| //===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These classes wrap the information about a call or function |
| // definition used to handle ABI compliancy. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCall.h" |
| #include "ABIInfo.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "llvm/Attributes.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Target/TargetData.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| /***/ |
| |
| static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { |
| switch (CC) { |
| default: return llvm::CallingConv::C; |
| case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; |
| case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; |
| case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; |
| } |
| } |
| |
| /// Derives the 'this' type for codegen purposes, i.e. ignoring method |
| /// qualification. |
| /// FIXME: address space qualification? |
| static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { |
| QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); |
| return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); |
| } |
| |
| /// Returns the canonical formal type of the given C++ method. |
| static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { |
| return MD->getType()->getCanonicalTypeUnqualified() |
| .getAs<FunctionProtoType>(); |
| } |
| |
| /// Returns the "extra-canonicalized" return type, which discards |
| /// qualifiers on the return type. Codegen doesn't care about them, |
| /// and it makes ABI code a little easier to be able to assume that |
| /// all parameter and return types are top-level unqualified. |
| static CanQualType GetReturnType(QualType RetTy) { |
| return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP, |
| bool IsRecursive) { |
| return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(), |
| llvm::SmallVector<CanQualType, 16>(), |
| FTNP->getExtInfo(), IsRecursive); |
| } |
| |
| /// \param Args - contains any initial parameters besides those |
| /// in the formal type |
| static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT, |
| llvm::SmallVectorImpl<CanQualType> &ArgTys, |
| CanQual<FunctionProtoType> FTP, |
| bool IsRecursive = false) { |
| // FIXME: Kill copy. |
| for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) |
| ArgTys.push_back(FTP->getArgType(i)); |
| CanQualType ResTy = FTP->getResultType().getUnqualifiedType(); |
| return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo(), IsRecursive); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP, |
| bool IsRecursive) { |
| llvm::SmallVector<CanQualType, 16> ArgTys; |
| return ::getFunctionInfo(*this, ArgTys, FTP, IsRecursive); |
| } |
| |
| static CallingConv getCallingConventionForDecl(const Decl *D) { |
| // Set the appropriate calling convention for the Function. |
| if (D->hasAttr<StdCallAttr>()) |
| return CC_X86StdCall; |
| |
| if (D->hasAttr<FastCallAttr>()) |
| return CC_X86FastCall; |
| |
| if (D->hasAttr<ThisCallAttr>()) |
| return CC_X86ThisCall; |
| |
| return CC_C; |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD, |
| const FunctionProtoType *FTP) { |
| llvm::SmallVector<CanQualType, 16> ArgTys; |
| |
| // Add the 'this' pointer. |
| ArgTys.push_back(GetThisType(Context, RD)); |
| |
| return ::getFunctionInfo(*this, ArgTys, |
| FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) { |
| llvm::SmallVector<CanQualType, 16> ArgTys; |
| |
| // Add the 'this' pointer unless this is a static method. |
| if (MD->isInstance()) |
| ArgTys.push_back(GetThisType(Context, MD->getParent())); |
| |
| return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD)); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D, |
| CXXCtorType Type) { |
| llvm::SmallVector<CanQualType, 16> ArgTys; |
| |
| // Add the 'this' pointer. |
| ArgTys.push_back(GetThisType(Context, D->getParent())); |
| |
| // Check if we need to add a VTT parameter (which has type void **). |
| if (Type == Ctor_Base && D->getParent()->getNumVBases() != 0) |
| ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); |
| |
| return ::getFunctionInfo(*this, ArgTys, GetFormalType(D)); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D, |
| CXXDtorType Type) { |
| llvm::SmallVector<CanQualType, 16> ArgTys; |
| |
| // Add the 'this' pointer. |
| ArgTys.push_back(GetThisType(Context, D->getParent())); |
| |
| // Check if we need to add a VTT parameter (which has type void **). |
| if (Type == Dtor_Base && D->getParent()->getNumVBases() != 0) |
| ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); |
| |
| return ::getFunctionInfo(*this, ArgTys, GetFormalType(D)); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) { |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) |
| if (MD->isInstance()) |
| return getFunctionInfo(MD); |
| |
| CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); |
| assert(isa<FunctionType>(FTy)); |
| if (isa<FunctionNoProtoType>(FTy)) |
| return getFunctionInfo(FTy.getAs<FunctionNoProtoType>()); |
| assert(isa<FunctionProtoType>(FTy)); |
| return getFunctionInfo(FTy.getAs<FunctionProtoType>()); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) { |
| llvm::SmallVector<CanQualType, 16> ArgTys; |
| ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType())); |
| ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); |
| // FIXME: Kill copy? |
| for (ObjCMethodDecl::param_iterator i = MD->param_begin(), |
| e = MD->param_end(); i != e; ++i) { |
| ArgTys.push_back(Context.getCanonicalParamType((*i)->getType())); |
| } |
| return getFunctionInfo(GetReturnType(MD->getResultType()), |
| ArgTys, |
| FunctionType::ExtInfo( |
| /*NoReturn*/ false, |
| /*RegParm*/ 0, |
| getCallingConventionForDecl(MD))); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) { |
| // FIXME: Do we need to handle ObjCMethodDecl? |
| const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); |
| |
| if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) |
| return getFunctionInfo(CD, GD.getCtorType()); |
| |
| if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) |
| return getFunctionInfo(DD, GD.getDtorType()); |
| |
| return getFunctionInfo(FD); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, |
| const CallArgList &Args, |
| const FunctionType::ExtInfo &Info) { |
| // FIXME: Kill copy. |
| llvm::SmallVector<CanQualType, 16> ArgTys; |
| for (CallArgList::const_iterator i = Args.begin(), e = Args.end(); |
| i != e; ++i) |
| ArgTys.push_back(Context.getCanonicalParamType(i->second)); |
| return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, |
| const FunctionArgList &Args, |
| const FunctionType::ExtInfo &Info) { |
| // FIXME: Kill copy. |
| llvm::SmallVector<CanQualType, 16> ArgTys; |
| for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); |
| i != e; ++i) |
| ArgTys.push_back(Context.getCanonicalParamType(i->second)); |
| return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy, |
| const llvm::SmallVectorImpl<CanQualType> &ArgTys, |
| const FunctionType::ExtInfo &Info, |
| bool IsRecursive) { |
| #ifndef NDEBUG |
| for (llvm::SmallVectorImpl<CanQualType>::const_iterator |
| I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I) |
| assert(I->isCanonicalAsParam()); |
| #endif |
| |
| unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC()); |
| |
| // Lookup or create unique function info. |
| llvm::FoldingSetNodeID ID; |
| CGFunctionInfo::Profile(ID, Info, ResTy, |
| ArgTys.begin(), ArgTys.end()); |
| |
| void *InsertPos = 0; |
| CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos); |
| if (FI) |
| return *FI; |
| |
| // Construct the function info. |
| FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getRegParm(), ResTy, |
| ArgTys.data(), ArgTys.size()); |
| FunctionInfos.InsertNode(FI, InsertPos); |
| |
| // Compute ABI information. |
| getABIInfo().computeInfo(*FI); |
| |
| // Loop over all of the computed argument and return value info. If any of |
| // them are direct or extend without a specified coerce type, specify the |
| // default now. |
| ABIArgInfo &RetInfo = FI->getReturnInfo(); |
| if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0) |
| RetInfo.setCoerceToType(ConvertTypeRecursive(FI->getReturnType())); |
| |
| for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); |
| I != E; ++I) |
| if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) |
| I->info.setCoerceToType(ConvertTypeRecursive(I->type)); |
| |
| // If this is a top-level call and ConvertTypeRecursive hit unresolved pointer |
| // types, resolve them now. These pointers may point to this function, which |
| // we *just* filled in the FunctionInfo for. |
| if (!IsRecursive && !PointersToResolve.empty()) |
| HandleLateResolvedPointers(); |
| |
| return *FI; |
| } |
| |
| CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention, |
| bool _NoReturn, unsigned _RegParm, |
| CanQualType ResTy, |
| const CanQualType *ArgTys, |
| unsigned NumArgTys) |
| : CallingConvention(_CallingConvention), |
| EffectiveCallingConvention(_CallingConvention), |
| NoReturn(_NoReturn), RegParm(_RegParm) |
| { |
| NumArgs = NumArgTys; |
| |
| // FIXME: Coallocate with the CGFunctionInfo object. |
| Args = new ArgInfo[1 + NumArgTys]; |
| Args[0].type = ResTy; |
| for (unsigned i = 0; i != NumArgTys; ++i) |
| Args[1 + i].type = ArgTys[i]; |
| } |
| |
| /***/ |
| |
| void CodeGenTypes::GetExpandedTypes(QualType Ty, |
| std::vector<const llvm::Type*> &ArgTys, |
| bool IsRecursive) { |
| const RecordType *RT = Ty->getAsStructureType(); |
| assert(RT && "Can only expand structure types."); |
| const RecordDecl *RD = RT->getDecl(); |
| assert(!RD->hasFlexibleArrayMember() && |
| "Cannot expand structure with flexible array."); |
| |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| const FieldDecl *FD = *i; |
| assert(!FD->isBitField() && |
| "Cannot expand structure with bit-field members."); |
| |
| QualType FT = FD->getType(); |
| if (CodeGenFunction::hasAggregateLLVMType(FT)) |
| GetExpandedTypes(FT, ArgTys, IsRecursive); |
| else |
| ArgTys.push_back(ConvertType(FT, IsRecursive)); |
| } |
| } |
| |
| llvm::Function::arg_iterator |
| CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, |
| llvm::Function::arg_iterator AI) { |
| const RecordType *RT = Ty->getAsStructureType(); |
| assert(RT && "Can only expand structure types."); |
| |
| RecordDecl *RD = RT->getDecl(); |
| assert(LV.isSimple() && |
| "Unexpected non-simple lvalue during struct expansion."); |
| llvm::Value *Addr = LV.getAddress(); |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| FieldDecl *FD = *i; |
| QualType FT = FD->getType(); |
| |
| // FIXME: What are the right qualifiers here? |
| LValue LV = EmitLValueForField(Addr, FD, 0); |
| if (CodeGenFunction::hasAggregateLLVMType(FT)) { |
| AI = ExpandTypeFromArgs(FT, LV, AI); |
| } else { |
| EmitStoreThroughLValue(RValue::get(AI), LV, FT); |
| ++AI; |
| } |
| } |
| |
| return AI; |
| } |
| |
| void |
| CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, |
| llvm::SmallVector<llvm::Value*, 16> &Args) { |
| const RecordType *RT = Ty->getAsStructureType(); |
| assert(RT && "Can only expand structure types."); |
| |
| RecordDecl *RD = RT->getDecl(); |
| assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); |
| llvm::Value *Addr = RV.getAggregateAddr(); |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i) { |
| FieldDecl *FD = *i; |
| QualType FT = FD->getType(); |
| |
| // FIXME: What are the right qualifiers here? |
| LValue LV = EmitLValueForField(Addr, FD, 0); |
| if (CodeGenFunction::hasAggregateLLVMType(FT)) { |
| ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args); |
| } else { |
| RValue RV = EmitLoadOfLValue(LV, FT); |
| assert(RV.isScalar() && |
| "Unexpected non-scalar rvalue during struct expansion."); |
| Args.push_back(RV.getScalarVal()); |
| } |
| } |
| } |
| |
| /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are |
| /// accessing some number of bytes out of it, try to gep into the struct to get |
| /// at its inner goodness. Dive as deep as possible without entering an element |
| /// with an in-memory size smaller than DstSize. |
| static llvm::Value * |
| EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, |
| const llvm::StructType *SrcSTy, |
| uint64_t DstSize, CodeGenFunction &CGF) { |
| // We can't dive into a zero-element struct. |
| if (SrcSTy->getNumElements() == 0) return SrcPtr; |
| |
| const llvm::Type *FirstElt = SrcSTy->getElementType(0); |
| |
| // If the first elt is at least as large as what we're looking for, or if the |
| // first element is the same size as the whole struct, we can enter it. |
| uint64_t FirstEltSize = |
| CGF.CGM.getTargetData().getTypeAllocSize(FirstElt); |
| if (FirstEltSize < DstSize && |
| FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy)) |
| return SrcPtr; |
| |
| // GEP into the first element. |
| SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); |
| |
| // If the first element is a struct, recurse. |
| const llvm::Type *SrcTy = |
| cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); |
| if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) |
| return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); |
| |
| return SrcPtr; |
| } |
| |
| /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both |
| /// are either integers or pointers. This does a truncation of the value if it |
| /// is too large or a zero extension if it is too small. |
| static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, |
| const llvm::Type *Ty, |
| CodeGenFunction &CGF) { |
| if (Val->getType() == Ty) |
| return Val; |
| |
| if (isa<llvm::PointerType>(Val->getType())) { |
| // If this is Pointer->Pointer avoid conversion to and from int. |
| if (isa<llvm::PointerType>(Ty)) |
| return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); |
| |
| // Convert the pointer to an integer so we can play with its width. |
| Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); |
| } |
| |
| const llvm::Type *DestIntTy = Ty; |
| if (isa<llvm::PointerType>(DestIntTy)) |
| DestIntTy = CGF.IntPtrTy; |
| |
| if (Val->getType() != DestIntTy) |
| Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); |
| |
| if (isa<llvm::PointerType>(Ty)) |
| Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); |
| return Val; |
| } |
| |
| |
| |
| /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as |
| /// a pointer to an object of type \arg Ty. |
| /// |
| /// This safely handles the case when the src type is smaller than the |
| /// destination type; in this situation the values of bits which not |
| /// present in the src are undefined. |
| static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, |
| const llvm::Type *Ty, |
| CodeGenFunction &CGF) { |
| const llvm::Type *SrcTy = |
| cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); |
| |
| // If SrcTy and Ty are the same, just do a load. |
| if (SrcTy == Ty) |
| return CGF.Builder.CreateLoad(SrcPtr); |
| |
| uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); |
| |
| if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { |
| SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); |
| SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); |
| } |
| |
| uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); |
| |
| // If the source and destination are integer or pointer types, just do an |
| // extension or truncation to the desired type. |
| if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && |
| (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { |
| llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); |
| return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); |
| } |
| |
| // If load is legal, just bitcast the src pointer. |
| if (SrcSize >= DstSize) { |
| // Generally SrcSize is never greater than DstSize, since this means we are |
| // losing bits. However, this can happen in cases where the structure has |
| // additional padding, for example due to a user specified alignment. |
| // |
| // FIXME: Assert that we aren't truncating non-padding bits when have access |
| // to that information. |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); |
| llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); |
| // FIXME: Use better alignment / avoid requiring aligned load. |
| Load->setAlignment(1); |
| return Load; |
| } |
| |
| // Otherwise do coercion through memory. This is stupid, but |
| // simple. |
| llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); |
| llvm::StoreInst *Store = |
| CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); |
| // FIXME: Use better alignment / avoid requiring aligned store. |
| Store->setAlignment(1); |
| return CGF.Builder.CreateLoad(Tmp); |
| } |
| |
| /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, |
| /// where the source and destination may have different types. |
| /// |
| /// This safely handles the case when the src type is larger than the |
| /// destination type; the upper bits of the src will be lost. |
| static void CreateCoercedStore(llvm::Value *Src, |
| llvm::Value *DstPtr, |
| bool DstIsVolatile, |
| CodeGenFunction &CGF) { |
| const llvm::Type *SrcTy = Src->getType(); |
| const llvm::Type *DstTy = |
| cast<llvm::PointerType>(DstPtr->getType())->getElementType(); |
| if (SrcTy == DstTy) { |
| CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); |
| return; |
| } |
| |
| uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); |
| |
| if (const llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { |
| DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); |
| DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); |
| } |
| |
| // If the source and destination are integer or pointer types, just do an |
| // extension or truncation to the desired type. |
| if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && |
| (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { |
| Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); |
| CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); |
| return; |
| } |
| |
| uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); |
| |
| // If store is legal, just bitcast the src pointer. |
| if (SrcSize <= DstSize) { |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); |
| // FIXME: Use better alignment / avoid requiring aligned store. |
| CGF.Builder.CreateStore(Src, Casted, DstIsVolatile)->setAlignment(1); |
| } else { |
| // Otherwise do coercion through memory. This is stupid, but |
| // simple. |
| |
| // Generally SrcSize is never greater than DstSize, since this means we are |
| // losing bits. However, this can happen in cases where the structure has |
| // additional padding, for example due to a user specified alignment. |
| // |
| // FIXME: Assert that we aren't truncating non-padding bits when have access |
| // to that information. |
| llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); |
| CGF.Builder.CreateStore(Src, Tmp); |
| llvm::Value *Casted = |
| CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); |
| llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); |
| // FIXME: Use better alignment / avoid requiring aligned load. |
| Load->setAlignment(1); |
| CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile); |
| } |
| } |
| |
| /***/ |
| |
| bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { |
| return FI.getReturnInfo().isIndirect(); |
| } |
| |
| bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { |
| if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { |
| switch (BT->getKind()) { |
| default: |
| return false; |
| case BuiltinType::Float: |
| return getContext().Target.useObjCFPRetForRealType(TargetInfo::Float); |
| case BuiltinType::Double: |
| return getContext().Target.useObjCFPRetForRealType(TargetInfo::Double); |
| case BuiltinType::LongDouble: |
| return getContext().Target.useObjCFPRetForRealType( |
| TargetInfo::LongDouble); |
| } |
| } |
| |
| return false; |
| } |
| |
| const llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { |
| const CGFunctionInfo &FI = getFunctionInfo(GD); |
| |
| // For definition purposes, don't consider a K&R function variadic. |
| bool Variadic = false; |
| if (const FunctionProtoType *FPT = |
| cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>()) |
| Variadic = FPT->isVariadic(); |
| |
| return GetFunctionType(FI, Variadic, false); |
| } |
| |
| const llvm::FunctionType * |
| CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic, |
| bool IsRecursive) { |
| std::vector<const llvm::Type*> ArgTys; |
| |
| const llvm::Type *ResultType = 0; |
| |
| QualType RetTy = FI.getReturnType(); |
| const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Expand: |
| assert(0 && "Invalid ABI kind for return argument"); |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: |
| ResultType = RetAI.getCoerceToType(); |
| break; |
| |
| case ABIArgInfo::Indirect: { |
| assert(!RetAI.getIndirectAlign() && "Align unused on indirect return."); |
| ResultType = llvm::Type::getVoidTy(getLLVMContext()); |
| const llvm::Type *STy = ConvertType(RetTy, IsRecursive); |
| ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace())); |
| break; |
| } |
| |
| case ABIArgInfo::Ignore: |
| ResultType = llvm::Type::getVoidTy(getLLVMContext()); |
| break; |
| } |
| |
| for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), |
| ie = FI.arg_end(); it != ie; ++it) { |
| const ABIArgInfo &AI = it->info; |
| |
| switch (AI.getKind()) { |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::Indirect: { |
| // indirect arguments are always on the stack, which is addr space #0. |
| const llvm::Type *LTy = ConvertTypeForMem(it->type, IsRecursive); |
| ArgTys.push_back(llvm::PointerType::getUnqual(LTy)); |
| break; |
| } |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| // If the coerce-to type is a first class aggregate, flatten it. Either |
| // way is semantically identical, but fast-isel and the optimizer |
| // generally likes scalar values better than FCAs. |
| const llvm::Type *ArgTy = AI.getCoerceToType(); |
| if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgTy)) { |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) |
| ArgTys.push_back(STy->getElementType(i)); |
| } else { |
| ArgTys.push_back(ArgTy); |
| } |
| break; |
| } |
| |
| case ABIArgInfo::Expand: |
| GetExpandedTypes(it->type, ArgTys, IsRecursive); |
| break; |
| } |
| } |
| |
| return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic); |
| } |
| |
| const llvm::Type * |
| CodeGenTypes::GetFunctionTypeForVTable(const CXXMethodDecl *MD) { |
| const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); |
| |
| if (!VerifyFuncTypeComplete(FPT)) |
| return GetFunctionType(getFunctionInfo(MD), FPT->isVariadic(), false); |
| |
| return llvm::OpaqueType::get(getLLVMContext()); |
| } |
| |
| void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, |
| const Decl *TargetDecl, |
| AttributeListType &PAL, |
| unsigned &CallingConv) { |
| unsigned FuncAttrs = 0; |
| unsigned RetAttrs = 0; |
| |
| CallingConv = FI.getEffectiveCallingConvention(); |
| |
| if (FI.isNoReturn()) |
| FuncAttrs |= llvm::Attribute::NoReturn; |
| |
| // FIXME: handle sseregparm someday... |
| if (TargetDecl) { |
| if (TargetDecl->hasAttr<NoThrowAttr>()) |
| FuncAttrs |= llvm::Attribute::NoUnwind; |
| else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { |
| const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); |
| if (FPT && FPT->hasEmptyExceptionSpec()) |
| FuncAttrs |= llvm::Attribute::NoUnwind; |
| } |
| |
| if (TargetDecl->hasAttr<NoReturnAttr>()) |
| FuncAttrs |= llvm::Attribute::NoReturn; |
| if (TargetDecl->hasAttr<ConstAttr>()) |
| FuncAttrs |= llvm::Attribute::ReadNone; |
| else if (TargetDecl->hasAttr<PureAttr>()) |
| FuncAttrs |= llvm::Attribute::ReadOnly; |
| if (TargetDecl->hasAttr<MallocAttr>()) |
| RetAttrs |= llvm::Attribute::NoAlias; |
| } |
| |
| if (CodeGenOpts.OptimizeSize) |
| FuncAttrs |= llvm::Attribute::OptimizeForSize; |
| if (CodeGenOpts.DisableRedZone) |
| FuncAttrs |= llvm::Attribute::NoRedZone; |
| if (CodeGenOpts.NoImplicitFloat) |
| FuncAttrs |= llvm::Attribute::NoImplicitFloat; |
| |
| QualType RetTy = FI.getReturnType(); |
| unsigned Index = 1; |
| const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Extend: |
| if (RetTy->hasSignedIntegerRepresentation()) |
| RetAttrs |= llvm::Attribute::SExt; |
| else if (RetTy->hasUnsignedIntegerRepresentation()) |
| RetAttrs |= llvm::Attribute::ZExt; |
| break; |
| case ABIArgInfo::Direct: |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::Indirect: |
| PAL.push_back(llvm::AttributeWithIndex::get(Index, |
| llvm::Attribute::StructRet)); |
| ++Index; |
| // sret disables readnone and readonly |
| FuncAttrs &= ~(llvm::Attribute::ReadOnly | |
| llvm::Attribute::ReadNone); |
| break; |
| |
| case ABIArgInfo::Expand: |
| assert(0 && "Invalid ABI kind for return argument"); |
| } |
| |
| if (RetAttrs) |
| PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); |
| |
| // FIXME: we need to honor command line settings also. |
| // FIXME: RegParm should be reduced in case of nested functions and/or global |
| // register variable. |
| signed RegParm = FI.getRegParm(); |
| |
| unsigned PointerWidth = getContext().Target.getPointerWidth(0); |
| for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), |
| ie = FI.arg_end(); it != ie; ++it) { |
| QualType ParamType = it->type; |
| const ABIArgInfo &AI = it->info; |
| unsigned Attributes = 0; |
| |
| // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we |
| // have the corresponding parameter variable. It doesn't make |
| // sense to do it here because parameters are so fucked up. |
| switch (AI.getKind()) { |
| case ABIArgInfo::Extend: |
| if (ParamType->isSignedIntegerType()) |
| Attributes |= llvm::Attribute::SExt; |
| else if (ParamType->isUnsignedIntegerType()) |
| Attributes |= llvm::Attribute::ZExt; |
| // FALL THROUGH |
| case ABIArgInfo::Direct: |
| if (RegParm > 0 && |
| (ParamType->isIntegerType() || ParamType->isPointerType())) { |
| RegParm -= |
| (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; |
| if (RegParm >= 0) |
| Attributes |= llvm::Attribute::InReg; |
| } |
| // FIXME: handle sseregparm someday... |
| |
| if (const llvm::StructType *STy = |
| dyn_cast<llvm::StructType>(AI.getCoerceToType())) |
| Index += STy->getNumElements()-1; // 1 will be added below. |
| break; |
| |
| case ABIArgInfo::Indirect: |
| if (AI.getIndirectByVal()) |
| Attributes |= llvm::Attribute::ByVal; |
| |
| Attributes |= |
| llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); |
| // byval disables readnone and readonly. |
| FuncAttrs &= ~(llvm::Attribute::ReadOnly | |
| llvm::Attribute::ReadNone); |
| break; |
| |
| case ABIArgInfo::Ignore: |
| // Skip increment, no matching LLVM parameter. |
| continue; |
| |
| case ABIArgInfo::Expand: { |
| std::vector<const llvm::Type*> Tys; |
| // FIXME: This is rather inefficient. Do we ever actually need to do |
| // anything here? The result should be just reconstructed on the other |
| // side, so extension should be a non-issue. |
| getTypes().GetExpandedTypes(ParamType, Tys, false); |
| Index += Tys.size(); |
| continue; |
| } |
| } |
| |
| if (Attributes) |
| PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes)); |
| ++Index; |
| } |
| if (FuncAttrs) |
| PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); |
| } |
| |
| void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, |
| llvm::Function *Fn, |
| const FunctionArgList &Args) { |
| // If this is an implicit-return-zero function, go ahead and |
| // initialize the return value. TODO: it might be nice to have |
| // a more general mechanism for this that didn't require synthesized |
| // return statements. |
| if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { |
| if (FD->hasImplicitReturnZero()) { |
| QualType RetTy = FD->getResultType().getUnqualifiedType(); |
| const llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); |
| llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); |
| Builder.CreateStore(Zero, ReturnValue); |
| } |
| } |
| |
| // FIXME: We no longer need the types from FunctionArgList; lift up and |
| // simplify. |
| |
| // Emit allocs for param decls. Give the LLVM Argument nodes names. |
| llvm::Function::arg_iterator AI = Fn->arg_begin(); |
| |
| // Name the struct return argument. |
| if (CGM.ReturnTypeUsesSRet(FI)) { |
| AI->setName("agg.result"); |
| ++AI; |
| } |
| |
| assert(FI.arg_size() == Args.size() && |
| "Mismatch between function signature & arguments."); |
| CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); |
| for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); |
| i != e; ++i, ++info_it) { |
| const VarDecl *Arg = i->first; |
| QualType Ty = info_it->type; |
| const ABIArgInfo &ArgI = info_it->info; |
| |
| switch (ArgI.getKind()) { |
| case ABIArgInfo::Indirect: { |
| llvm::Value *V = AI; |
| if (hasAggregateLLVMType(Ty)) { |
| // Do nothing, aggregates and complex variables are accessed by |
| // reference. |
| } else { |
| // Load scalar value from indirect argument. |
| V = EmitLoadOfScalar(V, false, Ty); |
| if (!getContext().typesAreCompatible(Ty, Arg->getType())) { |
| // This must be a promotion, for something like |
| // "void a(x) short x; {..." |
| V = EmitScalarConversion(V, Ty, Arg->getType()); |
| } |
| } |
| EmitParmDecl(*Arg, V); |
| break; |
| } |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| // If we have the trivial case, handle it with no muss and fuss. |
| if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && |
| ArgI.getCoerceToType() == ConvertType(Ty) && |
| ArgI.getDirectOffset() == 0) { |
| assert(AI != Fn->arg_end() && "Argument mismatch!"); |
| llvm::Value *V = AI; |
| |
| if (Arg->getType().isRestrictQualified()) |
| AI->addAttr(llvm::Attribute::NoAlias); |
| |
| if (!getContext().typesAreCompatible(Ty, Arg->getType())) { |
| // This must be a promotion, for something like |
| // "void a(x) short x; {..." |
| V = EmitScalarConversion(V, Ty, Arg->getType()); |
| } |
| EmitParmDecl(*Arg, V); |
| break; |
| } |
| |
| llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce"); |
| |
| // The alignment we need to use is the max of the requested alignment for |
| // the argument plus the alignment required by our access code below. |
| unsigned AlignmentToUse = |
| CGF.CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType()); |
| AlignmentToUse = std::max(AlignmentToUse, |
| (unsigned)getContext().getDeclAlign(Arg).getQuantity()); |
| |
| Alloca->setAlignment(AlignmentToUse); |
| llvm::Value *V = Alloca; |
| llvm::Value *Ptr = V; // Pointer to store into. |
| |
| // If the value is offset in memory, apply the offset now. |
| if (unsigned Offs = ArgI.getDirectOffset()) { |
| Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); |
| Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); |
| Ptr = Builder.CreateBitCast(Ptr, |
| llvm::PointerType::getUnqual(ArgI.getCoerceToType())); |
| } |
| |
| // If the coerce-to type is a first class aggregate, we flatten it and |
| // pass the elements. Either way is semantically identical, but fast-isel |
| // and the optimizer generally likes scalar values better than FCAs. |
| if (const llvm::StructType *STy = |
| dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) { |
| Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); |
| |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| assert(AI != Fn->arg_end() && "Argument mismatch!"); |
| AI->setName(Arg->getName() + ".coerce" + llvm::Twine(i)); |
| llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); |
| Builder.CreateStore(AI++, EltPtr); |
| } |
| } else { |
| // Simple case, just do a coerced store of the argument into the alloca. |
| assert(AI != Fn->arg_end() && "Argument mismatch!"); |
| AI->setName(Arg->getName() + ".coerce"); |
| CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); |
| } |
| |
| |
| // Match to what EmitParmDecl is expecting for this type. |
| if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { |
| V = EmitLoadOfScalar(V, false, Ty); |
| if (!getContext().typesAreCompatible(Ty, Arg->getType())) { |
| // This must be a promotion, for something like |
| // "void a(x) short x; {..." |
| V = EmitScalarConversion(V, Ty, Arg->getType()); |
| } |
| } |
| EmitParmDecl(*Arg, V); |
| continue; // Skip ++AI increment, already done. |
| } |
| |
| case ABIArgInfo::Expand: { |
| // If this structure was expanded into multiple arguments then |
| // we need to create a temporary and reconstruct it from the |
| // arguments. |
| llvm::Value *Temp = CreateMemTemp(Ty, Arg->getName() + ".addr"); |
| // FIXME: What are the right qualifiers here? |
| llvm::Function::arg_iterator End = |
| ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp, Qualifiers()), AI); |
| EmitParmDecl(*Arg, Temp); |
| |
| // Name the arguments used in expansion and increment AI. |
| unsigned Index = 0; |
| for (; AI != End; ++AI, ++Index) |
| AI->setName(Arg->getName() + "." + llvm::Twine(Index)); |
| continue; |
| } |
| |
| case ABIArgInfo::Ignore: |
| // Initialize the local variable appropriately. |
| if (hasAggregateLLVMType(Ty)) |
| EmitParmDecl(*Arg, CreateMemTemp(Ty)); |
| else |
| EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType()))); |
| |
| // Skip increment, no matching LLVM parameter. |
| continue; |
| } |
| |
| ++AI; |
| } |
| assert(AI == Fn->arg_end() && "Argument mismatch!"); |
| } |
| |
| void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) { |
| // Functions with no result always return void. |
| if (ReturnValue == 0) { |
| Builder.CreateRetVoid(); |
| return; |
| } |
| |
| llvm::DebugLoc RetDbgLoc; |
| llvm::Value *RV = 0; |
| QualType RetTy = FI.getReturnType(); |
| const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Indirect: |
| if (RetTy->isAnyComplexType()) { |
| ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); |
| StoreComplexToAddr(RT, CurFn->arg_begin(), false); |
| } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| // Do nothing; aggregrates get evaluated directly into the destination. |
| } else { |
| EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), |
| false, RetTy); |
| } |
| break; |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: |
| if (RetAI.getCoerceToType() == ConvertType(RetTy) && |
| RetAI.getDirectOffset() == 0) { |
| // The internal return value temp always will have pointer-to-return-type |
| // type, just do a load. |
| |
| // If the instruction right before the insertion point is a store to the |
| // return value, we can elide the load, zap the store, and usually zap the |
| // alloca. |
| llvm::BasicBlock *InsertBB = Builder.GetInsertBlock(); |
| llvm::StoreInst *SI = 0; |
| if (InsertBB->empty() || |
| !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) || |
| SI->getPointerOperand() != ReturnValue || SI->isVolatile()) { |
| RV = Builder.CreateLoad(ReturnValue); |
| } else { |
| // Get the stored value and nuke the now-dead store. |
| RetDbgLoc = SI->getDebugLoc(); |
| RV = SI->getValueOperand(); |
| SI->eraseFromParent(); |
| |
| // If that was the only use of the return value, nuke it as well now. |
| if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { |
| cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); |
| ReturnValue = 0; |
| } |
| } |
| } else { |
| llvm::Value *V = ReturnValue; |
| // If the value is offset in memory, apply the offset now. |
| if (unsigned Offs = RetAI.getDirectOffset()) { |
| V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); |
| V = Builder.CreateConstGEP1_32(V, Offs); |
| V = Builder.CreateBitCast(V, |
| llvm::PointerType::getUnqual(RetAI.getCoerceToType())); |
| } |
| |
| RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); |
| } |
| break; |
| |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::Expand: |
| assert(0 && "Invalid ABI kind for return argument"); |
| } |
| |
| llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); |
| if (!RetDbgLoc.isUnknown()) |
| Ret->setDebugLoc(RetDbgLoc); |
| } |
| |
| RValue CodeGenFunction::EmitDelegateCallArg(const VarDecl *Param) { |
| // StartFunction converted the ABI-lowered parameter(s) into a |
| // local alloca. We need to turn that into an r-value suitable |
| // for EmitCall. |
| llvm::Value *Local = GetAddrOfLocalVar(Param); |
| |
| QualType ArgType = Param->getType(); |
| |
| // For the most part, we just need to load the alloca, except: |
| // 1) aggregate r-values are actually pointers to temporaries, and |
| // 2) references to aggregates are pointers directly to the aggregate. |
| // I don't know why references to non-aggregates are different here. |
| if (const ReferenceType *RefType = ArgType->getAs<ReferenceType>()) { |
| if (hasAggregateLLVMType(RefType->getPointeeType())) |
| return RValue::getAggregate(Local); |
| |
| // Locals which are references to scalars are represented |
| // with allocas holding the pointer. |
| return RValue::get(Builder.CreateLoad(Local)); |
| } |
| |
| if (ArgType->isAnyComplexType()) |
| return RValue::getComplex(LoadComplexFromAddr(Local, /*volatile*/ false)); |
| |
| if (hasAggregateLLVMType(ArgType)) |
| return RValue::getAggregate(Local); |
| |
| return RValue::get(EmitLoadOfScalar(Local, false, ArgType)); |
| } |
| |
| RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) { |
| if (ArgType->isReferenceType()) |
| return EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); |
| |
| return EmitAnyExprToTemp(E); |
| } |
| |
| /// Emits a call or invoke instruction to the given function, depending |
| /// on the current state of the EH stack. |
| llvm::CallSite |
| CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, |
| llvm::Value * const *ArgBegin, |
| llvm::Value * const *ArgEnd, |
| const llvm::Twine &Name) { |
| llvm::BasicBlock *InvokeDest = getInvokeDest(); |
| if (!InvokeDest) |
| return Builder.CreateCall(Callee, ArgBegin, ArgEnd, Name); |
| |
| llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); |
| llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest, |
| ArgBegin, ArgEnd, Name); |
| EmitBlock(ContBB); |
| return Invoke; |
| } |
| |
| RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, |
| llvm::Value *Callee, |
| ReturnValueSlot ReturnValue, |
| const CallArgList &CallArgs, |
| const Decl *TargetDecl, |
| llvm::Instruction **callOrInvoke) { |
| // FIXME: We no longer need the types from CallArgs; lift up and simplify. |
| llvm::SmallVector<llvm::Value*, 16> Args; |
| |
| // Handle struct-return functions by passing a pointer to the |
| // location that we would like to return into. |
| QualType RetTy = CallInfo.getReturnType(); |
| const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); |
| |
| |
| // If the call returns a temporary with struct return, create a temporary |
| // alloca to hold the result, unless one is given to us. |
| if (CGM.ReturnTypeUsesSRet(CallInfo)) { |
| llvm::Value *Value = ReturnValue.getValue(); |
| if (!Value) |
| Value = CreateMemTemp(RetTy); |
| Args.push_back(Value); |
| } |
| |
| assert(CallInfo.arg_size() == CallArgs.size() && |
| "Mismatch between function signature & arguments."); |
| CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); |
| for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); |
| I != E; ++I, ++info_it) { |
| const ABIArgInfo &ArgInfo = info_it->info; |
| RValue RV = I->first; |
| |
| switch (ArgInfo.getKind()) { |
| case ABIArgInfo::Indirect: |
| if (RV.isScalar() || RV.isComplex()) { |
| // Make a temporary alloca to pass the argument. |
| Args.push_back(CreateMemTemp(I->second)); |
| if (RV.isScalar()) |
| EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, I->second); |
| else |
| StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); |
| } else { |
| Args.push_back(RV.getAggregateAddr()); |
| } |
| break; |
| |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && |
| ArgInfo.getCoerceToType() == ConvertType(info_it->type) && |
| ArgInfo.getDirectOffset() == 0) { |
| if (RV.isScalar()) |
| Args.push_back(RV.getScalarVal()); |
| else |
| Args.push_back(Builder.CreateLoad(RV.getAggregateAddr())); |
| break; |
| } |
| |
| // FIXME: Avoid the conversion through memory if possible. |
| llvm::Value *SrcPtr; |
| if (RV.isScalar()) { |
| SrcPtr = CreateMemTemp(I->second, "coerce"); |
| EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, I->second); |
| } else if (RV.isComplex()) { |
| SrcPtr = CreateMemTemp(I->second, "coerce"); |
| StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); |
| } else |
| SrcPtr = RV.getAggregateAddr(); |
| |
| // If the value is offset in memory, apply the offset now. |
| if (unsigned Offs = ArgInfo.getDirectOffset()) { |
| SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); |
| SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); |
| SrcPtr = Builder.CreateBitCast(SrcPtr, |
| llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); |
| |
| } |
| |
| // If the coerce-to type is a first class aggregate, we flatten it and |
| // pass the elements. Either way is semantically identical, but fast-isel |
| // and the optimizer generally likes scalar values better than FCAs. |
| if (const llvm::StructType *STy = |
| dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { |
| SrcPtr = Builder.CreateBitCast(SrcPtr, |
| llvm::PointerType::getUnqual(STy)); |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); |
| llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); |
| // We don't know what we're loading from. |
| LI->setAlignment(1); |
| Args.push_back(LI); |
| } |
| } else { |
| // In the simple case, just pass the coerced loaded value. |
| Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), |
| *this)); |
| } |
| |
| break; |
| } |
| |
| case ABIArgInfo::Expand: |
| ExpandTypeToArgs(I->second, RV, Args); |
| break; |
| } |
| } |
| |
| // If the callee is a bitcast of a function to a varargs pointer to function |
| // type, check to see if we can remove the bitcast. This handles some cases |
| // with unprototyped functions. |
| if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) |
| if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { |
| const llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); |
| const llvm::FunctionType *CurFT = |
| cast<llvm::FunctionType>(CurPT->getElementType()); |
| const llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); |
| |
| if (CE->getOpcode() == llvm::Instruction::BitCast && |
| ActualFT->getReturnType() == CurFT->getReturnType() && |
| ActualFT->getNumParams() == CurFT->getNumParams() && |
| ActualFT->getNumParams() == Args.size()) { |
| bool ArgsMatch = true; |
| for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) |
| if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { |
| ArgsMatch = false; |
| break; |
| } |
| |
| // Strip the cast if we can get away with it. This is a nice cleanup, |
| // but also allows us to inline the function at -O0 if it is marked |
| // always_inline. |
| if (ArgsMatch) |
| Callee = CalleeF; |
| } |
| } |
| |
| |
| unsigned CallingConv; |
| CodeGen::AttributeListType AttributeList; |
| CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); |
| llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), |
| AttributeList.end()); |
| |
| llvm::BasicBlock *InvokeDest = 0; |
| if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) |
| InvokeDest = getInvokeDest(); |
| |
| llvm::CallSite CS; |
| if (!InvokeDest) { |
| CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size()); |
| } else { |
| llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); |
| CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, |
| Args.data(), Args.data()+Args.size()); |
| EmitBlock(Cont); |
| } |
| if (callOrInvoke) |
| *callOrInvoke = CS.getInstruction(); |
| |
| CS.setAttributes(Attrs); |
| CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); |
| |
| // If the call doesn't return, finish the basic block and clear the |
| // insertion point; this allows the rest of IRgen to discard |
| // unreachable code. |
| if (CS.doesNotReturn()) { |
| Builder.CreateUnreachable(); |
| Builder.ClearInsertionPoint(); |
| |
| // FIXME: For now, emit a dummy basic block because expr emitters in |
| // generally are not ready to handle emitting expressions at unreachable |
| // points. |
| EnsureInsertPoint(); |
| |
| // Return a reasonable RValue. |
| return GetUndefRValue(RetTy); |
| } |
| |
| llvm::Instruction *CI = CS.getInstruction(); |
| if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) |
| CI->setName("call"); |
| |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Indirect: |
| if (RetTy->isAnyComplexType()) |
| return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); |
| if (CodeGenFunction::hasAggregateLLVMType(RetTy)) |
| return RValue::getAggregate(Args[0]); |
| return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy)); |
| |
| case ABIArgInfo::Ignore: |
| // If we are ignoring an argument that had a result, make sure to |
| // construct the appropriate return value for our caller. |
| return GetUndefRValue(RetTy); |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| if (RetAI.getCoerceToType() == ConvertType(RetTy) && |
| RetAI.getDirectOffset() == 0) { |
| if (RetTy->isAnyComplexType()) { |
| llvm::Value *Real = Builder.CreateExtractValue(CI, 0); |
| llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| llvm::Value *DestPtr = ReturnValue.getValue(); |
| bool DestIsVolatile = ReturnValue.isVolatile(); |
| |
| if (!DestPtr) { |
| DestPtr = CreateMemTemp(RetTy, "agg.tmp"); |
| DestIsVolatile = false; |
| } |
| Builder.CreateStore(CI, DestPtr, DestIsVolatile); |
| return RValue::getAggregate(DestPtr); |
| } |
| return RValue::get(CI); |
| } |
| |
| llvm::Value *DestPtr = ReturnValue.getValue(); |
| bool DestIsVolatile = ReturnValue.isVolatile(); |
| |
| if (!DestPtr) { |
| DestPtr = CreateMemTemp(RetTy, "coerce"); |
| DestIsVolatile = false; |
| } |
| |
| // If the value is offset in memory, apply the offset now. |
| llvm::Value *StorePtr = DestPtr; |
| if (unsigned Offs = RetAI.getDirectOffset()) { |
| StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); |
| StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); |
| StorePtr = Builder.CreateBitCast(StorePtr, |
| llvm::PointerType::getUnqual(RetAI.getCoerceToType())); |
| } |
| CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); |
| |
| if (RetTy->isAnyComplexType()) |
| return RValue::getComplex(LoadComplexFromAddr(DestPtr, false)); |
| if (CodeGenFunction::hasAggregateLLVMType(RetTy)) |
| return RValue::getAggregate(DestPtr); |
| return RValue::get(EmitLoadOfScalar(DestPtr, false, RetTy)); |
| } |
| |
| case ABIArgInfo::Expand: |
| assert(0 && "Invalid ABI kind for return argument"); |
| } |
| |
| assert(0 && "Unhandled ABIArgInfo::Kind"); |
| return RValue::get(0); |
| } |
| |
| /* VarArg handling */ |
| |
| llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { |
| return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); |
| } |