| //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This coordinates the per-module state used while generating code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenModule.h" |
| #include "CGDebugInfo.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenTBAA.h" |
| #include "CGCall.h" |
| #include "CGCXXABI.h" |
| #include "CGObjCRuntime.h" |
| #include "TargetInfo.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/ConvertUTF.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Module.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Target/Mangler.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/ErrorHandling.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| static CGCXXABI &createCXXABI(CodeGenModule &CGM) { |
| switch (CGM.getContext().Target.getCXXABI()) { |
| case CXXABI_ARM: return *CreateARMCXXABI(CGM); |
| case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); |
| case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); |
| } |
| |
| llvm_unreachable("invalid C++ ABI kind"); |
| return *CreateItaniumCXXABI(CGM); |
| } |
| |
| |
| CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, |
| llvm::Module &M, const llvm::TargetData &TD, |
| Diagnostic &diags) |
| : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), |
| TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), |
| ABI(createCXXABI(*this)), |
| Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), |
| TBAA(0), |
| VTables(*this), Runtime(0), |
| CFConstantStringClassRef(0), ConstantStringClassRef(0), |
| VMContext(M.getContext()), |
| NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), |
| NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), |
| BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), |
| BlockObjectAssign(0), BlockObjectDispose(0), |
| BlockDescriptorType(0), GenericBlockLiteralType(0) { |
| if (!Features.ObjC1) |
| Runtime = 0; |
| else if (!Features.NeXTRuntime) |
| Runtime = CreateGNUObjCRuntime(*this); |
| else if (Features.ObjCNonFragileABI) |
| Runtime = CreateMacNonFragileABIObjCRuntime(*this); |
| else |
| Runtime = CreateMacObjCRuntime(*this); |
| |
| // Enable TBAA unless it's suppressed. |
| if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) |
| TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), |
| ABI.getMangleContext()); |
| |
| // If debug info generation is enabled, create the CGDebugInfo object. |
| DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; |
| |
| Block.GlobalUniqueCount = 0; |
| |
| // Initialize the type cache. |
| llvm::LLVMContext &LLVMContext = M.getContext(); |
| Int8Ty = llvm::Type::getInt8Ty(LLVMContext); |
| Int32Ty = llvm::Type::getInt32Ty(LLVMContext); |
| Int64Ty = llvm::Type::getInt64Ty(LLVMContext); |
| PointerWidthInBits = C.Target.getPointerWidth(0); |
| IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth()); |
| IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); |
| Int8PtrTy = Int8Ty->getPointerTo(0); |
| Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); |
| } |
| |
| CodeGenModule::~CodeGenModule() { |
| delete Runtime; |
| delete &ABI; |
| delete TBAA; |
| delete DebugInfo; |
| } |
| |
| void CodeGenModule::createObjCRuntime() { |
| if (!Features.NeXTRuntime) |
| Runtime = CreateGNUObjCRuntime(*this); |
| else if (Features.ObjCNonFragileABI) |
| Runtime = CreateMacNonFragileABIObjCRuntime(*this); |
| else |
| Runtime = CreateMacObjCRuntime(*this); |
| } |
| |
| void CodeGenModule::Release() { |
| EmitDeferred(); |
| EmitCXXGlobalInitFunc(); |
| EmitCXXGlobalDtorFunc(); |
| if (Runtime) |
| if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) |
| AddGlobalCtor(ObjCInitFunction); |
| EmitCtorList(GlobalCtors, "llvm.global_ctors"); |
| EmitCtorList(GlobalDtors, "llvm.global_dtors"); |
| EmitAnnotations(); |
| EmitLLVMUsed(); |
| |
| SimplifyPersonality(); |
| |
| if (getCodeGenOpts().EmitDeclMetadata) |
| EmitDeclMetadata(); |
| } |
| |
| llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { |
| if (!TBAA) |
| return 0; |
| return TBAA->getTBAAInfo(QTy); |
| } |
| |
| void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, |
| llvm::MDNode *TBAAInfo) { |
| Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); |
| } |
| |
| bool CodeGenModule::isTargetDarwin() const { |
| return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; |
| } |
| |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the |
| /// specified stmt yet. |
| void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, |
| bool OmitOnError) { |
| if (OmitOnError && getDiags().hasErrorOccurred()) |
| return; |
| unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, |
| "cannot compile this %0 yet"); |
| std::string Msg = Type; |
| getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) |
| << Msg << S->getSourceRange(); |
| } |
| |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the |
| /// specified decl yet. |
| void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, |
| bool OmitOnError) { |
| if (OmitOnError && getDiags().hasErrorOccurred()) |
| return; |
| unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, |
| "cannot compile this %0 yet"); |
| std::string Msg = Type; |
| getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; |
| } |
| |
| void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, |
| const NamedDecl *D) const { |
| // Internal definitions always have default visibility. |
| if (GV->hasLocalLinkage()) { |
| GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
| return; |
| } |
| |
| // Set visibility for definitions. |
| NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); |
| if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) |
| GV->setVisibility(GetLLVMVisibility(LV.visibility())); |
| } |
| |
| /// Set the symbol visibility of type information (vtable and RTTI) |
| /// associated with the given type. |
| void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, |
| const CXXRecordDecl *RD, |
| TypeVisibilityKind TVK) const { |
| setGlobalVisibility(GV, RD); |
| |
| if (!CodeGenOpts.HiddenWeakVTables) |
| return; |
| |
| // We never want to drop the visibility for RTTI names. |
| if (TVK == TVK_ForRTTIName) |
| return; |
| |
| // We want to drop the visibility to hidden for weak type symbols. |
| // This isn't possible if there might be unresolved references |
| // elsewhere that rely on this symbol being visible. |
| |
| // This should be kept roughly in sync with setThunkVisibility |
| // in CGVTables.cpp. |
| |
| // Preconditions. |
| if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || |
| GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) |
| return; |
| |
| // Don't override an explicit visibility attribute. |
| if (RD->hasAttr<VisibilityAttr>()) |
| return; |
| |
| switch (RD->getTemplateSpecializationKind()) { |
| // We have to disable the optimization if this is an EI definition |
| // because there might be EI declarations in other shared objects. |
| case TSK_ExplicitInstantiationDefinition: |
| case TSK_ExplicitInstantiationDeclaration: |
| return; |
| |
| // Every use of a non-template class's type information has to emit it. |
| case TSK_Undeclared: |
| break; |
| |
| // In theory, implicit instantiations can ignore the possibility of |
| // an explicit instantiation declaration because there necessarily |
| // must be an EI definition somewhere with default visibility. In |
| // practice, it's possible to have an explicit instantiation for |
| // an arbitrary template class, and linkers aren't necessarily able |
| // to deal with mixed-visibility symbols. |
| case TSK_ExplicitSpecialization: |
| case TSK_ImplicitInstantiation: |
| if (!CodeGenOpts.HiddenWeakTemplateVTables) |
| return; |
| break; |
| } |
| |
| // If there's a key function, there may be translation units |
| // that don't have the key function's definition. But ignore |
| // this if we're emitting RTTI under -fno-rtti. |
| if (!(TVK != TVK_ForRTTI) || Features.RTTI) { |
| if (Context.getKeyFunction(RD)) |
| return; |
| } |
| |
| // Otherwise, drop the visibility to hidden. |
| GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| GV->setUnnamedAddr(true); |
| } |
| |
| llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { |
| const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); |
| |
| llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; |
| if (!Str.empty()) |
| return Str; |
| |
| if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { |
| IdentifierInfo *II = ND->getIdentifier(); |
| assert(II && "Attempt to mangle unnamed decl."); |
| |
| Str = II->getName(); |
| return Str; |
| } |
| |
| llvm::SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) |
| getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); |
| else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) |
| getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); |
| else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) |
| getCXXABI().getMangleContext().mangleBlock(BD, Out); |
| else |
| getCXXABI().getMangleContext().mangleName(ND, Out); |
| |
| // Allocate space for the mangled name. |
| Out.flush(); |
| size_t Length = Buffer.size(); |
| char *Name = MangledNamesAllocator.Allocate<char>(Length); |
| std::copy(Buffer.begin(), Buffer.end(), Name); |
| |
| Str = llvm::StringRef(Name, Length); |
| |
| return Str; |
| } |
| |
| void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, |
| const BlockDecl *BD) { |
| MangleContext &MangleCtx = getCXXABI().getMangleContext(); |
| const Decl *D = GD.getDecl(); |
| llvm::raw_svector_ostream Out(Buffer.getBuffer()); |
| if (D == 0) |
| MangleCtx.mangleGlobalBlock(BD, Out); |
| else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) |
| MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); |
| else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) |
| MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); |
| else |
| MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); |
| } |
| |
| llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { |
| return getModule().getNamedValue(Name); |
| } |
| |
| /// AddGlobalCtor - Add a function to the list that will be called before |
| /// main() runs. |
| void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { |
| // FIXME: Type coercion of void()* types. |
| GlobalCtors.push_back(std::make_pair(Ctor, Priority)); |
| } |
| |
| /// AddGlobalDtor - Add a function to the list that will be called |
| /// when the module is unloaded. |
| void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { |
| // FIXME: Type coercion of void()* types. |
| GlobalDtors.push_back(std::make_pair(Dtor, Priority)); |
| } |
| |
| void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { |
| // Ctor function type is void()*. |
| llvm::FunctionType* CtorFTy = |
| llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); |
| llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); |
| |
| // Get the type of a ctor entry, { i32, void ()* }. |
| llvm::StructType* CtorStructTy = |
| llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), |
| llvm::PointerType::getUnqual(CtorFTy), NULL); |
| |
| // Construct the constructor and destructor arrays. |
| std::vector<llvm::Constant*> Ctors; |
| for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { |
| std::vector<llvm::Constant*> S; |
| S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), |
| I->second, false)); |
| S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); |
| Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); |
| } |
| |
| if (!Ctors.empty()) { |
| llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); |
| new llvm::GlobalVariable(TheModule, AT, false, |
| llvm::GlobalValue::AppendingLinkage, |
| llvm::ConstantArray::get(AT, Ctors), |
| GlobalName); |
| } |
| } |
| |
| void CodeGenModule::EmitAnnotations() { |
| if (Annotations.empty()) |
| return; |
| |
| // Create a new global variable for the ConstantStruct in the Module. |
| llvm::Constant *Array = |
| llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), |
| Annotations.size()), |
| Annotations); |
| llvm::GlobalValue *gv = |
| new llvm::GlobalVariable(TheModule, Array->getType(), false, |
| llvm::GlobalValue::AppendingLinkage, Array, |
| "llvm.global.annotations"); |
| gv->setSection("llvm.metadata"); |
| } |
| |
| llvm::GlobalValue::LinkageTypes |
| CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { |
| GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); |
| |
| if (Linkage == GVA_Internal) |
| return llvm::Function::InternalLinkage; |
| |
| if (D->hasAttr<DLLExportAttr>()) |
| return llvm::Function::DLLExportLinkage; |
| |
| if (D->hasAttr<WeakAttr>()) |
| return llvm::Function::WeakAnyLinkage; |
| |
| // In C99 mode, 'inline' functions are guaranteed to have a strong |
| // definition somewhere else, so we can use available_externally linkage. |
| if (Linkage == GVA_C99Inline) |
| return llvm::Function::AvailableExternallyLinkage; |
| |
| // In C++, the compiler has to emit a definition in every translation unit |
| // that references the function. We should use linkonce_odr because |
| // a) if all references in this translation unit are optimized away, we |
| // don't need to codegen it. b) if the function persists, it needs to be |
| // merged with other definitions. c) C++ has the ODR, so we know the |
| // definition is dependable. |
| if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) |
| return !Context.getLangOptions().AppleKext |
| ? llvm::Function::LinkOnceODRLinkage |
| : llvm::Function::InternalLinkage; |
| |
| // An explicit instantiation of a template has weak linkage, since |
| // explicit instantiations can occur in multiple translation units |
| // and must all be equivalent. However, we are not allowed to |
| // throw away these explicit instantiations. |
| if (Linkage == GVA_ExplicitTemplateInstantiation) |
| return !Context.getLangOptions().AppleKext |
| ? llvm::Function::WeakODRLinkage |
| : llvm::Function::InternalLinkage; |
| |
| // Otherwise, we have strong external linkage. |
| assert(Linkage == GVA_StrongExternal); |
| return llvm::Function::ExternalLinkage; |
| } |
| |
| |
| /// SetFunctionDefinitionAttributes - Set attributes for a global. |
| /// |
| /// FIXME: This is currently only done for aliases and functions, but not for |
| /// variables (these details are set in EmitGlobalVarDefinition for variables). |
| void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, |
| llvm::GlobalValue *GV) { |
| SetCommonAttributes(D, GV); |
| } |
| |
| void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, |
| const CGFunctionInfo &Info, |
| llvm::Function *F) { |
| unsigned CallingConv; |
| AttributeListType AttributeList; |
| ConstructAttributeList(Info, D, AttributeList, CallingConv); |
| F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), |
| AttributeList.size())); |
| F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); |
| } |
| |
| void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, |
| llvm::Function *F) { |
| if (!Features.Exceptions && !Features.ObjCNonFragileABI) |
| F->addFnAttr(llvm::Attribute::NoUnwind); |
| |
| if (D->hasAttr<AlwaysInlineAttr>()) |
| F->addFnAttr(llvm::Attribute::AlwaysInline); |
| |
| if (D->hasAttr<NakedAttr>()) |
| F->addFnAttr(llvm::Attribute::Naked); |
| |
| if (D->hasAttr<NoInlineAttr>()) |
| F->addFnAttr(llvm::Attribute::NoInline); |
| |
| if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) |
| F->setUnnamedAddr(true); |
| |
| if (Features.getStackProtectorMode() == LangOptions::SSPOn) |
| F->addFnAttr(llvm::Attribute::StackProtect); |
| else if (Features.getStackProtectorMode() == LangOptions::SSPReq) |
| F->addFnAttr(llvm::Attribute::StackProtectReq); |
| |
| unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); |
| if (alignment) |
| F->setAlignment(alignment); |
| |
| // C++ ABI requires 2-byte alignment for member functions. |
| if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) |
| F->setAlignment(2); |
| } |
| |
| void CodeGenModule::SetCommonAttributes(const Decl *D, |
| llvm::GlobalValue *GV) { |
| if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) |
| setGlobalVisibility(GV, ND); |
| else |
| GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
| |
| if (D->hasAttr<UsedAttr>()) |
| AddUsedGlobal(GV); |
| |
| if (const SectionAttr *SA = D->getAttr<SectionAttr>()) |
| GV->setSection(SA->getName()); |
| |
| getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); |
| } |
| |
| void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, |
| llvm::Function *F, |
| const CGFunctionInfo &FI) { |
| SetLLVMFunctionAttributes(D, FI, F); |
| SetLLVMFunctionAttributesForDefinition(D, F); |
| |
| F->setLinkage(llvm::Function::InternalLinkage); |
| |
| SetCommonAttributes(D, F); |
| } |
| |
| void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, |
| llvm::Function *F, |
| bool IsIncompleteFunction) { |
| const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); |
| |
| if (!IsIncompleteFunction) |
| SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); |
| |
| // Only a few attributes are set on declarations; these may later be |
| // overridden by a definition. |
| |
| if (FD->hasAttr<DLLImportAttr>()) { |
| F->setLinkage(llvm::Function::DLLImportLinkage); |
| } else if (FD->hasAttr<WeakAttr>() || |
| FD->hasAttr<WeakImportAttr>()) { |
| // "extern_weak" is overloaded in LLVM; we probably should have |
| // separate linkage types for this. |
| F->setLinkage(llvm::Function::ExternalWeakLinkage); |
| } else { |
| F->setLinkage(llvm::Function::ExternalLinkage); |
| |
| NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); |
| if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { |
| F->setVisibility(GetLLVMVisibility(LV.visibility())); |
| } |
| } |
| |
| if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) |
| F->setSection(SA->getName()); |
| } |
| |
| void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { |
| assert(!GV->isDeclaration() && |
| "Only globals with definition can force usage."); |
| LLVMUsed.push_back(GV); |
| } |
| |
| void CodeGenModule::EmitLLVMUsed() { |
| // Don't create llvm.used if there is no need. |
| if (LLVMUsed.empty()) |
| return; |
| |
| const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); |
| |
| // Convert LLVMUsed to what ConstantArray needs. |
| std::vector<llvm::Constant*> UsedArray; |
| UsedArray.resize(LLVMUsed.size()); |
| for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { |
| UsedArray[i] = |
| llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), |
| i8PTy); |
| } |
| |
| if (UsedArray.empty()) |
| return; |
| llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); |
| |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(getModule(), ATy, false, |
| llvm::GlobalValue::AppendingLinkage, |
| llvm::ConstantArray::get(ATy, UsedArray), |
| "llvm.used"); |
| |
| GV->setSection("llvm.metadata"); |
| } |
| |
| void CodeGenModule::EmitDeferred() { |
| // Emit code for any potentially referenced deferred decls. Since a |
| // previously unused static decl may become used during the generation of code |
| // for a static function, iterate until no changes are made. |
| |
| while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { |
| if (!DeferredVTables.empty()) { |
| const CXXRecordDecl *RD = DeferredVTables.back(); |
| DeferredVTables.pop_back(); |
| getVTables().GenerateClassData(getVTableLinkage(RD), RD); |
| continue; |
| } |
| |
| GlobalDecl D = DeferredDeclsToEmit.back(); |
| DeferredDeclsToEmit.pop_back(); |
| |
| // Check to see if we've already emitted this. This is necessary |
| // for a couple of reasons: first, decls can end up in the |
| // deferred-decls queue multiple times, and second, decls can end |
| // up with definitions in unusual ways (e.g. by an extern inline |
| // function acquiring a strong function redefinition). Just |
| // ignore these cases. |
| // |
| // TODO: That said, looking this up multiple times is very wasteful. |
| llvm::StringRef Name = getMangledName(D); |
| llvm::GlobalValue *CGRef = GetGlobalValue(Name); |
| assert(CGRef && "Deferred decl wasn't referenced?"); |
| |
| if (!CGRef->isDeclaration()) |
| continue; |
| |
| // GlobalAlias::isDeclaration() defers to the aliasee, but for our |
| // purposes an alias counts as a definition. |
| if (isa<llvm::GlobalAlias>(CGRef)) |
| continue; |
| |
| // Otherwise, emit the definition and move on to the next one. |
| EmitGlobalDefinition(D); |
| } |
| } |
| |
| /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the |
| /// annotation information for a given GlobalValue. The annotation struct is |
| /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the |
| /// GlobalValue being annotated. The second field is the constant string |
| /// created from the AnnotateAttr's annotation. The third field is a constant |
| /// string containing the name of the translation unit. The fourth field is |
| /// the line number in the file of the annotated value declaration. |
| /// |
| /// FIXME: this does not unique the annotation string constants, as llvm-gcc |
| /// appears to. |
| /// |
| llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, |
| const AnnotateAttr *AA, |
| unsigned LineNo) { |
| llvm::Module *M = &getModule(); |
| |
| // get [N x i8] constants for the annotation string, and the filename string |
| // which are the 2nd and 3rd elements of the global annotation structure. |
| const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); |
| llvm::Constant *anno = llvm::ConstantArray::get(VMContext, |
| AA->getAnnotation(), true); |
| llvm::Constant *unit = llvm::ConstantArray::get(VMContext, |
| M->getModuleIdentifier(), |
| true); |
| |
| // Get the two global values corresponding to the ConstantArrays we just |
| // created to hold the bytes of the strings. |
| llvm::GlobalValue *annoGV = |
| new llvm::GlobalVariable(*M, anno->getType(), false, |
| llvm::GlobalValue::PrivateLinkage, anno, |
| GV->getName()); |
| // translation unit name string, emitted into the llvm.metadata section. |
| llvm::GlobalValue *unitGV = |
| new llvm::GlobalVariable(*M, unit->getType(), false, |
| llvm::GlobalValue::PrivateLinkage, unit, |
| ".str"); |
| unitGV->setUnnamedAddr(true); |
| |
| // Create the ConstantStruct for the global annotation. |
| llvm::Constant *Fields[4] = { |
| llvm::ConstantExpr::getBitCast(GV, SBP), |
| llvm::ConstantExpr::getBitCast(annoGV, SBP), |
| llvm::ConstantExpr::getBitCast(unitGV, SBP), |
| llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) |
| }; |
| return llvm::ConstantStruct::get(VMContext, Fields, 4, false); |
| } |
| |
| bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { |
| // Never defer when EmitAllDecls is specified. |
| if (Features.EmitAllDecls) |
| return false; |
| |
| return !getContext().DeclMustBeEmitted(Global); |
| } |
| |
| llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { |
| const AliasAttr *AA = VD->getAttr<AliasAttr>(); |
| assert(AA && "No alias?"); |
| |
| const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); |
| |
| // See if there is already something with the target's name in the module. |
| llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); |
| |
| llvm::Constant *Aliasee; |
| if (isa<llvm::FunctionType>(DeclTy)) |
| Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), |
| /*ForVTable=*/false); |
| else |
| Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), |
| llvm::PointerType::getUnqual(DeclTy), 0); |
| if (!Entry) { |
| llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); |
| F->setLinkage(llvm::Function::ExternalWeakLinkage); |
| WeakRefReferences.insert(F); |
| } |
| |
| return Aliasee; |
| } |
| |
| void CodeGenModule::EmitGlobal(GlobalDecl GD) { |
| const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); |
| |
| // Weak references don't produce any output by themselves. |
| if (Global->hasAttr<WeakRefAttr>()) |
| return; |
| |
| // If this is an alias definition (which otherwise looks like a declaration) |
| // emit it now. |
| if (Global->hasAttr<AliasAttr>()) |
| return EmitAliasDefinition(GD); |
| |
| // Ignore declarations, they will be emitted on their first use. |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { |
| if (FD->getIdentifier()) { |
| llvm::StringRef Name = FD->getName(); |
| if (Name == "_Block_object_assign") { |
| BlockObjectAssignDecl = FD; |
| } else if (Name == "_Block_object_dispose") { |
| BlockObjectDisposeDecl = FD; |
| } |
| } |
| |
| // Forward declarations are emitted lazily on first use. |
| if (!FD->isThisDeclarationADefinition()) |
| return; |
| } else { |
| const VarDecl *VD = cast<VarDecl>(Global); |
| assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); |
| |
| if (VD->getIdentifier()) { |
| llvm::StringRef Name = VD->getName(); |
| if (Name == "_NSConcreteGlobalBlock") { |
| NSConcreteGlobalBlockDecl = VD; |
| } else if (Name == "_NSConcreteStackBlock") { |
| NSConcreteStackBlockDecl = VD; |
| } |
| } |
| |
| |
| if (VD->isThisDeclarationADefinition() != VarDecl::Definition) |
| return; |
| } |
| |
| // Defer code generation when possible if this is a static definition, inline |
| // function etc. These we only want to emit if they are used. |
| if (!MayDeferGeneration(Global)) { |
| // Emit the definition if it can't be deferred. |
| EmitGlobalDefinition(GD); |
| return; |
| } |
| |
| // If we're deferring emission of a C++ variable with an |
| // initializer, remember the order in which it appeared in the file. |
| if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && |
| cast<VarDecl>(Global)->hasInit()) { |
| DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); |
| CXXGlobalInits.push_back(0); |
| } |
| |
| // If the value has already been used, add it directly to the |
| // DeferredDeclsToEmit list. |
| llvm::StringRef MangledName = getMangledName(GD); |
| if (GetGlobalValue(MangledName)) |
| DeferredDeclsToEmit.push_back(GD); |
| else { |
| // Otherwise, remember that we saw a deferred decl with this name. The |
| // first use of the mangled name will cause it to move into |
| // DeferredDeclsToEmit. |
| DeferredDecls[MangledName] = GD; |
| } |
| } |
| |
| void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { |
| const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); |
| |
| PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), |
| Context.getSourceManager(), |
| "Generating code for declaration"); |
| |
| if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { |
| // At -O0, don't generate IR for functions with available_externally |
| // linkage. |
| if (CodeGenOpts.OptimizationLevel == 0 && |
| !Function->hasAttr<AlwaysInlineAttr>() && |
| getFunctionLinkage(Function) |
| == llvm::Function::AvailableExternallyLinkage) |
| return; |
| |
| if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| if (Method->isVirtual()) |
| getVTables().EmitThunks(GD); |
| |
| if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) |
| return EmitCXXConstructor(CD, GD.getCtorType()); |
| |
| if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) |
| return EmitCXXDestructor(DD, GD.getDtorType()); |
| } |
| |
| return EmitGlobalFunctionDefinition(GD); |
| } |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| return EmitGlobalVarDefinition(VD); |
| |
| assert(0 && "Invalid argument to EmitGlobalDefinition()"); |
| } |
| |
| /// GetOrCreateLLVMFunction - If the specified mangled name is not in the |
| /// module, create and return an llvm Function with the specified type. If there |
| /// is something in the module with the specified name, return it potentially |
| /// bitcasted to the right type. |
| /// |
| /// If D is non-null, it specifies a decl that correspond to this. This is used |
| /// to set the attributes on the function when it is first created. |
| llvm::Constant * |
| CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, |
| const llvm::Type *Ty, |
| GlobalDecl D, bool ForVTable) { |
| // Lookup the entry, lazily creating it if necessary. |
| llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
| if (Entry) { |
| if (WeakRefReferences.count(Entry)) { |
| const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); |
| if (FD && !FD->hasAttr<WeakAttr>()) |
| Entry->setLinkage(llvm::Function::ExternalLinkage); |
| |
| WeakRefReferences.erase(Entry); |
| } |
| |
| if (Entry->getType()->getElementType() == Ty) |
| return Entry; |
| |
| // Make sure the result is of the correct type. |
| const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); |
| return llvm::ConstantExpr::getBitCast(Entry, PTy); |
| } |
| |
| // This function doesn't have a complete type (for example, the return |
| // type is an incomplete struct). Use a fake type instead, and make |
| // sure not to try to set attributes. |
| bool IsIncompleteFunction = false; |
| |
| const llvm::FunctionType *FTy; |
| if (isa<llvm::FunctionType>(Ty)) { |
| FTy = cast<llvm::FunctionType>(Ty); |
| } else { |
| FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); |
| IsIncompleteFunction = true; |
| } |
| |
| llvm::Function *F = llvm::Function::Create(FTy, |
| llvm::Function::ExternalLinkage, |
| MangledName, &getModule()); |
| assert(F->getName() == MangledName && "name was uniqued!"); |
| if (D.getDecl()) |
| SetFunctionAttributes(D, F, IsIncompleteFunction); |
| |
| // This is the first use or definition of a mangled name. If there is a |
| // deferred decl with this name, remember that we need to emit it at the end |
| // of the file. |
| llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); |
| if (DDI != DeferredDecls.end()) { |
| // Move the potentially referenced deferred decl to the DeferredDeclsToEmit |
| // list, and remove it from DeferredDecls (since we don't need it anymore). |
| DeferredDeclsToEmit.push_back(DDI->second); |
| DeferredDecls.erase(DDI); |
| |
| // Otherwise, there are cases we have to worry about where we're |
| // using a declaration for which we must emit a definition but where |
| // we might not find a top-level definition: |
| // - member functions defined inline in their classes |
| // - friend functions defined inline in some class |
| // - special member functions with implicit definitions |
| // If we ever change our AST traversal to walk into class methods, |
| // this will be unnecessary. |
| // |
| // We also don't emit a definition for a function if it's going to be an entry |
| // in a vtable, unless it's already marked as used. |
| } else if (getLangOptions().CPlusPlus && D.getDecl()) { |
| // Look for a declaration that's lexically in a record. |
| const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); |
| do { |
| if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { |
| if (FD->isImplicit() && !ForVTable) { |
| assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); |
| DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); |
| break; |
| } else if (FD->isThisDeclarationADefinition()) { |
| DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); |
| break; |
| } |
| } |
| FD = FD->getPreviousDeclaration(); |
| } while (FD); |
| } |
| |
| // Make sure the result is of the requested type. |
| if (!IsIncompleteFunction) { |
| assert(F->getType()->getElementType() == Ty); |
| return F; |
| } |
| |
| const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); |
| return llvm::ConstantExpr::getBitCast(F, PTy); |
| } |
| |
| /// GetAddrOfFunction - Return the address of the given function. If Ty is |
| /// non-null, then this function will use the specified type if it has to |
| /// create it (this occurs when we see a definition of the function). |
| llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, |
| const llvm::Type *Ty, |
| bool ForVTable) { |
| // If there was no specific requested type, just convert it now. |
| if (!Ty) |
| Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); |
| |
| llvm::StringRef MangledName = getMangledName(GD); |
| return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); |
| } |
| |
| /// CreateRuntimeFunction - Create a new runtime function with the specified |
| /// type and name. |
| llvm::Constant * |
| CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, |
| llvm::StringRef Name) { |
| return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false); |
| } |
| |
| static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { |
| if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) |
| return false; |
| if (Context.getLangOptions().CPlusPlus && |
| Context.getBaseElementType(D->getType())->getAs<RecordType>()) { |
| // FIXME: We should do something fancier here! |
| return false; |
| } |
| return true; |
| } |
| |
| /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, |
| /// create and return an llvm GlobalVariable with the specified type. If there |
| /// is something in the module with the specified name, return it potentially |
| /// bitcasted to the right type. |
| /// |
| /// If D is non-null, it specifies a decl that correspond to this. This is used |
| /// to set the attributes on the global when it is first created. |
| llvm::Constant * |
| CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, |
| const llvm::PointerType *Ty, |
| const VarDecl *D, |
| bool UnnamedAddr) { |
| // Lookup the entry, lazily creating it if necessary. |
| llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
| if (Entry) { |
| if (WeakRefReferences.count(Entry)) { |
| if (D && !D->hasAttr<WeakAttr>()) |
| Entry->setLinkage(llvm::Function::ExternalLinkage); |
| |
| WeakRefReferences.erase(Entry); |
| } |
| |
| if (UnnamedAddr) |
| Entry->setUnnamedAddr(true); |
| |
| if (Entry->getType() == Ty) |
| return Entry; |
| |
| // Make sure the result is of the correct type. |
| return llvm::ConstantExpr::getBitCast(Entry, Ty); |
| } |
| |
| // This is the first use or definition of a mangled name. If there is a |
| // deferred decl with this name, remember that we need to emit it at the end |
| // of the file. |
| llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); |
| if (DDI != DeferredDecls.end()) { |
| // Move the potentially referenced deferred decl to the DeferredDeclsToEmit |
| // list, and remove it from DeferredDecls (since we don't need it anymore). |
| DeferredDeclsToEmit.push_back(DDI->second); |
| DeferredDecls.erase(DDI); |
| } |
| |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, |
| llvm::GlobalValue::ExternalLinkage, |
| 0, MangledName, 0, |
| false, Ty->getAddressSpace()); |
| |
| // Handle things which are present even on external declarations. |
| if (D) { |
| // FIXME: This code is overly simple and should be merged with other global |
| // handling. |
| GV->setConstant(DeclIsConstantGlobal(Context, D)); |
| |
| // Set linkage and visibility in case we never see a definition. |
| NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); |
| if (LV.linkage() != ExternalLinkage) { |
| // Don't set internal linkage on declarations. |
| } else { |
| if (D->hasAttr<DLLImportAttr>()) |
| GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); |
| else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) |
| GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); |
| |
| // Set visibility on a declaration only if it's explicit. |
| if (LV.visibilityExplicit()) |
| GV->setVisibility(GetLLVMVisibility(LV.visibility())); |
| } |
| |
| GV->setThreadLocal(D->isThreadSpecified()); |
| } |
| |
| return GV; |
| } |
| |
| |
| llvm::GlobalVariable * |
| CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, |
| const llvm::Type *Ty, |
| llvm::GlobalValue::LinkageTypes Linkage) { |
| llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); |
| llvm::GlobalVariable *OldGV = 0; |
| |
| |
| if (GV) { |
| // Check if the variable has the right type. |
| if (GV->getType()->getElementType() == Ty) |
| return GV; |
| |
| // Because C++ name mangling, the only way we can end up with an already |
| // existing global with the same name is if it has been declared extern "C". |
| assert(GV->isDeclaration() && "Declaration has wrong type!"); |
| OldGV = GV; |
| } |
| |
| // Create a new variable. |
| GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, |
| Linkage, 0, Name); |
| |
| if (OldGV) { |
| // Replace occurrences of the old variable if needed. |
| GV->takeName(OldGV); |
| |
| if (!OldGV->use_empty()) { |
| llvm::Constant *NewPtrForOldDecl = |
| llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); |
| OldGV->replaceAllUsesWith(NewPtrForOldDecl); |
| } |
| |
| OldGV->eraseFromParent(); |
| } |
| |
| return GV; |
| } |
| |
| /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the |
| /// given global variable. If Ty is non-null and if the global doesn't exist, |
| /// then it will be greated with the specified type instead of whatever the |
| /// normal requested type would be. |
| llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, |
| const llvm::Type *Ty) { |
| assert(D->hasGlobalStorage() && "Not a global variable"); |
| QualType ASTTy = D->getType(); |
| if (Ty == 0) |
| Ty = getTypes().ConvertTypeForMem(ASTTy); |
| |
| const llvm::PointerType *PTy = |
| llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); |
| |
| llvm::StringRef MangledName = getMangledName(D); |
| return GetOrCreateLLVMGlobal(MangledName, PTy, D); |
| } |
| |
| /// CreateRuntimeVariable - Create a new runtime global variable with the |
| /// specified type and name. |
| llvm::Constant * |
| CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, |
| llvm::StringRef Name) { |
| return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, |
| true); |
| } |
| |
| void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { |
| assert(!D->getInit() && "Cannot emit definite definitions here!"); |
| |
| if (MayDeferGeneration(D)) { |
| // If we have not seen a reference to this variable yet, place it |
| // into the deferred declarations table to be emitted if needed |
| // later. |
| llvm::StringRef MangledName = getMangledName(D); |
| if (!GetGlobalValue(MangledName)) { |
| DeferredDecls[MangledName] = D; |
| return; |
| } |
| } |
| |
| // The tentative definition is the only definition. |
| EmitGlobalVarDefinition(D); |
| } |
| |
| void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { |
| if (DefinitionRequired) |
| getVTables().GenerateClassData(getVTableLinkage(Class), Class); |
| } |
| |
| llvm::GlobalVariable::LinkageTypes |
| CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { |
| if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) |
| return llvm::GlobalVariable::InternalLinkage; |
| |
| if (const CXXMethodDecl *KeyFunction |
| = RD->getASTContext().getKeyFunction(RD)) { |
| // If this class has a key function, use that to determine the linkage of |
| // the vtable. |
| const FunctionDecl *Def = 0; |
| if (KeyFunction->hasBody(Def)) |
| KeyFunction = cast<CXXMethodDecl>(Def); |
| |
| switch (KeyFunction->getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| case TSK_ExplicitSpecialization: |
| // When compiling with optimizations turned on, we emit all vtables, |
| // even if the key function is not defined in the current translation |
| // unit. If this is the case, use available_externally linkage. |
| if (!Def && CodeGenOpts.OptimizationLevel) |
| return llvm::GlobalVariable::AvailableExternallyLinkage; |
| |
| if (KeyFunction->isInlined()) |
| return !Context.getLangOptions().AppleKext ? |
| llvm::GlobalVariable::LinkOnceODRLinkage : |
| llvm::Function::InternalLinkage; |
| |
| return llvm::GlobalVariable::ExternalLinkage; |
| |
| case TSK_ImplicitInstantiation: |
| return !Context.getLangOptions().AppleKext ? |
| llvm::GlobalVariable::LinkOnceODRLinkage : |
| llvm::Function::InternalLinkage; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| return !Context.getLangOptions().AppleKext ? |
| llvm::GlobalVariable::WeakODRLinkage : |
| llvm::Function::InternalLinkage; |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| // FIXME: Use available_externally linkage. However, this currently |
| // breaks LLVM's build due to undefined symbols. |
| // return llvm::GlobalVariable::AvailableExternallyLinkage; |
| return !Context.getLangOptions().AppleKext ? |
| llvm::GlobalVariable::LinkOnceODRLinkage : |
| llvm::Function::InternalLinkage; |
| } |
| } |
| |
| if (Context.getLangOptions().AppleKext) |
| return llvm::Function::InternalLinkage; |
| |
| switch (RD->getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| case TSK_ExplicitSpecialization: |
| case TSK_ImplicitInstantiation: |
| // FIXME: Use available_externally linkage. However, this currently |
| // breaks LLVM's build due to undefined symbols. |
| // return llvm::GlobalVariable::AvailableExternallyLinkage; |
| case TSK_ExplicitInstantiationDeclaration: |
| return llvm::GlobalVariable::LinkOnceODRLinkage; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| return llvm::GlobalVariable::WeakODRLinkage; |
| } |
| |
| // Silence GCC warning. |
| return llvm::GlobalVariable::LinkOnceODRLinkage; |
| } |
| |
| CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { |
| return Context.toCharUnitsFromBits( |
| TheTargetData.getTypeStoreSizeInBits(Ty)); |
| } |
| |
| void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { |
| llvm::Constant *Init = 0; |
| QualType ASTTy = D->getType(); |
| bool NonConstInit = false; |
| |
| const Expr *InitExpr = D->getAnyInitializer(); |
| |
| if (!InitExpr) { |
| // This is a tentative definition; tentative definitions are |
| // implicitly initialized with { 0 }. |
| // |
| // Note that tentative definitions are only emitted at the end of |
| // a translation unit, so they should never have incomplete |
| // type. In addition, EmitTentativeDefinition makes sure that we |
| // never attempt to emit a tentative definition if a real one |
| // exists. A use may still exists, however, so we still may need |
| // to do a RAUW. |
| assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); |
| Init = EmitNullConstant(D->getType()); |
| } else { |
| Init = EmitConstantExpr(InitExpr, D->getType()); |
| if (!Init) { |
| QualType T = InitExpr->getType(); |
| if (D->getType()->isReferenceType()) |
| T = D->getType(); |
| |
| if (getLangOptions().CPlusPlus) { |
| Init = EmitNullConstant(T); |
| NonConstInit = true; |
| } else { |
| ErrorUnsupported(D, "static initializer"); |
| Init = llvm::UndefValue::get(getTypes().ConvertType(T)); |
| } |
| } else { |
| // We don't need an initializer, so remove the entry for the delayed |
| // initializer position (just in case this entry was delayed). |
| if (getLangOptions().CPlusPlus) |
| DelayedCXXInitPosition.erase(D); |
| } |
| } |
| |
| const llvm::Type* InitType = Init->getType(); |
| llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); |
| |
| // Strip off a bitcast if we got one back. |
| if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { |
| assert(CE->getOpcode() == llvm::Instruction::BitCast || |
| // all zero index gep. |
| CE->getOpcode() == llvm::Instruction::GetElementPtr); |
| Entry = CE->getOperand(0); |
| } |
| |
| // Entry is now either a Function or GlobalVariable. |
| llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); |
| |
| // We have a definition after a declaration with the wrong type. |
| // We must make a new GlobalVariable* and update everything that used OldGV |
| // (a declaration or tentative definition) with the new GlobalVariable* |
| // (which will be a definition). |
| // |
| // This happens if there is a prototype for a global (e.g. |
| // "extern int x[];") and then a definition of a different type (e.g. |
| // "int x[10];"). This also happens when an initializer has a different type |
| // from the type of the global (this happens with unions). |
| if (GV == 0 || |
| GV->getType()->getElementType() != InitType || |
| GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { |
| |
| // Move the old entry aside so that we'll create a new one. |
| Entry->setName(llvm::StringRef()); |
| |
| // Make a new global with the correct type, this is now guaranteed to work. |
| GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); |
| |
| // Replace all uses of the old global with the new global |
| llvm::Constant *NewPtrForOldDecl = |
| llvm::ConstantExpr::getBitCast(GV, Entry->getType()); |
| Entry->replaceAllUsesWith(NewPtrForOldDecl); |
| |
| // Erase the old global, since it is no longer used. |
| cast<llvm::GlobalValue>(Entry)->eraseFromParent(); |
| } |
| |
| if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { |
| SourceManager &SM = Context.getSourceManager(); |
| AddAnnotation(EmitAnnotateAttr(GV, AA, |
| SM.getInstantiationLineNumber(D->getLocation()))); |
| } |
| |
| GV->setInitializer(Init); |
| |
| // If it is safe to mark the global 'constant', do so now. |
| GV->setConstant(false); |
| if (!NonConstInit && DeclIsConstantGlobal(Context, D)) |
| GV->setConstant(true); |
| |
| GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); |
| |
| // Set the llvm linkage type as appropriate. |
| llvm::GlobalValue::LinkageTypes Linkage = |
| GetLLVMLinkageVarDefinition(D, GV); |
| GV->setLinkage(Linkage); |
| if (Linkage == llvm::GlobalVariable::CommonLinkage) |
| // common vars aren't constant even if declared const. |
| GV->setConstant(false); |
| |
| SetCommonAttributes(D, GV); |
| |
| // Emit the initializer function if necessary. |
| if (NonConstInit) |
| EmitCXXGlobalVarDeclInitFunc(D, GV); |
| |
| // Emit global variable debug information. |
| if (CGDebugInfo *DI = getDebugInfo()) { |
| DI->setLocation(D->getLocation()); |
| DI->EmitGlobalVariable(GV, D); |
| } |
| } |
| |
| llvm::GlobalValue::LinkageTypes |
| CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, |
| llvm::GlobalVariable *GV) { |
| GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); |
| if (Linkage == GVA_Internal) |
| return llvm::Function::InternalLinkage; |
| else if (D->hasAttr<DLLImportAttr>()) |
| return llvm::Function::DLLImportLinkage; |
| else if (D->hasAttr<DLLExportAttr>()) |
| return llvm::Function::DLLExportLinkage; |
| else if (D->hasAttr<WeakAttr>()) { |
| if (GV->isConstant()) |
| return llvm::GlobalVariable::WeakODRLinkage; |
| else |
| return llvm::GlobalVariable::WeakAnyLinkage; |
| } else if (Linkage == GVA_TemplateInstantiation || |
| Linkage == GVA_ExplicitTemplateInstantiation) |
| // FIXME: It seems like we can provide more specific linkage here |
| // (LinkOnceODR, WeakODR). |
| return llvm::GlobalVariable::WeakAnyLinkage; |
| else if (!getLangOptions().CPlusPlus && |
| ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || |
| D->getAttr<CommonAttr>()) && |
| !D->hasExternalStorage() && !D->getInit() && |
| !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { |
| // Thread local vars aren't considered common linkage. |
| return llvm::GlobalVariable::CommonLinkage; |
| } |
| return llvm::GlobalVariable::ExternalLinkage; |
| } |
| |
| /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we |
| /// implement a function with no prototype, e.g. "int foo() {}". If there are |
| /// existing call uses of the old function in the module, this adjusts them to |
| /// call the new function directly. |
| /// |
| /// This is not just a cleanup: the always_inline pass requires direct calls to |
| /// functions to be able to inline them. If there is a bitcast in the way, it |
| /// won't inline them. Instcombine normally deletes these calls, but it isn't |
| /// run at -O0. |
| static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, |
| llvm::Function *NewFn) { |
| // If we're redefining a global as a function, don't transform it. |
| llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); |
| if (OldFn == 0) return; |
| |
| const llvm::Type *NewRetTy = NewFn->getReturnType(); |
| llvm::SmallVector<llvm::Value*, 4> ArgList; |
| |
| for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); |
| UI != E; ) { |
| // TODO: Do invokes ever occur in C code? If so, we should handle them too. |
| llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. |
| llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); |
| if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) |
| llvm::CallSite CS(CI); |
| if (!CI || !CS.isCallee(I)) continue; |
| |
| // If the return types don't match exactly, and if the call isn't dead, then |
| // we can't transform this call. |
| if (CI->getType() != NewRetTy && !CI->use_empty()) |
| continue; |
| |
| // If the function was passed too few arguments, don't transform. If extra |
| // arguments were passed, we silently drop them. If any of the types |
| // mismatch, we don't transform. |
| unsigned ArgNo = 0; |
| bool DontTransform = false; |
| for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), |
| E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { |
| if (CS.arg_size() == ArgNo || |
| CS.getArgument(ArgNo)->getType() != AI->getType()) { |
| DontTransform = true; |
| break; |
| } |
| } |
| if (DontTransform) |
| continue; |
| |
| // Okay, we can transform this. Create the new call instruction and copy |
| // over the required information. |
| ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); |
| llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), |
| ArgList.end(), "", CI); |
| ArgList.clear(); |
| if (!NewCall->getType()->isVoidTy()) |
| NewCall->takeName(CI); |
| NewCall->setAttributes(CI->getAttributes()); |
| NewCall->setCallingConv(CI->getCallingConv()); |
| |
| // Finally, remove the old call, replacing any uses with the new one. |
| if (!CI->use_empty()) |
| CI->replaceAllUsesWith(NewCall); |
| |
| // Copy debug location attached to CI. |
| if (!CI->getDebugLoc().isUnknown()) |
| NewCall->setDebugLoc(CI->getDebugLoc()); |
| CI->eraseFromParent(); |
| } |
| } |
| |
| |
| void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { |
| const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); |
| const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); |
| // Get or create the prototype for the function. |
| llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); |
| |
| // Strip off a bitcast if we got one back. |
| if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { |
| assert(CE->getOpcode() == llvm::Instruction::BitCast); |
| Entry = CE->getOperand(0); |
| } |
| |
| |
| if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { |
| llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); |
| |
| // If the types mismatch then we have to rewrite the definition. |
| assert(OldFn->isDeclaration() && |
| "Shouldn't replace non-declaration"); |
| |
| // F is the Function* for the one with the wrong type, we must make a new |
| // Function* and update everything that used F (a declaration) with the new |
| // Function* (which will be a definition). |
| // |
| // This happens if there is a prototype for a function |
| // (e.g. "int f()") and then a definition of a different type |
| // (e.g. "int f(int x)"). Move the old function aside so that it |
| // doesn't interfere with GetAddrOfFunction. |
| OldFn->setName(llvm::StringRef()); |
| llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); |
| |
| // If this is an implementation of a function without a prototype, try to |
| // replace any existing uses of the function (which may be calls) with uses |
| // of the new function |
| if (D->getType()->isFunctionNoProtoType()) { |
| ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); |
| OldFn->removeDeadConstantUsers(); |
| } |
| |
| // Replace uses of F with the Function we will endow with a body. |
| if (!Entry->use_empty()) { |
| llvm::Constant *NewPtrForOldDecl = |
| llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); |
| Entry->replaceAllUsesWith(NewPtrForOldDecl); |
| } |
| |
| // Ok, delete the old function now, which is dead. |
| OldFn->eraseFromParent(); |
| |
| Entry = NewFn; |
| } |
| |
| // We need to set linkage and visibility on the function before |
| // generating code for it because various parts of IR generation |
| // want to propagate this information down (e.g. to local static |
| // declarations). |
| llvm::Function *Fn = cast<llvm::Function>(Entry); |
| setFunctionLinkage(D, Fn); |
| |
| // FIXME: this is redundant with part of SetFunctionDefinitionAttributes |
| setGlobalVisibility(Fn, D); |
| |
| CodeGenFunction(*this).GenerateCode(D, Fn); |
| |
| SetFunctionDefinitionAttributes(D, Fn); |
| SetLLVMFunctionAttributesForDefinition(D, Fn); |
| |
| if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) |
| AddGlobalCtor(Fn, CA->getPriority()); |
| if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) |
| AddGlobalDtor(Fn, DA->getPriority()); |
| } |
| |
| void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { |
| const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); |
| const AliasAttr *AA = D->getAttr<AliasAttr>(); |
| assert(AA && "Not an alias?"); |
| |
| llvm::StringRef MangledName = getMangledName(GD); |
| |
| // If there is a definition in the module, then it wins over the alias. |
| // This is dubious, but allow it to be safe. Just ignore the alias. |
| llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
| if (Entry && !Entry->isDeclaration()) |
| return; |
| |
| const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); |
| |
| // Create a reference to the named value. This ensures that it is emitted |
| // if a deferred decl. |
| llvm::Constant *Aliasee; |
| if (isa<llvm::FunctionType>(DeclTy)) |
| Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), |
| /*ForVTable=*/false); |
| else |
| Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), |
| llvm::PointerType::getUnqual(DeclTy), 0); |
| |
| // Create the new alias itself, but don't set a name yet. |
| llvm::GlobalValue *GA = |
| new llvm::GlobalAlias(Aliasee->getType(), |
| llvm::Function::ExternalLinkage, |
| "", Aliasee, &getModule()); |
| |
| if (Entry) { |
| assert(Entry->isDeclaration()); |
| |
| // If there is a declaration in the module, then we had an extern followed |
| // by the alias, as in: |
| // extern int test6(); |
| // ... |
| // int test6() __attribute__((alias("test7"))); |
| // |
| // Remove it and replace uses of it with the alias. |
| GA->takeName(Entry); |
| |
| Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, |
| Entry->getType())); |
| Entry->eraseFromParent(); |
| } else { |
| GA->setName(MangledName); |
| } |
| |
| // Set attributes which are particular to an alias; this is a |
| // specialization of the attributes which may be set on a global |
| // variable/function. |
| if (D->hasAttr<DLLExportAttr>()) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| // The dllexport attribute is ignored for undefined symbols. |
| if (FD->hasBody()) |
| GA->setLinkage(llvm::Function::DLLExportLinkage); |
| } else { |
| GA->setLinkage(llvm::Function::DLLExportLinkage); |
| } |
| } else if (D->hasAttr<WeakAttr>() || |
| D->hasAttr<WeakRefAttr>() || |
| D->hasAttr<WeakImportAttr>()) { |
| GA->setLinkage(llvm::Function::WeakAnyLinkage); |
| } |
| |
| SetCommonAttributes(D, GA); |
| } |
| |
| /// getBuiltinLibFunction - Given a builtin id for a function like |
| /// "__builtin_fabsf", return a Function* for "fabsf". |
| llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, |
| unsigned BuiltinID) { |
| assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || |
| Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && |
| "isn't a lib fn"); |
| |
| // Get the name, skip over the __builtin_ prefix (if necessary). |
| const char *Name = Context.BuiltinInfo.GetName(BuiltinID); |
| if (Context.BuiltinInfo.isLibFunction(BuiltinID)) |
| Name += 10; |
| |
| const llvm::FunctionType *Ty = |
| cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); |
| |
| return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false); |
| } |
| |
| llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, |
| unsigned NumTys) { |
| return llvm::Intrinsic::getDeclaration(&getModule(), |
| (llvm::Intrinsic::ID)IID, Tys, NumTys); |
| } |
| |
| static llvm::StringMapEntry<llvm::Constant*> & |
| GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, |
| const StringLiteral *Literal, |
| bool TargetIsLSB, |
| bool &IsUTF16, |
| unsigned &StringLength) { |
| llvm::StringRef String = Literal->getString(); |
| unsigned NumBytes = String.size(); |
| |
| // Check for simple case. |
| if (!Literal->containsNonAsciiOrNull()) { |
| StringLength = NumBytes; |
| return Map.GetOrCreateValue(String); |
| } |
| |
| // Otherwise, convert the UTF8 literals into a byte string. |
| llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); |
| const UTF8 *FromPtr = (UTF8 *)String.data(); |
| UTF16 *ToPtr = &ToBuf[0]; |
| |
| (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, |
| &ToPtr, ToPtr + NumBytes, |
| strictConversion); |
| |
| // ConvertUTF8toUTF16 returns the length in ToPtr. |
| StringLength = ToPtr - &ToBuf[0]; |
| |
| // Render the UTF-16 string into a byte array and convert to the target byte |
| // order. |
| // |
| // FIXME: This isn't something we should need to do here. |
| llvm::SmallString<128> AsBytes; |
| AsBytes.reserve(StringLength * 2); |
| for (unsigned i = 0; i != StringLength; ++i) { |
| unsigned short Val = ToBuf[i]; |
| if (TargetIsLSB) { |
| AsBytes.push_back(Val & 0xFF); |
| AsBytes.push_back(Val >> 8); |
| } else { |
| AsBytes.push_back(Val >> 8); |
| AsBytes.push_back(Val & 0xFF); |
| } |
| } |
| // Append one extra null character, the second is automatically added by our |
| // caller. |
| AsBytes.push_back(0); |
| |
| IsUTF16 = true; |
| return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); |
| } |
| |
| llvm::Constant * |
| CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { |
| unsigned StringLength = 0; |
| bool isUTF16 = false; |
| llvm::StringMapEntry<llvm::Constant*> &Entry = |
| GetConstantCFStringEntry(CFConstantStringMap, Literal, |
| getTargetData().isLittleEndian(), |
| isUTF16, StringLength); |
| |
| if (llvm::Constant *C = Entry.getValue()) |
| return C; |
| |
| llvm::Constant *Zero = |
| llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); |
| llvm::Constant *Zeros[] = { Zero, Zero }; |
| |
| // If we don't already have it, get __CFConstantStringClassReference. |
| if (!CFConstantStringClassRef) { |
| const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); |
| Ty = llvm::ArrayType::get(Ty, 0); |
| llvm::Constant *GV = CreateRuntimeVariable(Ty, |
| "__CFConstantStringClassReference"); |
| // Decay array -> ptr |
| CFConstantStringClassRef = |
| llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); |
| } |
| |
| QualType CFTy = getContext().getCFConstantStringType(); |
| |
| const llvm::StructType *STy = |
| cast<llvm::StructType>(getTypes().ConvertType(CFTy)); |
| |
| std::vector<llvm::Constant*> Fields(4); |
| |
| // Class pointer. |
| Fields[0] = CFConstantStringClassRef; |
| |
| // Flags. |
| const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); |
| Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : |
| llvm::ConstantInt::get(Ty, 0x07C8); |
| |
| // String pointer. |
| llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); |
| |
| llvm::GlobalValue::LinkageTypes Linkage; |
| bool isConstant; |
| if (isUTF16) { |
| // FIXME: why do utf strings get "_" labels instead of "L" labels? |
| Linkage = llvm::GlobalValue::InternalLinkage; |
| // Note: -fwritable-strings doesn't make unicode CFStrings writable, but |
| // does make plain ascii ones writable. |
| isConstant = true; |
| } else { |
| Linkage = llvm::GlobalValue::PrivateLinkage; |
| isConstant = !Features.WritableStrings; |
| } |
| |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, |
| ".str"); |
| GV->setUnnamedAddr(true); |
| if (isUTF16) { |
| CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); |
| GV->setAlignment(Align.getQuantity()); |
| } |
| Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); |
| |
| // String length. |
| Ty = getTypes().ConvertType(getContext().LongTy); |
| Fields[3] = llvm::ConstantInt::get(Ty, StringLength); |
| |
| // The struct. |
| C = llvm::ConstantStruct::get(STy, Fields); |
| GV = new llvm::GlobalVariable(getModule(), C->getType(), true, |
| llvm::GlobalVariable::PrivateLinkage, C, |
| "_unnamed_cfstring_"); |
| if (const char *Sect = getContext().Target.getCFStringSection()) |
| GV->setSection(Sect); |
| Entry.setValue(GV); |
| |
| return GV; |
| } |
| |
| llvm::Constant * |
| CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { |
| unsigned StringLength = 0; |
| bool isUTF16 = false; |
| llvm::StringMapEntry<llvm::Constant*> &Entry = |
| GetConstantCFStringEntry(CFConstantStringMap, Literal, |
| getTargetData().isLittleEndian(), |
| isUTF16, StringLength); |
| |
| if (llvm::Constant *C = Entry.getValue()) |
| return C; |
| |
| llvm::Constant *Zero = |
| llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); |
| llvm::Constant *Zeros[] = { Zero, Zero }; |
| |
| // If we don't already have it, get _NSConstantStringClassReference. |
| if (!ConstantStringClassRef) { |
| std::string StringClass(getLangOptions().ObjCConstantStringClass); |
| const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); |
| Ty = llvm::ArrayType::get(Ty, 0); |
| llvm::Constant *GV; |
| if (StringClass.empty()) |
| GV = CreateRuntimeVariable(Ty, |
| Features.ObjCNonFragileABI ? |
| "OBJC_CLASS_$_NSConstantString" : |
| "_NSConstantStringClassReference"); |
| else { |
| std::string str; |
| if (Features.ObjCNonFragileABI) |
| str = "OBJC_CLASS_$_" + StringClass; |
| else |
| str = "_" + StringClass + "ClassReference"; |
| GV = CreateRuntimeVariable(Ty, str); |
| } |
| // Decay array -> ptr |
| ConstantStringClassRef = |
| llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); |
| } |
| |
| QualType NSTy = getContext().getNSConstantStringType(); |
| |
| const llvm::StructType *STy = |
| cast<llvm::StructType>(getTypes().ConvertType(NSTy)); |
| |
| std::vector<llvm::Constant*> Fields(3); |
| |
| // Class pointer. |
| Fields[0] = ConstantStringClassRef; |
| |
| // String pointer. |
| llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); |
| |
| llvm::GlobalValue::LinkageTypes Linkage; |
| bool isConstant; |
| if (isUTF16) { |
| // FIXME: why do utf strings get "_" labels instead of "L" labels? |
| Linkage = llvm::GlobalValue::InternalLinkage; |
| // Note: -fwritable-strings doesn't make unicode NSStrings writable, but |
| // does make plain ascii ones writable. |
| isConstant = true; |
| } else { |
| Linkage = llvm::GlobalValue::PrivateLinkage; |
| isConstant = !Features.WritableStrings; |
| } |
| |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, |
| ".str"); |
| GV->setUnnamedAddr(true); |
| if (isUTF16) { |
| CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); |
| GV->setAlignment(Align.getQuantity()); |
| } |
| Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); |
| |
| // String length. |
| const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); |
| Fields[2] = llvm::ConstantInt::get(Ty, StringLength); |
| |
| // The struct. |
| C = llvm::ConstantStruct::get(STy, Fields); |
| GV = new llvm::GlobalVariable(getModule(), C->getType(), true, |
| llvm::GlobalVariable::PrivateLinkage, C, |
| "_unnamed_nsstring_"); |
| // FIXME. Fix section. |
| if (const char *Sect = |
| Features.ObjCNonFragileABI |
| ? getContext().Target.getNSStringNonFragileABISection() |
| : getContext().Target.getNSStringSection()) |
| GV->setSection(Sect); |
| Entry.setValue(GV); |
| |
| return GV; |
| } |
| |
| /// GetStringForStringLiteral - Return the appropriate bytes for a |
| /// string literal, properly padded to match the literal type. |
| std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { |
| const ASTContext &Context = getContext(); |
| const ConstantArrayType *CAT = |
| Context.getAsConstantArrayType(E->getType()); |
| assert(CAT && "String isn't pointer or array!"); |
| |
| // Resize the string to the right size. |
| uint64_t RealLen = CAT->getSize().getZExtValue(); |
| |
| if (E->isWide()) |
| RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); |
| |
| std::string Str = E->getString().str(); |
| Str.resize(RealLen, '\0'); |
| |
| return Str; |
| } |
| |
| /// GetAddrOfConstantStringFromLiteral - Return a pointer to a |
| /// constant array for the given string literal. |
| llvm::Constant * |
| CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { |
| // FIXME: This can be more efficient. |
| // FIXME: We shouldn't need to bitcast the constant in the wide string case. |
| llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); |
| if (S->isWide()) { |
| llvm::Type *DestTy = |
| llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); |
| C = llvm::ConstantExpr::getBitCast(C, DestTy); |
| } |
| return C; |
| } |
| |
| /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant |
| /// array for the given ObjCEncodeExpr node. |
| llvm::Constant * |
| CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { |
| std::string Str; |
| getContext().getObjCEncodingForType(E->getEncodedType(), Str); |
| |
| return GetAddrOfConstantCString(Str); |
| } |
| |
| |
| /// GenerateWritableString -- Creates storage for a string literal. |
| static llvm::Constant *GenerateStringLiteral(const std::string &str, |
| bool constant, |
| CodeGenModule &CGM, |
| const char *GlobalName) { |
| // Create Constant for this string literal. Don't add a '\0'. |
| llvm::Constant *C = |
| llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); |
| |
| // Create a global variable for this string |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, |
| llvm::GlobalValue::PrivateLinkage, |
| C, GlobalName); |
| GV->setUnnamedAddr(true); |
| return GV; |
| } |
| |
| /// GetAddrOfConstantString - Returns a pointer to a character array |
| /// containing the literal. This contents are exactly that of the |
| /// given string, i.e. it will not be null terminated automatically; |
| /// see GetAddrOfConstantCString. Note that whether the result is |
| /// actually a pointer to an LLVM constant depends on |
| /// Feature.WriteableStrings. |
| /// |
| /// The result has pointer to array type. |
| llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, |
| const char *GlobalName) { |
| bool IsConstant = !Features.WritableStrings; |
| |
| // Get the default prefix if a name wasn't specified. |
| if (!GlobalName) |
| GlobalName = ".str"; |
| |
| // Don't share any string literals if strings aren't constant. |
| if (!IsConstant) |
| return GenerateStringLiteral(str, false, *this, GlobalName); |
| |
| llvm::StringMapEntry<llvm::Constant *> &Entry = |
| ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); |
| |
| if (Entry.getValue()) |
| return Entry.getValue(); |
| |
| // Create a global variable for this. |
| llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); |
| Entry.setValue(C); |
| return C; |
| } |
| |
| /// GetAddrOfConstantCString - Returns a pointer to a character |
| /// array containing the literal and a terminating '\-' |
| /// character. The result has pointer to array type. |
| llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, |
| const char *GlobalName){ |
| return GetAddrOfConstantString(str + '\0', GlobalName); |
| } |
| |
| /// EmitObjCPropertyImplementations - Emit information for synthesized |
| /// properties for an implementation. |
| void CodeGenModule::EmitObjCPropertyImplementations(const |
| ObjCImplementationDecl *D) { |
| for (ObjCImplementationDecl::propimpl_iterator |
| i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { |
| ObjCPropertyImplDecl *PID = *i; |
| |
| // Dynamic is just for type-checking. |
| if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { |
| ObjCPropertyDecl *PD = PID->getPropertyDecl(); |
| |
| // Determine which methods need to be implemented, some may have |
| // been overridden. Note that ::isSynthesized is not the method |
| // we want, that just indicates if the decl came from a |
| // property. What we want to know is if the method is defined in |
| // this implementation. |
| if (!D->getInstanceMethod(PD->getGetterName())) |
| CodeGenFunction(*this).GenerateObjCGetter( |
| const_cast<ObjCImplementationDecl *>(D), PID); |
| if (!PD->isReadOnly() && |
| !D->getInstanceMethod(PD->getSetterName())) |
| CodeGenFunction(*this).GenerateObjCSetter( |
| const_cast<ObjCImplementationDecl *>(D), PID); |
| } |
| } |
| } |
| |
| /// EmitObjCIvarInitializations - Emit information for ivar initialization |
| /// for an implementation. |
| void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { |
| if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) |
| return; |
| DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); |
| assert(DC && "EmitObjCIvarInitializations - null DeclContext"); |
| IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); |
| Selector cxxSelector = getContext().Selectors.getSelector(0, &II); |
| ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), |
| D->getLocation(), |
| D->getLocation(), cxxSelector, |
| getContext().VoidTy, 0, |
| DC, true, false, true, false, |
| ObjCMethodDecl::Required); |
| D->addInstanceMethod(DTORMethod); |
| CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); |
| |
| II = &getContext().Idents.get(".cxx_construct"); |
| cxxSelector = getContext().Selectors.getSelector(0, &II); |
| // The constructor returns 'self'. |
| ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), |
| D->getLocation(), |
| D->getLocation(), cxxSelector, |
| getContext().getObjCIdType(), 0, |
| DC, true, false, true, false, |
| ObjCMethodDecl::Required); |
| D->addInstanceMethod(CTORMethod); |
| CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); |
| |
| |
| } |
| |
| /// EmitNamespace - Emit all declarations in a namespace. |
| void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { |
| for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); |
| I != E; ++I) |
| EmitTopLevelDecl(*I); |
| } |
| |
| // EmitLinkageSpec - Emit all declarations in a linkage spec. |
| void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { |
| if (LSD->getLanguage() != LinkageSpecDecl::lang_c && |
| LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { |
| ErrorUnsupported(LSD, "linkage spec"); |
| return; |
| } |
| |
| for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); |
| I != E; ++I) |
| EmitTopLevelDecl(*I); |
| } |
| |
| /// EmitTopLevelDecl - Emit code for a single top level declaration. |
| void CodeGenModule::EmitTopLevelDecl(Decl *D) { |
| // If an error has occurred, stop code generation, but continue |
| // parsing and semantic analysis (to ensure all warnings and errors |
| // are emitted). |
| if (Diags.hasErrorOccurred()) |
| return; |
| |
| // Ignore dependent declarations. |
| if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) |
| return; |
| |
| switch (D->getKind()) { |
| case Decl::CXXConversion: |
| case Decl::CXXMethod: |
| case Decl::Function: |
| // Skip function templates |
| if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) |
| return; |
| |
| EmitGlobal(cast<FunctionDecl>(D)); |
| break; |
| |
| case Decl::Var: |
| EmitGlobal(cast<VarDecl>(D)); |
| break; |
| |
| // C++ Decls |
| case Decl::Namespace: |
| EmitNamespace(cast<NamespaceDecl>(D)); |
| break; |
| // No code generation needed. |
| case Decl::UsingShadow: |
| case Decl::Using: |
| case Decl::UsingDirective: |
| case Decl::ClassTemplate: |
| case Decl::FunctionTemplate: |
| case Decl::NamespaceAlias: |
| break; |
| case Decl::CXXConstructor: |
| // Skip function templates |
| if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) |
| return; |
| |
| EmitCXXConstructors(cast<CXXConstructorDecl>(D)); |
| break; |
| case Decl::CXXDestructor: |
| EmitCXXDestructors(cast<CXXDestructorDecl>(D)); |
| break; |
| |
| case Decl::StaticAssert: |
| // Nothing to do. |
| break; |
| |
| // Objective-C Decls |
| |
| // Forward declarations, no (immediate) code generation. |
| case Decl::ObjCClass: |
| case Decl::ObjCForwardProtocol: |
| case Decl::ObjCInterface: |
| break; |
| |
| case Decl::ObjCCategory: { |
| ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); |
| if (CD->IsClassExtension() && CD->hasSynthBitfield()) |
| Context.ResetObjCLayout(CD->getClassInterface()); |
| break; |
| } |
| |
| |
| case Decl::ObjCProtocol: |
| Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); |
| break; |
| |
| case Decl::ObjCCategoryImpl: |
| // Categories have properties but don't support synthesize so we |
| // can ignore them here. |
| Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); |
| break; |
| |
| case Decl::ObjCImplementation: { |
| ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); |
| if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) |
| Context.ResetObjCLayout(OMD->getClassInterface()); |
| EmitObjCPropertyImplementations(OMD); |
| EmitObjCIvarInitializations(OMD); |
| Runtime->GenerateClass(OMD); |
| break; |
| } |
| case Decl::ObjCMethod: { |
| ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); |
| // If this is not a prototype, emit the body. |
| if (OMD->getBody()) |
| CodeGenFunction(*this).GenerateObjCMethod(OMD); |
| break; |
| } |
| case Decl::ObjCCompatibleAlias: |
| // compatibility-alias is a directive and has no code gen. |
| break; |
| |
| case Decl::LinkageSpec: |
| EmitLinkageSpec(cast<LinkageSpecDecl>(D)); |
| break; |
| |
| case Decl::FileScopeAsm: { |
| FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); |
| llvm::StringRef AsmString = AD->getAsmString()->getString(); |
| |
| const std::string &S = getModule().getModuleInlineAsm(); |
| if (S.empty()) |
| getModule().setModuleInlineAsm(AsmString); |
| else |
| getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); |
| break; |
| } |
| |
| default: |
| // Make sure we handled everything we should, every other kind is a |
| // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind |
| // function. Need to recode Decl::Kind to do that easily. |
| assert(isa<TypeDecl>(D) && "Unsupported decl kind"); |
| } |
| } |
| |
| /// Turns the given pointer into a constant. |
| static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, |
| const void *Ptr) { |
| uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); |
| const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); |
| return llvm::ConstantInt::get(i64, PtrInt); |
| } |
| |
| static void EmitGlobalDeclMetadata(CodeGenModule &CGM, |
| llvm::NamedMDNode *&GlobalMetadata, |
| GlobalDecl D, |
| llvm::GlobalValue *Addr) { |
| if (!GlobalMetadata) |
| GlobalMetadata = |
| CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); |
| |
| // TODO: should we report variant information for ctors/dtors? |
| llvm::Value *Ops[] = { |
| Addr, |
| GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) |
| }; |
| GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); |
| } |
| |
| /// Emits metadata nodes associating all the global values in the |
| /// current module with the Decls they came from. This is useful for |
| /// projects using IR gen as a subroutine. |
| /// |
| /// Since there's currently no way to associate an MDNode directly |
| /// with an llvm::GlobalValue, we create a global named metadata |
| /// with the name 'clang.global.decl.ptrs'. |
| void CodeGenModule::EmitDeclMetadata() { |
| llvm::NamedMDNode *GlobalMetadata = 0; |
| |
| // StaticLocalDeclMap |
| for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator |
| I = MangledDeclNames.begin(), E = MangledDeclNames.end(); |
| I != E; ++I) { |
| llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); |
| EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); |
| } |
| } |
| |
| /// Emits metadata nodes for all the local variables in the current |
| /// function. |
| void CodeGenFunction::EmitDeclMetadata() { |
| if (LocalDeclMap.empty()) return; |
| |
| llvm::LLVMContext &Context = getLLVMContext(); |
| |
| // Find the unique metadata ID for this name. |
| unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); |
| |
| llvm::NamedMDNode *GlobalMetadata = 0; |
| |
| for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator |
| I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { |
| const Decl *D = I->first; |
| llvm::Value *Addr = I->second; |
| |
| if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { |
| llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); |
| Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); |
| } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { |
| GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); |
| EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); |
| } |
| } |
| } |
| |
| ///@name Custom Runtime Function Interfaces |
| ///@{ |
| // |
| // FIXME: These can be eliminated once we can have clients just get the required |
| // AST nodes from the builtin tables. |
| |
| llvm::Constant *CodeGenModule::getBlockObjectDispose() { |
| if (BlockObjectDispose) |
| return BlockObjectDispose; |
| |
| // If we saw an explicit decl, use that. |
| if (BlockObjectDisposeDecl) { |
| return BlockObjectDispose = GetAddrOfFunction( |
| BlockObjectDisposeDecl, |
| getTypes().GetFunctionType(BlockObjectDisposeDecl)); |
| } |
| |
| // Otherwise construct the function by hand. |
| const llvm::FunctionType *FTy; |
| std::vector<const llvm::Type*> ArgTys; |
| const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); |
| ArgTys.push_back(Int8PtrTy); |
| ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); |
| FTy = llvm::FunctionType::get(ResultType, ArgTys, false); |
| return BlockObjectDispose = |
| CreateRuntimeFunction(FTy, "_Block_object_dispose"); |
| } |
| |
| llvm::Constant *CodeGenModule::getBlockObjectAssign() { |
| if (BlockObjectAssign) |
| return BlockObjectAssign; |
| |
| // If we saw an explicit decl, use that. |
| if (BlockObjectAssignDecl) { |
| return BlockObjectAssign = GetAddrOfFunction( |
| BlockObjectAssignDecl, |
| getTypes().GetFunctionType(BlockObjectAssignDecl)); |
| } |
| |
| // Otherwise construct the function by hand. |
| const llvm::FunctionType *FTy; |
| std::vector<const llvm::Type*> ArgTys; |
| const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); |
| ArgTys.push_back(Int8PtrTy); |
| ArgTys.push_back(Int8PtrTy); |
| ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); |
| FTy = llvm::FunctionType::get(ResultType, ArgTys, false); |
| return BlockObjectAssign = |
| CreateRuntimeFunction(FTy, "_Block_object_assign"); |
| } |
| |
| llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { |
| if (NSConcreteGlobalBlock) |
| return NSConcreteGlobalBlock; |
| |
| // If we saw an explicit decl, use that. |
| if (NSConcreteGlobalBlockDecl) { |
| return NSConcreteGlobalBlock = GetAddrOfGlobalVar( |
| NSConcreteGlobalBlockDecl, |
| getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); |
| } |
| |
| // Otherwise construct the variable by hand. |
| return NSConcreteGlobalBlock = |
| CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); |
| } |
| |
| llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { |
| if (NSConcreteStackBlock) |
| return NSConcreteStackBlock; |
| |
| // If we saw an explicit decl, use that. |
| if (NSConcreteStackBlockDecl) { |
| return NSConcreteStackBlock = GetAddrOfGlobalVar( |
| NSConcreteStackBlockDecl, |
| getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); |
| } |
| |
| // Otherwise construct the variable by hand. |
| return NSConcreteStackBlock = |
| CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); |
| } |
| |
| ///@} |