Remove tabs, and whitespace cleanups.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@81346 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Rewrite/DeltaTree.cpp b/lib/Rewrite/DeltaTree.cpp
index 5d51dda..a94444b 100644
--- a/lib/Rewrite/DeltaTree.cpp
+++ b/lib/Rewrite/DeltaTree.cpp
@@ -39,7 +39,7 @@
 /// former and adds children pointers.  Each node knows the full delta of all
 /// entries (recursively) contained inside of it, which allows us to get the
 /// full delta implied by a whole subtree in constant time.
-  
+
 namespace {
   /// SourceDelta - As code in the original input buffer is added and deleted,
   /// SourceDelta records are used to keep track of how the input SourceLocation
@@ -47,7 +47,7 @@
   struct SourceDelta {
     unsigned FileLoc;
     int Delta;
-    
+
     static SourceDelta get(unsigned Loc, int D) {
       SourceDelta Delta;
       Delta.FileLoc = Loc;
@@ -71,36 +71,36 @@
   ///
   class DeltaTreeNode {
     friend class DeltaTreeInteriorNode;
-    
+
     /// WidthFactor - This controls the number of K/V slots held in the BTree:
     /// how wide it is.  Each level of the BTree is guaranteed to have at least
     /// WidthFactor-1 K/V pairs (except the root) and may have at most
     /// 2*WidthFactor-1 K/V pairs.
     enum { WidthFactor = 8 };
-    
+
     /// Values - This tracks the SourceDelta's currently in this node.
     ///
     SourceDelta Values[2*WidthFactor-1];
-    
+
     /// NumValuesUsed - This tracks the number of values this node currently
     /// holds.
     unsigned char NumValuesUsed;
-    
+
     /// IsLeaf - This is true if this is a leaf of the btree.  If false, this is
     /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
     bool IsLeaf;
-    
+
     /// FullDelta - This is the full delta of all the values in this node and
     /// all children nodes.
     int FullDelta;
   public:
     DeltaTreeNode(bool isLeaf = true)
       : NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {}
-    
+
     bool isLeaf() const { return IsLeaf; }
     int getFullDelta() const { return FullDelta; }
     bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; }
-    
+
     unsigned getNumValuesUsed() const { return NumValuesUsed; }
     const SourceDelta &getValue(unsigned i) const {
       assert(i < NumValuesUsed && "Invalid value #");
@@ -110,7 +110,7 @@
       assert(i < NumValuesUsed && "Invalid value #");
       return Values[i];
     }
-    
+
     /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
     /// this node.  If insertion is easy, do it and return false.  Otherwise,
     /// split the node, populate InsertRes with info about the split, and return
@@ -118,14 +118,14 @@
     bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
 
     void DoSplit(InsertResult &InsertRes);
-    
-    
+
+
     /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
     /// local walk over our contained deltas.
     void RecomputeFullDeltaLocally();
-    
+
     void Destroy();
-    
+
     static inline bool classof(const DeltaTreeNode *) { return true; }
   };
 } // end anonymous namespace
@@ -142,14 +142,14 @@
     friend class DeltaTreeNode;
   public:
     DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
-    
+
     DeltaTreeInteriorNode(DeltaTreeNode *FirstChild)
     : DeltaTreeNode(false /*nonleaf*/) {
       FullDelta = FirstChild->FullDelta;
       Children[0] = FirstChild;
     }
-    
-    DeltaTreeInteriorNode(const InsertResult &IR) 
+
+    DeltaTreeInteriorNode(const InsertResult &IR)
       : DeltaTreeNode(false /*nonleaf*/) {
       Children[0] = IR.LHS;
       Children[1] = IR.RHS;
@@ -157,7 +157,7 @@
       FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta;
       NumValuesUsed = 1;
     }
-    
+
     const DeltaTreeNode *getChild(unsigned i) const {
       assert(i < getNumValuesUsed()+1 && "Invalid child");
       return Children[i];
@@ -166,7 +166,7 @@
       assert(i < getNumValuesUsed()+1 && "Invalid child");
       return Children[i];
     }
-    
+
     static inline bool classof(const DeltaTreeInteriorNode *) { return true; }
     static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
   };
@@ -197,16 +197,16 @@
 /// this node.  If insertion is easy, do it and return false.  Otherwise,
 /// split the node, populate InsertRes with info about the split, and return
 /// true.
-bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta, 
+bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
                                 InsertResult *InsertRes) {
   // Maintain full delta for this node.
   FullDelta += Delta;
-  
+
   // Find the insertion point, the first delta whose index is >= FileIndex.
   unsigned i = 0, e = getNumValuesUsed();
   while (i != e && FileIndex > getValue(i).FileLoc)
     ++i;
-  
+
   // If we found an a record for exactly this file index, just merge this
   // value into the pre-existing record and finish early.
   if (i != e && getValue(i).FileLoc == FileIndex) {
@@ -230,19 +230,19 @@
       ++NumValuesUsed;
       return false;
     }
-    
+
     // Otherwise, if this is leaf is full, split the node at its median, insert
     // the value into one of the children, and return the result.
     assert(InsertRes && "No result location specified");
     DoSplit(*InsertRes);
-    
+
     if (InsertRes->Split.FileLoc > FileIndex)
       InsertRes->LHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/);
     else
       InsertRes->RHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/);
     return true;
   }
- 
+
   // Otherwise, this is an interior node.  Send the request down the tree.
   DeltaTreeInteriorNode *IN = cast<DeltaTreeInteriorNode>(this);
   if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
@@ -259,21 +259,21 @@
               (e-i)*sizeof(IN->Children[0]));
     IN->Children[i] = InsertRes->LHS;
     IN->Children[i+1] = InsertRes->RHS;
-    
+
     if (e != i)
       memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0]));
     Values[i] = InsertRes->Split;
     ++NumValuesUsed;
     return false;
   }
-  
+
   // Finally, if this interior node was full and a node is percolated up, split
   // ourself and return that up the chain.  Start by saving all our info to
   // avoid having the split clobber it.
   IN->Children[i] = InsertRes->LHS;
   DeltaTreeNode *SubRHS = InsertRes->RHS;
   SourceDelta SubSplit = InsertRes->Split;
-  
+
   // Do the split.
   DoSplit(*InsertRes);
 
@@ -283,22 +283,22 @@
     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
   else
     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
-  
-  // We now have a non-empty interior node 'InsertSide' to insert 
+
+  // We now have a non-empty interior node 'InsertSide' to insert
   // SubRHS/SubSplit into.  Find out where to insert SubSplit.
-  
+
   // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
   i = 0; e = InsertSide->getNumValuesUsed();
   while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
     ++i;
-  
+
   // Now we know that i is the place to insert the split value into.  Insert it
   // and the child right after it.
   if (i != e)
     memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1],
             (e-i)*sizeof(IN->Children[0]));
   InsertSide->Children[i+1] = SubRHS;
-  
+
   if (e != i)
     memmove(&InsertSide->Values[i+1], &InsertSide->Values[i],
             (e-i)*sizeof(Values[0]));
@@ -313,12 +313,12 @@
 /// Return the pieces in InsertRes.
 void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
   assert(isFull() && "Why split a non-full node?");
-  
+
   // Since this node is full, it contains 2*WidthFactor-1 values.  We move
   // the first 'WidthFactor-1' values to the LHS child (which we leave in this
   // node), propagate one value up, and move the last 'WidthFactor-1' values
   // into the RHS child.
-  
+
   // Create the new child node.
   DeltaTreeNode *NewNode;
   if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
@@ -332,18 +332,18 @@
     // Just create the new leaf node.
     NewNode = new DeltaTreeNode();
   }
-  
+
   // Move over the last 'WidthFactor-1' values from here to NewNode.
   memcpy(&NewNode->Values[0], &Values[WidthFactor],
          (WidthFactor-1)*sizeof(Values[0]));
-  
+
   // Decrease the number of values in the two nodes.
   NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1;
-  
+
   // Recompute the two nodes' full delta.
   NewNode->RecomputeFullDeltaLocally();
   RecomputeFullDeltaLocally();
-  
+
   InsertRes.LHS = this;
   InsertRes.RHS = NewNode;
   InsertRes.Split = Values[WidthFactor-1];
@@ -374,7 +374,7 @@
     assert(FullDelta == N->getFullDelta());
     return;
   }
-  
+
   // Verify interior nodes: Ensure that FullDelta matches up and the
   // elements are in proper order and the children are in proper order.
   int FullDelta = 0;
@@ -385,18 +385,18 @@
       assert(IN->getValue(i-1).FileLoc < IVal.FileLoc);
     FullDelta += IVal.Delta;
     FullDelta += IChild->getFullDelta();
-    
+
     // The largest value in child #i should be smaller than FileLoc.
     assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc <
            IVal.FileLoc);
-    
+
     // The smallest value in child #i+1 should be larger than FileLoc.
     assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc);
     VerifyTree(IChild);
   }
-  
+
   FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
-  
+
   assert(FullDelta == N->getFullDelta());
 }
 #endif  // VERIFY_TREE
@@ -424,9 +424,9 @@
 /// specified file index.
 int DeltaTree::getDeltaAt(unsigned FileIndex) const {
   const DeltaTreeNode *Node = getRoot(Root);
-  
+
   int Result = 0;
-  
+
   // Walk down the tree.
   while (1) {
     // For all nodes, include any local deltas before the specified file
@@ -436,29 +436,29 @@
     for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
          ++NumValsGreater) {
       const SourceDelta &Val = Node->getValue(NumValsGreater);
-      
+
       if (Val.FileLoc >= FileIndex)
         break;
       Result += Val.Delta;
     }
-    
+
     // If we have an interior node, include information about children and
     // recurse.  Otherwise, if we have a leaf, we're done.
     const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
     if (!IN) return Result;
-    
+
     // Include any children to the left of the values we skipped, all of
     // their deltas should be included as well.
     for (unsigned i = 0; i != NumValsGreater; ++i)
       Result += IN->getChild(i)->getFullDelta();
-    
+
     // If we found exactly the value we were looking for, break off the
     // search early.  There is no need to search the RHS of the value for
     // partial results.
     if (NumValsGreater != Node->getNumValuesUsed() &&
         Node->getValue(NumValsGreater).FileLoc == FileIndex)
       return Result+IN->getChild(NumValsGreater)->getFullDelta();
-    
+
     // Otherwise, traverse down the tree.  The selected subtree may be
     // partially included in the range.
     Node = IN->getChild(NumValsGreater);
@@ -472,12 +472,12 @@
 void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
   assert(Delta && "Adding a noop?");
   DeltaTreeNode *MyRoot = getRoot(Root);
-  
+
   InsertResult InsertRes;
   if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
     Root = MyRoot = new DeltaTreeInteriorNode(InsertRes);
   }
-  
+
 #ifdef VERIFY_TREE
   VerifyTree(MyRoot);
 #endif
diff --git a/lib/Rewrite/HTMLRewrite.cpp b/lib/Rewrite/HTMLRewrite.cpp
index 925fa55..7326890 100644
--- a/lib/Rewrite/HTMLRewrite.cpp
+++ b/lib/Rewrite/HTMLRewrite.cpp
@@ -39,10 +39,10 @@
 
   unsigned BOffset = SM.getFileOffset(B);
   unsigned EOffset = SM.getFileOffset(E);
-  
+
   // Include the whole end token in the range.
   EOffset += Lexer::MeasureTokenLength(E, R.getSourceMgr(), R.getLangOpts());
-  
+
   HighlightRange(R.getEditBuffer(FID), BOffset, EOffset,
                  SM.getBufferData(FID).first, StartTag, EndTag);
 }
@@ -55,11 +55,11 @@
   // Insert the tag at the absolute start/end of the range.
   RB.InsertTextAfter(B, StartTag);
   RB.InsertTextBefore(E, EndTag);
-  
+
   // Scan the range to see if there is a \r or \n.  If so, and if the line is
   // not blank, insert tags on that line as well.
   bool HadOpenTag = true;
-  
+
   unsigned LastNonWhiteSpace = B;
   for (unsigned i = B; i != E; ++i) {
     switch (BufferStart[i]) {
@@ -69,7 +69,7 @@
       // to insert a close tag at the first non-whitespace before the newline.
       if (HadOpenTag)
         RB.InsertTextBefore(LastNonWhiteSpace+1, EndTag);
-        
+
       // Instead of inserting an open tag immediately after the newline, we
       // wait until we see a non-whitespace character.  This prevents us from
       // inserting tags around blank lines, and also allows the open tag to
@@ -83,14 +83,14 @@
     case '\v':
       // Ignore whitespace.
       break;
-    
+
     default:
       // If there is no tag open, do it now.
       if (!HadOpenTag) {
         RB.InsertTextAfter(i, StartTag);
         HadOpenTag = true;
       }
-        
+
       // Remember this character.
       LastNonWhiteSpace = i;
       break;
@@ -100,13 +100,13 @@
 
 void html::EscapeText(Rewriter &R, FileID FID,
                       bool EscapeSpaces, bool ReplaceTabs) {
-  
+
   const llvm::MemoryBuffer *Buf = R.getSourceMgr().getBuffer(FID);
   const char* C = Buf->getBufferStart();
   const char* FileEnd = Buf->getBufferEnd();
-  
+
   assert (C <= FileEnd);
-  
+
   RewriteBuffer &RB = R.getEditBuffer(FID);
 
   unsigned ColNo = 0;
@@ -117,7 +117,7 @@
     case '\r':
       ColNo = 0;
       break;
-      
+
     case ' ':
       if (EscapeSpaces)
         RB.ReplaceText(FilePos, 1, "&nbsp;");
@@ -127,7 +127,7 @@
       RB.ReplaceText(FilePos, 1, "<hr>");
       ColNo = 0;
       break;
-        
+
     case '\t': {
       if (!ReplaceTabs)
         break;
@@ -145,12 +145,12 @@
       RB.ReplaceText(FilePos, 1, "&lt;");
       ++ColNo;
       break;
-      
+
     case '>':
       RB.ReplaceText(FilePos, 1, "&gt;");
       ++ColNo;
       break;
-      
+
     case '&':
       RB.ReplaceText(FilePos, 1, "&amp;");
       ++ColNo;
@@ -161,23 +161,23 @@
 
 std::string html::EscapeText(const std::string& s, bool EscapeSpaces,
                              bool ReplaceTabs) {
-  
+
   unsigned len = s.size();
   std::string Str;
   llvm::raw_string_ostream os(Str);
-  
+
   for (unsigned i = 0 ; i < len; ++i) {
-    
+
     char c = s[i];
     switch (c) {
     default:
       os << c; break;
-      
+
     case ' ':
       if (EscapeSpaces) os << "&nbsp;";
       else os << ' ';
       break;
-      
+
     case '\t':
       if (ReplaceTabs) {
         if (EscapeSpaces)
@@ -187,17 +187,17 @@
           for (unsigned i = 0; i < 4; ++i)
             os << " ";
       }
-      else 
+      else
         os << c;
-      
+
       break;
-      
+
     case '<': os << "&lt;"; break;
     case '>': os << "&gt;"; break;
     case '&': os << "&amp;"; break;
     }
   }
-  
+
   return os.str();
 }
 
@@ -209,7 +209,7 @@
   OS << "<tr><td class=\"num\" id=\"LN"
      << LineNo << "\">"
      << LineNo << "</td><td class=\"line\">";
-  
+
   if (B == E) { // Handle empty lines.
     OS << " </td></tr>";
     RB.InsertTextBefore(B, OS.str());
@@ -226,44 +226,44 @@
   const char* FileEnd = Buf->getBufferEnd();
   const char* C = FileBeg;
   RewriteBuffer &RB = R.getEditBuffer(FID);
-  
+
   assert (C <= FileEnd);
-  
+
   unsigned LineNo = 0;
   unsigned FilePos = 0;
-  
-  while (C != FileEnd) {    
-    
+
+  while (C != FileEnd) {
+
     ++LineNo;
     unsigned LineStartPos = FilePos;
     unsigned LineEndPos = FileEnd - FileBeg;
-    
+
     assert (FilePos <= LineEndPos);
     assert (C < FileEnd);
-    
+
     // Scan until the newline (or end-of-file).
-    
+
     while (C != FileEnd) {
       char c = *C;
       ++C;
-      
+
       if (c == '\n') {
         LineEndPos = FilePos++;
         break;
       }
-      
+
       ++FilePos;
     }
-    
+
     AddLineNumber(RB, LineNo, LineStartPos, LineEndPos);
   }
-  
+
   // Add one big table tag that surrounds all of the code.
   RB.InsertTextBefore(0, "<table class=\"code\">\n");
   RB.InsertTextAfter(FileEnd - FileBeg, "</table>");
 }
 
-void html::AddHeaderFooterInternalBuiltinCSS(Rewriter& R, FileID FID, 
+void html::AddHeaderFooterInternalBuiltinCSS(Rewriter& R, FileID FID,
                                              const char *title) {
 
   const llvm::MemoryBuffer *Buf = R.getSourceMgr().getBuffer(FID);
@@ -277,10 +277,10 @@
   llvm::raw_string_ostream os(s);
   os << "<!doctype html>\n" // Use HTML 5 doctype
         "<html>\n<head>\n";
-  
+
   if (title)
     os << "<title>" << html::EscapeText(title) << "</title>\n";
-  
+
   os << "<style type=\"text/css\">\n"
       " body { color:#000000; background-color:#ffffff }\n"
       " body { font-family:Helvetica, sans-serif; font-size:10pt }\n"
@@ -341,7 +341,7 @@
   // Generate header
   R.InsertTextBefore(StartLoc, os.str());
   // Generate footer
-  
+
   R.InsertTextAfter(EndLoc, "</body></html>\n");
 }
 
@@ -355,16 +355,16 @@
   const SourceManager &SM = PP.getSourceManager();
   Lexer L(FID, SM, PP.getLangOptions());
   const char *BufferStart = L.getBufferStart();
-  
-  // Inform the preprocessor that we want to retain comments as tokens, so we 
+
+  // Inform the preprocessor that we want to retain comments as tokens, so we
   // can highlight them.
   L.SetCommentRetentionState(true);
- 
+
   // Lex all the tokens in raw mode, to avoid entering #includes or expanding
   // macros.
   Token Tok;
   L.LexFromRawLexer(Tok);
-  
+
   while (Tok.isNot(tok::eof)) {
     // Since we are lexing unexpanded tokens, all tokens are from the main
     // FileID.
@@ -376,7 +376,7 @@
       // Fill in Result.IdentifierInfo, looking up the identifier in the
       // identifier table.
       IdentifierInfo *II = PP.LookUpIdentifierInfo(Tok, BufferStart+TokOffs);
-        
+
       // If this is a pp-identifier, for a keyword, highlight it as such.
       if (II->getTokenID() != tok::identifier)
         HighlightRange(RB, TokOffs, TokOffs+TokLen, BufferStart,
@@ -400,7 +400,7 @@
       // If this is a preprocessor directive, all tokens to end of line are too.
       if (!Tok.isAtStartOfLine())
         break;
-        
+
       // Eat all of the tokens until we get to the next one at the start of
       // line.
       unsigned TokEnd = TokOffs+TokLen;
@@ -409,16 +409,16 @@
         TokEnd = SM.getFileOffset(Tok.getLocation())+Tok.getLength();
         L.LexFromRawLexer(Tok);
       }
-      
+
       // Find end of line.  This is a hack.
       HighlightRange(RB, TokOffs, TokEnd, BufferStart,
                      "<span class='directive'>", "</span>");
-      
+
       // Don't skip the next token.
       continue;
     }
     }
-    
+
     L.LexFromRawLexer(Tok);
   }
 }
@@ -442,15 +442,15 @@
   // Re-lex the raw token stream into a token buffer.
   const SourceManager &SM = PP.getSourceManager();
   std::vector<Token> TokenStream;
-  
+
   Lexer L(FID, SM, PP.getLangOptions());
-  
+
   // Lex all the tokens in raw mode, to avoid entering #includes or expanding
   // macros.
   while (1) {
     Token Tok;
     L.LexFromRawLexer(Tok);
-    
+
     // If this is a # at the start of a line, discard it from the token stream.
     // We don't want the re-preprocess step to see #defines, #includes or other
     // preprocessor directives.
@@ -461,7 +461,7 @@
     // it will not produce an error.
     if (Tok.is(tok::hashhash))
       Tok.setKind(tok::unknown);
-    
+
     // If this raw token is an identifier, the raw lexer won't have looked up
     // the corresponding identifier info for it.  Do this now so that it will be
     // macro expanded when we re-preprocess it.
@@ -469,30 +469,30 @@
       // Change the kind of this identifier to the appropriate token kind, e.g.
       // turning "for" into a keyword.
       Tok.setKind(PP.LookUpIdentifierInfo(Tok)->getTokenID());
-    }    
-      
+    }
+
     TokenStream.push_back(Tok);
-    
+
     if (Tok.is(tok::eof)) break;
   }
-  
+
   // Temporarily change the diagnostics object so that we ignore any generated
   // diagnostics from this pass.
   IgnoringDiagClient TmpDC;
   Diagnostic TmpDiags(&TmpDC);
-  
+
   Diagnostic *OldDiags = &PP.getDiagnostics();
   PP.setDiagnostics(TmpDiags);
-  
+
   // Inform the preprocessor that we don't want comments.
   PP.SetCommentRetentionState(false, false);
 
   // Enter the tokens we just lexed.  This will cause them to be macro expanded
   // but won't enter sub-files (because we removed #'s).
   PP.EnterTokenStream(&TokenStream[0], TokenStream.size(), false, false);
-  
+
   TokenConcatenation ConcatInfo(PP);
-  
+
   // Lex all the tokens.
   Token Tok;
   PP.Lex(Tok);
@@ -502,13 +502,13 @@
       PP.Lex(Tok);
       continue;
     }
-    
+
     // Okay, we have the first token of a macro expansion: highlight the
     // instantiation by inserting a start tag before the macro instantiation and
     // end tag after it.
     std::pair<SourceLocation, SourceLocation> LLoc =
       SM.getInstantiationRange(Tok.getLocation());
-    
+
     // Ignore tokens whose instantiation location was not the main file.
     if (SM.getFileID(LLoc.first) != FID) {
       PP.Lex(Tok);
@@ -520,11 +520,11 @@
 
     std::string Expansion = EscapeText(PP.getSpelling(Tok));
     unsigned LineLen = Expansion.size();
-    
+
     Token PrevTok = Tok;
     // Okay, eat this token, getting the next one.
     PP.Lex(Tok);
-    
+
     // Skip all the rest of the tokens that are part of this macro
     // instantiation.  It would be really nice to pop up a window with all the
     // spelling of the tokens or something.
@@ -535,23 +535,23 @@
         Expansion += "<br>";
         LineLen = 0;
       }
-      
+
       LineLen -= Expansion.size();
-      
+
       // If the tokens were already space separated, or if they must be to avoid
       // them being implicitly pasted, add a space between them.
       if (Tok.hasLeadingSpace() ||
           ConcatInfo.AvoidConcat(PrevTok, Tok))
         Expansion += ' ';
-      
+
       // Escape any special characters in the token text.
       Expansion += EscapeText(PP.getSpelling(Tok));
       LineLen += Expansion.size();
-      
+
       PrevTok = Tok;
       PP.Lex(Tok);
     }
-    
+
 
     // Insert the expansion as the end tag, so that multi-line macros all get
     // highlighted.
@@ -567,7 +567,7 @@
 
 void html::HighlightMacros(Rewriter &R, FileID FID,
                            PreprocessorFactory &PPF) {
-  
+
   llvm::OwningPtr<Preprocessor> PP(PPF.CreatePreprocessor());
   HighlightMacros(R, FID, *PP);
 }
diff --git a/lib/Rewrite/RewriteRope.cpp b/lib/Rewrite/RewriteRope.cpp
index 61cb02b..30bbcfa 100644
--- a/lib/Rewrite/RewriteRope.cpp
+++ b/lib/Rewrite/RewriteRope.cpp
@@ -81,24 +81,24 @@
     /// the root, which may have less) and may have at most 2*WidthFactor
     /// elements.
     enum { WidthFactor = 8 };
-    
+
     /// Size - This is the number of bytes of file this node (including any
     /// potential children) covers.
     unsigned Size;
-    
+
     /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
     /// is an instance of RopePieceBTreeInterior.
     bool IsLeaf;
-    
+
     RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
     ~RopePieceBTreeNode() {}
   public:
-    
+
     bool isLeaf() const { return IsLeaf; }
     unsigned size() const { return Size; }
-    
+
     void Destroy();
-    
+
     /// split - Split the range containing the specified offset so that we are
     /// guaranteed that there is a place to do an insertion at the specified
     /// offset.  The offset is relative, so "0" is the start of the node.
@@ -106,7 +106,7 @@
     /// If there is no space in this subtree for the extra piece, the extra tree
     /// node is returned and must be inserted into a parent.
     RopePieceBTreeNode *split(unsigned Offset);
-    
+
     /// insert - Insert the specified ropepiece into this tree node at the
     /// specified offset.  The offset is relative, so "0" is the start of the
     /// node.
@@ -114,13 +114,13 @@
     /// If there is no space in this subtree for the extra piece, the extra tree
     /// node is returned and must be inserted into a parent.
     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
-    
+
     /// erase - Remove NumBytes from this node at the specified offset.  We are
     /// guaranteed that there is a split at Offset.
     void erase(unsigned Offset, unsigned NumBytes);
-    
+
     static inline bool classof(const RopePieceBTreeNode *) { return true; }
-    
+
   };
 } // end anonymous namespace
 
@@ -140,11 +140,11 @@
     /// NumPieces - This holds the number of rope pieces currently active in the
     /// Pieces array.
     unsigned char NumPieces;
-    
+
     /// Pieces - This tracks the file chunks currently in this leaf.
     ///
     RopePiece Pieces[2*WidthFactor];
-    
+
     /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
     /// efficient in-order forward iteration of the tree without traversal.
     RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
@@ -155,34 +155,34 @@
       if (PrevLeaf || NextLeaf)
         removeFromLeafInOrder();
     }
-    
+
     bool isFull() const { return NumPieces == 2*WidthFactor; }
-    
+
     /// clear - Remove all rope pieces from this leaf.
     void clear() {
       while (NumPieces)
         Pieces[--NumPieces] = RopePiece();
       Size = 0;
     }
-    
+
     unsigned getNumPieces() const { return NumPieces; }
-    
+
     const RopePiece &getPiece(unsigned i) const {
       assert(i < getNumPieces() && "Invalid piece ID");
       return Pieces[i];
     }
-    
+
     const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
     void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
       assert(PrevLeaf == 0 && NextLeaf == 0 && "Already in ordering");
-      
+
       NextLeaf = Node->NextLeaf;
       if (NextLeaf)
         NextLeaf->PrevLeaf = &NextLeaf;
       PrevLeaf = &Node->NextLeaf;
       Node->NextLeaf = this;
     }
-    
+
     void removeFromLeafInOrder() {
       if (PrevLeaf) {
         *PrevLeaf = NextLeaf;
@@ -192,7 +192,7 @@
         NextLeaf->PrevLeaf = 0;
       }
     }
-    
+
     /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
     /// summing the size of all RopePieces.
     void FullRecomputeSizeLocally() {
@@ -200,7 +200,7 @@
       for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
         Size += getPiece(i).size();
     }
-    
+
     /// split - Split the range containing the specified offset so that we are
     /// guaranteed that there is a place to do an insertion at the specified
     /// offset.  The offset is relative, so "0" is the start of the node.
@@ -208,7 +208,7 @@
     /// If there is no space in this subtree for the extra piece, the extra tree
     /// node is returned and must be inserted into a parent.
     RopePieceBTreeNode *split(unsigned Offset);
-    
+
     /// insert - Insert the specified ropepiece into this tree node at the
     /// specified offset.  The offset is relative, so "0" is the start of the
     /// node.
@@ -216,12 +216,12 @@
     /// If there is no space in this subtree for the extra piece, the extra tree
     /// node is returned and must be inserted into a parent.
     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
-    
-    
+
+
     /// erase - Remove NumBytes from this node at the specified offset.  We are
     /// guaranteed that there is a split at Offset.
     void erase(unsigned Offset, unsigned NumBytes);
-    
+
     static inline bool classof(const RopePieceBTreeLeaf *) { return true; }
     static inline bool classof(const RopePieceBTreeNode *N) {
       return N->isLeaf();
@@ -242,7 +242,7 @@
     // Fastpath for a common case.  There is already a splitpoint at the end.
     return 0;
   }
-  
+
   // Find the piece that this offset lands in.
   unsigned PieceOffs = 0;
   unsigned i = 0;
@@ -250,23 +250,23 @@
     PieceOffs += Pieces[i].size();
     ++i;
   }
-  
+
   // If there is already a split point at the specified offset, just return
   // success.
   if (PieceOffs == Offset)
     return 0;
-  
+
   // Otherwise, we need to split piece 'i' at Offset-PieceOffs.  Convert Offset
   // to being Piece relative.
   unsigned IntraPieceOffset = Offset-PieceOffs;
-  
+
   // We do this by shrinking the RopePiece and then doing an insert of the tail.
   RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
                  Pieces[i].EndOffs);
   Size -= Pieces[i].size();
   Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
   Size += Pieces[i].size();
-  
+
   return insert(Offset, Tail);
 }
 
@@ -292,7 +292,7 @@
         SlotOffs += getPiece(i).size();
       assert(SlotOffs == Offset && "Split didn't occur before insertion!");
     }
-    
+
     // For an insertion into a non-full leaf node, just insert the value in
     // its sorted position.  This requires moving later values over.
     for (; i != e; --e)
@@ -302,31 +302,31 @@
     Size += R.size();
     return 0;
   }
-  
+
   // Otherwise, if this is leaf is full, split it in two halves.  Since this
   // node is full, it contains 2*WidthFactor values.  We move the first
   // 'WidthFactor' values to the LHS child (which we leave in this node) and
   // move the last 'WidthFactor' values into the RHS child.
-  
+
   // Create the new node.
   RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
-  
+
   // Move over the last 'WidthFactor' values from here to NewNode.
   std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
             &NewNode->Pieces[0]);
   // Replace old pieces with null RopePieces to drop refcounts.
   std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
-  
+
   // Decrease the number of values in the two nodes.
   NewNode->NumPieces = NumPieces = WidthFactor;
-  
+
   // Recompute the two nodes' size.
   NewNode->FullRecomputeSizeLocally();
   FullRecomputeSizeLocally();
-  
+
   // Update the list of leaves.
   NewNode->insertAfterLeafInOrder(this);
-  
+
   // These insertions can't fail.
   if (this->size() >= Offset)
     this->insert(Offset, R);
@@ -345,42 +345,42 @@
   for (; Offset > PieceOffs; ++i)
     PieceOffs += getPiece(i).size();
   assert(PieceOffs == Offset && "Split didn't occur before erase!");
-  
+
   unsigned StartPiece = i;
-  
+
   // Figure out how many pieces completely cover 'NumBytes'.  We want to remove
   // all of them.
   for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
     PieceOffs += getPiece(i).size();
-  
+
   // If we exactly include the last one, include it in the region to delete.
   if (Offset+NumBytes == PieceOffs+getPiece(i).size())
     PieceOffs += getPiece(i).size(), ++i;
-  
+
   // If we completely cover some RopePieces, erase them now.
   if (i != StartPiece) {
     unsigned NumDeleted = i-StartPiece;
     for (; i != getNumPieces(); ++i)
       Pieces[i-NumDeleted] = Pieces[i];
-    
+
     // Drop references to dead rope pieces.
     std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
               RopePiece());
     NumPieces -= NumDeleted;
-    
+
     unsigned CoverBytes = PieceOffs-Offset;
     NumBytes -= CoverBytes;
     Size -= CoverBytes;
   }
-  
+
   // If we completely removed some stuff, we could be done.
   if (NumBytes == 0) return;
-  
+
   // Okay, now might be erasing part of some Piece.  If this is the case, then
   // move the start point of the piece.
   assert(getPiece(StartPiece).size() > NumBytes);
   Pieces[StartPiece].StartOffs += NumBytes;
-  
+
   // The size of this node just shrunk by NumBytes.
   Size -= NumBytes;
 }
@@ -399,7 +399,7 @@
     RopePieceBTreeNode *Children[2*WidthFactor];
   public:
     RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
-    
+
     RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
     : RopePieceBTreeNode(false) {
       Children[0] = LHS;
@@ -407,9 +407,9 @@
       NumChildren = 2;
       Size = LHS->size() + RHS->size();
     }
-    
+
     bool isFull() const { return NumChildren == 2*WidthFactor; }
-    
+
     unsigned getNumChildren() const { return NumChildren; }
     const RopePieceBTreeNode *getChild(unsigned i) const {
       assert(i < NumChildren && "invalid child #");
@@ -419,7 +419,7 @@
       assert(i < NumChildren && "invalid child #");
       return Children[i];
     }
-    
+
     /// FullRecomputeSizeLocally - Recompute the Size field of this node by
     /// summing up the sizes of the child nodes.
     void FullRecomputeSizeLocally() {
@@ -427,8 +427,8 @@
       for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
         Size += getChild(i)->size();
     }
-    
-    
+
+
     /// split - Split the range containing the specified offset so that we are
     /// guaranteed that there is a place to do an insertion at the specified
     /// offset.  The offset is relative, so "0" is the start of the node.
@@ -436,8 +436,8 @@
     /// If there is no space in this subtree for the extra piece, the extra tree
     /// node is returned and must be inserted into a parent.
     RopePieceBTreeNode *split(unsigned Offset);
-    
-    
+
+
     /// insert - Insert the specified ropepiece into this tree node at the
     /// specified offset.  The offset is relative, so "0" is the start of the
     /// node.
@@ -445,18 +445,18 @@
     /// If there is no space in this subtree for the extra piece, the extra tree
     /// node is returned and must be inserted into a parent.
     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
-    
+
     /// HandleChildPiece - A child propagated an insertion result up to us.
     /// Insert the new child, and/or propagate the result further up the tree.
     RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
-    
+
     /// erase - Remove NumBytes from this node at the specified offset.  We are
     /// guaranteed that there is a split at Offset.
     void erase(unsigned Offset, unsigned NumBytes);
-    
+
     static inline bool classof(const RopePieceBTreeInterior *) { return true; }
     static inline bool classof(const RopePieceBTreeNode *N) {
-      return !N->isLeaf(); 
+      return !N->isLeaf();
     }
   };
 } // end anonymous namespace
@@ -471,18 +471,18 @@
   // Figure out which child to split.
   if (Offset == 0 || Offset == size())
     return 0;  // If we have an exact offset, we're already split.
-  
+
   unsigned ChildOffset = 0;
   unsigned i = 0;
   for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
     ChildOffset += getChild(i)->size();
-  
+
   // If already split there, we're done.
   if (ChildOffset == Offset)
     return 0;
-  
+
   // Otherwise, recursively split the child.
-  if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset)) 
+  if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
     return HandleChildPiece(i, RHS);
   return 0;  // Done!
 }
@@ -498,7 +498,7 @@
   // Find the insertion point.  We are guaranteed that there is a split at the
   // specified offset so find it.
   unsigned i = 0, e = getNumChildren();
-  
+
   unsigned ChildOffs = 0;
   if (Offset == size()) {
     // Fastpath for a common case.  Insert at end of last child.
@@ -508,13 +508,13 @@
     for (; Offset > ChildOffs+getChild(i)->size(); ++i)
       ChildOffs += getChild(i)->size();
   }
-  
+
   Size += R.size();
-  
+
   // Insert at the end of this child.
   if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
     return HandleChildPiece(i, RHS);
-  
+
   return 0;
 }
 
@@ -533,27 +533,27 @@
     ++NumChildren;
     return false;
   }
-  
+
   // Okay, this node is full.  Split it in half, moving WidthFactor children to
   // a newly allocated interior node.
-  
+
   // Create the new node.
   RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
-  
+
   // Move over the last 'WidthFactor' values from here to NewNode.
   memcpy(&NewNode->Children[0], &Children[WidthFactor],
          WidthFactor*sizeof(Children[0]));
-  
+
   // Decrease the number of values in the two nodes.
   NewNode->NumChildren = NumChildren = WidthFactor;
-  
+
   // Finally, insert the two new children in the side the can (now) hold them.
   // These insertions can't fail.
   if (i < WidthFactor)
     this->HandleChildPiece(i, RHS);
   else
     NewNode->HandleChildPiece(i-WidthFactor, RHS);
-  
+
   // Recompute the two nodes' size.
   NewNode->FullRecomputeSizeLocally();
   FullRecomputeSizeLocally();
@@ -565,24 +565,24 @@
 void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
   // This will shrink this node by NumBytes.
   Size -= NumBytes;
-  
+
   // Find the first child that overlaps with Offset.
   unsigned i = 0;
   for (; Offset >= getChild(i)->size(); ++i)
     Offset -= getChild(i)->size();
-  
+
   // Propagate the delete request into overlapping children, or completely
   // delete the children as appropriate.
   while (NumBytes) {
     RopePieceBTreeNode *CurChild = getChild(i);
-    
+
     // If we are deleting something contained entirely in the child, pass on the
     // request.
     if (Offset+NumBytes < CurChild->size()) {
       CurChild->erase(Offset, NumBytes);
       return;
     }
-    
+
     // If this deletion request starts somewhere in the middle of the child, it
     // must be deleting to the end of the child.
     if (Offset) {
@@ -665,19 +665,19 @@
 // begin iterator.
 RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
   const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
-  
+
   // Walk down the left side of the tree until we get to a leaf.
   while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
     N = IN->getChild(0);
-  
+
   // We must have at least one leaf.
   CurNode = cast<RopePieceBTreeLeaf>(N);
-  
+
   // If we found a leaf that happens to be empty, skip over it until we get
   // to something full.
   while (CurNode && getCN(CurNode)->getNumPieces() == 0)
     CurNode = getCN(CurNode)->getNextLeafInOrder();
-  
+
   if (CurNode != 0)
     CurPiece = &getCN(CurNode)->getPiece(0);
   else  // Empty tree, this is an end() iterator.
@@ -691,12 +691,12 @@
     ++CurPiece;
     return;
   }
-  
+
   // Find the next non-empty leaf node.
   do
     CurNode = getCN(CurNode)->getNextLeafInOrder();
   while (CurNode && getCN(CurNode)->getNumPieces() == 0);
-  
+
   if (CurNode != 0)
     CurPiece = &getCN(CurNode)->getPiece(0);
   else // Hit end().
@@ -740,7 +740,7 @@
   // #1. Split at Offset.
   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
-  
+
   // #2. Do the insertion.
   if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
@@ -750,7 +750,7 @@
   // #1. Split at Offset.
   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
-  
+
   // #2. Do the erasing.
   getRoot(Root)->erase(Offset, NumBytes);
 }
@@ -766,38 +766,38 @@
 RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
   unsigned Len = End-Start;
   assert(Len && "Zero length RopePiece is invalid!");
-  
+
   // If we have space for this string in the current alloc buffer, use it.
   if (AllocOffs+Len <= AllocChunkSize) {
     memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
     AllocOffs += Len;
     return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
   }
-  
+
   // If we don't have enough room because this specific allocation is huge,
   // just allocate a new rope piece for it alone.
   if (Len > AllocChunkSize) {
     unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
-    RopeRefCountString *Res = 
+    RopeRefCountString *Res =
       reinterpret_cast<RopeRefCountString *>(new char[Size]);
     Res->RefCount = 0;
     memcpy(Res->Data, Start, End-Start);
     return RopePiece(Res, 0, End-Start);
   }
-  
+
   // Otherwise, this was a small request but we just don't have space for it
   // Make a new chunk and share it with later allocations.
-  
+
   // If we had an old allocation, drop our reference to it.
   if (AllocBuffer && --AllocBuffer->RefCount == 0)
     delete [] (char*)AllocBuffer;
-  
+
   unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
   AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
   AllocBuffer->RefCount = 0;
   memcpy(AllocBuffer->Data, Start, Len);
   AllocOffs = Len;
-  
+
   // Start out the new allocation with a refcount of 1, since we have an
   // internal reference to it.
   AllocBuffer->addRef();
diff --git a/lib/Rewrite/Rewriter.cpp b/lib/Rewrite/Rewriter.cpp
index 6efe31f..27a5f8b 100644
--- a/lib/Rewrite/Rewriter.cpp
+++ b/lib/Rewrite/Rewriter.cpp
@@ -26,7 +26,7 @@
 
   unsigned RealOffset = getMappedOffset(OrigOffset, true);
   assert(RealOffset+Size < Buffer.size() && "Invalid location");
-  
+
   // Remove the dead characters.
   Buffer.erase(RealOffset, Size);
 
@@ -36,13 +36,13 @@
 
 void RewriteBuffer::InsertText(unsigned OrigOffset, const llvm::StringRef &Str,
                                bool InsertAfter) {
-  
+
   // Nothing to insert, exit early.
   if (Str.empty()) return;
 
   unsigned RealOffset = getMappedOffset(OrigOffset, InsertAfter);
   Buffer.insert(RealOffset, Str.begin(), Str.end());
-  
+
   // Add a delta so that future changes are offset correctly.
   AddInsertDelta(OrigOffset, Str.size());
 }
@@ -69,16 +69,16 @@
 int Rewriter::getRangeSize(SourceRange Range) const {
   if (!isRewritable(Range.getBegin()) ||
       !isRewritable(Range.getEnd())) return -1;
-  
+
   FileID StartFileID, EndFileID;
   unsigned StartOff, EndOff;
-  
+
   StartOff = getLocationOffsetAndFileID(Range.getBegin(), StartFileID);
   EndOff   = getLocationOffsetAndFileID(Range.getEnd(), EndFileID);
-  
+
   if (StartFileID != EndFileID)
     return -1;
-  
+
   // If edits have been made to this buffer, the delta between the range may
   // have changed.
   std::map<FileID, RewriteBuffer>::const_iterator I =
@@ -89,17 +89,17 @@
     StartOff = RB.getMappedOffset(StartOff);
   }
 
-  
+
   // Adjust the end offset to the end of the last token, instead of being the
   // start of the last token.
   EndOff += Lexer::MeasureTokenLength(Range.getEnd(), *SourceMgr, *LangOpts);
-  
+
   return EndOff-StartOff;
 }
 
 /// getRewritenText - Return the rewritten form of the text in the specified
 /// range.  If the start or end of the range was unrewritable or if they are
-/// in different buffers, this returns an empty string. 
+/// in different buffers, this returns an empty string.
 ///
 /// Note that this method is not particularly efficient.
 ///
@@ -107,15 +107,15 @@
   if (!isRewritable(Range.getBegin()) ||
       !isRewritable(Range.getEnd()))
     return "";
-  
+
   FileID StartFileID, EndFileID;
   unsigned StartOff, EndOff;
   StartOff = getLocationOffsetAndFileID(Range.getBegin(), StartFileID);
   EndOff   = getLocationOffsetAndFileID(Range.getEnd(), EndFileID);
-  
+
   if (StartFileID != EndFileID)
     return ""; // Start and end in different buffers.
-  
+
   // If edits have been made to this buffer, the delta between the range may
   // have changed.
   std::map<FileID, RewriteBuffer>::const_iterator I =
@@ -123,17 +123,17 @@
   if (I == RewriteBuffers.end()) {
     // If the buffer hasn't been rewritten, just return the text from the input.
     const char *Ptr = SourceMgr->getCharacterData(Range.getBegin());
-    
+
     // Adjust the end offset to the end of the last token, instead of being the
     // start of the last token.
     EndOff += Lexer::MeasureTokenLength(Range.getEnd(), *SourceMgr, *LangOpts);
     return std::string(Ptr, Ptr+EndOff-StartOff);
   }
-  
+
   const RewriteBuffer &RB = I->second;
   EndOff = RB.getMappedOffset(EndOff, true);
   StartOff = RB.getMappedOffset(StartOff);
-  
+
   // Adjust the end offset to the end of the last token, instead of being the
   // start of the last token.
   EndOff += Lexer::MeasureTokenLength(Range.getEnd(), *SourceMgr, *LangOpts);
@@ -143,7 +143,7 @@
   std::advance(Start, StartOff);
   RewriteBuffer::iterator End = Start;
   std::advance(End, EndOff-StartOff);
-  
+
   return std::string(Start, End);
 }
 
@@ -161,13 +161,13 @@
 RewriteBuffer &Rewriter::getEditBuffer(FileID FID) {
   std::map<FileID, RewriteBuffer>::iterator I =
     RewriteBuffers.lower_bound(FID);
-  if (I != RewriteBuffers.end() && I->first == FID) 
+  if (I != RewriteBuffers.end() && I->first == FID)
     return I->second;
   I = RewriteBuffers.insert(I, std::make_pair(FID, RewriteBuffer()));
-  
+
   std::pair<const char*, const char*> MB = SourceMgr->getBufferData(FID);
   I->second.Initialize(MB.first, MB.second);
-  
+
   return I->second;
 }
 
@@ -199,7 +199,7 @@
   if (!isRewritable(Start)) return true;
   FileID StartFileID;
   unsigned StartOffs = getLocationOffsetAndFileID(Start, StartFileID);
-  
+
   getEditBuffer(StartFileID).ReplaceText(StartOffs, OrigLength, NewStr);
   return false;
 }
@@ -212,7 +212,7 @@
   int Size = getRangeSize(From->getSourceRange());
   if (Size == -1)
     return true;
-  
+
   // Get the new text.
   std::string SStr;
   llvm::raw_string_ostream S(SStr);
diff --git a/lib/Rewrite/TokenRewriter.cpp b/lib/Rewrite/TokenRewriter.cpp
index e17e801..0effbb1 100644
--- a/lib/Rewrite/TokenRewriter.cpp
+++ b/lib/Rewrite/TokenRewriter.cpp
@@ -21,10 +21,10 @@
 TokenRewriter::TokenRewriter(FileID FID, SourceManager &SM,
                              const LangOptions &LangOpts) {
   ScratchBuf.reset(new ScratchBuffer(SM));
-  
+
   // Create a lexer to lex all the tokens of the main file in raw mode.
   Lexer RawLex(FID, SM, LangOpts);
-  
+
   // Return all comments and whitespace as tokens.
   RawLex.SetKeepWhitespaceMode(true);
 
@@ -39,7 +39,7 @@
       Tok.setIdentifierInfo(PP.LookUpIdentifierInfo(Tok));
     }
 #endif
-      
+
     AddToken(RawTok, TokenList.end());
     RawLex.LexFromRawLexer(RawTok);
   }
@@ -53,10 +53,10 @@
 /// TokenRefTy (a non-const iterator).
 TokenRewriter::TokenRefTy TokenRewriter::RemapIterator(token_iterator I) {
   if (I == token_end()) return TokenList.end();
-  
+
   // FIXME: This is horrible, we should use our own list or something to avoid
   // this.
-  std::map<SourceLocation, TokenRefTy>::iterator MapIt = 
+  std::map<SourceLocation, TokenRefTy>::iterator MapIt =
     TokenAtLoc.find(I->getLocation());
   assert(MapIt != TokenAtLoc.end() && "iterator not in rewriter?");
   return MapIt->second;
@@ -65,22 +65,22 @@
 
 /// AddToken - Add the specified token into the Rewriter before the other
 /// position.
-TokenRewriter::TokenRefTy 
+TokenRewriter::TokenRefTy
 TokenRewriter::AddToken(const Token &T, TokenRefTy Where) {
   Where = TokenList.insert(Where, T);
-  
+
   bool InsertSuccess = TokenAtLoc.insert(std::make_pair(T.getLocation(),
                                                         Where)).second;
   assert(InsertSuccess && "Token location already in rewriter!");
   InsertSuccess = InsertSuccess;
   return Where;
 }
-  
+
 
 TokenRewriter::token_iterator
 TokenRewriter::AddTokenBefore(token_iterator I, const char *Val) {
   unsigned Len = strlen(Val);
-  
+
   // Plop the string into the scratch buffer, then create a token for this
   // string.
   Token Tok;
@@ -88,7 +88,7 @@
   const char *Spelling;
   Tok.setLocation(ScratchBuf->getToken(Val, Len, Spelling));
   Tok.setLength(Len);
-  
+
   // TODO: Form a whole lexer around this and relex the token!  For now, just
   // set kind to tok::unknown.
   Tok.setKind(tok::unknown);