv <type> expression           # conversion with one argument
+  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
+  //              ::= st <type>                      # sizeof (a type)
+  //              ::= at <type>                      # alignof (a type)
+  //              ::= <template-param>
+  //              ::= <function-param>
+  //              ::= sr <type> <unqualified-name>                   # dependent name
+  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
+  //              ::= sZ <template-param>                            # size of a parameter pack
+  //              ::= sZ <function-param>    # size of a function parameter pack
+  //              ::= <expr-primary>
+  // <expr-primary> ::= L <type> <value number> E    # integer literal
+  //                ::= L <type <value float> E      # floating literal
+  //                ::= L <mangled-name> E           # external name
+  switch (E->getStmtClass()) {
+  case Expr::NoStmtClass:
+#define EXPR(Type, Base)
+#define STMT(Type, Base) \
+  case Expr::Type##Class:
+#include "clang/AST/StmtNodes.inc"
+    // fallthrough
+
+  // These all can only appear in local or variable-initialization
+  // contexts and so should never appear in a mangling.
+  case Expr::AddrLabelExprClass:
+  case Expr::BlockDeclRefExprClass:
+  case Expr::CXXThisExprClass:
+  case Expr::DesignatedInitExprClass:
+  case Expr::ImplicitValueInitExprClass:
+  case Expr::InitListExprClass:
+  case Expr::ParenListExprClass:
+  case Expr::CXXScalarValueInitExprClass:
+    llvm_unreachable("unexpected statement kind");
+    break;
+
+  // FIXME: invent manglings for all these.
+  case Expr::BlockExprClass:
+  case Expr::CXXPseudoDestructorExprClass:
+  case Expr::ChooseExprClass:
+  case Expr::CompoundLiteralExprClass:
+  case Expr::ExtVectorElementExprClass:
+  case Expr::ObjCEncodeExprClass:
+  case Expr::ObjCIsaExprClass:
+  case Expr::ObjCIvarRefExprClass:
+  case Expr::ObjCMessageExprClass:
+  case Expr::ObjCPropertyRefExprClass:
+  case Expr::ObjCProtocolExprClass:
+  case Expr::ObjCSelectorExprClass:
+  case Expr::ObjCStringLiteralClass:
+  case Expr::OffsetOfExprClass:
+  case Expr::PredefinedExprClass:
+  case Expr::ShuffleVectorExprClass:
+  case Expr::StmtExprClass:
+  case Expr::UnaryTypeTraitExprClass:
+  case Expr::BinaryTypeTraitExprClass:
+  case Expr::VAArgExprClass:
+  case Expr::CXXUuidofExprClass:
+  case Expr::CXXNoexceptExprClass: {
+    // As bad as this diagnostic is, it's better than crashing.
+    Diagnostic &Diags = Context.getDiags();
+    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
+                                     "cannot yet mangle expression type %0");
+    Diags.Report(E->getExprLoc(), DiagID)
+      << E->getStmtClassName() << E->getSourceRange();
+    break;
+  }
+
+  case Expr::OpaqueValueExprClass:
+    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
+
+  case Expr::CXXDefaultArgExprClass:
+    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
+    break;
+
+  case Expr::CXXMemberCallExprClass: // fallthrough
+  case Expr::CallExprClass: {
+    const CallExpr *CE = cast<CallExpr>(E);
+    Out << "cl";
+    mangleExpression(CE->getCallee(), CE->getNumArgs());
+    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
+      mangleExpression(CE->getArg(I));
+    Out << 'E';
+    break;
+  }
+
+  case Expr::CXXNewExprClass: {
+    // Proposal from David Vandervoorde, 2010.06.30
+    const CXXNewExpr *New = cast<CXXNewExpr>(E);
+    if (New->isGlobalNew()) Out << "gs";
+    Out << (New->isArray() ? "na" : "nw");
+    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
+           E = New->placement_arg_end(); I != E; ++I)
+      mangleExpression(*I);
+    Out << '_';
+    mangleType(New->getAllocatedType());
+    if (New->hasInitializer()) {
+      Out << "pi";
+      for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
+             E = New->constructor_arg_end(); I != E; ++I)
+        mangleExpression(*I);
+    }
+    Out << 'E';
+    break;
+  }
+
+  case Expr::MemberExprClass: {
+    const MemberExpr *ME = cast<MemberExpr>(E);
+    mangleMemberExpr(ME->getBase(), ME->isArrow(),
+                     ME->getQualifier(), ME->getMemberDecl()->getDeclName(),
+                     Arity);
+    break;
+  }
+
+  case Expr::UnresolvedMemberExprClass: {
+    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
+    mangleMemberExpr(ME->getBase(), ME->isArrow(),
+                     ME->getQualifier(), ME->getMemberName(),
+                     Arity);
+    if (ME->hasExplicitTemplateArgs())
+      mangleTemplateArgs(ME->getExplicitTemplateArgs());
+    break;
+  }
+
+  case Expr::CXXDependentScopeMemberExprClass: {
+    const CXXDependentScopeMemberExpr *ME
+      = cast<CXXDependentScopeMemberExpr>(E);
+    mangleMemberExpr(ME->getBase(), ME->isArrow(),
+                     ME->getQualifier(), ME->getMember(),
+                     Arity);
+    if (ME->hasExplicitTemplateArgs())
+      mangleTemplateArgs(ME->getExplicitTemplateArgs());
+    break;
+  }
+
+  case Expr::UnresolvedLookupExprClass: {
+    // The ABI doesn't cover how to mangle overload sets, so we mangle
+    // using something as close as possible to the original lookup
+    // expression.
+    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
+    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
+    if (ULE->hasExplicitTemplateArgs())
+      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
+    break;
+  }
+
+  case Expr::CXXUnresolvedConstructExprClass: {
+    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
+    unsigned N = CE->arg_size();
+
+    Out << "cv";
+    mangleType(CE->getType());
+    if (N != 1) Out << '_';
+    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
+    if (N != 1) Out << 'E';
+    break;
+  }
+
+  case Expr::CXXTemporaryObjectExprClass:
+  case Expr::CXXConstructExprClass: {
+    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
+    unsigned N = CE->getNumArgs();
+
+    Out << "cv";
+    mangleType(CE->getType());
+    if (N != 1) Out << '_';
+    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
+    if (N != 1) Out << 'E';
+    break;
+  }
+
+  case Expr::SizeOfAlignOfExprClass: {
+    const SizeOfAlignOfExpr *SAE = cast<SizeOfAlignOfExpr>(E);
+    if (SAE->isSizeOf()) Out << 's';
+    else Out << 'a';
+    if (SAE->isArgumentType()) {
+      Out << 't';
+      mangleType(SAE->getArgumentType());
+    } else {
+      Out << 'z';
+      mangleExpression(SAE->getArgumentExpr());
+    }
+    break;
+  }
+
+  case Expr::CXXThrowExprClass: {
+    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
+
+    // Proposal from David Vandervoorde, 2010.06.30
+    if (TE->getSubExpr()) {
+      Out << "tw";
+      mangleExpression(TE->getSubExpr());
+    } else {
+      Out << "tr";
+    }
+    break;
+  }
+
+  case Expr::CXXTypeidExprClass: {
+    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
+
+    // Proposal from David Vandervoorde, 2010.06.30
+    if (TIE->isTypeOperand()) {
+      Out << "ti";
+      mangleType(TIE->getTypeOperand());
+    } else {
+      Out << "te";
+      mangleExpression(TIE->getExprOperand());
+    }
+    break;
+  }
+
+  case Expr::CXXDeleteExprClass: {
+    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
+
+    // Proposal from David Vandervoorde, 2010.06.30
+    if (DE->isGlobalDelete()) Out << "gs";
+    Out << (DE->isArrayForm() ? "da" : "dl");
+    mangleExpression(DE->getArgument());
+    break;
+  }
+
+  case Expr::UnaryOperatorClass: {
+    const UnaryOperator *UO = cast<UnaryOperator>(E);
+    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
+                       /*Arity=*/1);
+    mangleExpression(UO->getSubExpr());
+    break;
+  }
+
+  case Expr::ArraySubscriptExprClass: {
+    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
+
+    // Array subscript is treated as a syntactically wierd form of
+    // binary operator.
+    Out << "ix";
+    mangleExpression(AE->getLHS());
+    mangleExpression(AE->getRHS());
+    break;
+  }
+
+  case Expr::CompoundAssignOperatorClass: // fallthrough
+  case Expr::BinaryOperatorClass: {
+    const BinaryOperator *BO = cast<BinaryOperator>(E);
+    mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
+                       /*Arity=*/2);
+    mangleExpression(BO->getLHS());
+    mangleExpression(BO->getRHS());
+    break;
+  }
+
+  case Expr::ConditionalOperatorClass: {
+    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
+    mangleOperatorName(OO_Conditional, /*Arity=*/3);
+    mangleExpression(CO->getCond());
+    mangleExpression(CO->getLHS(), Arity);
+    mangleExpression(CO->getRHS(), Arity);
+    break;
+  }
+
+  case Expr::ImplicitCastExprClass: {
+    mangleExpression(cast<ImplicitCastExpr>(E)->getSubExpr(), Arity);
+    break;
+  }
+
+  case Expr::CStyleCastExprClass:
+  case Expr::CXXStaticCastExprClass:
+  case Expr::CXXDynamicCastExprClass:
+  case Expr::CXXReinterpretCastExprClass:
+  case Expr::CXXConstCastExprClass:
+  case Expr::CXXFunctionalCastExprClass: {
+    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
+    Out << "cv";
+    mangleType(ECE->getType());
+    mangleExpression(ECE->getSubExpr());
+    break;
+  }
+
+  case Expr::CXXOperatorCallExprClass: {
+    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
+    unsigned NumArgs = CE->getNumArgs();
+    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
+    // Mangle the arguments.
+    for (unsigned i = 0; i != NumArgs; ++i)
+      mangleExpression(CE->getArg(i));
+    break;
+  }
+
+  case Expr::ParenExprClass:
+    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
+    break;
+
+  case Expr::DeclRefExprClass: {
+    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
+
+    switch (D->getKind()) {
+    default:
+      //  <expr-primary> ::= L <mangled-name> E # external name
+      Out << 'L';
+      mangle(D, "_Z");
+      Out << 'E';
+      break;
+
+    case Decl::EnumConstant: {
+      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
+      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
+      break;
+    }
+
+    case Decl::NonTypeTemplateParm: {
+      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
+      mangleTemplateParameter(PD->getIndex());
+      break;
+    }
+
+    }
+
+    break;
+  }
+
+  case Expr::DependentScopeDeclRefExprClass: {
+    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
+    NestedNameSpecifier *NNS = DRE->getQualifier();
+    const Type *QTy = NNS->getAsType();
+
+    // When we're dealing with a nested-name-specifier that has just a
+    // dependent identifier in it, mangle that as a typename.  FIXME:
+    // It isn't clear that we ever actually want to have such a
+    // nested-name-specifier; why not just represent it as a typename type?
+    if (!QTy && NNS->getAsIdentifier() && NNS->getPrefix()) {
+      QTy = getASTContext().getDependentNameType(ETK_Typename,
+                                                 NNS->getPrefix(),
+                                                 NNS->getAsIdentifier())
+              .getTypePtr();
+    }
+    assert(QTy && "Qualifier was not type!");
+
+    // ::= sr <type> <unqualified-name>                  # dependent name
+    // ::= sr <type> <unqualified-name> <template-args>  # dependent template-id
+    Out << "sr";
+    mangleType(QualType(QTy, 0));
+    mangleUnqualifiedName(0, DRE->getDeclName(), Arity);
+    if (DRE->hasExplicitTemplateArgs())
+      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
+
+    break;
+  }
+
+  case Expr::CXXBindTemporaryExprClass:
+    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
+    break;
+
+  case Expr::ExprWithCleanupsClass:
+    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
+    break;
+
+  case Expr::FloatingLiteralClass: {
+    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
+    Out << 'L';
+    mangleType(FL->getType());
+    mangleFloat(FL->getValue());
+    Out << 'E';
+    break;
+  }
+
+  case Expr::CharacterLiteralClass:
+    Out << 'L';
+    mangleType(E->getType());
+    Out << cast<CharacterLiteral>(E)->getValue();
+    Out << 'E';
+    break;
+
+  case Expr::CXXBoolLiteralExprClass:
+    Out << "Lb";
+    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
+    Out << 'E';
+    break;
+
+  case Expr::IntegerLiteralClass: {
+    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
+    if (E->getType()->isSignedIntegerType())
+      Value.setIsSigned(true);
+    mangleIntegerLiteral(E->getType(), Value);
+    break;
+  }
+
+  case Expr::ImaginaryLiteralClass: {
+    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
+    // Mangle as if a complex literal.
+    // Proposal from David Vandevoorde, 2010.06.30.
+    Out << 'L';
+    mangleType(E->getType());
+    if (const FloatingLiteral *Imag =
+          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
+      // Mangle a floating-point zero of the appropriate type.
+      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
+      Out << '_';
+      mangleFloat(Imag->getValue());
+    } else {
+      Out << "0_";
+      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
+      if (IE->getSubExpr()->getType()->isSignedIntegerType())
+        Value.setIsSigned(true);
+      mangleNumber(Value);
+    }
+    Out << 'E';
+    break;
+  }
+
+  case Expr::StringLiteralClass: {
+    // Revised proposal from David Vandervoorde, 2010.07.15.
+    Out << 'L';
+    assert(isa<ConstantArrayType>(E->getType()));
+    mangleType(E->getType());
+    Out << 'E';
+    break;
+  }
+
+  case Expr::GNUNullExprClass:
+    // FIXME: should this really be mangled the same as nullptr?
+    // fallthrough
+
+  case Expr::CXXNullPtrLiteralExprClass: {
+    // Proposal from David Vandervoorde, 2010.06.30, as
+    // modified by ABI list discussion.
+    Out << "LDnE";
+    break;
+  }
+      
+  case Expr::PackExpansionExprClass:
+    Out << "sp";
+    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
+    break;
+      
+  case Expr::SizeOfPackExprClass: {
+    Out << "sZ";
+    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
+    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
+      mangleTemplateParameter(TTP->getIndex());
+    else if (const NonTypeTemplateParmDecl *NTTP
+                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
+      mangleTemplateParameter(NTTP->getIndex());
+    else if (const TemplateTemplateParmDecl *TempTP
+                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
+      mangleTemplateParameter(TempTP->getIndex());
+    else {
+      // Note: proposed by Mike Herrick on 11/30/10
+      // <expression> ::= sZ <function-param>  # size of function parameter pack
+      Diagnostic &Diags = Context.getDiags();
+      unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
+                            "cannot mangle sizeof...(function parameter pack)");
+      Diags.Report(DiagID);
+      return;
+    }
+  }
+  }
+}
+
+void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
+  // <ctor-dtor-name> ::= C1  # complete object constructor
+  //                  ::= C2  # base object constructor
+  //                  ::= C3  # complete object allocating constructor
+  //
+  switch (T) {
+  case Ctor_Complete:
+    Out << "C1";
+    break;
+  case Ctor_Base:
+    Out << "C2";
+    break;
+  case Ctor_CompleteAllocating:
+    Out << "C3";
+    break;
+  }
+}
+
+void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
+  // <ctor-dtor-name> ::= D0  # deleting destructor
+  //                  ::= D1  # complete object destructor
+  //                  ::= D2  # base object destructor
+  //
+  switch (T) {
+  case Dtor_Deleting:
+    Out << "D0";
+    break;
+  case Dtor_Complete:
+    Out << "D1";
+    break;
+  case Dtor_Base:
+    Out << "D2";
+    break;
+  }
+}
+
+void CXXNameMangler::mangleTemplateArgs(
+                          const ExplicitTemplateArgumentList &TemplateArgs) {
+  // <template-args> ::= I <template-arg>+ E
+  Out << 'I';
+  for (unsigned I = 0, E = TemplateArgs.NumTemplateArgs; I != E; ++I)
+    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[I].getArgument());
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
+                                        const TemplateArgument *TemplateArgs,
+                                        unsigned NumTemplateArgs) {
+  if (TemplateDecl *TD = Template.getAsTemplateDecl())
+    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
+                              NumTemplateArgs);
+  
+  // <template-args> ::= I <template-arg>+ E
+  Out << 'I';
+  for (unsigned i = 0; i != NumTemplateArgs; ++i)
+    mangleTemplateArg(0, TemplateArgs[i]);
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
+                                        const TemplateArgumentList &AL) {
+  // <template-args> ::= I <template-arg>+ E
+  Out << 'I';
+  for (unsigned i = 0, e = AL.size(); i != e; ++i)
+    mangleTemplateArg(PL.getParam(i), AL[i]);
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
+                                        const TemplateArgument *TemplateArgs,
+                                        unsigned NumTemplateArgs) {
+  // <template-args> ::= I <template-arg>+ E
+  Out << 'I';
+  for (unsigned i = 0; i != NumTemplateArgs; ++i)
+    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
+                                       const TemplateArgument &A) {
+  // <template-arg> ::= <type>              # type or template
+  //                ::= X <expression> E    # expression
+  //                ::= <expr-primary>      # simple expressions
+  //                ::= J <template-arg>* E # argument pack
+  //                ::= sp <expression>     # pack expansion of (C++0x)
+  switch (A.getKind()) {
+  case TemplateArgument::Null:
+    llvm_unreachable("Cannot mangle NULL template argument");
+      
+  case TemplateArgument::Type:
+    mangleType(A.getAsType());
+    break;
+  case TemplateArgument::Template:
+    // This is mangled as <type>.
+    mangleType(A.getAsTemplate());
+    break;
+  case TemplateArgument::TemplateExpansion:
+    // <type>  ::= Dp <type>          # pack expansion (C++0x)
+    Out << "Dp";
+    mangleType(A.getAsTemplateOrTemplatePattern());
+    break;
+  case TemplateArgument::Expression:
+    Out << 'X';
+    mangleExpression(A.getAsExpr());
+    Out << 'E';
+    break;
+  case TemplateArgument::Integral:
+    mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
+    break;
+  case TemplateArgument::Declaration: {
+    assert(P && "Missing template parameter for declaration argument");
+    //  <expr-primary> ::= L <mangled-name> E # external name
+
+    // Clang produces AST's where pointer-to-member-function expressions
+    // and pointer-to-function expressions are represented as a declaration not
+    // an expression. We compensate for it here to produce the correct mangling.
+    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
+    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
+    bool compensateMangling = D->isCXXClassMember() &&
+      !Parameter->getType()->isReferenceType();
+    if (compensateMangling) {
+      Out << 'X';
+      mangleOperatorName(OO_Amp, 1);
+    }
+
+    Out << 'L';
+    // References to external entities use the mangled name; if the name would
+    // not normally be manged then mangle it as unqualified.
+    //
+    // FIXME: The ABI specifies that external names here should have _Z, but
+    // gcc leaves this off.
+    if (compensateMangling)
+      mangle(D, "_Z");
+    else
+      mangle(D, "Z");
+    Out << 'E';
+
+    if (compensateMangling)
+      Out << 'E';
+
+    break;
+  }
+      
+  case TemplateArgument::Pack: {
+    // Note: proposal by Mike Herrick on 12/20/10
+    Out << 'J';
+    for (TemplateArgument::pack_iterator PA = A.pack_begin(), 
+                                      PAEnd = A.pack_end();
+         PA != PAEnd; ++PA)
+      mangleTemplateArg(P, *PA);
+    Out << 'E';
+  }
+  }
+}
+
+void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
+  // <template-param> ::= T_    # first template parameter
+  //                  ::= T <parameter-2 non-negative number> _
+  if (Index == 0)
+    Out << "T_";
+  else
+    Out << 'T' << (Index - 1) << '_';
+}
+
+// <substitution> ::= S <seq-id> _
+//                ::= S_
+bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
+  // Try one of the standard substitutions first.
+  if (mangleStandardSubstitution(ND))
+    return true;
+
+  ND = cast<NamedDecl>(ND->getCanonicalDecl());
+  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
+}
+
+bool CXXNameMangler::mangleSubstitution(QualType T) {
+  if (!T.getCVRQualifiers()) {
+    if (const RecordType *RT = T->getAs<RecordType>())
+      return mangleSubstitution(RT->getDecl());
+  }
+
+  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
+
+  return mangleSubstitution(TypePtr);
+}
+
+bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
+  if (TemplateDecl *TD = Template.getAsTemplateDecl())
+    return mangleSubstitution(TD);
+  
+  Template = Context.getASTContext().getCanonicalTemplateName(Template);
+  return mangleSubstitution(
+                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
+}
+
+bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
+  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
+  if (I == Substitutions.end())
+    return false;
+
+  unsigned SeqID = I->second;
+  if (SeqID == 0)
+    Out << "S_";
+  else {
+    SeqID--;
+
+    // <seq-id> is encoded in base-36, using digits and upper case letters.
+    char Buffer[10];
+    char *BufferPtr = llvm::array_endof(Buffer);
+
+    if (SeqID == 0) *--BufferPtr = '0';
+
+    while (SeqID) {
+      assert(BufferPtr > Buffer && "Buffer overflow!");
+
+      char c = static_cast<char>(SeqID % 36);
+
+      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
+      SeqID /= 36;
+    }
+
+    Out << 'S'
+        << llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
+        << '_';
+  }
+
+  return true;
+}
+
+static bool isCharType(QualType T) {
+  if (T.isNull())
+    return false;
+
+  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
+    T->isSpecificBuiltinType(BuiltinType::Char_U);
+}
+
+/// isCharSpecialization - Returns whether a given type is a template
+/// specialization of a given name with a single argument of type char.
+static bool isCharSpecialization(QualType T, const char *Name) {
+  if (T.isNull())
+    return false;
+
+  const RecordType *RT = T->getAs<RecordType>();
+  if (!RT)
+    return false;
+
+  const ClassTemplateSpecializationDecl *SD =
+    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
+  if (!SD)
+    return false;
+
+  if (!isStdNamespace(SD->getDeclContext()))
+    return false;
+
+  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+  if (TemplateArgs.size() != 1)
+    return false;
+
+  if (!isCharType(TemplateArgs[0].getAsType()))
+    return false;
+
+  return SD->getIdentifier()->getName() == Name;
+}
+
+template <std::size_t StrLen>
+static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
+                                       const char (&Str)[StrLen]) {
+  if (!SD->getIdentifier()->isStr(Str))
+    return false;
+
+  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+  if (TemplateArgs.size() != 2)
+    return false;
+
+  if (!isCharType(TemplateArgs[0].getAsType()))
+    return false;
+
+  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
+    return false;
+
+  return true;
+}
+
+bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
+  // <substitution> ::= St # ::std::
+  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+    if (isStd(NS)) {
+      Out << "St";
+      return true;
+    }
+  }
+
+  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
+    if (!isStdNamespace(TD->getDeclContext()))
+      return false;
+
+    // <substitution> ::= Sa # ::std::allocator
+    if (TD->getIdentifier()->isStr("allocator")) {
+      Out << "Sa";
+      return true;
+    }
+
+    // <<substitution> ::= Sb # ::std::basic_string
+    if (TD->getIdentifier()->isStr("basic_string")) {
+      Out << "Sb";
+      return true;
+    }
+  }
+
+  if (const ClassTemplateSpecializationDecl *SD =
+        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+    if (!isStdNamespace(SD->getDeclContext()))
+      return false;
+
+    //    <substitution> ::= Ss # ::std::basic_string<char,
+    //                            ::std::char_traits<char>,
+    //                            ::std::allocator<char> >
+    if (SD->getIdentifier()->isStr("basic_string")) {
+      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+
+      if (TemplateArgs.size() != 3)
+        return false;
+
+      if (!isCharType(TemplateArgs[0].getAsType()))
+        return false;
+
+      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
+        return false;
+
+      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
+        return false;
+
+      Out << "Ss";
+      return true;
+    }
+
+    //    <substitution> ::= Si # ::std::basic_istream<char,
+    //                            ::std::char_traits<char> >
+    if (isStreamCharSpecialization(SD, "basic_istream")) {
+      Out << "Si";
+      return true;
+    }
+
+    //    <substitution> ::= So # ::std::basic_ostream<char,
+    //                            ::std::char_traits<char> >
+    if (isStreamCharSpecialization(SD, "basic_ostream")) {
+      Out << "So";
+      return true;
+    }
+
+    //    <substitution> ::= Sd # ::std::basic_iostream<char,
+    //                            ::std::char_traits<char> >
+    if (isStreamCharSpecialization(SD, "basic_iostream")) {
+      Out << "Sd";
+      return true;
+    }
+  }
+  return false;
+}
+
+void CXXNameMangler::addSubstitution(QualType T) {
+  if (!T.getCVRQualifiers()) {
+    if (const RecordType *RT = T->getAs<RecordType>()) {
+      addSubstitution(RT->getDecl());
+      return;
+    }
+  }
+
+  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
+  addSubstitution(TypePtr);
+}
+
+void CXXNameMangler::addSubstitution(TemplateName Template) {
+  if (TemplateDecl *TD = Template.getAsTemplateDecl())
+    return addSubstitution(TD);
+  
+  Template = Context.getASTContext().getCanonicalTemplateName(Template);
+  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
+}
+
+void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
+  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
+  Substitutions[Ptr] = SeqID++;
+}
+
+//
+
+/// \brief Mangles the name of the declaration D and emits that name to the
+/// given output stream.
+///
+/// If the declaration D requires a mangled name, this routine will emit that
+/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
+/// and this routine will return false. In this case, the caller should just
+/// emit the identifier of the declaration (\c D->getIdentifier()) as its
+/// name.
+void ItaniumMangleContext::mangleName(const NamedDecl *D,
+                                      llvm::SmallVectorImpl<char> &Res) {
+  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
+          "Invalid mangleName() call, argument is not a variable or function!");
+  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
+         "Invalid mangleName() call on 'structor decl!");
+
+  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
+                                 getASTContext().getSourceManager(),
+                                 "Mangling declaration");
+
+  CXXNameMangler Mangler(*this, Res);
+  return Mangler.mangle(D);
+}
+
+void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
+                                         CXXCtorType Type,
+                                         llvm::SmallVectorImpl<char> &Res) {
+  CXXNameMangler Mangler(*this, Res, D, Type);
+  Mangler.mangle(D);
+}
+
+void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
+                                         CXXDtorType Type,
+                                         llvm::SmallVectorImpl<char> &Res) {
+  CXXNameMangler Mangler(*this, Res, D, Type);
+  Mangler.mangle(D);
+}
+
+void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
+                                       const ThunkInfo &Thunk,
+                                       llvm::SmallVectorImpl<char> &Res) {
+  //  <special-name> ::= T <call-offset> <base encoding>
+  //                      # base is the nominal target function of thunk
+  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
+  //                      # base is the nominal target function of thunk
+  //                      # first call-offset is 'this' adjustment
+  //                      # second call-offset is result adjustment
+  
+  assert(!isa<CXXDestructorDecl>(MD) &&
+         "Use mangleCXXDtor for destructor decls!");
+  
+  CXXNameMangler Mangler(*this, Res);
+  Mangler.getStream() << "_ZT";
+  if (!Thunk.Return.isEmpty())
+    Mangler.getStream() << 'c';
+  
+  // Mangle the 'this' pointer adjustment.
+  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
+  
+  // Mangle the return pointer adjustment if there is one.
+  if (!Thunk.Return.isEmpty())
+    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
+                             Thunk.Return.VBaseOffsetOffset);
+  
+  Mangler.mangleFunctionEncoding(MD);
+}
+
+void 
+ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
+                                         CXXDtorType Type,
+                                         const ThisAdjustment &ThisAdjustment,
+                                         llvm::SmallVectorImpl<char> &Res) {
+  //  <special-name> ::= T <call-offset> <base encoding>
+  //                      # base is the nominal target function of thunk
+  
+  CXXNameMangler Mangler(*this, Res, DD, Type);
+  Mangler.getStream() << "_ZT";
+
+  // Mangle the 'this' pointer adjustment.
+  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 
+                           ThisAdjustment.VCallOffsetOffset);
+
+  Mangler.mangleFunctionEncoding(DD);
+}
+
+/// mangleGuardVariable - Returns the mangled name for a guard variable
+/// for the passed in VarDecl.
+void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
+                                             llvm::SmallVectorImpl<char> &Res) {
+  //  <special-name> ::= GV <object name>       # Guard variable for one-time
+  //                                            # initialization
+  CXXNameMangler Mangler(*this, Res);
+  Mangler.getStream() << "_ZGV";
+  Mangler.mangleName(D);
+}
+
+void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
+                                             llvm::SmallVectorImpl<char> &Res) {
+  // We match the GCC mangling here.
+  //  <special-name> ::= GR <object name>
+  CXXNameMangler Mangler(*this, Res);
+  Mangler.getStream() << "_ZGR";
+  Mangler.mangleName(D);
+}
+
+void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
+                                           llvm::SmallVectorImpl<char> &Res) {
+  // <special-name> ::= TV <type>  # virtual table
+  CXXNameMangler Mangler(*this, Res);
+  Mangler.getStream() << "_ZTV";
+  Mangler.mangleNameOrStandardSubstitution(RD);
+}
+
+void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
+                                        llvm::SmallVectorImpl<char> &Res) {
+  // <special-name> ::= TT <type>  # VTT structure
+  CXXNameMangler Mangler(*this, Res);
+  Mangler.getStream() << "_ZTT";
+  Mangler.mangleNameOrStandardSubstitution(RD);
+}
+
+void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
+                                               int64_t Offset,
+                                               const CXXRecordDecl *Type,
+                                             llvm::SmallVectorImpl<char> &Res) {
+  // <special-name> ::= TC <type> <offset number> _ <base type>
+  CXXNameMangler Mangler(*this, Res);
+  Mangler.getStream() << "_ZTC";
+  Mangler.mangleNameOrStandardSubstitution(RD);
+  Mangler.getStream() << Offset;
+  Mangler.getStream() << '_';
+  Mangler.mangleNameOrStandardSubstitution(Type);
+}
+
+void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
+                                         llvm::SmallVectorImpl<char> &Res) {
+  // <special-name> ::= TI <type>  # typeinfo structure
+  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
+  CXXNameMangler Mangler(*this, Res);
+  Mangler.getStream() << "_ZTI";
+  Mangler.mangleType(Ty);
+}
+
+void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
+                                             llvm::SmallVectorImpl<char> &Res) {
+  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
+  CXXNameMangler Mangler(*this, Res);
+  Mangler.getStream() << "_ZTS";
+  Mangler.mangleType(Ty);
+}
+
+MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
+                                                 Diagnostic &Diags) {
+  return new ItaniumMangleContext(Context, Diags);
+}