Fix a couple of bugs, add some new cool stuff.
1. Fix a todo in Parser::ParseTag, to recover better. On code like
that in test/Sema/decl-invalid.c it causes us to return a single
error instead of multiple.
2. Fix an error in Sema::ParseDeclarator, where it would crash if the
declarator didn't have an identifier. Instead, diagnose the problem.
3. Start adding infrastructure to track the range of locations covered
by a declspec or declarator. This is mostly implemented for declspec,
but could be improved, it is missing for declarator.
Thanks to Neil for pointing out this crash.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@40482 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/CodeGen/CGExpr.cpp b/CodeGen/CGExpr.cpp
new file mode 100644
index 0000000..6d735e0
--- /dev/null
+++ b/CodeGen/CGExpr.cpp
@@ -0,0 +1,1480 @@
+//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/AST.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Support/MathExtras.h"
+using namespace clang;
+using namespace CodeGen;
+
+//===--------------------------------------------------------------------===//
+// Miscellaneous Helper Methods
+//===--------------------------------------------------------------------===//
+
+/// CreateTempAlloca - This creates a alloca and inserts it into the entry
+/// block.
+llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
+ const char *Name) {
+ return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
+}
+
+/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
+/// expression and compare the result against zero, returning an Int1Ty value.
+llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
+ QualType Ty;
+ RValue Val = EmitExprWithUsualUnaryConversions(E, Ty);
+ return ConvertScalarValueToBool(Val, Ty);
+}
+
+/// EmitLoadOfComplex - Given an RValue reference for a complex, emit code to
+/// load the real and imaginary pieces, returning them as Real/Imag.
+void CodeGenFunction::EmitLoadOfComplex(RValue V,
+ llvm::Value *&Real, llvm::Value *&Imag){
+ llvm::Value *Ptr = V.getAggregateAddr();
+
+ llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
+ llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
+ llvm::Value *RealPtr = Builder.CreateGEP(Ptr, Zero, Zero, "realp");
+ llvm::Value *ImagPtr = Builder.CreateGEP(Ptr, Zero, One, "imagp");
+
+ // FIXME: Handle volatility.
+ Real = Builder.CreateLoad(RealPtr, "real");
+ Imag = Builder.CreateLoad(ImagPtr, "imag");
+}
+
+/// EmitStoreOfComplex - Store the specified real/imag parts into the
+/// specified value pointer.
+void CodeGenFunction::EmitStoreOfComplex(llvm::Value *Real, llvm::Value *Imag,
+ llvm::Value *ResPtr) {
+ llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
+ llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
+ llvm::Value *RealPtr = Builder.CreateGEP(ResPtr, Zero, Zero, "real");
+ llvm::Value *ImagPtr = Builder.CreateGEP(ResPtr, Zero, One, "imag");
+
+ // FIXME: Handle volatility.
+ Builder.CreateStore(Real, RealPtr);
+ Builder.CreateStore(Imag, ImagPtr);
+}
+
+//===--------------------------------------------------------------------===//
+// Conversions
+//===--------------------------------------------------------------------===//
+
+/// EmitConversion - Convert the value specied by Val, whose type is ValTy, to
+/// the type specified by DstTy, following the rules of C99 6.3.
+RValue CodeGenFunction::EmitConversion(RValue Val, QualType ValTy,
+ QualType DstTy) {
+ ValTy = ValTy.getCanonicalType();
+ DstTy = DstTy.getCanonicalType();
+ if (ValTy == DstTy) return Val;
+
+ // Handle conversions to bool first, they are special: comparisons against 0.
+ if (const BuiltinType *DestBT = dyn_cast<BuiltinType>(DstTy))
+ if (DestBT->getKind() == BuiltinType::Bool)
+ return RValue::get(ConvertScalarValueToBool(Val, ValTy));
+
+ // Handle pointer conversions next: pointers can only be converted to/from
+ // other pointers and integers.
+ if (isa<PointerType>(DstTy)) {
+ const llvm::Type *DestTy = ConvertType(DstTy);
+
+ // The source value may be an integer, or a pointer.
+ assert(Val.isScalar() && "Can only convert from integer or pointer");
+ if (isa<llvm::PointerType>(Val.getVal()->getType()))
+ return RValue::get(Builder.CreateBitCast(Val.getVal(), DestTy, "conv"));
+ assert(ValTy->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
+ return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
+ }
+
+ if (isa<PointerType>(ValTy)) {
+ // Must be an ptr to int cast.
+ const llvm::Type *DestTy = ConvertType(DstTy);
+ assert(isa<llvm::IntegerType>(DestTy) && "not ptr->int?");
+ return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
+ }
+
+ // Finally, we have the arithmetic types: real int/float and complex
+ // int/float. Handle real->real conversions first, they are the most
+ // common.
+ if (Val.isScalar() && DstTy->isRealType()) {
+ // We know that these are representable as scalars in LLVM, convert to LLVM
+ // types since they are easier to reason about.
+ llvm::Value *SrcVal = Val.getVal();
+ const llvm::Type *DestTy = ConvertType(DstTy);
+ if (SrcVal->getType() == DestTy) return Val;
+
+ llvm::Value *Result;
+ if (isa<llvm::IntegerType>(SrcVal->getType())) {
+ bool InputSigned = ValTy->isSignedIntegerType();
+ if (isa<llvm::IntegerType>(DestTy))
+ Result = Builder.CreateIntCast(SrcVal, DestTy, InputSigned, "conv");
+ else if (InputSigned)
+ Result = Builder.CreateSIToFP(SrcVal, DestTy, "conv");
+ else
+ Result = Builder.CreateUIToFP(SrcVal, DestTy, "conv");
+ } else {
+ assert(SrcVal->getType()->isFloatingPoint() && "Unknown real conversion");
+ if (isa<llvm::IntegerType>(DestTy)) {
+ if (DstTy->isSignedIntegerType())
+ Result = Builder.CreateFPToSI(SrcVal, DestTy, "conv");
+ else
+ Result = Builder.CreateFPToUI(SrcVal, DestTy, "conv");
+ } else {
+ assert(DestTy->isFloatingPoint() && "Unknown real conversion");
+ if (DestTy->getTypeID() < SrcVal->getType()->getTypeID())
+ Result = Builder.CreateFPTrunc(SrcVal, DestTy, "conv");
+ else
+ Result = Builder.CreateFPExt(SrcVal, DestTy, "conv");
+ }
+ }
+ return RValue::get(Result);
+ }
+
+ assert(0 && "FIXME: We don't support complex conversions yet!");
+}
+
+
+/// ConvertScalarValueToBool - Convert the specified expression value to a
+/// boolean (i1) truth value. This is equivalent to "Val == 0".
+llvm::Value *CodeGenFunction::ConvertScalarValueToBool(RValue Val, QualType Ty){
+ Ty = Ty.getCanonicalType();
+ llvm::Value *Result;
+ if (const BuiltinType *BT = dyn_cast<BuiltinType>(Ty)) {
+ switch (BT->getKind()) {
+ default: assert(0 && "Unknown scalar value");
+ case BuiltinType::Bool:
+ Result = Val.getVal();
+ // Bool is already evaluated right.
+ assert(Result->getType() == llvm::Type::Int1Ty &&
+ "Unexpected bool value type!");
+ return Result;
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ // Code below handles simple integers.
+ break;
+ case BuiltinType::Float:
+ case BuiltinType::Double:
+ case BuiltinType::LongDouble: {
+ // Compare against 0.0 for fp scalars.
+ Result = Val.getVal();
+ llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
+ // FIXME: llvm-gcc produces a une comparison: validate this is right.
+ Result = Builder.CreateFCmpUNE(Result, Zero, "tobool");
+ return Result;
+ }
+ }
+ } else if (isa<PointerType>(Ty) ||
+ cast<TagType>(Ty)->getDecl()->getKind() == Decl::Enum) {
+ // Code below handles this fine.
+ } else {
+ assert(isa<ComplexType>(Ty) && "Unknwon type!");
+ assert(0 && "FIXME: comparisons against complex not implemented yet");
+ }
+
+ // Usual case for integers, pointers, and enums: compare against zero.
+ Result = Val.getVal();
+
+ // Because of the type rules of C, we often end up computing a logical value,
+ // then zero extending it to int, then wanting it as a logical value again.
+ // Optimize this common case.
+ if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Result)) {
+ if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
+ Result = ZI->getOperand(0);
+ ZI->eraseFromParent();
+ return Result;
+ }
+ }
+
+ llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
+ return Builder.CreateICmpNE(Result, Zero, "tobool");
+}
+
+//===----------------------------------------------------------------------===//
+// LValue Expression Emission
+//===----------------------------------------------------------------------===//
+
+/// EmitLValue - Emit code to compute a designator that specifies the location
+/// of the expression.
+///
+/// This can return one of two things: a simple address or a bitfield
+/// reference. In either case, the LLVM Value* in the LValue structure is
+/// guaranteed to be an LLVM pointer type.
+///
+/// If this returns a bitfield reference, nothing about the pointee type of
+/// the LLVM value is known: For example, it may not be a pointer to an
+/// integer.
+///
+/// If this returns a normal address, and if the lvalue's C type is fixed
+/// size, this method guarantees that the returned pointer type will point to
+/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
+/// variable length type, this is not possible.
+///
+LValue CodeGenFunction::EmitLValue(const Expr *E) {
+ switch (E->getStmtClass()) {
+ default:
+ fprintf(stderr, "Unimplemented lvalue expr!\n");
+ E->dump();
+ return LValue::MakeAddr(llvm::UndefValue::get(
+ llvm::PointerType::get(llvm::Type::Int32Ty)));
+
+ case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
+ case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
+ case Expr::PreDefinedExprClass:
+ return EmitPreDefinedLValue(cast<PreDefinedExpr>(E));
+ case Expr::StringLiteralClass:
+ return EmitStringLiteralLValue(cast<StringLiteral>(E));
+
+ case Expr::UnaryOperatorClass:
+ return EmitUnaryOpLValue(cast<UnaryOperator>(E));
+ case Expr::ArraySubscriptExprClass:
+ return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
+ }
+}
+
+/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
+/// this method emits the address of the lvalue, then loads the result as an
+/// rvalue, returning the rvalue.
+RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
+ ExprType = ExprType.getCanonicalType();
+
+ if (LV.isSimple()) {
+ llvm::Value *Ptr = LV.getAddress();
+ const llvm::Type *EltTy =
+ cast<llvm::PointerType>(Ptr->getType())->getElementType();
+
+ // Simple scalar l-value.
+ if (EltTy->isFirstClassType())
+ return RValue::get(Builder.CreateLoad(Ptr, "tmp"));
+
+ // Otherwise, we have an aggregate lvalue.
+ return RValue::getAggregate(Ptr);
+ }
+
+ if (LV.isVectorElt()) {
+ llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
+ return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
+ "vecext"));
+ }
+
+ assert(0 && "Bitfield ref not impl!");
+}
+
+RValue CodeGenFunction::EmitLoadOfLValue(const Expr *E) {
+ return EmitLoadOfLValue(EmitLValue(E), E->getType());
+}
+
+
+/// EmitStoreThroughLValue - Store the specified rvalue into the specified
+/// lvalue, where both are guaranteed to the have the same type, and that type
+/// is 'Ty'.
+void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
+ QualType Ty) {
+ if (Dst.isVectorElt()) {
+ // Read/modify/write the vector, inserting the new element.
+ // FIXME: Volatility.
+ llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
+ Vec = Builder.CreateInsertElement(Vec, Src.getVal(),
+ Dst.getVectorIdx(), "vecins");
+ Builder.CreateStore(Vec, Dst.getVectorAddr());
+ return;
+ }
+
+ assert(Dst.isSimple() && "FIXME: Don't support store to bitfield yet");
+
+ llvm::Value *DstAddr = Dst.getAddress();
+ if (Src.isScalar()) {
+ // FIXME: Handle volatility etc.
+ const llvm::Type *SrcTy = Src.getVal()->getType();
+ const llvm::Type *AddrTy =
+ cast<llvm::PointerType>(DstAddr->getType())->getElementType();
+
+ if (AddrTy != SrcTy)
+ DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy),
+ "storetmp");
+ Builder.CreateStore(Src.getVal(), DstAddr);
+ return;
+ }
+
+ // Don't use memcpy for complex numbers.
+ if (Ty->isComplexType()) {
+ llvm::Value *Real, *Imag;
+ EmitLoadOfComplex(Src, Real, Imag);
+ EmitStoreOfComplex(Real, Imag, Dst.getAddress());
+ return;
+ }
+
+ // Aggregate assignment turns into llvm.memcpy.
+ const llvm::Type *SBP = llvm::PointerType::get(llvm::Type::Int8Ty);
+ llvm::Value *SrcAddr = Src.getAggregateAddr();
+
+ if (DstAddr->getType() != SBP)
+ DstAddr = Builder.CreateBitCast(DstAddr, SBP, "tmp");
+ if (SrcAddr->getType() != SBP)
+ SrcAddr = Builder.CreateBitCast(SrcAddr, SBP, "tmp");
+
+ unsigned Align = 1; // FIXME: Compute type alignments.
+ unsigned Size = 1234; // FIXME: Compute type sizes.
+
+ // FIXME: Handle variable sized types.
+ const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
+ llvm::Value *SizeVal = llvm::ConstantInt::get(IntPtr, Size);
+
+ llvm::Value *MemCpyOps[4] = {
+ DstAddr, SrcAddr, SizeVal,llvm::ConstantInt::get(llvm::Type::Int32Ty, Align)
+ };
+
+ Builder.CreateCall(CGM.getMemCpyFn(), MemCpyOps, 4);
+}
+
+
+LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
+ const Decl *D = E->getDecl();
+ if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
+ llvm::Value *V = LocalDeclMap[D];
+ assert(V && "BlockVarDecl not entered in LocalDeclMap?");
+ return LValue::MakeAddr(V);
+ } else if (isa<FunctionDecl>(D) || isa<FileVarDecl>(D)) {
+ return LValue::MakeAddr(CGM.GetAddrOfGlobalDecl(D));
+ }
+ assert(0 && "Unimp declref");
+}
+
+LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
+ // __extension__ doesn't affect lvalue-ness.
+ if (E->getOpcode() == UnaryOperator::Extension)
+ return EmitLValue(E->getSubExpr());
+
+ assert(E->getOpcode() == UnaryOperator::Deref &&
+ "'*' is the only unary operator that produces an lvalue");
+ return LValue::MakeAddr(EmitExpr(E->getSubExpr()).getVal());
+}
+
+LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
+ assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
+ const char *StrData = E->getStrData();
+ unsigned Len = E->getByteLength();
+
+ // FIXME: Can cache/reuse these within the module.
+ llvm::Constant *C=llvm::ConstantArray::get(std::string(StrData, StrData+Len));
+
+ // Create a global variable for this.
+ C = new llvm::GlobalVariable(C->getType(), true,
+ llvm::GlobalValue::InternalLinkage,
+ C, ".str", CurFn->getParent());
+ llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
+ llvm::Constant *Zeros[] = { Zero, Zero };
+ C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
+ return LValue::MakeAddr(C);
+}
+
+LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) {
+ std::string FunctionName(CurFuncDecl->getName());
+ std::string GlobalVarName;
+
+ switch (E->getIdentType()) {
+ default:
+ assert(0 && "unknown pre-defined ident type");
+ case PreDefinedExpr::Func:
+ GlobalVarName = "__func__.";
+ break;
+ case PreDefinedExpr::Function:
+ GlobalVarName = "__FUNCTION__.";
+ break;
+ case PreDefinedExpr::PrettyFunction:
+ // FIXME:: Demangle C++ method names
+ GlobalVarName = "__PRETTY_FUNCTION__.";
+ break;
+ }
+
+ GlobalVarName += CurFuncDecl->getName();
+
+ // FIXME: Can cache/reuse these within the module.
+ llvm::Constant *C=llvm::ConstantArray::get(FunctionName);
+
+ // Create a global variable for this.
+ C = new llvm::GlobalVariable(C->getType(), true,
+ llvm::GlobalValue::InternalLinkage,
+ C, GlobalVarName, CurFn->getParent());
+ llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
+ llvm::Constant *Zeros[] = { Zero, Zero };
+ C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
+ return LValue::MakeAddr(C);
+}
+
+LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
+ // The index must always be a pointer or integer, neither of which is an
+ // aggregate. Emit it.
+ QualType IdxTy;
+ llvm::Value *Idx =
+ EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal();
+
+ // If the base is a vector type, then we are forming a vector element lvalue
+ // with this subscript.
+ if (E->getBase()->getType()->isVectorType()) {
+ // Emit the vector as an lvalue to get its address.
+ LValue Base = EmitLValue(E->getBase());
+ assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
+ // FIXME: This should properly sign/zero/extend or truncate Idx to i32.
+ return LValue::MakeVectorElt(Base.getAddress(), Idx);
+ }
+
+ // At this point, the base must be a pointer or integer, neither of which are
+ // aggregates. Emit it.
+ QualType BaseTy;
+ llvm::Value *Base =
+ EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal();
+
+ // Usually the base is the pointer type, but sometimes it is the index.
+ // Canonicalize to have the pointer as the base.
+ if (isa<llvm::PointerType>(Idx->getType())) {
+ std::swap(Base, Idx);
+ std::swap(BaseTy, IdxTy);
+ }
+
+ // The pointer is now the base. Extend or truncate the index type to 32 or
+ // 64-bits.
+ bool IdxSigned = IdxTy->isSignedIntegerType();
+ unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
+ if (IdxBitwidth != LLVMPointerWidth)
+ Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
+ IdxSigned, "idxprom");
+
+ // We know that the pointer points to a type of the correct size, unless the
+ // size is a VLA.
+ if (!E->getType()->isConstantSizeType(getContext()))
+ assert(0 && "VLA idx not implemented");
+ return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
+}
+
+//===--------------------------------------------------------------------===//
+// Expression Emission
+//===--------------------------------------------------------------------===//
+
+RValue CodeGenFunction::EmitExpr(const Expr *E) {
+ assert(E && "Null expression?");
+
+ switch (E->getStmtClass()) {
+ default:
+ fprintf(stderr, "Unimplemented expr!\n");
+ E->dump();
+ return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
+
+ // l-values.
+ case Expr::DeclRefExprClass:
+ // DeclRef's of EnumConstantDecl's are simple rvalues.
+ if (const EnumConstantDecl *EC =
+ dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
+ return RValue::get(llvm::ConstantInt::get(EC->getInitVal()));
+ return EmitLoadOfLValue(E);
+ case Expr::ArraySubscriptExprClass:
+ return EmitArraySubscriptExprRV(cast<ArraySubscriptExpr>(E));
+ case Expr::PreDefinedExprClass:
+ case Expr::StringLiteralClass:
+ return RValue::get(EmitLValue(E).getAddress());
+
+ // Leaf expressions.
+ case Expr::IntegerLiteralClass:
+ return EmitIntegerLiteral(cast<IntegerLiteral>(E));
+ case Expr::FloatingLiteralClass:
+ return EmitFloatingLiteral(cast<FloatingLiteral>(E));
+ case Expr::CharacterLiteralClass:
+ return EmitCharacterLiteral(cast<CharacterLiteral>(E));
+
+ // Operators.
+ case Expr::ParenExprClass:
+ return EmitExpr(cast<ParenExpr>(E)->getSubExpr());
+ case Expr::UnaryOperatorClass:
+ return EmitUnaryOperator(cast<UnaryOperator>(E));
+ case Expr::SizeOfAlignOfTypeExprClass:
+ return EmitSizeAlignOf(cast<SizeOfAlignOfTypeExpr>(E)->getArgumentType(),
+ E->getType(),
+ cast<SizeOfAlignOfTypeExpr>(E)->isSizeOf());
+ case Expr::ImplicitCastExprClass:
+ return EmitCastExpr(cast<ImplicitCastExpr>(E)->getSubExpr(), E->getType());
+ case Expr::CastExprClass:
+ return EmitCastExpr(cast<CastExpr>(E)->getSubExpr(), E->getType());
+ case Expr::CallExprClass:
+ return EmitCallExpr(cast<CallExpr>(E));
+ case Expr::BinaryOperatorClass:
+ return EmitBinaryOperator(cast<BinaryOperator>(E));
+
+ case Expr::ConditionalOperatorClass:
+ return EmitConditionalOperator(cast<ConditionalOperator>(E));
+ }
+
+}
+
+RValue CodeGenFunction::EmitIntegerLiteral(const IntegerLiteral *E) {
+ return RValue::get(llvm::ConstantInt::get(E->getValue()));
+}
+RValue CodeGenFunction::EmitFloatingLiteral(const FloatingLiteral *E) {
+ return RValue::get(llvm::ConstantFP::get(ConvertType(E->getType()),
+ E->getValue()));
+}
+RValue CodeGenFunction::EmitCharacterLiteral(const CharacterLiteral *E) {
+ return RValue::get(llvm::ConstantInt::get(ConvertType(E->getType()),
+ E->getValue()));
+}
+
+RValue CodeGenFunction::EmitArraySubscriptExprRV(const ArraySubscriptExpr *E) {
+ // Emit subscript expressions in rvalue context's. For most cases, this just
+ // loads the lvalue formed by the subscript expr. However, we have to be
+ // careful, because the base of a vector subscript is occasionally an rvalue,
+ // so we can't get it as an lvalue.
+ if (!E->getBase()->getType()->isVectorType())
+ return EmitLoadOfLValue(E);
+
+ // Handle the vector case. The base must be a vector, the index must be an
+ // integer value.
+ QualType BaseTy, IdxTy;
+ llvm::Value *Base =
+ EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal();
+ llvm::Value *Idx =
+ EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal();
+
+ // FIXME: Convert Idx to i32 type.
+
+ return RValue::get(Builder.CreateExtractElement(Base, Idx, "vecext"));
+}
+
+// EmitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
+// have to handle a more broad range of conversions than explicit casts, as they
+// handle things like function to ptr-to-function decay etc.
+RValue CodeGenFunction::EmitCastExpr(const Expr *Op, QualType DestTy) {
+ QualType SrcTy;
+ RValue Src = EmitExprWithUsualUnaryConversions(Op, SrcTy);
+
+ // If the destination is void, just evaluate the source.
+ if (DestTy->isVoidType())
+ return RValue::getAggregate(0);
+
+ return EmitConversion(Src, SrcTy, DestTy);
+}
+
+RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
+ QualType CalleeTy;
+ llvm::Value *Callee =
+ EmitExprWithUsualUnaryConversions(E->getCallee(), CalleeTy).getVal();
+
+ // The callee type will always be a pointer to function type, get the function
+ // type.
+ CalleeTy = cast<PointerType>(CalleeTy.getCanonicalType())->getPointeeType();
+
+ // Get information about the argument types.
+ FunctionTypeProto::arg_type_iterator ArgTyIt = 0, ArgTyEnd = 0;
+
+ // Calling unprototyped functions provides no argument info.
+ if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(CalleeTy)) {
+ ArgTyIt = FTP->arg_type_begin();
+ ArgTyEnd = FTP->arg_type_end();
+ }
+
+ llvm::SmallVector<llvm::Value*, 16> Args;
+
+ // FIXME: Handle struct return.
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
+ QualType ArgTy;
+ RValue ArgVal = EmitExprWithUsualUnaryConversions(E->getArg(i), ArgTy);
+
+ // If this argument has prototype information, convert it.
+ if (ArgTyIt != ArgTyEnd) {
+ ArgVal = EmitConversion(ArgVal, ArgTy, *ArgTyIt++);
+ } else {
+ // Otherwise, if passing through "..." or to a function with no prototype,
+ // perform the "default argument promotions" (C99 6.5.2.2p6), which
+ // includes the usual unary conversions, but also promotes float to
+ // double.
+ if (const BuiltinType *BT =
+ dyn_cast<BuiltinType>(ArgTy.getCanonicalType())) {
+ if (BT->getKind() == BuiltinType::Float)
+ ArgVal = RValue::get(Builder.CreateFPExt(ArgVal.getVal(),
+ llvm::Type::DoubleTy,"tmp"));
+ }
+ }
+
+
+ if (ArgVal.isScalar())
+ Args.push_back(ArgVal.getVal());
+ else // Pass by-address. FIXME: Set attribute bit on call.
+ Args.push_back(ArgVal.getAggregateAddr());
+ }
+
+ llvm::Value *V = Builder.CreateCall(Callee, &Args[0], Args.size());
+ if (V->getType() != llvm::Type::VoidTy)
+ V->setName("call");
+
+ // FIXME: Struct return;
+ return RValue::get(V);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Unary Operator Emission
+//===----------------------------------------------------------------------===//
+
+RValue CodeGenFunction::EmitExprWithUsualUnaryConversions(const Expr *E,
+ QualType &ResTy) {
+ ResTy = E->getType().getCanonicalType();
+
+ if (isa<FunctionType>(ResTy)) { // C99 6.3.2.1p4
+ // Functions are promoted to their address.
+ ResTy = getContext().getPointerType(ResTy);
+ return RValue::get(EmitLValue(E).getAddress());
+ } else if (const ArrayType *ary = dyn_cast<ArrayType>(ResTy)) {
+ // C99 6.3.2.1p3
+ ResTy = getContext().getPointerType(ary->getElementType());
+
+ // FIXME: For now we assume that all source arrays map to LLVM arrays. This
+ // will not true when we add support for VLAs.
+ llvm::Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
+
+ assert(isa<llvm::PointerType>(V->getType()) &&
+ isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
+ ->getElementType()) &&
+ "Doesn't support VLAs yet!");
+ llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
+ return RValue::get(Builder.CreateGEP(V, Idx0, Idx0, "arraydecay"));
+ } else if (ResTy->isPromotableIntegerType()) { // C99 6.3.1.1p2
+ // FIXME: this probably isn't right, pending clarification from Steve.
+ llvm::Value *Val = EmitExpr(E).getVal();
+
+ // If the input is a signed integer, sign extend to the destination.
+ if (ResTy->isSignedIntegerType()) {
+ Val = Builder.CreateSExt(Val, LLVMIntTy, "promote");
+ } else {
+ // This handles unsigned types, including bool.
+ Val = Builder.CreateZExt(Val, LLVMIntTy, "promote");
+ }
+ ResTy = getContext().IntTy;
+
+ return RValue::get(Val);
+ }
+
+ // Otherwise, this is a float, double, int, struct, etc.
+ return EmitExpr(E);
+}
+
+
+RValue CodeGenFunction::EmitUnaryOperator(const UnaryOperator *E) {
+ switch (E->getOpcode()) {
+ default:
+ printf("Unimplemented unary expr!\n");
+ E->dump();
+ return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
+ case UnaryOperator::PostInc:
+ case UnaryOperator::PostDec:
+ case UnaryOperator::PreInc :
+ case UnaryOperator::PreDec : return EmitUnaryIncDec(E);
+ case UnaryOperator::AddrOf : return EmitUnaryAddrOf(E);
+ case UnaryOperator::Deref : return EmitLoadOfLValue(E);
+ case UnaryOperator::Plus : return EmitUnaryPlus(E);
+ case UnaryOperator::Minus : return EmitUnaryMinus(E);
+ case UnaryOperator::Not : return EmitUnaryNot(E);
+ case UnaryOperator::LNot : return EmitUnaryLNot(E);
+ case UnaryOperator::SizeOf :
+ return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
+ case UnaryOperator::AlignOf :
+ return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
+ // FIXME: real/imag
+ case UnaryOperator::Extension: return EmitExpr(E->getSubExpr());
+ }
+}
+
+RValue CodeGenFunction::EmitUnaryIncDec(const UnaryOperator *E) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ RValue InVal = EmitLoadOfLValue(LV, E->getSubExpr()->getType());
+
+ // We know the operand is real or pointer type, so it must be an LLVM scalar.
+ assert(InVal.isScalar() && "Unknown thing to increment");
+ llvm::Value *InV = InVal.getVal();
+
+ int AmountVal = 1;
+ if (E->getOpcode() == UnaryOperator::PreDec ||
+ E->getOpcode() == UnaryOperator::PostDec)
+ AmountVal = -1;
+
+ llvm::Value *NextVal;
+ if (isa<llvm::IntegerType>(InV->getType())) {
+ NextVal = llvm::ConstantInt::get(InV->getType(), AmountVal);
+ NextVal = Builder.CreateAdd(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
+ } else if (InV->getType()->isFloatingPoint()) {
+ NextVal = llvm::ConstantFP::get(InV->getType(), AmountVal);
+ NextVal = Builder.CreateAdd(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
+ } else {
+ // FIXME: This is not right for pointers to VLA types.
+ assert(isa<llvm::PointerType>(InV->getType()));
+ NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
+ NextVal = Builder.CreateGEP(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
+ }
+
+ RValue NextValToStore = RValue::get(NextVal);
+
+ // Store the updated result through the lvalue.
+ EmitStoreThroughLValue(NextValToStore, LV, E->getSubExpr()->getType());
+
+ // If this is a postinc, return the value read from memory, otherwise use the
+ // updated value.
+ if (E->getOpcode() == UnaryOperator::PreDec ||
+ E->getOpcode() == UnaryOperator::PreInc)
+ return NextValToStore;
+ else
+ return InVal;
+}
+
+/// C99 6.5.3.2
+RValue CodeGenFunction::EmitUnaryAddrOf(const UnaryOperator *E) {
+ // The address of the operand is just its lvalue. It cannot be a bitfield.
+ return RValue::get(EmitLValue(E->getSubExpr()).getAddress());
+}
+
+RValue CodeGenFunction::EmitUnaryPlus(const UnaryOperator *E) {
+ // Unary plus just performs promotions on its arithmetic operand.
+ QualType Ty;
+ return EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
+}
+
+RValue CodeGenFunction::EmitUnaryMinus(const UnaryOperator *E) {
+ // Unary minus performs promotions, then negates its arithmetic operand.
+ QualType Ty;
+ RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
+
+ if (V.isScalar())
+ return RValue::get(Builder.CreateNeg(V.getVal(), "neg"));
+
+ assert(0 && "FIXME: This doesn't handle complex operands yet");
+}
+
+RValue CodeGenFunction::EmitUnaryNot(const UnaryOperator *E) {
+ // Unary not performs promotions, then complements its integer operand.
+ QualType Ty;
+ RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
+
+ if (V.isScalar())
+ return RValue::get(Builder.CreateNot(V.getVal(), "neg"));
+
+ assert(0 && "FIXME: This doesn't handle integer complex operands yet (GNU)");
+}
+
+
+/// C99 6.5.3.3
+RValue CodeGenFunction::EmitUnaryLNot(const UnaryOperator *E) {
+ // Compare operand to zero.
+ llvm::Value *BoolVal = EvaluateExprAsBool(E->getSubExpr());
+
+ // Invert value.
+ // TODO: Could dynamically modify easy computations here. For example, if
+ // the operand is an icmp ne, turn into icmp eq.
+ BoolVal = Builder.CreateNot(BoolVal, "lnot");
+
+ // ZExt result to int.
+ return RValue::get(Builder.CreateZExt(BoolVal, LLVMIntTy, "lnot.ext"));
+}
+
+/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
+/// an integer (RetType).
+RValue CodeGenFunction::EmitSizeAlignOf(QualType TypeToSize,
+ QualType RetType, bool isSizeOf) {
+ /// FIXME: This doesn't handle VLAs yet!
+ std::pair<uint64_t, unsigned> Info =
+ getContext().getTypeInfo(TypeToSize, SourceLocation());
+
+ uint64_t Val = isSizeOf ? Info.first : Info.second;
+ Val /= 8; // Return size in bytes, not bits.
+
+ assert(RetType->isIntegerType() && "Result type must be an integer!");
+
+ unsigned ResultWidth = getContext().getTypeSize(RetType, SourceLocation());
+ return RValue::get(llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val)));
+}
+
+
+//===--------------------------------------------------------------------===//
+// Binary Operator Emission
+//===--------------------------------------------------------------------===//
+
+// FIXME describe.
+QualType CodeGenFunction::
+EmitUsualArithmeticConversions(const BinaryOperator *E, RValue &LHS,
+ RValue &RHS) {
+ QualType LHSType, RHSType;
+ LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSType);
+ RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSType);
+
+ // If both operands have the same source type, we're done already.
+ if (LHSType == RHSType) return LHSType;
+
+ // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+ // The caller can deal with this (e.g. pointer + int).
+ if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
+ return LHSType;
+
+ // At this point, we have two different arithmetic types.
+
+ // Handle complex types first (C99 6.3.1.8p1).
+ if (LHSType->isComplexType() || RHSType->isComplexType()) {
+ assert(0 && "FIXME: complex types unimp");
+#if 0
+ // if we have an integer operand, the result is the complex type.
+ if (rhs->isIntegerType())
+ return lhs;
+ if (lhs->isIntegerType())
+ return rhs;
+ return Context.maxComplexType(lhs, rhs);
+#endif
+ }
+
+ // If neither operand is complex, they must be scalars.
+ llvm::Value *LHSV = LHS.getVal();
+ llvm::Value *RHSV = RHS.getVal();
+
+ // If the LLVM types are already equal, then they only differed in sign, or it
+ // was something like char/signed char or double/long double.
+ if (LHSV->getType() == RHSV->getType())
+ return LHSType;
+
+ // Now handle "real" floating types (i.e. float, double, long double).
+ if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) {
+ // if we have an integer operand, the result is the real floating type, and
+ // the integer converts to FP.
+ if (RHSType->isIntegerType()) {
+ // Promote the RHS to an FP type of the LHS, with the sign following the
+ // RHS.
+ if (RHSType->isSignedIntegerType())
+ RHS = RValue::get(Builder.CreateSIToFP(RHSV,LHSV->getType(),"promote"));
+ else
+ RHS = RValue::get(Builder.CreateUIToFP(RHSV,LHSV->getType(),"promote"));
+ return LHSType;
+ }
+
+ if (LHSType->isIntegerType()) {
+ // Promote the LHS to an FP type of the RHS, with the sign following the
+ // LHS.
+ if (LHSType->isSignedIntegerType())
+ LHS = RValue::get(Builder.CreateSIToFP(LHSV,RHSV->getType(),"promote"));
+ else
+ LHS = RValue::get(Builder.CreateUIToFP(LHSV,RHSV->getType(),"promote"));
+ return RHSType;
+ }
+
+ // Otherwise, they are two FP types. Promote the smaller operand to the
+ // bigger result.
+ QualType BiggerType = ASTContext::maxFloatingType(LHSType, RHSType);
+
+ if (BiggerType == LHSType)
+ RHS = RValue::get(Builder.CreateFPExt(RHSV, LHSV->getType(), "promote"));
+ else
+ LHS = RValue::get(Builder.CreateFPExt(LHSV, RHSV->getType(), "promote"));
+ return BiggerType;
+ }
+
+ // Finally, we have two integer types that are different according to C. Do
+ // a sign or zero extension if needed.
+
+ // Otherwise, one type is smaller than the other.
+ QualType ResTy = ASTContext::maxIntegerType(LHSType, RHSType);
+
+ if (LHSType == ResTy) {
+ if (RHSType->isSignedIntegerType())
+ RHS = RValue::get(Builder.CreateSExt(RHSV, LHSV->getType(), "promote"));
+ else
+ RHS = RValue::get(Builder.CreateZExt(RHSV, LHSV->getType(), "promote"));
+ } else {
+ assert(RHSType == ResTy && "Unknown conversion");
+ if (LHSType->isSignedIntegerType())
+ LHS = RValue::get(Builder.CreateSExt(LHSV, RHSV->getType(), "promote"));
+ else
+ LHS = RValue::get(Builder.CreateZExt(LHSV, RHSV->getType(), "promote"));
+ }
+ return ResTy;
+}
+
+/// EmitCompoundAssignmentOperands - Compound assignment operations (like +=)
+/// are strange in that the result of the operation is not the same type as the
+/// intermediate computation. This function emits the LHS and RHS operands of
+/// the compound assignment, promoting them to their common computation type.
+///
+/// Since the LHS is an lvalue, and the result is stored back through it, we
+/// return the lvalue as well as the LHS/RHS rvalues. On return, the LHS and
+/// RHS values are both in the computation type for the operator.
+void CodeGenFunction::
+EmitCompoundAssignmentOperands(const CompoundAssignOperator *E,
+ LValue &LHSLV, RValue &LHS, RValue &RHS) {
+ LHSLV = EmitLValue(E->getLHS());
+
+ // Load the LHS and RHS operands.
+ QualType LHSTy = E->getLHS()->getType();
+ LHS = EmitLoadOfLValue(LHSLV, LHSTy);
+ QualType RHSTy;
+ RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy);
+
+ // Shift operands do the usual unary conversions, but do not do the binary
+ // conversions.
+ if (E->isShiftAssignOp()) {
+ // FIXME: This is broken. Implicit conversions should be made explicit,
+ // so that this goes away. This causes us to reload the LHS.
+ LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSTy);
+ }
+
+ // Convert the LHS and RHS to the common evaluation type.
+ LHS = EmitConversion(LHS, LHSTy, E->getComputationType());
+ RHS = EmitConversion(RHS, RHSTy, E->getComputationType());
+}
+
+/// EmitCompoundAssignmentResult - Given a result value in the computation type,
+/// truncate it down to the actual result type, store it through the LHS lvalue,
+/// and return it.
+RValue CodeGenFunction::
+EmitCompoundAssignmentResult(const CompoundAssignOperator *E,
+ LValue LHSLV, RValue ResV) {
+
+ // Truncate back to the destination type.
+ if (E->getComputationType() != E->getType())
+ ResV = EmitConversion(ResV, E->getComputationType(), E->getType());
+
+ // Store the result value into the LHS.
+ EmitStoreThroughLValue(ResV, LHSLV, E->getType());
+
+ // Return the result.
+ return ResV;
+}
+
+
+RValue CodeGenFunction::EmitBinaryOperator(const BinaryOperator *E) {
+ RValue LHS, RHS;
+ switch (E->getOpcode()) {
+ default:
+ fprintf(stderr, "Unimplemented binary expr!\n");
+ E->dump();
+ return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
+ case BinaryOperator::Mul:
+ EmitUsualArithmeticConversions(E, LHS, RHS);
+ return EmitMul(LHS, RHS, E->getType());
+ case BinaryOperator::Div:
+ EmitUsualArithmeticConversions(E, LHS, RHS);
+ return EmitDiv(LHS, RHS, E->getType());
+ case BinaryOperator::Rem:
+ EmitUsualArithmeticConversions(E, LHS, RHS);
+ return EmitRem(LHS, RHS, E->getType());
+ case BinaryOperator::Add: {
+ QualType ExprTy = E->getType();
+ if (ExprTy->isPointerType()) {
+ Expr *LHSExpr = E->getLHS();
+ QualType LHSTy;
+ LHS = EmitExprWithUsualUnaryConversions(LHSExpr, LHSTy);
+ Expr *RHSExpr = E->getRHS();
+ QualType RHSTy;
+ RHS = EmitExprWithUsualUnaryConversions(RHSExpr, RHSTy);
+ return EmitPointerAdd(LHS, LHSTy, RHS, RHSTy, ExprTy);
+ } else {
+ EmitUsualArithmeticConversions(E, LHS, RHS);
+ return EmitAdd(LHS, RHS, ExprTy);
+ }
+ }
+ case BinaryOperator::Sub: {
+ QualType ExprTy = E->getType();
+ Expr *LHSExpr = E->getLHS();
+ if (LHSExpr->getType()->isPointerType()) {
+ QualType LHSTy;
+ LHS = EmitExprWithUsualUnaryConversions(LHSExpr, LHSTy);
+ Expr *RHSExpr = E->getRHS();
+ QualType RHSTy;
+ RHS = EmitExprWithUsualUnaryConversions(RHSExpr, RHSTy);
+ return EmitPointerSub(LHS, LHSTy, RHS, RHSTy, ExprTy);
+ } else {
+ EmitUsualArithmeticConversions(E, LHS, RHS);
+ return EmitSub(LHS, RHS, ExprTy);
+ }
+ }
+ case BinaryOperator::Shl:
+ EmitShiftOperands(E, LHS, RHS);
+ return EmitShl(LHS, RHS, E->getType());
+ case BinaryOperator::Shr:
+ EmitShiftOperands(E, LHS, RHS);
+ return EmitShr(LHS, RHS, E->getType());
+ case BinaryOperator::And:
+ EmitUsualArithmeticConversions(E, LHS, RHS);
+ return EmitAnd(LHS, RHS, E->getType());
+ case BinaryOperator::Xor:
+ EmitUsualArithmeticConversions(E, LHS, RHS);
+ return EmitXor(LHS, RHS, E->getType());
+ case BinaryOperator::Or :
+ EmitUsualArithmeticConversions(E, LHS, RHS);
+ return EmitOr(LHS, RHS, E->getType());
+ case BinaryOperator::LAnd: return EmitBinaryLAnd(E);
+ case BinaryOperator::LOr: return EmitBinaryLOr(E);
+ case BinaryOperator::LT:
+ return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULT,
+ llvm::ICmpInst::ICMP_SLT,
+ llvm::FCmpInst::FCMP_OLT);
+ case BinaryOperator::GT:
+ return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGT,
+ llvm::ICmpInst::ICMP_SGT,
+ llvm::FCmpInst::FCMP_OGT);
+ case BinaryOperator::LE:
+ return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULE,
+ llvm::ICmpInst::ICMP_SLE,
+ llvm::FCmpInst::FCMP_OLE);
+ case BinaryOperator::GE:
+ return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGE,
+ llvm::ICmpInst::ICMP_SGE,
+ llvm::FCmpInst::FCMP_OGE);
+ case BinaryOperator::EQ:
+ return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_EQ,
+ llvm::ICmpInst::ICMP_EQ,
+ llvm::FCmpInst::FCMP_OEQ);
+ case BinaryOperator::NE:
+ return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_NE,
+ llvm::ICmpInst::ICMP_NE,
+ llvm::FCmpInst::FCMP_UNE);
+ case BinaryOperator::Assign:
+ return EmitBinaryAssign(E);
+
+ case BinaryOperator::MulAssign: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
+ LValue LHSLV;
+ EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
+ LHS = EmitMul(LHS, RHS, CAO->getComputationType());
+ return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
+ }
+ case BinaryOperator::DivAssign: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
+ LValue LHSLV;
+ EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
+ LHS = EmitDiv(LHS, RHS, CAO->getComputationType());
+ return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
+ }
+ case BinaryOperator::RemAssign: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
+ LValue LHSLV;
+ EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
+ LHS = EmitRem(LHS, RHS, CAO->getComputationType());
+ return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
+ }
+ case BinaryOperator::AddAssign: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
+ LValue LHSLV;
+ EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
+ LHS = EmitAdd(LHS, RHS, CAO->getComputationType());
+ return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
+ }
+ case BinaryOperator::SubAssign: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
+ LValue LHSLV;
+ EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
+ LHS = EmitSub(LHS, RHS, CAO->getComputationType());
+ return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
+ }
+ case BinaryOperator::ShlAssign: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
+ LValue LHSLV;
+ EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
+ LHS = EmitShl(LHS, RHS, CAO->getComputationType());
+ return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
+ }
+ case BinaryOperator::ShrAssign: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
+ LValue LHSLV;
+ EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
+ LHS = EmitShr(LHS, RHS, CAO->getComputationType());
+ return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
+ }
+ case BinaryOperator::AndAssign: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
+ LValue LHSLV;
+ EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
+ LHS = EmitAnd(LHS, RHS, CAO->getComputationType());
+ return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
+ }
+ case BinaryOperator::OrAssign: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
+ LValue LHSLV;
+ EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
+ LHS = EmitOr(LHS, RHS, CAO->getComputationType());
+ return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
+ }
+ case BinaryOperator::XorAssign: {
+ const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
+ LValue LHSLV;
+ EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
+ LHS = EmitXor(LHS, RHS, CAO->getComputationType());
+ return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
+ }
+ case BinaryOperator::Comma: return EmitBinaryComma(E);
+ }
+}
+
+RValue CodeGenFunction::EmitMul(RValue LHS, RValue RHS, QualType ResTy) {
+ if (LHS.isScalar())
+ return RValue::get(Builder.CreateMul(LHS.getVal(), RHS.getVal(), "mul"));
+
+ // Otherwise, this must be a complex number.
+ llvm::Value *LHSR, *LHSI, *RHSR, *RHSI;
+
+ EmitLoadOfComplex(LHS, LHSR, LHSI);
+ EmitLoadOfComplex(RHS, RHSR, RHSI);
+
+ llvm::Value *ResRl = Builder.CreateMul(LHSR, RHSR, "mul.rl");
+ llvm::Value *ResRr = Builder.CreateMul(LHSI, RHSI, "mul.rr");
+ llvm::Value *ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
+
+ llvm::Value *ResIl = Builder.CreateMul(LHSI, RHSR, "mul.il");
+ llvm::Value *ResIr = Builder.CreateMul(LHSR, RHSI, "mul.ir");
+ llvm::Value *ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
+
+ llvm::Value *Res = CreateTempAlloca(ConvertType(ResTy));
+ EmitStoreOfComplex(ResR, ResI, Res);
+ return RValue::getAggregate(Res);
+}
+
+RValue CodeGenFunction::EmitDiv(RValue LHS, RValue RHS, QualType ResTy) {
+ if (LHS.isScalar()) {
+ llvm::Value *RV;
+ if (LHS.getVal()->getType()->isFloatingPoint())
+ RV = Builder.CreateFDiv(LHS.getVal(), RHS.getVal(), "div");
+ else if (ResTy->isUnsignedIntegerType())
+ RV = Builder.CreateUDiv(LHS.getVal(), RHS.getVal(), "div");
+ else
+ RV = Builder.CreateSDiv(LHS.getVal(), RHS.getVal(), "div");
+ return RValue::get(RV);
+ }
+ assert(0 && "FIXME: This doesn't handle complex operands yet");
+}
+
+RValue CodeGenFunction::EmitRem(RValue LHS, RValue RHS, QualType ResTy) {
+ if (LHS.isScalar()) {
+ llvm::Value *RV;
+ // Rem in C can't be a floating point type: C99 6.5.5p2.
+ if (ResTy->isUnsignedIntegerType())
+ RV = Builder.CreateURem(LHS.getVal(), RHS.getVal(), "rem");
+ else
+ RV = Builder.CreateSRem(LHS.getVal(), RHS.getVal(), "rem");
+ return RValue::get(RV);
+ }
+
+ assert(0 && "FIXME: This doesn't handle complex operands yet");
+}
+
+RValue CodeGenFunction::EmitAdd(RValue LHS, RValue RHS, QualType ResTy) {
+ if (LHS.isScalar())
+ return RValue::get(Builder.CreateAdd(LHS.getVal(), RHS.getVal(), "add"));
+
+ // Otherwise, this must be a complex number.
+ llvm::Value *LHSR, *LHSI, *RHSR, *RHSI;
+
+ EmitLoadOfComplex(LHS, LHSR, LHSI);
+ EmitLoadOfComplex(RHS, RHSR, RHSI);
+
+ llvm::Value *ResR = Builder.CreateAdd(LHSR, RHSR, "add.r");
+ llvm::Value *ResI = Builder.CreateAdd(LHSI, RHSI, "add.i");
+
+ llvm::Value *Res = CreateTempAlloca(ConvertType(ResTy));
+ EmitStoreOfComplex(ResR, ResI, Res);
+ return RValue::getAggregate(Res);
+}
+
+RValue CodeGenFunction::EmitPointerAdd(RValue LHS, QualType LHSTy,
+ RValue RHS, QualType RHSTy,
+ QualType ResTy) {
+ llvm::Value *LHSValue = LHS.getVal();
+ llvm::Value *RHSValue = RHS.getVal();
+ if (LHSTy->isPointerType()) {
+ // pointer + int
+ return RValue::get(Builder.CreateGEP(LHSValue, RHSValue, "add.ptr"));
+ } else {
+ // int + pointer
+ return RValue::get(Builder.CreateGEP(RHSValue, LHSValue, "add.ptr"));
+ }
+}
+
+RValue CodeGenFunction::EmitSub(RValue LHS, RValue RHS, QualType ResTy) {
+ if (LHS.isScalar())
+ return RValue::get(Builder.CreateSub(LHS.getVal(), RHS.getVal(), "sub"));
+
+ assert(0 && "FIXME: This doesn't handle complex operands yet");
+}
+
+RValue CodeGenFunction::EmitPointerSub(RValue LHS, QualType LHSTy,
+ RValue RHS, QualType RHSTy,
+ QualType ResTy) {
+ llvm::Value *LHSValue = LHS.getVal();
+ llvm::Value *RHSValue = RHS.getVal();
+ if (const PointerType *RHSPtrType =
+ dyn_cast<PointerType>(RHSTy.getTypePtr())) {
+ // pointer - pointer
+ const PointerType *LHSPtrType = cast<PointerType>(LHSTy.getTypePtr());
+ QualType LHSElementType = LHSPtrType->getPointeeType();
+ assert(LHSElementType == RHSPtrType->getPointeeType() &&
+ "can't subtract pointers with differing element types");
+ uint64_t ElementSize = getContext().getTypeSize(LHSElementType,
+ SourceLocation()) / 8;
+ const llvm::Type *ResultType = ConvertType(ResTy);
+ llvm::Value *CastLHS = Builder.CreatePtrToInt(LHSValue, ResultType,
+ "sub.ptr.lhs.cast");
+ llvm::Value *CastRHS = Builder.CreatePtrToInt(RHSValue, ResultType,
+ "sub.ptr.rhs.cast");
+ llvm::Value *BytesBetween = Builder.CreateSub(CastLHS, CastRHS,
+ "sub.ptr.sub");
+
+ // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
+ // remainder. As such, we handle common power-of-two cases here to generate
+ // better code.
+ if (llvm::isPowerOf2_64(ElementSize)) {
+ llvm::Value *ShAmt =
+ llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
+ return RValue::get(Builder.CreateAShr(BytesBetween, ShAmt,"sub.ptr.shr"));
+ } else {
+ // Otherwise, do a full sdiv.
+ llvm::Value *BytesPerElement =
+ llvm::ConstantInt::get(ResultType, ElementSize);
+ return RValue::get(Builder.CreateSDiv(BytesBetween, BytesPerElement,
+ "sub.ptr.div"));
+ }
+ } else {
+ // pointer - int
+ llvm::Value *NegatedRHS = Builder.CreateNeg(RHSValue, "sub.ptr.neg");
+ return RValue::get(Builder.CreateGEP(LHSValue, NegatedRHS, "sub.ptr"));
+ }
+}
+
+void CodeGenFunction::EmitShiftOperands(const BinaryOperator *E,
+ RValue &LHS, RValue &RHS) {
+ // For shifts, integer promotions are performed, but the usual arithmetic
+ // conversions are not. The LHS and RHS need not have the same type.
+ QualType ResTy;
+ LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy);
+ RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy);
+}
+
+
+RValue CodeGenFunction::EmitShl(RValue LHSV, RValue RHSV, QualType ResTy) {
+ llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
+
+ // LLVM requires the LHS and RHS to be the same type, promote or truncate the
+ // RHS to the same size as the LHS.
+ if (LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
+
+ return RValue::get(Builder.CreateShl(LHS, RHS, "shl"));
+}
+
+RValue CodeGenFunction::EmitShr(RValue LHSV, RValue RHSV, QualType ResTy) {
+ llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
+
+ // LLVM requires the LHS and RHS to be the same type, promote or truncate the
+ // RHS to the same size as the LHS.
+ if (LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
+
+ if (ResTy->isUnsignedIntegerType())
+ return RValue::get(Builder.CreateLShr(LHS, RHS, "shr"));
+ else
+ return RValue::get(Builder.CreateAShr(LHS, RHS, "shr"));
+}
+
+RValue CodeGenFunction::EmitBinaryCompare(const BinaryOperator *E,
+ unsigned UICmpOpc, unsigned SICmpOpc,
+ unsigned FCmpOpc) {
+ RValue LHS, RHS;
+ EmitUsualArithmeticConversions(E, LHS, RHS);
+
+ llvm::Value *Result;
+ if (LHS.isScalar()) {
+ if (LHS.getVal()->getType()->isFloatingPoint()) {
+ Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHS.getVal(), RHS.getVal(), "cmp");
+ } else if (E->getLHS()->getType()->isUnsignedIntegerType()) {
+ // FIXME: This check isn't right for "unsigned short < int" where ushort
+ // promotes to int and does a signed compare.
+ Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS.getVal(), RHS.getVal(), "cmp");
+ } else {
+ // Signed integers and pointers.
+ Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
+ LHS.getVal(), RHS.getVal(), "cmp");
+ }
+ } else {
+ // Struct/union/complex
+ llvm::Value *LHSR, *LHSI, *RHSR, *RHSI, *ResultR, *ResultI;
+ EmitLoadOfComplex(LHS, LHSR, LHSI);
+ EmitLoadOfComplex(RHS, RHSR, RHSI);
+
+ // FIXME: need to consider _Complex over integers too!
+
+ ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHSR, RHSR, "cmp.r");
+ ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHSI, RHSI, "cmp.i");
+ if (BinaryOperator::EQ == E->getOpcode()) {
+ Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
+ } else if (BinaryOperator::NE == E->getOpcode()) {
+ Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
+ } else {
+ assert(0 && "Complex comparison other than == or != ?");
+ }
+ }
+
+ // ZExt result to int.
+ return RValue::get(Builder.CreateZExt(Result, LLVMIntTy, "cmp.ext"));
+}
+
+RValue CodeGenFunction::EmitAnd(RValue LHS, RValue RHS, QualType ResTy) {
+ if (LHS.isScalar())
+ return RValue::get(Builder.CreateAnd(LHS.getVal(), RHS.getVal(), "and"));
+
+ assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
+}
+
+RValue CodeGenFunction::EmitXor(RValue LHS, RValue RHS, QualType ResTy) {
+ if (LHS.isScalar())
+ return RValue::get(Builder.CreateXor(LHS.getVal(), RHS.getVal(), "xor"));
+
+ assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
+}
+
+RValue CodeGenFunction::EmitOr(RValue LHS, RValue RHS, QualType ResTy) {
+ if (LHS.isScalar())
+ return RValue::get(Builder.CreateOr(LHS.getVal(), RHS.getVal(), "or"));
+
+ assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
+}
+
+RValue CodeGenFunction::EmitBinaryLAnd(const BinaryOperator *E) {
+ llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
+
+ llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
+ llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
+
+ llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
+ Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
+
+ EmitBlock(RHSBlock);
+ llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+ EmitBlock(ContBlock);
+
+ // Create a PHI node. If we just evaluted the LHS condition, the result is
+ // false. If we evaluated both, the result is the RHS condition.
+ llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
+ PN->reserveOperandSpace(2);
+ PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // ZExt result to int.
+ return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "land.ext"));
+}
+
+RValue CodeGenFunction::EmitBinaryLOr(const BinaryOperator *E) {
+ llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
+
+ llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
+ llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
+
+ llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
+ Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
+
+ EmitBlock(RHSBlock);
+ llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+ EmitBlock(ContBlock);
+
+ // Create a PHI node. If we just evaluted the LHS condition, the result is
+ // true. If we evaluated both, the result is the RHS condition.
+ llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
+ PN->reserveOperandSpace(2);
+ PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // ZExt result to int.
+ return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "lor.ext"));
+}
+
+RValue CodeGenFunction::EmitBinaryAssign(const BinaryOperator *E) {
+ LValue LHS = EmitLValue(E->getLHS());
+
+ QualType RHSTy;
+ RValue RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy);
+
+ // Convert the RHS to the type of the LHS.
+ RHS = EmitConversion(RHS, RHSTy, E->getType());
+
+ // Store the value into the LHS.
+ EmitStoreThroughLValue(RHS, LHS, E->getType());
+
+ // Return the converted RHS.
+ return RHS;
+}
+
+
+RValue CodeGenFunction::EmitBinaryComma(const BinaryOperator *E) {
+ EmitExpr(E->getLHS());
+ return EmitExpr(E->getRHS());
+}
+
+RValue CodeGenFunction::EmitConditionalOperator(const ConditionalOperator *E) {
+ llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?");
+ llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:");
+ llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont");
+
+ llvm::Value *Cond = EvaluateExprAsBool(E->getCond());
+ Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
+
+ // FIXME: Implement this for aggregate values.
+
+ // FIXME: LHS & RHS need the "usual arithmetic conversions" but
+ // that's not possible with the current design.
+
+ EmitBlock(LHSBlock);
+ QualType LHSTy;
+ llvm::Value *LHSValue = E->getLHS() ? // GNU extension
+ EmitExprWithUsualUnaryConversions(E->getLHS(), LHSTy).getVal() :
+ Cond;
+ Builder.CreateBr(ContBlock);
+ LHSBlock = Builder.GetInsertBlock();
+
+ EmitBlock(RHSBlock);
+ QualType RHSTy;
+ llvm::Value *RHSValue =
+ EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy).getVal();
+ Builder.CreateBr(ContBlock);
+ RHSBlock = Builder.GetInsertBlock();
+
+ const llvm::Type *LHSType = LHSValue->getType();
+ assert(LHSType == RHSValue->getType() && "?: LHS & RHS must have same type");
+
+ EmitBlock(ContBlock);
+ llvm::PHINode *PN = Builder.CreatePHI(LHSType, "cond");
+ PN->reserveOperandSpace(2);
+ PN->addIncoming(LHSValue, LHSBlock);
+ PN->addIncoming(RHSValue, RHSBlock);
+
+ return RValue::get(PN);
+}