Chris Lattner has strong opinions about directory
layout.  :)

Rename the 'EntoSA' directories to 'StaticAnalyzer'.

Internally we will still use the 'ento' namespace
for the analyzer engine (unless there are further
sabre rattlings...).

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@122514 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/StaticAnalyzer/Checkers/IdempotentOperationChecker.cpp b/lib/StaticAnalyzer/Checkers/IdempotentOperationChecker.cpp
new file mode 100644
index 0000000..435d3d4
--- /dev/null
+++ b/lib/StaticAnalyzer/Checkers/IdempotentOperationChecker.cpp
@@ -0,0 +1,834 @@
+//==- IdempotentOperationChecker.cpp - Idempotent Operations ----*- C++ -*-==//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a set of path-sensitive checks for idempotent and/or
+// tautological operations. Each potential operation is checked along all paths
+// to see if every path results in a pointless operation.
+//                 +-------------------------------------------+
+//                 |Table of idempotent/tautological operations|
+//                 +-------------------------------------------+
+//+--------------------------------------------------------------------------+
+//|Operator | x op x | x op 1 | 1 op x | x op 0 | 0 op x | x op ~0 | ~0 op x |
+//+--------------------------------------------------------------------------+
+//  +, +=   |        |        |        |   x    |   x    |         |
+//  -, -=   |        |        |        |   x    |   -x   |         |
+//  *, *=   |        |   x    |   x    |   0    |   0    |         |
+//  /, /=   |   1    |   x    |        |  N/A   |   0    |         |
+//  &, &=   |   x    |        |        |   0    |   0    |   x     |    x
+//  |, |=   |   x    |        |        |   x    |   x    |   ~0    |    ~0
+//  ^, ^=   |   0    |        |        |   x    |   x    |         |
+//  <<, <<= |        |        |        |   x    |   0    |         |
+//  >>, >>= |        |        |        |   x    |   0    |         |
+//  ||      |   1    |   1    |   1    |   x    |   x    |   1     |    1
+//  &&      |   1    |   x    |   x    |   0    |   0    |   x     |    x
+//  =       |   x    |        |        |        |        |         |
+//  ==      |   1    |        |        |        |        |         |
+//  >=      |   1    |        |        |        |        |         |
+//  <=      |   1    |        |        |        |        |         |
+//  >       |   0    |        |        |        |        |         |
+//  <       |   0    |        |        |        |        |         |
+//  !=      |   0    |        |        |        |        |         |
+//===----------------------------------------------------------------------===//
+//
+// Things TODO:
+// - Improved error messages
+// - Handle mixed assumptions (which assumptions can belong together?)
+// - Finer grained false positive control (levels)
+// - Handling ~0 values
+
+#include "ExprEngineExperimentalChecks.h"
+#include "clang/Analysis/CFGStmtMap.h"
+#include "clang/Analysis/Analyses/PseudoConstantAnalysis.h"
+#include "clang/StaticAnalyzer/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/PathSensitive/CheckerHelpers.h"
+#include "clang/StaticAnalyzer/PathSensitive/CheckerVisitor.h"
+#include "clang/StaticAnalyzer/PathSensitive/CoreEngine.h"
+#include "clang/StaticAnalyzer/PathSensitive/SVals.h"
+#include "clang/AST/Stmt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <deque>
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class IdempotentOperationChecker
+  : public CheckerVisitor<IdempotentOperationChecker> {
+public:
+  static void *getTag();
+  void PreVisitBinaryOperator(CheckerContext &C, const BinaryOperator *B);
+  void PostVisitBinaryOperator(CheckerContext &C, const BinaryOperator *B);
+  void VisitEndAnalysis(ExplodedGraph &G, BugReporter &B, ExprEngine &Eng);
+
+private:
+  // Our assumption about a particular operation.
+  enum Assumption { Possible = 0, Impossible, Equal, LHSis1, RHSis1, LHSis0,
+      RHSis0 };
+
+  void UpdateAssumption(Assumption &A, const Assumption &New);
+
+  // False positive reduction methods
+  static bool isSelfAssign(const Expr *LHS, const Expr *RHS);
+  static bool isUnused(const Expr *E, AnalysisContext *AC);
+  static bool isTruncationExtensionAssignment(const Expr *LHS,
+                                              const Expr *RHS);
+  bool PathWasCompletelyAnalyzed(const CFG *C,
+                                 const CFGBlock *CB,
+                                 const CFGStmtMap *CBM,
+                                 const CoreEngine &CE);
+  static bool CanVary(const Expr *Ex,
+                      AnalysisContext *AC);
+  static bool isConstantOrPseudoConstant(const DeclRefExpr *DR,
+                                         AnalysisContext *AC);
+  static bool containsNonLocalVarDecl(const Stmt *S);
+  const ExplodedNodeSet getLastRelevantNodes(const CFGBlock *Begin,
+                                             const ExplodedNode *N);
+
+  // Hash table and related data structures
+  struct BinaryOperatorData {
+    BinaryOperatorData() : assumption(Possible), analysisContext(0) {}
+
+    Assumption assumption;
+    AnalysisContext *analysisContext;
+    ExplodedNodeSet explodedNodes; // Set of ExplodedNodes that refer to a
+                                   // BinaryOperator
+  };
+  typedef llvm::DenseMap<const BinaryOperator *, BinaryOperatorData>
+      AssumptionMap;
+  AssumptionMap hash;
+
+  // A class that performs reachability queries for CFGBlocks. Several internal
+  // checks in this checker require reachability information. The requests all
+  // tend to have a common destination, so we lazily do a predecessor search
+  // from the destination node and cache the results to prevent work
+  // duplication.
+  class CFGReachabilityAnalysis {
+    typedef llvm::SmallSet<unsigned, 32> ReachableSet;
+    typedef llvm::DenseMap<unsigned, ReachableSet> ReachableMap;
+    ReachableSet analyzed;
+    ReachableMap reachable;
+  public:
+    inline bool isReachable(const CFGBlock *Src, const CFGBlock *Dst);
+  private:
+    void MapReachability(const CFGBlock *Dst);
+  };
+  CFGReachabilityAnalysis CRA;
+};
+}
+
+void *IdempotentOperationChecker::getTag() {
+  static int x = 0;
+  return &x;
+}
+
+void ento::RegisterIdempotentOperationChecker(ExprEngine &Eng) {
+  Eng.registerCheck(new IdempotentOperationChecker());
+}
+
+void IdempotentOperationChecker::PreVisitBinaryOperator(
+                                                      CheckerContext &C,
+                                                      const BinaryOperator *B) {
+  // Find or create an entry in the hash for this BinaryOperator instance.
+  // If we haven't done a lookup before, it will get default initialized to
+  // 'Possible'. At this stage we do not store the ExplodedNode, as it has not
+  // been created yet.
+  BinaryOperatorData &Data = hash[B];
+  Assumption &A = Data.assumption;
+  AnalysisContext *AC = C.getCurrentAnalysisContext();
+  Data.analysisContext = AC;
+
+  // If we already have visited this node on a path that does not contain an
+  // idempotent operation, return immediately.
+  if (A == Impossible)
+    return;
+
+  // Retrieve both sides of the operator and determine if they can vary (which
+  // may mean this is a false positive.
+  const Expr *LHS = B->getLHS();
+  const Expr *RHS = B->getRHS();
+
+  // At this stage we can calculate whether each side contains a false positive
+  // that applies to all operators. We only need to calculate this the first
+  // time.
+  bool LHSContainsFalsePositive = false, RHSContainsFalsePositive = false;
+  if (A == Possible) {
+    // An expression contains a false positive if it can't vary, or if it
+    // contains a known false positive VarDecl.
+    LHSContainsFalsePositive = !CanVary(LHS, AC)
+        || containsNonLocalVarDecl(LHS);
+    RHSContainsFalsePositive = !CanVary(RHS, AC)
+        || containsNonLocalVarDecl(RHS);
+  }
+
+  const GRState *state = C.getState();
+
+  SVal LHSVal = state->getSVal(LHS);
+  SVal RHSVal = state->getSVal(RHS);
+
+  // If either value is unknown, we can't be 100% sure of all paths.
+  if (LHSVal.isUnknownOrUndef() || RHSVal.isUnknownOrUndef()) {
+    A = Impossible;
+    return;
+  }
+  BinaryOperator::Opcode Op = B->getOpcode();
+
+  // Dereference the LHS SVal if this is an assign operation
+  switch (Op) {
+  default:
+    break;
+
+  // Fall through intentional
+  case BO_AddAssign:
+  case BO_SubAssign:
+  case BO_MulAssign:
+  case BO_DivAssign:
+  case BO_AndAssign:
+  case BO_OrAssign:
+  case BO_XorAssign:
+  case BO_ShlAssign:
+  case BO_ShrAssign:
+  case BO_Assign:
+  // Assign statements have one extra level of indirection
+    if (!isa<Loc>(LHSVal)) {
+      A = Impossible;
+      return;
+    }
+    LHSVal = state->getSVal(cast<Loc>(LHSVal), LHS->getType());
+  }
+
+
+  // We now check for various cases which result in an idempotent operation.
+
+  // x op x
+  switch (Op) {
+  default:
+    break; // We don't care about any other operators.
+
+  // Fall through intentional
+  case BO_Assign:
+    // x Assign x can be used to silence unused variable warnings intentionally.
+    // If this is a self assignment and the variable is referenced elsewhere,
+    // and the assignment is not a truncation or extension, then it is a false
+    // positive.
+    if (isSelfAssign(LHS, RHS)) {
+      if (!isUnused(LHS, AC) && !isTruncationExtensionAssignment(LHS, RHS)) {
+        UpdateAssumption(A, Equal);
+        return;
+      }
+      else {
+        A = Impossible;
+        return;
+      }
+    }
+
+  case BO_SubAssign:
+  case BO_DivAssign:
+  case BO_AndAssign:
+  case BO_OrAssign:
+  case BO_XorAssign:
+  case BO_Sub:
+  case BO_Div:
+  case BO_And:
+  case BO_Or:
+  case BO_Xor:
+  case BO_LOr:
+  case BO_LAnd:
+  case BO_EQ:
+  case BO_NE:
+    if (LHSVal != RHSVal || LHSContainsFalsePositive
+        || RHSContainsFalsePositive)
+      break;
+    UpdateAssumption(A, Equal);
+    return;
+  }
+
+  // x op 1
+  switch (Op) {
+   default:
+     break; // We don't care about any other operators.
+
+   // Fall through intentional
+   case BO_MulAssign:
+   case BO_DivAssign:
+   case BO_Mul:
+   case BO_Div:
+   case BO_LOr:
+   case BO_LAnd:
+     if (!RHSVal.isConstant(1) || RHSContainsFalsePositive)
+       break;
+     UpdateAssumption(A, RHSis1);
+     return;
+  }
+
+  // 1 op x
+  switch (Op) {
+  default:
+    break; // We don't care about any other operators.
+
+  // Fall through intentional
+  case BO_MulAssign:
+  case BO_Mul:
+  case BO_LOr:
+  case BO_LAnd:
+    if (!LHSVal.isConstant(1) || LHSContainsFalsePositive)
+      break;
+    UpdateAssumption(A, LHSis1);
+    return;
+  }
+
+  // x op 0
+  switch (Op) {
+  default:
+    break; // We don't care about any other operators.
+
+  // Fall through intentional
+  case BO_AddAssign:
+  case BO_SubAssign:
+  case BO_MulAssign:
+  case BO_AndAssign:
+  case BO_OrAssign:
+  case BO_XorAssign:
+  case BO_Add:
+  case BO_Sub:
+  case BO_Mul:
+  case BO_And:
+  case BO_Or:
+  case BO_Xor:
+  case BO_Shl:
+  case BO_Shr:
+  case BO_LOr:
+  case BO_LAnd:
+    if (!RHSVal.isConstant(0) || RHSContainsFalsePositive)
+      break;
+    UpdateAssumption(A, RHSis0);
+    return;
+  }
+
+  // 0 op x
+  switch (Op) {
+  default:
+    break; // We don't care about any other operators.
+
+  // Fall through intentional
+  //case BO_AddAssign: // Common false positive
+  case BO_SubAssign: // Check only if unsigned
+  case BO_MulAssign:
+  case BO_DivAssign:
+  case BO_AndAssign:
+  //case BO_OrAssign: // Common false positive
+  //case BO_XorAssign: // Common false positive
+  case BO_ShlAssign:
+  case BO_ShrAssign:
+  case BO_Add:
+  case BO_Sub:
+  case BO_Mul:
+  case BO_Div:
+  case BO_And:
+  case BO_Or:
+  case BO_Xor:
+  case BO_Shl:
+  case BO_Shr:
+  case BO_LOr:
+  case BO_LAnd:
+    if (!LHSVal.isConstant(0) || LHSContainsFalsePositive)
+      break;
+    UpdateAssumption(A, LHSis0);
+    return;
+  }
+
+  // If we get to this point, there has been a valid use of this operation.
+  A = Impossible;
+}
+
+// At the post visit stage, the predecessor ExplodedNode will be the
+// BinaryOperator that was just created. We use this hook to collect the
+// ExplodedNode.
+void IdempotentOperationChecker::PostVisitBinaryOperator(
+                                                      CheckerContext &C,
+                                                      const BinaryOperator *B) {
+  // Add the ExplodedNode we just visited
+  BinaryOperatorData &Data = hash[B];
+  assert(isa<BinaryOperator>(cast<StmtPoint>(C.getPredecessor()
+                                             ->getLocation()).getStmt()));
+  Data.explodedNodes.Add(C.getPredecessor());
+}
+
+void IdempotentOperationChecker::VisitEndAnalysis(ExplodedGraph &G,
+                                                  BugReporter &BR,
+                                                  ExprEngine &Eng) {
+  BugType *BT = new BugType("Idempotent operation", "Dead code");
+  // Iterate over the hash to see if we have any paths with definite
+  // idempotent operations.
+  for (AssumptionMap::const_iterator i = hash.begin(); i != hash.end(); ++i) {
+    // Unpack the hash contents
+    const BinaryOperatorData &Data = i->second;
+    const Assumption &A = Data.assumption;
+    AnalysisContext *AC = Data.analysisContext;
+    const ExplodedNodeSet &ES = Data.explodedNodes;
+
+    const BinaryOperator *B = i->first;
+
+    if (A == Impossible)
+      continue;
+
+    // If the analyzer did not finish, check to see if we can still emit this
+    // warning
+    if (Eng.hasWorkRemaining()) {
+      const CFGStmtMap *CBM = CFGStmtMap::Build(AC->getCFG(),
+                                                &AC->getParentMap());
+
+      // If we can trace back
+      if (!PathWasCompletelyAnalyzed(AC->getCFG(),
+                                     CBM->getBlock(B), CBM,
+                                     Eng.getCoreEngine()))
+        continue;
+
+      delete CBM;
+    }
+
+    // Select the error message and SourceRanges to report.
+    llvm::SmallString<128> buf;
+    llvm::raw_svector_ostream os(buf);
+    bool LHSRelevant = false, RHSRelevant = false;
+    switch (A) {
+    case Equal:
+      LHSRelevant = true;
+      RHSRelevant = true;
+      if (B->getOpcode() == BO_Assign)
+        os << "Assigned value is always the same as the existing value";
+      else
+        os << "Both operands to '" << B->getOpcodeStr()
+           << "' always have the same value";
+      break;
+    case LHSis1:
+      LHSRelevant = true;
+      os << "The left operand to '" << B->getOpcodeStr() << "' is always 1";
+      break;
+    case RHSis1:
+      RHSRelevant = true;
+      os << "The right operand to '" << B->getOpcodeStr() << "' is always 1";
+      break;
+    case LHSis0:
+      LHSRelevant = true;
+      os << "The left operand to '" << B->getOpcodeStr() << "' is always 0";
+      break;
+    case RHSis0:
+      RHSRelevant = true;
+      os << "The right operand to '" << B->getOpcodeStr() << "' is always 0";
+      break;
+    case Possible:
+      llvm_unreachable("Operation was never marked with an assumption");
+    case Impossible:
+      llvm_unreachable(0);
+    }
+
+    // Add a report for each ExplodedNode
+    for (ExplodedNodeSet::iterator I = ES.begin(), E = ES.end(); I != E; ++I) {
+      EnhancedBugReport *report = new EnhancedBugReport(*BT, os.str(), *I);
+
+      // Add source ranges and visitor hooks
+      if (LHSRelevant) {
+        const Expr *LHS = i->first->getLHS();
+        report->addRange(LHS->getSourceRange());
+        report->addVisitorCreator(bugreporter::registerVarDeclsLastStore, LHS);
+      }
+      if (RHSRelevant) {
+        const Expr *RHS = i->first->getRHS();
+        report->addRange(i->first->getRHS()->getSourceRange());
+        report->addVisitorCreator(bugreporter::registerVarDeclsLastStore, RHS);
+      }
+
+      BR.EmitReport(report);
+    }
+  }
+}
+
+// Updates the current assumption given the new assumption
+inline void IdempotentOperationChecker::UpdateAssumption(Assumption &A,
+                                                        const Assumption &New) {
+// If the assumption is the same, there is nothing to do
+  if (A == New)
+    return;
+
+  switch (A) {
+  // If we don't currently have an assumption, set it
+  case Possible:
+    A = New;
+    return;
+
+  // If we have determined that a valid state happened, ignore the new
+  // assumption.
+  case Impossible:
+    return;
+
+  // Any other case means that we had a different assumption last time. We don't
+  // currently support mixing assumptions for diagnostic reasons, so we set
+  // our assumption to be impossible.
+  default:
+    A = Impossible;
+    return;
+  }
+}
+
+// Check for a statement where a variable is self assigned to possibly avoid an
+// unused variable warning.
+bool IdempotentOperationChecker::isSelfAssign(const Expr *LHS, const Expr *RHS) {
+  LHS = LHS->IgnoreParenCasts();
+  RHS = RHS->IgnoreParenCasts();
+
+  const DeclRefExpr *LHS_DR = dyn_cast<DeclRefExpr>(LHS);
+  if (!LHS_DR)
+    return false;
+
+  const VarDecl *VD = dyn_cast<VarDecl>(LHS_DR->getDecl());
+  if (!VD)
+    return false;
+
+  const DeclRefExpr *RHS_DR = dyn_cast<DeclRefExpr>(RHS);
+  if (!RHS_DR)
+    return false;
+
+  if (VD != RHS_DR->getDecl())
+    return false;
+
+  return true;
+}
+
+// Returns true if the Expr points to a VarDecl that is not read anywhere
+// outside of self-assignments.
+bool IdempotentOperationChecker::isUnused(const Expr *E,
+                                          AnalysisContext *AC) {
+  if (!E)
+    return false;
+
+  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
+  if (!DR)
+    return false;
+
+  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
+  if (!VD)
+    return false;
+
+  if (AC->getPseudoConstantAnalysis()->wasReferenced(VD))
+    return false;
+
+  return true;
+}
+
+// Check for self casts truncating/extending a variable
+bool IdempotentOperationChecker::isTruncationExtensionAssignment(
+                                                              const Expr *LHS,
+                                                              const Expr *RHS) {
+
+  const DeclRefExpr *LHS_DR = dyn_cast<DeclRefExpr>(LHS->IgnoreParenCasts());
+  if (!LHS_DR)
+    return false;
+
+  const VarDecl *VD = dyn_cast<VarDecl>(LHS_DR->getDecl());
+  if (!VD)
+    return false;
+
+  const DeclRefExpr *RHS_DR = dyn_cast<DeclRefExpr>(RHS->IgnoreParenCasts());
+  if (!RHS_DR)
+    return false;
+
+  if (VD != RHS_DR->getDecl())
+     return false;
+
+  return dyn_cast<DeclRefExpr>(RHS->IgnoreParenLValueCasts()) == NULL;
+}
+
+// Returns false if a path to this block was not completely analyzed, or true
+// otherwise.
+bool IdempotentOperationChecker::PathWasCompletelyAnalyzed(
+                                                       const CFG *C,
+                                                       const CFGBlock *CB,
+                                                       const CFGStmtMap *CBM,
+                                                       const CoreEngine &CE) {
+  // Test for reachability from any aborted blocks to this block
+  typedef CoreEngine::BlocksAborted::const_iterator AbortedIterator;
+  for (AbortedIterator I = CE.blocks_aborted_begin(),
+      E = CE.blocks_aborted_end(); I != E; ++I) {
+    const BlockEdge &BE =  I->first;
+
+    // The destination block on the BlockEdge is the first block that was not
+    // analyzed. If we can reach this block from the aborted block, then this
+    // block was not completely analyzed.
+    if (CRA.isReachable(BE.getDst(), CB))
+      return false;
+  }
+  
+  // For the items still on the worklist, see if they are in blocks that
+  // can eventually reach 'CB'.
+  class VisitWL : public WorkList::Visitor {
+    const CFGStmtMap *CBM;
+    const CFGBlock *TargetBlock;
+    CFGReachabilityAnalysis &CRA;
+  public:
+    VisitWL(const CFGStmtMap *cbm, const CFGBlock *targetBlock,
+            CFGReachabilityAnalysis &cra)
+      : CBM(cbm), TargetBlock(targetBlock), CRA(cra) {}
+    virtual bool Visit(const WorkListUnit &U) {
+      ProgramPoint P = U.getNode()->getLocation();
+      const CFGBlock *B = 0;
+      if (StmtPoint *SP = dyn_cast<StmtPoint>(&P)) {
+        B = CBM->getBlock(SP->getStmt());
+      }
+      else if (BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
+        B = BE->getDst();
+      }
+      else if (BlockEntrance *BEnt = dyn_cast<BlockEntrance>(&P)) {
+        B = BEnt->getBlock();
+      }
+      else if (BlockExit *BExit = dyn_cast<BlockExit>(&P)) {
+        B = BExit->getBlock();
+      }
+      if (!B)
+        return true;
+      
+      return CRA.isReachable(B, TargetBlock);
+    }
+  };
+  VisitWL visitWL(CBM, CB, CRA);
+  // Were there any items in the worklist that could potentially reach
+  // this block?
+  if (CE.getWorkList()->VisitItemsInWorkList(visitWL))
+    return false;
+
+  // Verify that this block is reachable from the entry block
+  if (!CRA.isReachable(&C->getEntry(), CB))
+    return false;
+
+  // If we get to this point, there is no connection to the entry block or an
+  // aborted block. This path is unreachable and we can report the error.
+  return true;
+}
+
+// Recursive function that determines whether an expression contains any element
+// that varies. This could be due to a compile-time constant like sizeof. An
+// expression may also involve a variable that behaves like a constant. The
+// function returns true if the expression varies, and false otherwise.
+bool IdempotentOperationChecker::CanVary(const Expr *Ex,
+                                         AnalysisContext *AC) {
+  // Parentheses and casts are irrelevant here
+  Ex = Ex->IgnoreParenCasts();
+
+  if (Ex->getLocStart().isMacroID())
+    return false;
+
+  switch (Ex->getStmtClass()) {
+  // Trivially true cases
+  case Stmt::ArraySubscriptExprClass:
+  case Stmt::MemberExprClass:
+  case Stmt::StmtExprClass:
+  case Stmt::CallExprClass:
+  case Stmt::VAArgExprClass:
+  case Stmt::ShuffleVectorExprClass:
+    return true;
+  default:
+    return true;
+
+  // Trivially false cases
+  case Stmt::IntegerLiteralClass:
+  case Stmt::CharacterLiteralClass:
+  case Stmt::FloatingLiteralClass:
+  case Stmt::PredefinedExprClass:
+  case Stmt::ImaginaryLiteralClass:
+  case Stmt::StringLiteralClass:
+  case Stmt::OffsetOfExprClass:
+  case Stmt::CompoundLiteralExprClass:
+  case Stmt::AddrLabelExprClass:
+  case Stmt::BinaryTypeTraitExprClass:
+  case Stmt::GNUNullExprClass:
+  case Stmt::InitListExprClass:
+  case Stmt::DesignatedInitExprClass:
+  case Stmt::BlockExprClass:
+  case Stmt::BlockDeclRefExprClass:
+    return false;
+
+  // Cases requiring custom logic
+  case Stmt::SizeOfAlignOfExprClass: {
+    const SizeOfAlignOfExpr *SE = cast<const SizeOfAlignOfExpr>(Ex);
+    if (!SE->isSizeOf())
+      return false;
+    return SE->getTypeOfArgument()->isVariableArrayType();
+  }
+  case Stmt::DeclRefExprClass:
+    // Check for constants/pseudoconstants
+    return !isConstantOrPseudoConstant(cast<DeclRefExpr>(Ex), AC);
+
+  // The next cases require recursion for subexpressions
+  case Stmt::BinaryOperatorClass: {
+    const BinaryOperator *B = cast<const BinaryOperator>(Ex);
+
+    // Exclude cases involving pointer arithmetic.  These are usually
+    // false positives.
+    if (B->getOpcode() == BO_Sub || B->getOpcode() == BO_Add)
+      if (B->getLHS()->getType()->getAs<PointerType>())
+        return false;
+
+    return CanVary(B->getRHS(), AC)
+        || CanVary(B->getLHS(), AC);
+   }
+  case Stmt::UnaryOperatorClass: {
+    const UnaryOperator *U = cast<const UnaryOperator>(Ex);
+    // Handle trivial case first
+    switch (U->getOpcode()) {
+    case UO_Extension:
+      return false;
+    default:
+      return CanVary(U->getSubExpr(), AC);
+    }
+  }
+  case Stmt::ChooseExprClass:
+    return CanVary(cast<const ChooseExpr>(Ex)->getChosenSubExpr(
+        AC->getASTContext()), AC);
+  case Stmt::ConditionalOperatorClass:
+    return CanVary(cast<const ConditionalOperator>(Ex)->getCond(), AC);
+  }
+}
+
+// Returns true if a DeclRefExpr is or behaves like a constant.
+bool IdempotentOperationChecker::isConstantOrPseudoConstant(
+                                                          const DeclRefExpr *DR,
+                                                          AnalysisContext *AC) {
+  // Check if the type of the Decl is const-qualified
+  if (DR->getType().isConstQualified())
+    return true;
+
+  // Check for an enum
+  if (isa<EnumConstantDecl>(DR->getDecl()))
+    return true;
+
+  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
+  if (!VD)
+    return true;
+
+  // Check if the Decl behaves like a constant. This check also takes care of
+  // static variables, which can only change between function calls if they are
+  // modified in the AST.
+  PseudoConstantAnalysis *PCA = AC->getPseudoConstantAnalysis();
+  if (PCA->isPseudoConstant(VD))
+    return true;
+
+  return false;
+}
+
+// Recursively find any substatements containing VarDecl's with storage other
+// than local
+bool IdempotentOperationChecker::containsNonLocalVarDecl(const Stmt *S) {
+  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(S);
+
+  if (DR)
+    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()))
+      if (!VD->hasLocalStorage())
+        return true;
+
+  for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
+      ++I)
+    if (const Stmt *child = *I)
+      if (containsNonLocalVarDecl(child))
+        return true;
+
+  return false;
+}
+
+// Returns the successor nodes of N whose CFGBlocks cannot reach N's CFGBlock.
+// This effectively gives us a set of points in the ExplodedGraph where
+// subsequent execution could not affect the idempotent operation on this path.
+// This is useful for displaying paths after the point of the error, providing
+// an example of how this idempotent operation cannot change.
+const ExplodedNodeSet IdempotentOperationChecker::getLastRelevantNodes(
+    const CFGBlock *Begin, const ExplodedNode *N) {
+  std::deque<const ExplodedNode *> WorkList;
+  llvm::SmallPtrSet<const ExplodedNode *, 32> Visited;
+  ExplodedNodeSet Result;
+
+  WorkList.push_back(N);
+
+  while (!WorkList.empty()) {
+    const ExplodedNode *Head = WorkList.front();
+    WorkList.pop_front();
+    Visited.insert(Head);
+
+    const ProgramPoint &PP = Head->getLocation();
+    if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&PP)) {
+      // Get the CFGBlock and test the reachability
+      const CFGBlock *CB = BE->getBlock();
+
+      // If we cannot reach the beginning CFGBlock from this block, then we are
+      // finished
+      if (!CRA.isReachable(CB, Begin)) {
+        Result.Add(const_cast<ExplodedNode *>(Head));
+        continue;
+      }
+    }
+
+    // Add unvisited children to the worklist
+    for (ExplodedNode::const_succ_iterator I = Head->succ_begin(),
+        E = Head->succ_end(); I != E; ++I)
+      if (!Visited.count(*I))
+        WorkList.push_back(*I);
+  }
+
+  // Return the ExplodedNodes that were found
+  return Result;
+}
+
+bool IdempotentOperationChecker::CFGReachabilityAnalysis::isReachable(
+                                                          const CFGBlock *Src,
+                                                          const CFGBlock *Dst) {
+  const unsigned DstBlockID = Dst->getBlockID();
+
+  // If we haven't analyzed the destination node, run the analysis now
+  if (!analyzed.count(DstBlockID)) {
+    MapReachability(Dst);
+    analyzed.insert(DstBlockID);
+  }
+
+  // Return the cached result
+  return reachable[DstBlockID].count(Src->getBlockID());
+}
+
+// Maps reachability to a common node by walking the predecessors of the
+// destination node.
+void IdempotentOperationChecker::CFGReachabilityAnalysis::MapReachability(
+                                                          const CFGBlock *Dst) {
+  std::deque<const CFGBlock *> WorkList;
+  // Maintain a visited list to ensure we don't get stuck on cycles
+  llvm::SmallSet<unsigned, 32> Visited;
+  ReachableSet &DstReachability = reachable[Dst->getBlockID()];
+
+  // Start searching from the destination node, since we commonly will perform
+  // multiple queries relating to a destination node.
+  WorkList.push_back(Dst);
+
+  bool firstRun = true;
+  while (!WorkList.empty()) {
+    const CFGBlock *Head = WorkList.front();
+    WorkList.pop_front();
+    Visited.insert(Head->getBlockID());
+
+    // Update reachability information for this node -> Dst
+    if (!firstRun)
+      // Don't insert Dst -> Dst unless it was a predecessor of itself
+      DstReachability.insert(Head->getBlockID());
+    else
+      firstRun = false;
+
+    // Add the predecessors to the worklist unless we have already visited them
+    for (CFGBlock::const_pred_iterator I = Head->pred_begin();
+        I != Head->pred_end(); ++I)
+      if (!Visited.count((*I)->getBlockID()))
+        WorkList.push_back(*I);
+  }
+}