Chris Lattner has strong opinions about directory
layout.  :)

Rename the 'EntoSA' directories to 'StaticAnalyzer'.

Internally we will still use the 'ento' namespace
for the analyzer engine (unless there are further
sabre rattlings...).

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@122514 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/StaticAnalyzer/SimpleConstraintManager.cpp b/lib/StaticAnalyzer/SimpleConstraintManager.cpp
new file mode 100644
index 0000000..e54d0ff
--- /dev/null
+++ b/lib/StaticAnalyzer/SimpleConstraintManager.cpp
@@ -0,0 +1,303 @@
+//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file defines SimpleConstraintManager, a class that holds code shared
+//  between BasicConstraintManager and RangeConstraintManager.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SimpleConstraintManager.h"
+#include "clang/StaticAnalyzer/PathSensitive/ExprEngine.h"
+#include "clang/StaticAnalyzer/PathSensitive/GRState.h"
+#include "clang/StaticAnalyzer/PathSensitive/Checker.h"
+
+namespace clang {
+
+namespace ento {
+
+SimpleConstraintManager::~SimpleConstraintManager() {}
+
+bool SimpleConstraintManager::canReasonAbout(SVal X) const {
+  if (nonloc::SymExprVal *SymVal = dyn_cast<nonloc::SymExprVal>(&X)) {
+    const SymExpr *SE = SymVal->getSymbolicExpression();
+
+    if (isa<SymbolData>(SE))
+      return true;
+
+    if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
+      switch (SIE->getOpcode()) {
+          // We don't reason yet about bitwise-constraints on symbolic values.
+        case BO_And:
+        case BO_Or:
+        case BO_Xor:
+          return false;
+        // We don't reason yet about these arithmetic constraints on
+        // symbolic values.
+        case BO_Mul:
+        case BO_Div:
+        case BO_Rem:
+        case BO_Shl:
+        case BO_Shr:
+          return false;
+        // All other cases.
+        default:
+          return true;
+      }
+    }
+
+    return false;
+  }
+
+  return true;
+}
+
+const GRState *SimpleConstraintManager::assume(const GRState *state,
+                                               DefinedSVal Cond,
+                                               bool Assumption) {
+  if (isa<NonLoc>(Cond))
+    return assume(state, cast<NonLoc>(Cond), Assumption);
+  else
+    return assume(state, cast<Loc>(Cond), Assumption);
+}
+
+const GRState *SimpleConstraintManager::assume(const GRState *state, Loc cond,
+                                               bool assumption) {
+  state = assumeAux(state, cond, assumption);
+  return SU.ProcessAssume(state, cond, assumption);
+}
+
+const GRState *SimpleConstraintManager::assumeAux(const GRState *state,
+                                                  Loc Cond, bool Assumption) {
+
+  BasicValueFactory &BasicVals = state->getBasicVals();
+
+  switch (Cond.getSubKind()) {
+  default:
+    assert (false && "'Assume' not implemented for this Loc.");
+    return state;
+
+  case loc::MemRegionKind: {
+    // FIXME: Should this go into the storemanager?
+
+    const MemRegion *R = cast<loc::MemRegionVal>(Cond).getRegion();
+    const SubRegion *SubR = dyn_cast<SubRegion>(R);
+
+    while (SubR) {
+      // FIXME: now we only find the first symbolic region.
+      if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) {
+        const llvm::APSInt &zero = BasicVals.getZeroWithPtrWidth();
+        if (Assumption)
+          return assumeSymNE(state, SymR->getSymbol(), zero, zero);
+        else
+          return assumeSymEQ(state, SymR->getSymbol(), zero, zero);
+      }
+      SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
+    }
+
+    // FALL-THROUGH.
+  }
+
+  case loc::GotoLabelKind:
+    return Assumption ? state : NULL;
+
+  case loc::ConcreteIntKind: {
+    bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;
+    bool isFeasible = b ? Assumption : !Assumption;
+    return isFeasible ? state : NULL;
+  }
+  } // end switch
+}
+
+const GRState *SimpleConstraintManager::assume(const GRState *state,
+                                               NonLoc cond,
+                                               bool assumption) {
+  state = assumeAux(state, cond, assumption);
+  return SU.ProcessAssume(state, cond, assumption);
+}
+
+static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
+  // FIXME: This should probably be part of BinaryOperator, since this isn't
+  // the only place it's used. (This code was copied from SimpleSValBuilder.cpp.)
+  switch (op) {
+  default:
+    assert(false && "Invalid opcode.");
+  case BO_LT: return BO_GE;
+  case BO_GT: return BO_LE;
+  case BO_LE: return BO_GT;
+  case BO_GE: return BO_LT;
+  case BO_EQ: return BO_NE;
+  case BO_NE: return BO_EQ;
+  }
+}
+
+const GRState *SimpleConstraintManager::assumeAux(const GRState *state,
+                                                  NonLoc Cond,
+                                                  bool Assumption) {
+
+  // We cannot reason about SymSymExprs,
+  // and can only reason about some SymIntExprs.
+  if (!canReasonAbout(Cond)) {
+    // Just return the current state indicating that the path is feasible.
+    // This may be an over-approximation of what is possible.
+    return state;
+  }
+
+  BasicValueFactory &BasicVals = state->getBasicVals();
+  SymbolManager &SymMgr = state->getSymbolManager();
+
+  switch (Cond.getSubKind()) {
+  default:
+    assert(false && "'Assume' not implemented for this NonLoc");
+
+  case nonloc::SymbolValKind: {
+    nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
+    SymbolRef sym = SV.getSymbol();
+    QualType T =  SymMgr.getType(sym);
+    const llvm::APSInt &zero = BasicVals.getValue(0, T);
+    if (Assumption)
+      return assumeSymNE(state, sym, zero, zero);
+    else
+      return assumeSymEQ(state, sym, zero, zero);
+  }
+
+  case nonloc::SymExprValKind: {
+    nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
+
+    // For now, we only handle expressions whose RHS is an integer.
+    // All other expressions are assumed to be feasible.
+    const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression());
+    if (!SE)
+      return state;
+
+    BinaryOperator::Opcode op = SE->getOpcode();
+    // Implicitly compare non-comparison expressions to 0.
+    if (!BinaryOperator::isComparisonOp(op)) {
+      QualType T = SymMgr.getType(SE);
+      const llvm::APSInt &zero = BasicVals.getValue(0, T);
+      op = (Assumption ? BO_NE : BO_EQ);
+      return assumeSymRel(state, SE, op, zero);
+    }
+
+    // From here on out, op is the real comparison we'll be testing.
+    if (!Assumption)
+      op = NegateComparison(op);
+  
+    return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
+  }
+
+  case nonloc::ConcreteIntKind: {
+    bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
+    bool isFeasible = b ? Assumption : !Assumption;
+    return isFeasible ? state : NULL;
+  }
+
+  case nonloc::LocAsIntegerKind:
+    return assumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
+                     Assumption);
+  } // end switch
+}
+
+const GRState *SimpleConstraintManager::assumeSymRel(const GRState *state,
+                                                     const SymExpr *LHS,
+                                                     BinaryOperator::Opcode op,
+                                                     const llvm::APSInt& Int) {
+  assert(BinaryOperator::isComparisonOp(op) &&
+         "Non-comparison ops should be rewritten as comparisons to zero.");
+
+   // We only handle simple comparisons of the form "$sym == constant"
+   // or "($sym+constant1) == constant2".
+   // The adjustment is "constant1" in the above expression. It's used to
+   // "slide" the solution range around for modular arithmetic. For example,
+   // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
+   // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
+   // the subclasses of SimpleConstraintManager to handle the adjustment.
+   llvm::APSInt Adjustment;
+
+  // First check if the LHS is a simple symbol reference.
+  SymbolRef Sym = dyn_cast<SymbolData>(LHS);
+  if (Sym) {
+    Adjustment = 0;
+  } else {
+    // Next, see if it's a "($sym+constant1)" expression.
+    const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS);
+
+    // We don't handle "($sym1+$sym2)".
+    // Give up and assume the constraint is feasible.
+    if (!SE)
+      return state;
+
+    // We don't handle "(<expr>+constant1)".
+    // Give up and assume the constraint is feasible.
+    Sym = dyn_cast<SymbolData>(SE->getLHS());
+    if (!Sym)
+      return state;
+
+    // Get the constant out of the expression "($sym+constant1)".
+    switch (SE->getOpcode()) {
+    case BO_Add:
+      Adjustment = SE->getRHS();
+      break;
+    case BO_Sub:
+      Adjustment = -SE->getRHS();
+      break;
+    default:
+      // We don't handle non-additive operators.
+      // Give up and assume the constraint is feasible.
+      return state;
+    }
+  }
+
+  // FIXME: This next section is a hack. It silently converts the integers to
+  // be of the same type as the symbol, which is not always correct. Really the
+  // comparisons should be performed using the Int's type, then mapped back to
+  // the symbol's range of values.
+  GRStateManager &StateMgr = state->getStateManager();
+  ASTContext &Ctx = StateMgr.getContext();
+
+  QualType T = Sym->getType(Ctx);
+  assert(T->isIntegerType() || Loc::IsLocType(T));
+  unsigned bitwidth = Ctx.getTypeSize(T);
+  bool isSymUnsigned = T->isUnsignedIntegerType() || Loc::IsLocType(T);
+
+  // Convert the adjustment.
+  Adjustment.setIsUnsigned(isSymUnsigned);
+  Adjustment = Adjustment.extOrTrunc(bitwidth);
+
+  // Convert the right-hand side integer.
+  llvm::APSInt ConvertedInt(Int, isSymUnsigned);
+  ConvertedInt = ConvertedInt.extOrTrunc(bitwidth);
+
+  switch (op) {
+  default:
+    // No logic yet for other operators.  assume the constraint is feasible.
+    return state;
+
+  case BO_EQ:
+    return assumeSymEQ(state, Sym, ConvertedInt, Adjustment);
+
+  case BO_NE:
+    return assumeSymNE(state, Sym, ConvertedInt, Adjustment);
+
+  case BO_GT:
+    return assumeSymGT(state, Sym, ConvertedInt, Adjustment);
+
+  case BO_GE:
+    return assumeSymGE(state, Sym, ConvertedInt, Adjustment);
+
+  case BO_LT:
+    return assumeSymLT(state, Sym, ConvertedInt, Adjustment);
+
+  case BO_LE:
+    return assumeSymLE(state, Sym, ConvertedInt, Adjustment);
+  } // end switch
+}
+
+} // end of namespace ento
+
+} // end of namespace clang