| //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CGObjCRuntime.h" |
| #include "CodeGenModule.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Module.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Target/TargetData.h" |
| #include <cstdarg> |
| |
| using namespace clang; |
| using namespace CodeGen; |
| using llvm::Value; |
| |
| //===----------------------------------------------------------------------===// |
| // Scalar Expression Emitter |
| //===----------------------------------------------------------------------===// |
| |
| struct BinOpInfo { |
| Value *LHS; |
| Value *RHS; |
| QualType Ty; // Computation Type. |
| const BinaryOperator *E; |
| }; |
| |
| namespace { |
| class VISIBILITY_HIDDEN ScalarExprEmitter |
| : public StmtVisitor<ScalarExprEmitter, Value*> { |
| CodeGenFunction &CGF; |
| CGBuilderTy &Builder; |
| bool IgnoreResultAssign; |
| llvm::LLVMContext &VMContext; |
| public: |
| |
| ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) |
| : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), |
| VMContext(cgf.getLLVMContext()) { |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Utilities |
| //===--------------------------------------------------------------------===// |
| |
| bool TestAndClearIgnoreResultAssign() { |
| bool I = IgnoreResultAssign; |
| IgnoreResultAssign = false; |
| return I; |
| } |
| |
| const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } |
| LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } |
| |
| Value *EmitLoadOfLValue(LValue LV, QualType T) { |
| return CGF.EmitLoadOfLValue(LV, T).getScalarVal(); |
| } |
| |
| /// EmitLoadOfLValue - Given an expression with complex type that represents a |
| /// value l-value, this method emits the address of the l-value, then loads |
| /// and returns the result. |
| Value *EmitLoadOfLValue(const Expr *E) { |
| return EmitLoadOfLValue(EmitLValue(E), E->getType()); |
| } |
| |
| /// EmitConversionToBool - Convert the specified expression value to a |
| /// boolean (i1) truth value. This is equivalent to "Val != 0". |
| Value *EmitConversionToBool(Value *Src, QualType DstTy); |
| |
| /// EmitScalarConversion - Emit a conversion from the specified type to the |
| /// specified destination type, both of which are LLVM scalar types. |
| Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); |
| |
| /// EmitComplexToScalarConversion - Emit a conversion from the specified |
| /// complex type to the specified destination type, where the destination type |
| /// is an LLVM scalar type. |
| Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, |
| QualType SrcTy, QualType DstTy); |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| Value *VisitStmt(Stmt *S) { |
| S->dump(CGF.getContext().getSourceManager()); |
| assert(0 && "Stmt can't have complex result type!"); |
| return 0; |
| } |
| Value *VisitExpr(Expr *S); |
| |
| Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); } |
| |
| // Leaves. |
| Value *VisitIntegerLiteral(const IntegerLiteral *E) { |
| return llvm::ConstantInt::get(VMContext, E->getValue()); |
| } |
| Value *VisitFloatingLiteral(const FloatingLiteral *E) { |
| return llvm::ConstantFP::get(VMContext, E->getValue()); |
| } |
| Value *VisitCharacterLiteral(const CharacterLiteral *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
| } |
| Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
| } |
| Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) { |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| } |
| Value *VisitGNUNullExpr(const GNUNullExpr *E) { |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| } |
| Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()), |
| CGF.getContext().typesAreCompatible( |
| E->getArgType1(), E->getArgType2())); |
| } |
| Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E); |
| Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { |
| llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); |
| return Builder.CreateBitCast(V, ConvertType(E->getType())); |
| } |
| |
| // l-values. |
| Value *VisitDeclRefExpr(DeclRefExpr *E) { |
| if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl())) |
| return llvm::ConstantInt::get(VMContext, EC->getInitVal()); |
| return EmitLoadOfLValue(E); |
| } |
| Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { |
| return CGF.EmitObjCSelectorExpr(E); |
| } |
| Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { |
| return CGF.EmitObjCProtocolExpr(E); |
| } |
| Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
| return EmitLoadOfLValue(E); |
| } |
| Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { |
| return EmitLoadOfLValue(E); |
| } |
| Value *VisitObjCImplicitSetterGetterRefExpr( |
| ObjCImplicitSetterGetterRefExpr *E) { |
| return EmitLoadOfLValue(E); |
| } |
| Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { |
| return CGF.EmitObjCMessageExpr(E).getScalarVal(); |
| } |
| |
| Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); |
| Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); |
| Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); } |
| Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } |
| Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| return EmitLoadOfLValue(E); |
| } |
| Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); } |
| Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { |
| return EmitLValue(E).getAddress(); |
| } |
| |
| Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); } |
| |
| Value *VisitInitListExpr(InitListExpr *E); |
| |
| Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| } |
| Value *VisitCastExpr(const CastExpr *E) { |
| // Make sure to evaluate VLA bounds now so that we have them for later. |
| if (E->getType()->isVariablyModifiedType()) |
| CGF.EmitVLASize(E->getType()); |
| |
| return EmitCastExpr(E); |
| } |
| Value *EmitCastExpr(const CastExpr *E); |
| |
| Value *VisitCallExpr(const CallExpr *E) { |
| if (E->getCallReturnType()->isReferenceType()) |
| return EmitLoadOfLValue(E); |
| |
| return CGF.EmitCallExpr(E).getScalarVal(); |
| } |
| |
| Value *VisitStmtExpr(const StmtExpr *E); |
| |
| Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E); |
| |
| // Unary Operators. |
| Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre); |
| Value *VisitUnaryPostDec(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, false, false); |
| } |
| Value *VisitUnaryPostInc(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, true, false); |
| } |
| Value *VisitUnaryPreDec(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, false, true); |
| } |
| Value *VisitUnaryPreInc(const UnaryOperator *E) { |
| return VisitPrePostIncDec(E, true, true); |
| } |
| Value *VisitUnaryAddrOf(const UnaryOperator *E) { |
| return EmitLValue(E->getSubExpr()).getAddress(); |
| } |
| Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } |
| Value *VisitUnaryPlus(const UnaryOperator *E) { |
| // This differs from gcc, though, most likely due to a bug in gcc. |
| TestAndClearIgnoreResultAssign(); |
| return Visit(E->getSubExpr()); |
| } |
| Value *VisitUnaryMinus (const UnaryOperator *E); |
| Value *VisitUnaryNot (const UnaryOperator *E); |
| Value *VisitUnaryLNot (const UnaryOperator *E); |
| Value *VisitUnaryReal (const UnaryOperator *E); |
| Value *VisitUnaryImag (const UnaryOperator *E); |
| Value *VisitUnaryExtension(const UnaryOperator *E) { |
| return Visit(E->getSubExpr()); |
| } |
| Value *VisitUnaryOffsetOf(const UnaryOperator *E); |
| |
| // C++ |
| Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { |
| return Visit(DAE->getExpr()); |
| } |
| Value *VisitCXXThisExpr(CXXThisExpr *TE) { |
| return CGF.LoadCXXThis(); |
| } |
| |
| Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { |
| return CGF.EmitCXXExprWithTemporaries(E).getScalarVal(); |
| } |
| Value *VisitCXXNewExpr(const CXXNewExpr *E) { |
| return CGF.EmitCXXNewExpr(E); |
| } |
| Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { |
| CGF.EmitCXXDeleteExpr(E); |
| return 0; |
| } |
| |
| Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { |
| // C++ [expr.pseudo]p1: |
| // The result shall only be used as the operand for the function call |
| // operator (), and the result of such a call has type void. The only |
| // effect is the evaluation of the postfix-expression before the dot or |
| // arrow. |
| CGF.EmitScalarExpr(E->getBase()); |
| return 0; |
| } |
| |
| Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| } |
| |
| Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { |
| CGF.EmitCXXThrowExpr(E); |
| return 0; |
| } |
| |
| // Binary Operators. |
| Value *EmitMul(const BinOpInfo &Ops) { |
| if (CGF.getContext().getLangOptions().OverflowChecking |
| && Ops.Ty->isSignedIntegerType()) |
| return EmitOverflowCheckedBinOp(Ops); |
| if (Ops.LHS->getType()->isFPOrFPVector()) |
| return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); |
| return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); |
| } |
| /// Create a binary op that checks for overflow. |
| /// Currently only supports +, - and *. |
| Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); |
| Value *EmitDiv(const BinOpInfo &Ops); |
| Value *EmitRem(const BinOpInfo &Ops); |
| Value *EmitAdd(const BinOpInfo &Ops); |
| Value *EmitSub(const BinOpInfo &Ops); |
| Value *EmitShl(const BinOpInfo &Ops); |
| Value *EmitShr(const BinOpInfo &Ops); |
| Value *EmitAnd(const BinOpInfo &Ops) { |
| return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); |
| } |
| Value *EmitXor(const BinOpInfo &Ops) { |
| return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); |
| } |
| Value *EmitOr (const BinOpInfo &Ops) { |
| return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); |
| } |
| |
| BinOpInfo EmitBinOps(const BinaryOperator *E); |
| Value *EmitCompoundAssign(const CompoundAssignOperator *E, |
| Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); |
| |
| // Binary operators and binary compound assignment operators. |
| #define HANDLEBINOP(OP) \ |
| Value *VisitBin ## OP(const BinaryOperator *E) { \ |
| return Emit ## OP(EmitBinOps(E)); \ |
| } \ |
| Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ |
| return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ |
| } |
| HANDLEBINOP(Mul); |
| HANDLEBINOP(Div); |
| HANDLEBINOP(Rem); |
| HANDLEBINOP(Add); |
| HANDLEBINOP(Sub); |
| HANDLEBINOP(Shl); |
| HANDLEBINOP(Shr); |
| HANDLEBINOP(And); |
| HANDLEBINOP(Xor); |
| HANDLEBINOP(Or); |
| #undef HANDLEBINOP |
| |
| // Comparisons. |
| Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, |
| unsigned SICmpOpc, unsigned FCmpOpc); |
| #define VISITCOMP(CODE, UI, SI, FP) \ |
| Value *VisitBin##CODE(const BinaryOperator *E) { \ |
| return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ |
| llvm::FCmpInst::FP); } |
| VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT); |
| VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT); |
| VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE); |
| VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE); |
| VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ); |
| VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE); |
| #undef VISITCOMP |
| |
| Value *VisitBinAssign (const BinaryOperator *E); |
| |
| Value *VisitBinLAnd (const BinaryOperator *E); |
| Value *VisitBinLOr (const BinaryOperator *E); |
| Value *VisitBinComma (const BinaryOperator *E); |
| |
| // Other Operators. |
| Value *VisitBlockExpr(const BlockExpr *BE); |
| Value *VisitConditionalOperator(const ConditionalOperator *CO); |
| Value *VisitChooseExpr(ChooseExpr *CE); |
| Value *VisitVAArgExpr(VAArgExpr *VE); |
| Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { |
| return CGF.EmitObjCStringLiteral(E); |
| } |
| }; |
| } // end anonymous namespace. |
| |
| //===----------------------------------------------------------------------===// |
| // Utilities |
| //===----------------------------------------------------------------------===// |
| |
| /// EmitConversionToBool - Convert the specified expression value to a |
| /// boolean (i1) truth value. This is equivalent to "Val != 0". |
| Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { |
| assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); |
| |
| if (SrcType->isRealFloatingType()) { |
| // Compare against 0.0 for fp scalars. |
| llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); |
| return Builder.CreateFCmpUNE(Src, Zero, "tobool"); |
| } |
| |
| if (SrcType->isMemberPointerType()) { |
| // FIXME: This is ABI specific. |
| |
| // Compare against -1. |
| llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType()); |
| return Builder.CreateICmpNE(Src, NegativeOne, "tobool"); |
| } |
| |
| assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && |
| "Unknown scalar type to convert"); |
| |
| // Because of the type rules of C, we often end up computing a logical value, |
| // then zero extending it to int, then wanting it as a logical value again. |
| // Optimize this common case. |
| if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) { |
| if (ZI->getOperand(0)->getType() == |
| llvm::Type::getInt1Ty(CGF.getLLVMContext())) { |
| Value *Result = ZI->getOperand(0); |
| // If there aren't any more uses, zap the instruction to save space. |
| // Note that there can be more uses, for example if this |
| // is the result of an assignment. |
| if (ZI->use_empty()) |
| ZI->eraseFromParent(); |
| return Result; |
| } |
| } |
| |
| // Compare against an integer or pointer null. |
| llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); |
| return Builder.CreateICmpNE(Src, Zero, "tobool"); |
| } |
| |
| /// EmitScalarConversion - Emit a conversion from the specified type to the |
| /// specified destination type, both of which are LLVM scalar types. |
| Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, |
| QualType DstType) { |
| SrcType = CGF.getContext().getCanonicalType(SrcType); |
| DstType = CGF.getContext().getCanonicalType(DstType); |
| if (SrcType == DstType) return Src; |
| |
| if (DstType->isVoidType()) return 0; |
| |
| llvm::LLVMContext &VMContext = CGF.getLLVMContext(); |
| |
| // Handle conversions to bool first, they are special: comparisons against 0. |
| if (DstType->isBooleanType()) |
| return EmitConversionToBool(Src, SrcType); |
| |
| const llvm::Type *DstTy = ConvertType(DstType); |
| |
| // Ignore conversions like int -> uint. |
| if (Src->getType() == DstTy) |
| return Src; |
| |
| // Handle pointer conversions next: pointers can only be converted to/from |
| // other pointers and integers. Check for pointer types in terms of LLVM, as |
| // some native types (like Obj-C id) may map to a pointer type. |
| if (isa<llvm::PointerType>(DstTy)) { |
| // The source value may be an integer, or a pointer. |
| if (isa<llvm::PointerType>(Src->getType())) |
| return Builder.CreateBitCast(Src, DstTy, "conv"); |
| |
| assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); |
| // First, convert to the correct width so that we control the kind of |
| // extension. |
| const llvm::Type *MiddleTy = |
| llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); |
| bool InputSigned = SrcType->isSignedIntegerType(); |
| llvm::Value* IntResult = |
| Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); |
| // Then, cast to pointer. |
| return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); |
| } |
| |
| if (isa<llvm::PointerType>(Src->getType())) { |
| // Must be an ptr to int cast. |
| assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); |
| return Builder.CreatePtrToInt(Src, DstTy, "conv"); |
| } |
| |
| // A scalar can be splatted to an extended vector of the same element type |
| if (DstType->isExtVectorType() && !SrcType->isVectorType()) { |
| // Cast the scalar to element type |
| QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); |
| llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); |
| |
| // Insert the element in element zero of an undef vector |
| llvm::Value *UnV = llvm::UndefValue::get(DstTy); |
| llvm::Value *Idx = |
| llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); |
| UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp"); |
| |
| // Splat the element across to all elements |
| llvm::SmallVector<llvm::Constant*, 16> Args; |
| unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); |
| for (unsigned i = 0; i < NumElements; i++) |
| Args.push_back(llvm::ConstantInt::get( |
| llvm::Type::getInt32Ty(VMContext), 0)); |
| |
| llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements); |
| llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); |
| return Yay; |
| } |
| |
| // Allow bitcast from vector to integer/fp of the same size. |
| if (isa<llvm::VectorType>(Src->getType()) || |
| isa<llvm::VectorType>(DstTy)) |
| return Builder.CreateBitCast(Src, DstTy, "conv"); |
| |
| // Finally, we have the arithmetic types: real int/float. |
| if (isa<llvm::IntegerType>(Src->getType())) { |
| bool InputSigned = SrcType->isSignedIntegerType(); |
| if (isa<llvm::IntegerType>(DstTy)) |
| return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); |
| else if (InputSigned) |
| return Builder.CreateSIToFP(Src, DstTy, "conv"); |
| else |
| return Builder.CreateUIToFP(Src, DstTy, "conv"); |
| } |
| |
| assert(Src->getType()->isFloatingPoint() && "Unknown real conversion"); |
| if (isa<llvm::IntegerType>(DstTy)) { |
| if (DstType->isSignedIntegerType()) |
| return Builder.CreateFPToSI(Src, DstTy, "conv"); |
| else |
| return Builder.CreateFPToUI(Src, DstTy, "conv"); |
| } |
| |
| assert(DstTy->isFloatingPoint() && "Unknown real conversion"); |
| if (DstTy->getTypeID() < Src->getType()->getTypeID()) |
| return Builder.CreateFPTrunc(Src, DstTy, "conv"); |
| else |
| return Builder.CreateFPExt(Src, DstTy, "conv"); |
| } |
| |
| /// EmitComplexToScalarConversion - Emit a conversion from the specified complex |
| /// type to the specified destination type, where the destination type is an |
| /// LLVM scalar type. |
| Value *ScalarExprEmitter:: |
| EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, |
| QualType SrcTy, QualType DstTy) { |
| // Get the source element type. |
| SrcTy = SrcTy->getAs<ComplexType>()->getElementType(); |
| |
| // Handle conversions to bool first, they are special: comparisons against 0. |
| if (DstTy->isBooleanType()) { |
| // Complex != 0 -> (Real != 0) | (Imag != 0) |
| Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); |
| Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); |
| return Builder.CreateOr(Src.first, Src.second, "tobool"); |
| } |
| |
| // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, |
| // the imaginary part of the complex value is discarded and the value of the |
| // real part is converted according to the conversion rules for the |
| // corresponding real type. |
| return EmitScalarConversion(Src.first, SrcTy, DstTy); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Visitor Methods |
| //===----------------------------------------------------------------------===// |
| |
| Value *ScalarExprEmitter::VisitExpr(Expr *E) { |
| if (const BinaryOperator *BExpr = dyn_cast<BinaryOperator>(E)) |
| if (BExpr->getOpcode() == BinaryOperator::PtrMemD) { |
| LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(BExpr); |
| Value *InVal = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal(); |
| return InVal; |
| } |
| |
| CGF.ErrorUnsupported(E, "scalar expression"); |
| if (E->getType()->isVoidType()) |
| return 0; |
| return llvm::UndefValue::get(CGF.ConvertType(E->getType())); |
| } |
| |
| Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { |
| llvm::SmallVector<llvm::Constant*, 32> indices; |
| for (unsigned i = 2; i < E->getNumSubExprs(); i++) { |
| indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)))); |
| } |
| Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); |
| Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); |
| Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size()); |
| return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); |
| } |
| |
| Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { |
| TestAndClearIgnoreResultAssign(); |
| |
| // Emit subscript expressions in rvalue context's. For most cases, this just |
| // loads the lvalue formed by the subscript expr. However, we have to be |
| // careful, because the base of a vector subscript is occasionally an rvalue, |
| // so we can't get it as an lvalue. |
| if (!E->getBase()->getType()->isVectorType()) |
| return EmitLoadOfLValue(E); |
| |
| // Handle the vector case. The base must be a vector, the index must be an |
| // integer value. |
| Value *Base = Visit(E->getBase()); |
| Value *Idx = Visit(E->getIdx()); |
| bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType(); |
| Idx = Builder.CreateIntCast(Idx, |
| llvm::Type::getInt32Ty(CGF.getLLVMContext()), |
| IdxSigned, |
| "vecidxcast"); |
| return Builder.CreateExtractElement(Base, Idx, "vecext"); |
| } |
| |
| static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, |
| unsigned Off, const llvm::Type *I32Ty) { |
| int MV = SVI->getMaskValue(Idx); |
| if (MV == -1) |
| return llvm::UndefValue::get(I32Ty); |
| return llvm::ConstantInt::get(I32Ty, Off+MV); |
| } |
| |
| Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { |
| bool Ignore = TestAndClearIgnoreResultAssign(); |
| (void)Ignore; |
| assert (Ignore == false && "init list ignored"); |
| unsigned NumInitElements = E->getNumInits(); |
| |
| if (E->hadArrayRangeDesignator()) |
| CGF.ErrorUnsupported(E, "GNU array range designator extension"); |
| |
| const llvm::VectorType *VType = |
| dyn_cast<llvm::VectorType>(ConvertType(E->getType())); |
| |
| // We have a scalar in braces. Just use the first element. |
| if (!VType) |
| return Visit(E->getInit(0)); |
| |
| unsigned ResElts = VType->getNumElements(); |
| const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext()); |
| |
| // Loop over initializers collecting the Value for each, and remembering |
| // whether the source was swizzle (ExtVectorElementExpr). This will allow |
| // us to fold the shuffle for the swizzle into the shuffle for the vector |
| // initializer, since LLVM optimizers generally do not want to touch |
| // shuffles. |
| unsigned CurIdx = 0; |
| bool VIsUndefShuffle = false; |
| llvm::Value *V = llvm::UndefValue::get(VType); |
| for (unsigned i = 0; i != NumInitElements; ++i) { |
| Expr *IE = E->getInit(i); |
| Value *Init = Visit(IE); |
| llvm::SmallVector<llvm::Constant*, 16> Args; |
| |
| const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); |
| |
| // Handle scalar elements. If the scalar initializer is actually one |
| // element of a different vector of the same width, use shuffle instead of |
| // extract+insert. |
| if (!VVT) { |
| if (isa<ExtVectorElementExpr>(IE)) { |
| llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); |
| |
| if (EI->getVectorOperandType()->getNumElements() == ResElts) { |
| llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); |
| Value *LHS = 0, *RHS = 0; |
| if (CurIdx == 0) { |
| // insert into undef -> shuffle (src, undef) |
| Args.push_back(C); |
| for (unsigned j = 1; j != ResElts; ++j) |
| Args.push_back(llvm::UndefValue::get(I32Ty)); |
| |
| LHS = EI->getVectorOperand(); |
| RHS = V; |
| VIsUndefShuffle = true; |
| } else if (VIsUndefShuffle) { |
| // insert into undefshuffle && size match -> shuffle (v, src) |
| llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); |
| for (unsigned j = 0; j != CurIdx; ++j) |
| Args.push_back(getMaskElt(SVV, j, 0, I32Ty)); |
| Args.push_back(llvm::ConstantInt::get(I32Ty, |
| ResElts + C->getZExtValue())); |
| for (unsigned j = CurIdx + 1; j != ResElts; ++j) |
| Args.push_back(llvm::UndefValue::get(I32Ty)); |
| |
| LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); |
| RHS = EI->getVectorOperand(); |
| VIsUndefShuffle = false; |
| } |
| if (!Args.empty()) { |
| llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); |
| V = Builder.CreateShuffleVector(LHS, RHS, Mask); |
| ++CurIdx; |
| continue; |
| } |
| } |
| } |
| Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx); |
| V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); |
| VIsUndefShuffle = false; |
| ++CurIdx; |
| continue; |
| } |
| |
| unsigned InitElts = VVT->getNumElements(); |
| |
| // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's |
| // input is the same width as the vector being constructed, generate an |
| // optimized shuffle of the swizzle input into the result. |
| unsigned Offset = (CurIdx == 0) ? 0 : ResElts; |
| if (isa<ExtVectorElementExpr>(IE)) { |
| llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); |
| Value *SVOp = SVI->getOperand(0); |
| const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); |
| |
| if (OpTy->getNumElements() == ResElts) { |
| for (unsigned j = 0; j != CurIdx; ++j) { |
| // If the current vector initializer is a shuffle with undef, merge |
| // this shuffle directly into it. |
| if (VIsUndefShuffle) { |
| Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, |
| I32Ty)); |
| } else { |
| Args.push_back(llvm::ConstantInt::get(I32Ty, j)); |
| } |
| } |
| for (unsigned j = 0, je = InitElts; j != je; ++j) |
| Args.push_back(getMaskElt(SVI, j, Offset, I32Ty)); |
| for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) |
| Args.push_back(llvm::UndefValue::get(I32Ty)); |
| |
| if (VIsUndefShuffle) |
| V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); |
| |
| Init = SVOp; |
| } |
| } |
| |
| // Extend init to result vector length, and then shuffle its contribution |
| // to the vector initializer into V. |
| if (Args.empty()) { |
| for (unsigned j = 0; j != InitElts; ++j) |
| Args.push_back(llvm::ConstantInt::get(I32Ty, j)); |
| for (unsigned j = InitElts; j != ResElts; ++j) |
| Args.push_back(llvm::UndefValue::get(I32Ty)); |
| llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); |
| Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), |
| Mask, "vext"); |
| |
| Args.clear(); |
| for (unsigned j = 0; j != CurIdx; ++j) |
| Args.push_back(llvm::ConstantInt::get(I32Ty, j)); |
| for (unsigned j = 0; j != InitElts; ++j) |
| Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset)); |
| for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) |
| Args.push_back(llvm::UndefValue::get(I32Ty)); |
| } |
| |
| // If V is undef, make sure it ends up on the RHS of the shuffle to aid |
| // merging subsequent shuffles into this one. |
| if (CurIdx == 0) |
| std::swap(V, Init); |
| llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); |
| V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); |
| VIsUndefShuffle = isa<llvm::UndefValue>(Init); |
| CurIdx += InitElts; |
| } |
| |
| // FIXME: evaluate codegen vs. shuffling against constant null vector. |
| // Emit remaining default initializers. |
| const llvm::Type *EltTy = VType->getElementType(); |
| |
| // Emit remaining default initializers |
| for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { |
| Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx); |
| llvm::Value *Init = llvm::Constant::getNullValue(EltTy); |
| V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); |
| } |
| return V; |
| } |
| |
| // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts |
| // have to handle a more broad range of conversions than explicit casts, as they |
| // handle things like function to ptr-to-function decay etc. |
| Value *ScalarExprEmitter::EmitCastExpr(const CastExpr *CE) { |
| const Expr *E = CE->getSubExpr(); |
| QualType DestTy = CE->getType(); |
| CastExpr::CastKind Kind = CE->getCastKind(); |
| |
| if (!DestTy->isVoidType()) |
| TestAndClearIgnoreResultAssign(); |
| |
| switch (Kind) { |
| default: |
| // FIXME: Assert here. |
| // assert(0 && "Unhandled cast kind!"); |
| break; |
| case CastExpr::CK_Unknown: |
| // FIXME: We should really assert here - Unknown casts should never get |
| // as far as to codegen. |
| break; |
| case CastExpr::CK_BitCast: { |
| Value *Src = Visit(const_cast<Expr*>(E)); |
| return Builder.CreateBitCast(Src, ConvertType(DestTy)); |
| } |
| case CastExpr::CK_ArrayToPointerDecay: { |
| assert(E->getType()->isArrayType() && |
| "Array to pointer decay must have array source type!"); |
| |
| Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. |
| |
| // Note that VLA pointers are always decayed, so we don't need to do |
| // anything here. |
| if (!E->getType()->isVariableArrayType()) { |
| assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); |
| assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) |
| ->getElementType()) && |
| "Expected pointer to array"); |
| V = Builder.CreateStructGEP(V, 0, "arraydecay"); |
| } |
| |
| // The resultant pointer type can be implicitly casted to other pointer |
| // types as well (e.g. void*) and can be implicitly converted to integer. |
| const llvm::Type *DestLTy = ConvertType(DestTy); |
| if (V->getType() != DestLTy) { |
| if (isa<llvm::PointerType>(DestLTy)) |
| V = Builder.CreateBitCast(V, DestLTy, "ptrconv"); |
| else { |
| assert(isa<llvm::IntegerType>(DestLTy) && "Unknown array decay"); |
| V = Builder.CreatePtrToInt(V, DestLTy, "ptrconv"); |
| } |
| } |
| return V; |
| } |
| case CastExpr::CK_NullToMemberPointer: |
| return CGF.CGM.EmitNullConstant(DestTy); |
| |
| case CastExpr::CK_DerivedToBase: { |
| const RecordType *DerivedClassTy = |
| E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>(); |
| CXXRecordDecl *DerivedClassDecl = |
| cast<CXXRecordDecl>(DerivedClassTy->getDecl()); |
| |
| const RecordType *BaseClassTy = |
| DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>(); |
| CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl()); |
| |
| Value *Src = Visit(const_cast<Expr*>(E)); |
| |
| bool NullCheckValue = true; |
| |
| if (isa<CXXThisExpr>(E)) { |
| // We always assume that 'this' is never null. |
| NullCheckValue = false; |
| } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { |
| // And that lvalue casts are never null. |
| if (ICE->isLvalueCast()) |
| NullCheckValue = false; |
| } |
| return CGF.GetAddressCXXOfBaseClass(Src, DerivedClassDecl, BaseClassDecl, |
| NullCheckValue); |
| } |
| |
| case CastExpr::CK_IntegralToPointer: { |
| Value *Src = Visit(const_cast<Expr*>(E)); |
| |
| // First, convert to the correct width so that we control the kind of |
| // extension. |
| const llvm::Type *MiddleTy = |
| llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); |
| bool InputSigned = E->getType()->isSignedIntegerType(); |
| llvm::Value* IntResult = |
| Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); |
| |
| return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); |
| } |
| |
| case CastExpr::CK_PointerToIntegral: { |
| Value *Src = Visit(const_cast<Expr*>(E)); |
| return Builder.CreatePtrToInt(Src, ConvertType(DestTy)); |
| } |
| |
| } |
| |
| // Handle cases where the source is an non-complex type. |
| |
| if (!CGF.hasAggregateLLVMType(E->getType())) { |
| Value *Src = Visit(const_cast<Expr*>(E)); |
| |
| // Use EmitScalarConversion to perform the conversion. |
| return EmitScalarConversion(Src, E->getType(), DestTy); |
| } |
| |
| if (E->getType()->isAnyComplexType()) { |
| // Handle cases where the source is a complex type. |
| bool IgnoreImag = true; |
| bool IgnoreImagAssign = true; |
| bool IgnoreReal = IgnoreResultAssign; |
| bool IgnoreRealAssign = IgnoreResultAssign; |
| if (DestTy->isBooleanType()) |
| IgnoreImagAssign = IgnoreImag = false; |
| else if (DestTy->isVoidType()) { |
| IgnoreReal = IgnoreImag = false; |
| IgnoreRealAssign = IgnoreImagAssign = true; |
| } |
| CodeGenFunction::ComplexPairTy V |
| = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign, |
| IgnoreImagAssign); |
| return EmitComplexToScalarConversion(V, E->getType(), DestTy); |
| } |
| |
| // Okay, this is a cast from an aggregate. It must be a cast to void. Just |
| // evaluate the result and return. |
| CGF.EmitAggExpr(E, 0, false, true); |
| return 0; |
| } |
| |
| Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { |
| return CGF.EmitCompoundStmt(*E->getSubStmt(), |
| !E->getType()->isVoidType()).getScalarVal(); |
| } |
| |
| Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { |
| llvm::Value *V = CGF.GetAddrOfBlockDecl(E); |
| if (E->getType().isObjCGCWeak()) |
| return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V); |
| return Builder.CreateLoad(V, false, "tmp"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Unary Operators |
| //===----------------------------------------------------------------------===// |
| |
| Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E, |
| bool isInc, bool isPre) { |
| LValue LV = EmitLValue(E->getSubExpr()); |
| QualType ValTy = E->getSubExpr()->getType(); |
| Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal(); |
| |
| llvm::LLVMContext &VMContext = CGF.getLLVMContext(); |
| |
| int AmountVal = isInc ? 1 : -1; |
| |
| if (ValTy->isPointerType() && |
| ValTy->getAs<PointerType>()->isVariableArrayType()) { |
| // The amount of the addition/subtraction needs to account for the VLA size |
| CGF.ErrorUnsupported(E, "VLA pointer inc/dec"); |
| } |
| |
| Value *NextVal; |
| if (const llvm::PointerType *PT = |
| dyn_cast<llvm::PointerType>(InVal->getType())) { |
| llvm::Constant *Inc = |
| llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal); |
| if (!isa<llvm::FunctionType>(PT->getElementType())) { |
| QualType PTEE = ValTy->getPointeeType(); |
| if (const ObjCInterfaceType *OIT = |
| dyn_cast<ObjCInterfaceType>(PTEE)) { |
| // Handle interface types, which are not represented with a concrete type. |
| int size = CGF.getContext().getTypeSize(OIT) / 8; |
| if (!isInc) |
| size = -size; |
| Inc = llvm::ConstantInt::get(Inc->getType(), size); |
| const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); |
| InVal = Builder.CreateBitCast(InVal, i8Ty); |
| NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr"); |
| llvm::Value *lhs = LV.getAddress(); |
| lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty)); |
| LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy)); |
| } else |
| NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec"); |
| } else { |
| const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); |
| NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp"); |
| NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec"); |
| NextVal = Builder.CreateBitCast(NextVal, InVal->getType()); |
| } |
| } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) { |
| // Bool++ is an interesting case, due to promotion rules, we get: |
| // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 -> |
| // Bool = ((int)Bool+1) != 0 |
| // An interesting aspect of this is that increment is always true. |
| // Decrement does not have this property. |
| NextVal = llvm::ConstantInt::getTrue(VMContext); |
| } else if (isa<llvm::IntegerType>(InVal->getType())) { |
| NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal); |
| |
| // Signed integer overflow is undefined behavior. |
| if (ValTy->isSignedIntegerType()) |
| NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec"); |
| else |
| NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec"); |
| } else { |
| // Add the inc/dec to the real part. |
| if (InVal->getType()->isFloatTy()) |
| NextVal = |
| llvm::ConstantFP::get(VMContext, |
| llvm::APFloat(static_cast<float>(AmountVal))); |
| else if (InVal->getType()->isDoubleTy()) |
| NextVal = |
| llvm::ConstantFP::get(VMContext, |
| llvm::APFloat(static_cast<double>(AmountVal))); |
| else { |
| llvm::APFloat F(static_cast<float>(AmountVal)); |
| bool ignored; |
| F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero, |
| &ignored); |
| NextVal = llvm::ConstantFP::get(VMContext, F); |
| } |
| NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec"); |
| } |
| |
| // Store the updated result through the lvalue. |
| if (LV.isBitfield()) |
| CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, |
| &NextVal); |
| else |
| CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy); |
| |
| // If this is a postinc, return the value read from memory, otherwise use the |
| // updated value. |
| return isPre ? NextVal : InVal; |
| } |
| |
| |
| Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { |
| TestAndClearIgnoreResultAssign(); |
| Value *Op = Visit(E->getSubExpr()); |
| if (Op->getType()->isFPOrFPVector()) |
| return Builder.CreateFNeg(Op, "neg"); |
| return Builder.CreateNeg(Op, "neg"); |
| } |
| |
| Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { |
| TestAndClearIgnoreResultAssign(); |
| Value *Op = Visit(E->getSubExpr()); |
| return Builder.CreateNot(Op, "neg"); |
| } |
| |
| Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { |
| // Compare operand to zero. |
| Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); |
| |
| // Invert value. |
| // TODO: Could dynamically modify easy computations here. For example, if |
| // the operand is an icmp ne, turn into icmp eq. |
| BoolVal = Builder.CreateNot(BoolVal, "lnot"); |
| |
| // ZExt result to the expr type. |
| return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); |
| } |
| |
| /// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of |
| /// argument of the sizeof expression as an integer. |
| Value * |
| ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) { |
| QualType TypeToSize = E->getTypeOfArgument(); |
| if (E->isSizeOf()) { |
| if (const VariableArrayType *VAT = |
| CGF.getContext().getAsVariableArrayType(TypeToSize)) { |
| if (E->isArgumentType()) { |
| // sizeof(type) - make sure to emit the VLA size. |
| CGF.EmitVLASize(TypeToSize); |
| } else { |
| // C99 6.5.3.4p2: If the argument is an expression of type |
| // VLA, it is evaluated. |
| CGF.EmitAnyExpr(E->getArgumentExpr()); |
| } |
| |
| return CGF.GetVLASize(VAT); |
| } |
| } |
| |
| // If this isn't sizeof(vla), the result must be constant; use the constant |
| // folding logic so we don't have to duplicate it here. |
| Expr::EvalResult Result; |
| E->Evaluate(Result, CGF.getContext()); |
| return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); |
| } |
| |
| Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { |
| Expr *Op = E->getSubExpr(); |
| if (Op->getType()->isAnyComplexType()) |
| return CGF.EmitComplexExpr(Op, false, true, false, true).first; |
| return Visit(Op); |
| } |
| Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { |
| Expr *Op = E->getSubExpr(); |
| if (Op->getType()->isAnyComplexType()) |
| return CGF.EmitComplexExpr(Op, true, false, true, false).second; |
| |
| // __imag on a scalar returns zero. Emit the subexpr to ensure side |
| // effects are evaluated, but not the actual value. |
| if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid) |
| CGF.EmitLValue(Op); |
| else |
| CGF.EmitScalarExpr(Op, true); |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| } |
| |
| Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) { |
| Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress(); |
| const llvm::Type* ResultType = ConvertType(E->getType()); |
| return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Binary Operators |
| //===----------------------------------------------------------------------===// |
| |
| BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { |
| TestAndClearIgnoreResultAssign(); |
| BinOpInfo Result; |
| Result.LHS = Visit(E->getLHS()); |
| Result.RHS = Visit(E->getRHS()); |
| Result.Ty = E->getType(); |
| Result.E = E; |
| return Result; |
| } |
| |
| Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, |
| Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { |
| bool Ignore = TestAndClearIgnoreResultAssign(); |
| QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType(); |
| |
| BinOpInfo OpInfo; |
| |
| if (E->getComputationResultType()->isAnyComplexType()) { |
| // This needs to go through the complex expression emitter, but it's a tad |
| // complicated to do that... I'm leaving it out for now. (Note that we do |
| // actually need the imaginary part of the RHS for multiplication and |
| // division.) |
| CGF.ErrorUnsupported(E, "complex compound assignment"); |
| return llvm::UndefValue::get(CGF.ConvertType(E->getType())); |
| } |
| |
| // Emit the RHS first. __block variables need to have the rhs evaluated |
| // first, plus this should improve codegen a little. |
| OpInfo.RHS = Visit(E->getRHS()); |
| OpInfo.Ty = E->getComputationResultType(); |
| OpInfo.E = E; |
| // Load/convert the LHS. |
| LValue LHSLV = EmitLValue(E->getLHS()); |
| OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy); |
| OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, |
| E->getComputationLHSType()); |
| |
| // Expand the binary operator. |
| Value *Result = (this->*Func)(OpInfo); |
| |
| // Convert the result back to the LHS type. |
| Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); |
| |
| // Store the result value into the LHS lvalue. Bit-fields are handled |
| // specially because the result is altered by the store, i.e., [C99 6.5.16p1] |
| // 'An assignment expression has the value of the left operand after the |
| // assignment...'. |
| if (LHSLV.isBitfield()) { |
| if (!LHSLV.isVolatileQualified()) { |
| CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy, |
| &Result); |
| return Result; |
| } else |
| CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy); |
| } else |
| CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy); |
| if (Ignore) |
| return 0; |
| return EmitLoadOfLValue(LHSLV, E->getType()); |
| } |
| |
| |
| Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { |
| if (Ops.LHS->getType()->isFPOrFPVector()) |
| return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); |
| else if (Ops.Ty->isUnsignedIntegerType()) |
| return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); |
| else |
| return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); |
| } |
| |
| Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { |
| // Rem in C can't be a floating point type: C99 6.5.5p2. |
| if (Ops.Ty->isUnsignedIntegerType()) |
| return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); |
| else |
| return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); |
| } |
| |
| Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { |
| unsigned IID; |
| unsigned OpID = 0; |
| |
| switch (Ops.E->getOpcode()) { |
| case BinaryOperator::Add: |
| case BinaryOperator::AddAssign: |
| OpID = 1; |
| IID = llvm::Intrinsic::sadd_with_overflow; |
| break; |
| case BinaryOperator::Sub: |
| case BinaryOperator::SubAssign: |
| OpID = 2; |
| IID = llvm::Intrinsic::ssub_with_overflow; |
| break; |
| case BinaryOperator::Mul: |
| case BinaryOperator::MulAssign: |
| OpID = 3; |
| IID = llvm::Intrinsic::smul_with_overflow; |
| break; |
| default: |
| assert(false && "Unsupported operation for overflow detection"); |
| IID = 0; |
| } |
| OpID <<= 1; |
| OpID |= 1; |
| |
| const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); |
| |
| llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1); |
| |
| Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); |
| Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); |
| Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); |
| |
| // Branch in case of overflow. |
| llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); |
| llvm::BasicBlock *overflowBB = |
| CGF.createBasicBlock("overflow", CGF.CurFn); |
| llvm::BasicBlock *continueBB = |
| CGF.createBasicBlock("overflow.continue", CGF.CurFn); |
| |
| Builder.CreateCondBr(overflow, overflowBB, continueBB); |
| |
| // Handle overflow |
| |
| Builder.SetInsertPoint(overflowBB); |
| |
| // Handler is: |
| // long long *__overflow_handler)(long long a, long long b, char op, |
| // char width) |
| std::vector<const llvm::Type*> handerArgTypes; |
| handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext)); |
| handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext)); |
| handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext)); |
| handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext)); |
| llvm::FunctionType *handlerTy = llvm::FunctionType::get( |
| llvm::Type::getInt64Ty(VMContext), handerArgTypes, false); |
| llvm::Value *handlerFunction = |
| CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler", |
| llvm::PointerType::getUnqual(handlerTy)); |
| handlerFunction = Builder.CreateLoad(handlerFunction); |
| |
| llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction, |
| Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)), |
| Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)), |
| llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID), |
| llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), |
| cast<llvm::IntegerType>(opTy)->getBitWidth())); |
| |
| handlerResult = Builder.CreateTrunc(handlerResult, opTy); |
| |
| Builder.CreateBr(continueBB); |
| |
| // Set up the continuation |
| Builder.SetInsertPoint(continueBB); |
| // Get the correct result |
| llvm::PHINode *phi = Builder.CreatePHI(opTy); |
| phi->reserveOperandSpace(2); |
| phi->addIncoming(result, initialBB); |
| phi->addIncoming(handlerResult, overflowBB); |
| |
| return phi; |
| } |
| |
| Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) { |
| if (!Ops.Ty->isAnyPointerType()) { |
| if (CGF.getContext().getLangOptions().OverflowChecking && |
| Ops.Ty->isSignedIntegerType()) |
| return EmitOverflowCheckedBinOp(Ops); |
| |
| if (Ops.LHS->getType()->isFPOrFPVector()) |
| return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add"); |
| |
| // Signed integer overflow is undefined behavior. |
| if (Ops.Ty->isSignedIntegerType()) |
| return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add"); |
| |
| return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add"); |
| } |
| |
| if (Ops.Ty->isPointerType() && |
| Ops.Ty->getAs<PointerType>()->isVariableArrayType()) { |
| // The amount of the addition needs to account for the VLA size |
| CGF.ErrorUnsupported(Ops.E, "VLA pointer addition"); |
| } |
| Value *Ptr, *Idx; |
| Expr *IdxExp; |
| const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>(); |
| const ObjCObjectPointerType *OPT = |
| Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>(); |
| if (PT || OPT) { |
| Ptr = Ops.LHS; |
| Idx = Ops.RHS; |
| IdxExp = Ops.E->getRHS(); |
| } else { // int + pointer |
| PT = Ops.E->getRHS()->getType()->getAs<PointerType>(); |
| OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>(); |
| assert((PT || OPT) && "Invalid add expr"); |
| Ptr = Ops.RHS; |
| Idx = Ops.LHS; |
| IdxExp = Ops.E->getLHS(); |
| } |
| |
| unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); |
| if (Width < CGF.LLVMPointerWidth) { |
| // Zero or sign extend the pointer value based on whether the index is |
| // signed or not. |
| const llvm::Type *IdxType = |
| llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); |
| if (IdxExp->getType()->isSignedIntegerType()) |
| Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); |
| else |
| Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); |
| } |
| const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType(); |
| // Handle interface types, which are not represented with a concrete type. |
| if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) { |
| llvm::Value *InterfaceSize = |
| llvm::ConstantInt::get(Idx->getType(), |
| CGF.getContext().getTypeSize(OIT) / 8); |
| Idx = Builder.CreateMul(Idx, InterfaceSize); |
| const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); |
| Value *Casted = Builder.CreateBitCast(Ptr, i8Ty); |
| Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr"); |
| return Builder.CreateBitCast(Res, Ptr->getType()); |
| } |
| |
| // Explicitly handle GNU void* and function pointer arithmetic extensions. The |
| // GNU void* casts amount to no-ops since our void* type is i8*, but this is |
| // future proof. |
| if (ElementType->isVoidType() || ElementType->isFunctionType()) { |
| const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); |
| Value *Casted = Builder.CreateBitCast(Ptr, i8Ty); |
| Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr"); |
| return Builder.CreateBitCast(Res, Ptr->getType()); |
| } |
| |
| return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr"); |
| } |
| |
| Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) { |
| if (!isa<llvm::PointerType>(Ops.LHS->getType())) { |
| if (CGF.getContext().getLangOptions().OverflowChecking |
| && Ops.Ty->isSignedIntegerType()) |
| return EmitOverflowCheckedBinOp(Ops); |
| |
| if (Ops.LHS->getType()->isFPOrFPVector()) |
| return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub"); |
| return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub"); |
| } |
| |
| if (Ops.E->getLHS()->getType()->isPointerType() && |
| Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) { |
| // The amount of the addition needs to account for the VLA size for |
| // ptr-int |
| // The amount of the division needs to account for the VLA size for |
| // ptr-ptr. |
| CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction"); |
| } |
| |
| const QualType LHSType = Ops.E->getLHS()->getType(); |
| const QualType LHSElementType = LHSType->getPointeeType(); |
| if (!isa<llvm::PointerType>(Ops.RHS->getType())) { |
| // pointer - int |
| Value *Idx = Ops.RHS; |
| unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); |
| if (Width < CGF.LLVMPointerWidth) { |
| // Zero or sign extend the pointer value based on whether the index is |
| // signed or not. |
| const llvm::Type *IdxType = |
| llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); |
| if (Ops.E->getRHS()->getType()->isSignedIntegerType()) |
| Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); |
| else |
| Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); |
| } |
| Idx = Builder.CreateNeg(Idx, "sub.ptr.neg"); |
| |
| // Handle interface types, which are not represented with a concrete type. |
| if (const ObjCInterfaceType *OIT = |
| dyn_cast<ObjCInterfaceType>(LHSElementType)) { |
| llvm::Value *InterfaceSize = |
| llvm::ConstantInt::get(Idx->getType(), |
| CGF.getContext().getTypeSize(OIT) / 8); |
| Idx = Builder.CreateMul(Idx, InterfaceSize); |
| const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); |
| Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty); |
| Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr"); |
| return Builder.CreateBitCast(Res, Ops.LHS->getType()); |
| } |
| |
| // Explicitly handle GNU void* and function pointer arithmetic |
| // extensions. The GNU void* casts amount to no-ops since our void* type is |
| // i8*, but this is future proof. |
| if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) { |
| const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); |
| Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty); |
| Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr"); |
| return Builder.CreateBitCast(Res, Ops.LHS->getType()); |
| } |
| |
| return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr"); |
| } else { |
| // pointer - pointer |
| Value *LHS = Ops.LHS; |
| Value *RHS = Ops.RHS; |
| |
| uint64_t ElementSize; |
| |
| // Handle GCC extension for pointer arithmetic on void* and function pointer |
| // types. |
| if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) { |
| ElementSize = 1; |
| } else { |
| ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8; |
| } |
| |
| const llvm::Type *ResultType = ConvertType(Ops.Ty); |
| LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast"); |
| RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); |
| Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); |
| |
| // Optimize out the shift for element size of 1. |
| if (ElementSize == 1) |
| return BytesBetween; |
| |
| // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since |
| // pointer difference in C is only defined in the case where both operands |
| // are pointing to elements of an array. |
| Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize); |
| return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div"); |
| } |
| } |
| |
| Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { |
| // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
| // RHS to the same size as the LHS. |
| Value *RHS = Ops.RHS; |
| if (Ops.LHS->getType() != RHS->getType()) |
| RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); |
| |
| return Builder.CreateShl(Ops.LHS, RHS, "shl"); |
| } |
| |
| Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { |
| // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
| // RHS to the same size as the LHS. |
| Value *RHS = Ops.RHS; |
| if (Ops.LHS->getType() != RHS->getType()) |
| RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); |
| |
| if (Ops.Ty->isUnsignedIntegerType()) |
| return Builder.CreateLShr(Ops.LHS, RHS, "shr"); |
| return Builder.CreateAShr(Ops.LHS, RHS, "shr"); |
| } |
| |
| Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, |
| unsigned SICmpOpc, unsigned FCmpOpc) { |
| TestAndClearIgnoreResultAssign(); |
| Value *Result; |
| QualType LHSTy = E->getLHS()->getType(); |
| if (!LHSTy->isAnyComplexType()) { |
| Value *LHS = Visit(E->getLHS()); |
| Value *RHS = Visit(E->getRHS()); |
| |
| if (LHS->getType()->isFPOrFPVector()) { |
| Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, |
| LHS, RHS, "cmp"); |
| } else if (LHSTy->isSignedIntegerType()) { |
| Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, |
| LHS, RHS, "cmp"); |
| } else { |
| // Unsigned integers and pointers. |
| Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, |
| LHS, RHS, "cmp"); |
| } |
| |
| // If this is a vector comparison, sign extend the result to the appropriate |
| // vector integer type and return it (don't convert to bool). |
| if (LHSTy->isVectorType()) |
| return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); |
| |
| } else { |
| // Complex Comparison: can only be an equality comparison. |
| CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); |
| CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); |
| |
| QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); |
| |
| Value *ResultR, *ResultI; |
| if (CETy->isRealFloatingType()) { |
| ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, |
| LHS.first, RHS.first, "cmp.r"); |
| ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, |
| LHS.second, RHS.second, "cmp.i"); |
| } else { |
| // Complex comparisons can only be equality comparisons. As such, signed |
| // and unsigned opcodes are the same. |
| ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, |
| LHS.first, RHS.first, "cmp.r"); |
| ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, |
| LHS.second, RHS.second, "cmp.i"); |
| } |
| |
| if (E->getOpcode() == BinaryOperator::EQ) { |
| Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); |
| } else { |
| assert(E->getOpcode() == BinaryOperator::NE && |
| "Complex comparison other than == or != ?"); |
| Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); |
| } |
| } |
| |
| return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { |
| bool Ignore = TestAndClearIgnoreResultAssign(); |
| |
| // __block variables need to have the rhs evaluated first, plus this should |
| // improve codegen just a little. |
| Value *RHS = Visit(E->getRHS()); |
| LValue LHS = EmitLValue(E->getLHS()); |
| |
| // Store the value into the LHS. Bit-fields are handled specially |
| // because the result is altered by the store, i.e., [C99 6.5.16p1] |
| // 'An assignment expression has the value of the left operand after |
| // the assignment...'. |
| if (LHS.isBitfield()) { |
| if (!LHS.isVolatileQualified()) { |
| CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(), |
| &RHS); |
| return RHS; |
| } else |
| CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType()); |
| } else |
| CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType()); |
| if (Ignore) |
| return 0; |
| return EmitLoadOfLValue(LHS, E->getType()); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { |
| const llvm::Type *ResTy = ConvertType(E->getType()); |
| |
| // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. |
| // If we have 1 && X, just emit X without inserting the control flow. |
| if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) { |
| if (Cond == 1) { // If we have 1 && X, just emit X. |
| Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| // ZExt result to int or bool. |
| return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); |
| } |
| |
| // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. |
| if (!CGF.ContainsLabel(E->getRHS())) |
| return llvm::Constant::getNullValue(ResTy); |
| } |
| |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); |
| llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); |
| |
| // Branch on the LHS first. If it is false, go to the failure (cont) block. |
| CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); |
| |
| // Any edges into the ContBlock are now from an (indeterminate number of) |
| // edges from this first condition. All of these values will be false. Start |
| // setting up the PHI node in the Cont Block for this. |
| llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), |
| "", ContBlock); |
| PN->reserveOperandSpace(2); // Normal case, two inputs. |
| for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); |
| PI != PE; ++PI) |
| PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); |
| |
| CGF.PushConditionalTempDestruction(); |
| CGF.EmitBlock(RHSBlock); |
| Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| CGF.PopConditionalTempDestruction(); |
| |
| // Reaquire the RHS block, as there may be subblocks inserted. |
| RHSBlock = Builder.GetInsertBlock(); |
| |
| // Emit an unconditional branch from this block to ContBlock. Insert an entry |
| // into the phi node for the edge with the value of RHSCond. |
| CGF.EmitBlock(ContBlock); |
| PN->addIncoming(RHSCond, RHSBlock); |
| |
| // ZExt result to int. |
| return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { |
| const llvm::Type *ResTy = ConvertType(E->getType()); |
| |
| // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. |
| // If we have 0 || X, just emit X without inserting the control flow. |
| if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) { |
| if (Cond == -1) { // If we have 0 || X, just emit X. |
| Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| // ZExt result to int or bool. |
| return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); |
| } |
| |
| // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. |
| if (!CGF.ContainsLabel(E->getRHS())) |
| return llvm::ConstantInt::get(ResTy, 1); |
| } |
| |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); |
| llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); |
| |
| // Branch on the LHS first. If it is true, go to the success (cont) block. |
| CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); |
| |
| // Any edges into the ContBlock are now from an (indeterminate number of) |
| // edges from this first condition. All of these values will be true. Start |
| // setting up the PHI node in the Cont Block for this. |
| llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), |
| "", ContBlock); |
| PN->reserveOperandSpace(2); // Normal case, two inputs. |
| for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); |
| PI != PE; ++PI) |
| PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); |
| |
| CGF.PushConditionalTempDestruction(); |
| |
| // Emit the RHS condition as a bool value. |
| CGF.EmitBlock(RHSBlock); |
| Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| |
| CGF.PopConditionalTempDestruction(); |
| |
| // Reaquire the RHS block, as there may be subblocks inserted. |
| RHSBlock = Builder.GetInsertBlock(); |
| |
| // Emit an unconditional branch from this block to ContBlock. Insert an entry |
| // into the phi node for the edge with the value of RHSCond. |
| CGF.EmitBlock(ContBlock); |
| PN->addIncoming(RHSCond, RHSBlock); |
| |
| // ZExt result to int. |
| return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); |
| } |
| |
| Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { |
| CGF.EmitStmt(E->getLHS()); |
| CGF.EnsureInsertPoint(); |
| return Visit(E->getRHS()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Operators |
| //===----------------------------------------------------------------------===// |
| |
| /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified |
| /// expression is cheap enough and side-effect-free enough to evaluate |
| /// unconditionally instead of conditionally. This is used to convert control |
| /// flow into selects in some cases. |
| static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, |
| CodeGenFunction &CGF) { |
| if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) |
| return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF); |
| |
| // TODO: Allow anything we can constant fold to an integer or fp constant. |
| if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) || |
| isa<FloatingLiteral>(E)) |
| return true; |
| |
| // Non-volatile automatic variables too, to get "cond ? X : Y" where |
| // X and Y are local variables. |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) |
| if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) |
| if (VD->hasLocalStorage() && !(CGF.getContext() |
| .getCanonicalType(VD->getType()) |
| .isVolatileQualified())) |
| return true; |
| |
| return false; |
| } |
| |
| |
| Value *ScalarExprEmitter:: |
| VisitConditionalOperator(const ConditionalOperator *E) { |
| TestAndClearIgnoreResultAssign(); |
| // If the condition constant folds and can be elided, try to avoid emitting |
| // the condition and the dead arm. |
| if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){ |
| Expr *Live = E->getLHS(), *Dead = E->getRHS(); |
| if (Cond == -1) |
| std::swap(Live, Dead); |
| |
| // If the dead side doesn't have labels we need, and if the Live side isn't |
| // the gnu missing ?: extension (which we could handle, but don't bother |
| // to), just emit the Live part. |
| if ((!Dead || !CGF.ContainsLabel(Dead)) && // No labels in dead part |
| Live) // Live part isn't missing. |
| return Visit(Live); |
| } |
| |
| |
| // If this is a really simple expression (like x ? 4 : 5), emit this as a |
| // select instead of as control flow. We can only do this if it is cheap and |
| // safe to evaluate the LHS and RHS unconditionally. |
| if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(), |
| CGF) && |
| isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) { |
| llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond()); |
| llvm::Value *LHS = Visit(E->getLHS()); |
| llvm::Value *RHS = Visit(E->getRHS()); |
| return Builder.CreateSelect(CondV, LHS, RHS, "cond"); |
| } |
| |
| |
| llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); |
| llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); |
| Value *CondVal = 0; |
| |
| // If we don't have the GNU missing condition extension, emit a branch on bool |
| // the normal way. |
| if (E->getLHS()) { |
| // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for |
| // the branch on bool. |
| CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); |
| } else { |
| // Otherwise, for the ?: extension, evaluate the conditional and then |
| // convert it to bool the hard way. We do this explicitly because we need |
| // the unconverted value for the missing middle value of the ?:. |
| CondVal = CGF.EmitScalarExpr(E->getCond()); |
| |
| // In some cases, EmitScalarConversion will delete the "CondVal" expression |
| // if there are no extra uses (an optimization). Inhibit this by making an |
| // extra dead use, because we're going to add a use of CondVal later. We |
| // don't use the builder for this, because we don't want it to get optimized |
| // away. This leaves dead code, but the ?: extension isn't common. |
| new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder", |
| Builder.GetInsertBlock()); |
| |
| Value *CondBoolVal = |
| CGF.EmitScalarConversion(CondVal, E->getCond()->getType(), |
| CGF.getContext().BoolTy); |
| Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock); |
| } |
| |
| CGF.PushConditionalTempDestruction(); |
| CGF.EmitBlock(LHSBlock); |
| |
| // Handle the GNU extension for missing LHS. |
| Value *LHS; |
| if (E->getLHS()) |
| LHS = Visit(E->getLHS()); |
| else // Perform promotions, to handle cases like "short ?: int" |
| LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType()); |
| |
| CGF.PopConditionalTempDestruction(); |
| LHSBlock = Builder.GetInsertBlock(); |
| CGF.EmitBranch(ContBlock); |
| |
| CGF.PushConditionalTempDestruction(); |
| CGF.EmitBlock(RHSBlock); |
| |
| Value *RHS = Visit(E->getRHS()); |
| CGF.PopConditionalTempDestruction(); |
| RHSBlock = Builder.GetInsertBlock(); |
| CGF.EmitBranch(ContBlock); |
| |
| CGF.EmitBlock(ContBlock); |
| |
| if (!LHS || !RHS) { |
| assert(E->getType()->isVoidType() && "Non-void value should have a value"); |
| return 0; |
| } |
| |
| // Create a PHI node for the real part. |
| llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond"); |
| PN->reserveOperandSpace(2); |
| PN->addIncoming(LHS, LHSBlock); |
| PN->addIncoming(RHS, RHSBlock); |
| return PN; |
| } |
| |
| Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { |
| return Visit(E->getChosenSubExpr(CGF.getContext())); |
| } |
| |
| Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { |
| llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); |
| llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); |
| |
| // If EmitVAArg fails, we fall back to the LLVM instruction. |
| if (!ArgPtr) |
| return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); |
| |
| // FIXME Volatility. |
| return Builder.CreateLoad(ArgPtr); |
| } |
| |
| Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) { |
| return CGF.BuildBlockLiteralTmp(BE); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Entry Point into this File |
| //===----------------------------------------------------------------------===// |
| |
| /// EmitScalarExpr - Emit the computation of the specified expression of scalar |
| /// type, ignoring the result. |
| Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { |
| assert(E && !hasAggregateLLVMType(E->getType()) && |
| "Invalid scalar expression to emit"); |
| |
| return ScalarExprEmitter(*this, IgnoreResultAssign) |
| .Visit(const_cast<Expr*>(E)); |
| } |
| |
| /// EmitScalarConversion - Emit a conversion from the specified type to the |
| /// specified destination type, both of which are LLVM scalar types. |
| Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, |
| QualType DstTy) { |
| assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) && |
| "Invalid scalar expression to emit"); |
| return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); |
| } |
| |
| /// EmitComplexToScalarConversion - Emit a conversion from the specified complex |
| /// type to the specified destination type, where the destination type is an |
| /// LLVM scalar type. |
| Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, |
| QualType SrcTy, |
| QualType DstTy) { |
| assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) && |
| "Invalid complex -> scalar conversion"); |
| return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, |
| DstTy); |
| } |
| |
| Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) { |
| assert(V1->getType() == V2->getType() && |
| "Vector operands must be of the same type"); |
| unsigned NumElements = |
| cast<llvm::VectorType>(V1->getType())->getNumElements(); |
| |
| va_list va; |
| va_start(va, V2); |
| |
| llvm::SmallVector<llvm::Constant*, 16> Args; |
| for (unsigned i = 0; i < NumElements; i++) { |
| int n = va_arg(va, int); |
| assert(n >= 0 && n < (int)NumElements * 2 && |
| "Vector shuffle index out of bounds!"); |
| Args.push_back(llvm::ConstantInt::get( |
| llvm::Type::getInt32Ty(VMContext), n)); |
| } |
| |
| const char *Name = va_arg(va, const char *); |
| va_end(va); |
| |
| llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements); |
| |
| return Builder.CreateShuffleVector(V1, V2, Mask, Name); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals, |
| unsigned NumVals, bool isSplat) { |
| llvm::Value *Vec |
| = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals)); |
| |
| for (unsigned i = 0, e = NumVals; i != e; ++i) { |
| llvm::Value *Val = isSplat ? Vals[0] : Vals[i]; |
| llvm::Value *Idx = llvm::ConstantInt::get( |
| llvm::Type::getInt32Ty(VMContext), i); |
| Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp"); |
| } |
| |
| return Vec; |
| } |