Stage two of getting CFE top correct.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@39734 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/AST/ASTContext.cpp b/AST/ASTContext.cpp
new file mode 100644
index 0000000..b1c20c9
--- /dev/null
+++ b/AST/ASTContext.cpp
@@ -0,0 +1,531 @@
+//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file implements the ASTContext interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SmallVector.h"
+using namespace clang;
+
+enum FloatingRank {
+  FloatRank, DoubleRank, LongDoubleRank
+};
+
+ASTContext::~ASTContext() {
+  // Deallocate all the types.
+  while (!Types.empty()) {
+    if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
+      // Destroy the object, but don't call delete.  These are malloc'd.
+      FT->~FunctionTypeProto();
+      free(FT);
+    } else {
+      delete Types.back();
+    }
+    Types.pop_back();
+  }
+}
+
+void ASTContext::PrintStats() const {
+  fprintf(stderr, "*** AST Context Stats:\n");
+  fprintf(stderr, "  %d types total.\n", (int)Types.size());
+  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
+  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
+  
+  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
+  
+  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
+    Type *T = Types[i];
+    if (isa<BuiltinType>(T))
+      ++NumBuiltin;
+    else if (isa<PointerType>(T))
+      ++NumPointer;
+    else if (isa<ReferenceType>(T))
+      ++NumReference;
+    else if (isa<ArrayType>(T))
+      ++NumArray;
+    else if (isa<FunctionTypeNoProto>(T))
+      ++NumFunctionNP;
+    else if (isa<FunctionTypeProto>(T))
+      ++NumFunctionP;
+    else if (isa<TypedefType>(T))
+      ++NumTypeName;
+    else if (TagType *TT = dyn_cast<TagType>(T)) {
+      ++NumTagged;
+      switch (TT->getDecl()->getKind()) {
+      default: assert(0 && "Unknown tagged type!");
+      case Decl::Struct: ++NumTagStruct; break;
+      case Decl::Union:  ++NumTagUnion; break;
+      case Decl::Class:  ++NumTagClass; break; 
+      case Decl::Enum:   ++NumTagEnum; break;
+      }
+    } else {
+      assert(0 && "Unknown type!");
+    }
+  }
+
+  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
+  fprintf(stderr, "    %d pointer types\n", NumPointer);
+  fprintf(stderr, "    %d reference types\n", NumReference);
+  fprintf(stderr, "    %d array types\n", NumArray);
+  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
+  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
+  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
+  fprintf(stderr, "    %d tagged types\n", NumTagged);
+  fprintf(stderr, "      %d struct types\n", NumTagStruct);
+  fprintf(stderr, "      %d union types\n", NumTagUnion);
+  fprintf(stderr, "      %d class types\n", NumTagClass);
+  fprintf(stderr, "      %d enum types\n", NumTagEnum);
+  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
+    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
+    NumFunctionP*sizeof(FunctionTypeProto)+
+    NumFunctionNP*sizeof(FunctionTypeNoProto)+
+    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
+}
+
+
+void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
+  Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
+}
+
+
+void ASTContext::InitBuiltinTypes() {
+  assert(VoidTy.isNull() && "Context reinitialized?");
+  
+  // C99 6.2.5p19.
+  InitBuiltinType(VoidTy,              BuiltinType::Void);
+  
+  // C99 6.2.5p2.
+  InitBuiltinType(BoolTy,              BuiltinType::Bool);
+  // C99 6.2.5p3.
+  if (Target.isCharSigned(SourceLocation()))
+    InitBuiltinType(CharTy,            BuiltinType::Char_S);
+  else
+    InitBuiltinType(CharTy,            BuiltinType::Char_U);
+  // C99 6.2.5p4.
+  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
+  InitBuiltinType(ShortTy,             BuiltinType::Short);
+  InitBuiltinType(IntTy,               BuiltinType::Int);
+  InitBuiltinType(LongTy,              BuiltinType::Long);
+  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
+  
+  // C99 6.2.5p6.
+  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
+  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
+  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
+  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
+  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
+  
+  // C99 6.2.5p10.
+  InitBuiltinType(FloatTy,             BuiltinType::Float);
+  InitBuiltinType(DoubleTy,            BuiltinType::Double);
+  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
+  
+  // C99 6.2.5p11.
+  FloatComplexTy      = getComplexType(FloatTy);
+  DoubleComplexTy     = getComplexType(DoubleTy);
+  LongDoubleComplexTy = getComplexType(LongDoubleTy);
+}
+
+/// getComplexType - Return the uniqued reference to the type for a complex
+/// number with the specified element type.
+QualType ASTContext::getComplexType(QualType T) {
+  // Unique pointers, to guarantee there is only one pointer of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  ComplexType::Profile(ID, T);
+  
+  void *InsertPos = 0;
+  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(CT, 0);
+  
+  // If the pointee type isn't canonical, this won't be a canonical type either,
+  // so fill in the canonical type field.
+  QualType Canonical;
+  if (!T->isCanonical()) {
+    Canonical = getComplexType(T.getCanonicalType());
+    
+    // Get the new insert position for the node we care about.
+    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!");
+  }
+  ComplexType *New = new ComplexType(T, Canonical);
+  Types.push_back(New);
+  ComplexTypes.InsertNode(New, InsertPos);
+  return QualType(New, 0);
+}
+
+
+/// getPointerType - Return the uniqued reference to the type for a pointer to
+/// the specified type.
+QualType ASTContext::getPointerType(QualType T) {
+  // Unique pointers, to guarantee there is only one pointer of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  PointerType::Profile(ID, T);
+  
+  void *InsertPos = 0;
+  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(PT, 0);
+  
+  // If the pointee type isn't canonical, this won't be a canonical type either,
+  // so fill in the canonical type field.
+  QualType Canonical;
+  if (!T->isCanonical()) {
+    Canonical = getPointerType(T.getCanonicalType());
+   
+    // Get the new insert position for the node we care about.
+    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!");
+  }
+  PointerType *New = new PointerType(T, Canonical);
+  Types.push_back(New);
+  PointerTypes.InsertNode(New, InsertPos);
+  return QualType(New, 0);
+}
+
+/// getReferenceType - Return the uniqued reference to the type for a reference
+/// to the specified type.
+QualType ASTContext::getReferenceType(QualType T) {
+  // Unique pointers, to guarantee there is only one pointer of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  ReferenceType::Profile(ID, T);
+
+  void *InsertPos = 0;
+  if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(RT, 0);
+  
+  // If the referencee type isn't canonical, this won't be a canonical type
+  // either, so fill in the canonical type field.
+  QualType Canonical;
+  if (!T->isCanonical()) {
+    Canonical = getReferenceType(T.getCanonicalType());
+   
+    // Get the new insert position for the node we care about.
+    ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!");
+  }
+
+  ReferenceType *New = new ReferenceType(T, Canonical);
+  Types.push_back(New);
+  ReferenceTypes.InsertNode(New, InsertPos);
+  return QualType(New, 0);
+}
+
+/// getArrayType - Return the unique reference to the type for an array of the
+/// specified element type.
+QualType ASTContext::getArrayType(QualType EltTy,ArrayType::ArraySizeModifier ASM,
+                                  unsigned EltTypeQuals, Expr *NumElts) {
+  // Unique array types, to guarantee there is only one array of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  ArrayType::Profile(ID, ASM, EltTypeQuals, EltTy, NumElts);
+      
+  void *InsertPos = 0;
+  if (ArrayType *ATP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(ATP, 0);
+  
+  // If the element type isn't canonical, this won't be a canonical type either,
+  // so fill in the canonical type field.
+  QualType Canonical;
+  if (!EltTy->isCanonical()) {
+    Canonical = getArrayType(EltTy.getCanonicalType(), ASM, EltTypeQuals,
+                             NumElts);
+    
+    // Get the new insert position for the node we care about.
+    ArrayType *NewIP = ArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!");
+  }
+  
+  ArrayType *New = new ArrayType(EltTy, ASM, EltTypeQuals, Canonical, NumElts);
+  ArrayTypes.InsertNode(New, InsertPos);
+  Types.push_back(New);
+  return QualType(New, 0);
+}
+
+/// convertToVectorType - Return the unique reference to a vector type of
+/// the specified element type and size. VectorType can be a pointer, array,
+/// function, or built-in type (i.e. _Bool, integer, or float).
+QualType ASTContext::convertToVectorType(QualType vecType, unsigned NumElts) {
+  BuiltinType *baseType;
+  
+  baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
+  assert(baseType != 0 && 
+         "convertToVectorType(): Complex vector types unimplemented");
+         
+  // Check if we've already instantiated a vector of this type.
+  llvm::FoldingSetNodeID ID;
+  VectorType::Profile(ID, vecType, NumElts);      
+  void *InsertPos = 0;
+  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(VTP, 0);
+
+  // If the element type isn't canonical, this won't be a canonical type either,
+  // so fill in the canonical type field.
+  QualType Canonical;
+  if (!vecType->isCanonical()) {
+    Canonical = convertToVectorType(vecType.getCanonicalType(), NumElts);
+    
+    // Get the new insert position for the node we care about.
+    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!");
+  }
+  VectorType *New = new VectorType(vecType, NumElts, Canonical);
+  VectorTypes.InsertNode(New, InsertPos);
+  Types.push_back(New);
+  return QualType(New, 0);
+}
+
+/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
+///
+QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
+  // Unique functions, to guarantee there is only one function of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  FunctionTypeNoProto::Profile(ID, ResultTy);
+  
+  void *InsertPos = 0;
+  if (FunctionTypeNoProto *FT = 
+        FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(FT, 0);
+  
+  QualType Canonical;
+  if (!ResultTy->isCanonical()) {
+    Canonical = getFunctionTypeNoProto(ResultTy.getCanonicalType());
+    
+    // Get the new insert position for the node we care about.
+    FunctionTypeNoProto *NewIP =
+      FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!");
+  }
+  
+  FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
+  Types.push_back(New);
+  FunctionTypeProtos.InsertNode(New, InsertPos);
+  return QualType(New, 0);
+}
+
+/// getFunctionType - Return a normal function type with a typed argument
+/// list.  isVariadic indicates whether the argument list includes '...'.
+QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
+                                     unsigned NumArgs, bool isVariadic) {
+  // Unique functions, to guarantee there is only one function of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
+
+  void *InsertPos = 0;
+  if (FunctionTypeProto *FTP = 
+        FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(FTP, 0);
+    
+  // Determine whether the type being created is already canonical or not.  
+  bool isCanonical = ResultTy->isCanonical();
+  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
+    if (!ArgArray[i]->isCanonical())
+      isCanonical = false;
+
+  // If this type isn't canonical, get the canonical version of it.
+  QualType Canonical;
+  if (!isCanonical) {
+    llvm::SmallVector<QualType, 16> CanonicalArgs;
+    CanonicalArgs.reserve(NumArgs);
+    for (unsigned i = 0; i != NumArgs; ++i)
+      CanonicalArgs.push_back(ArgArray[i].getCanonicalType());
+    
+    Canonical = getFunctionType(ResultTy.getCanonicalType(),
+                                &CanonicalArgs[0], NumArgs,
+                                isVariadic);
+    
+    // Get the new insert position for the node we care about.
+    FunctionTypeProto *NewIP =
+      FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!");
+  }
+  
+  // FunctionTypeProto objects are not allocated with new because they have a
+  // variable size array (for parameter types) at the end of them.
+  FunctionTypeProto *FTP = 
+    (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) + 
+                               (NumArgs-1)*sizeof(QualType));
+  new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
+                              Canonical);
+  Types.push_back(FTP);
+  FunctionTypeProtos.InsertNode(FTP, InsertPos);
+  return QualType(FTP, 0);
+}
+
+/// getTypedefType - Return the unique reference to the type for the
+/// specified typename decl.
+QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
+  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+  
+  QualType Canonical = Decl->getUnderlyingType().getCanonicalType();
+  Decl->TypeForDecl = new TypedefType(Decl, Canonical);
+  Types.push_back(Decl->TypeForDecl);
+  return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getTagDeclType - Return the unique reference to the type for the
+/// specified TagDecl (struct/union/class/enum) decl.
+QualType ASTContext::getTagDeclType(TagDecl *Decl) {
+  // The decl stores the type cache.
+  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+  
+  Decl->TypeForDecl = new TagType(Decl, QualType());
+  Types.push_back(Decl->TypeForDecl);
+  return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result 
+/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and 
+/// needs to agree with the definition in <stddef.h>. 
+QualType ASTContext::getSizeType() const {
+  // On Darwin, size_t is defined as a "long unsigned int". 
+  // FIXME: should derive from "Target".
+  return UnsignedLongTy; 
+}
+
+/// getIntegerBitwidth - Return the bitwidth of the specified integer type
+/// according to the target.  'Loc' specifies the source location that
+/// requires evaluation of this property.
+unsigned ASTContext::getIntegerBitwidth(QualType T, SourceLocation Loc) {
+  if (const TagType *TT = dyn_cast<TagType>(T.getCanonicalType())) {
+    assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum");
+    assert(0 && "FIXME: getIntegerBitwidth(enum) unimplemented!");
+  }
+  
+  const BuiltinType *BT = cast<BuiltinType>(T.getCanonicalType());
+  switch (BT->getKind()) {
+  default: assert(0 && "getIntegerBitwidth(): not a built-in integer");
+  case BuiltinType::Bool:      return Target.getBoolWidth(Loc);
+  case BuiltinType::Char_S:
+  case BuiltinType::Char_U:
+  case BuiltinType::SChar:
+  case BuiltinType::UChar:     return Target.getCharWidth(Loc);
+  case BuiltinType::Short:
+  case BuiltinType::UShort:    return Target.getShortWidth(Loc);
+  case BuiltinType::Int:
+  case BuiltinType::UInt:      return Target.getIntWidth(Loc);
+  case BuiltinType::Long:
+  case BuiltinType::ULong:     return Target.getLongWidth(Loc);
+  case BuiltinType::LongLong:
+  case BuiltinType::ULongLong: return Target.getLongLongWidth(Loc);
+  }
+}
+
+/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
+/// routine will assert if passed a built-in type that isn't an integer or enum.
+static int getIntegerRank(QualType t) {
+  if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) {
+    assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum");
+    return 4;
+  }
+  
+  const BuiltinType *BT = cast<BuiltinType>(t.getCanonicalType());
+  switch (BT->getKind()) {
+  default:
+    assert(0 && "getIntegerRank(): not a built-in integer");
+  case BuiltinType::Bool:
+    return 1;
+  case BuiltinType::Char_S:
+  case BuiltinType::Char_U:
+  case BuiltinType::SChar:
+  case BuiltinType::UChar:
+    return 2;
+  case BuiltinType::Short:
+  case BuiltinType::UShort:
+    return 3;
+  case BuiltinType::Int:
+  case BuiltinType::UInt:
+    return 4;
+  case BuiltinType::Long:
+  case BuiltinType::ULong:
+    return 5;
+  case BuiltinType::LongLong:
+  case BuiltinType::ULongLong:
+    return 6;
+  }
+}
+
+/// getFloatingRank - Return a relative rank for floating point types.
+/// This routine will assert if passed a built-in type that isn't a float.
+static int getFloatingRank(QualType T) {
+  T = T.getCanonicalType();
+  if (ComplexType *CT = dyn_cast<ComplexType>(T))
+    return getFloatingRank(CT->getElementType());
+  
+  switch (cast<BuiltinType>(T)->getKind()) {
+  default:  assert(0 && "getFloatingPointRank(): not a floating type");
+  case BuiltinType::Float:      return FloatRank;
+  case BuiltinType::Double:     return DoubleRank;
+  case BuiltinType::LongDouble: return LongDoubleRank;
+  }
+}
+
+// maxComplexType - the following code handles 3 different combinations:
+// complex/complex, complex/float, float/complex. 
+// When both operands are complex, the shorter operand is converted to the 
+// type of the longer, and that is the type of the result. This corresponds 
+// to what is done when combining two real floating-point operands. 
+// The fun begins when size promotion occur across type domains. g
+// getFloatingRank & convertFloatingRankToComplexType handle this without 
+// enumerating all permutations. 
+// It also allows us to add new types without breakage.
+// From H&S 6.3.4: When one operand is complex and the other is a real
+// floating-point type, the less precise type is converted, within it's 
+// real or complex domain, to the precision of the other type. For example,
+// when combining a "long double" with a "double _Complex", the 
+// "double _Complex" is promoted to "long double _Complex".
+
+QualType ASTContext::maxComplexType(QualType lt, QualType rt) const {
+  switch (std::max(getFloatingRank(lt), getFloatingRank(rt))) {
+  default: assert(0 && "convertRankToComplex(): illegal value for rank");
+  case FloatRank:      return FloatComplexTy;
+  case DoubleRank:     return DoubleComplexTy;
+  case LongDoubleRank: return LongDoubleComplexTy;
+  }
+}
+
+// maxFloatingType - handles the simple case, both operands are floats.
+QualType ASTContext::maxFloatingType(QualType lt, QualType rt) {
+  return getFloatingRank(lt) > getFloatingRank(rt) ? lt : rt;
+}
+
+// maxIntegerType - Returns the highest ranked integer type. Handles 3 case:
+// unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1.
+QualType ASTContext::maxIntegerType(QualType lhs, QualType rhs) {
+  if (lhs == rhs) return lhs;
+  
+  bool t1Unsigned = lhs->isUnsignedIntegerType();
+  bool t2Unsigned = rhs->isUnsignedIntegerType();
+  
+  if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned))
+    return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs; 
+  
+  // We have two integer types with differing signs
+  QualType unsignedType = t1Unsigned ? lhs : rhs;
+  QualType signedType = t1Unsigned ? rhs : lhs;
+  
+  if (getIntegerRank(unsignedType) >= getIntegerRank(signedType))
+    return unsignedType;
+  else {
+    // FIXME: Need to check if the signed type can represent all values of the 
+    // unsigned type. If it can, then the result is the signed type. 
+    // If it can't, then the result is the unsigned version of the signed type.  
+    // Should probably add a helper that returns a signed integer type from 
+    // an unsigned (and vice versa). C99 6.3.1.8.
+    return signedType; 
+  }
+}
diff --git a/AST/Builtins.cpp b/AST/Builtins.cpp
new file mode 100644
index 0000000..454085b
--- /dev/null
+++ b/AST/Builtins.cpp
@@ -0,0 +1,125 @@
+//===--- Builtins.cpp - Builtin function implementation -------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file implements various things for builtin functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Builtins.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Lex/IdentifierTable.h"
+#include "clang/Basic/TargetInfo.h"
+using namespace clang;
+
+static const Builtin::Info BuiltinInfo[] = {
+  { "not a builtin function", 0, 0 },
+#define BUILTIN(ID, TYPE, ATTRS) { #ID, TYPE, ATTRS },
+#include "clang/AST/Builtins.def"
+};
+
+const Builtin::Info &Builtin::Context::GetRecord(unsigned ID) const {
+  if (ID < Builtin::FirstTSBuiltin)
+    return BuiltinInfo[ID];
+  assert(ID - Builtin::FirstTSBuiltin < NumTSRecords && "Invalid builtin ID!");
+  return TSRecords[ID - Builtin::FirstTSBuiltin];
+}
+
+
+/// InitializeBuiltins - Mark the identifiers for all the builtins with their
+/// appropriate builtin ID # and mark any non-portable builtin identifiers as
+/// such.
+void Builtin::Context::InitializeBuiltins(IdentifierTable &Table,
+                                          const TargetInfo &Target) {
+  // Step #1: mark all target-independent builtins with their ID's.
+  for (unsigned i = Builtin::NotBuiltin+1; i != Builtin::FirstTSBuiltin; ++i)
+    Table.get(BuiltinInfo[i].Name).setBuiltinID(i);
+  
+  // Step #2: handle target builtins.
+  std::vector<const char *> NonPortableBuiltins;
+  Target.getTargetBuiltins(TSRecords, NumTSRecords, NonPortableBuiltins);
+
+  // Step #2a: Register target-specific builtins.
+  for (unsigned i = 0, e = NumTSRecords; i != e; ++i)
+    Table.get(TSRecords[i].Name).setBuiltinID(i+Builtin::FirstTSBuiltin);
+  
+  // Step #2b: Mark non-portable builtins as such.
+  for (unsigned i = 0, e = NonPortableBuiltins.size(); i != e; ++i)
+    Table.get(NonPortableBuiltins[i]).setNonPortableBuiltin(true);
+}
+
+/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
+/// pointer over the consumed characters.  This returns the resultant type.
+static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context) {
+  // Modifiers.
+  bool Long = false, LongLong = false, Signed = false, Unsigned = false;
+  
+  // Read the modifiers first.
+  bool Done = false;
+  while (!Done) {
+    switch (*Str++) {
+    default: Done = true; --Str; break; 
+    case 'S':
+      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
+      assert(!Signed && "Can't use 'S' modifier multiple times!");
+      Signed = true;
+      break;
+    case 'U':
+      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
+      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
+      Unsigned = true;
+      break;
+    case 'L':
+      assert(!LongLong && "Can't have LLL modifier");
+      if (Long) 
+        LongLong = true;
+      else
+        Long = true;
+      break;
+    }
+  }
+
+  // Read the base type.
+  switch (*Str++) {
+  default: assert(0 && "Unknown builtin type letter!");
+  case 'v':
+    assert(!Long && !Signed && !Unsigned && "Bad modifiers used with 'f'!");
+    return Context.VoidTy;
+  case 'f':
+    assert(!Long && !Signed && !Unsigned && "Bad modifiers used with 'f'!");
+    return Context.FloatTy;
+  case 'd':
+    assert(!LongLong && !Signed && !Unsigned && "Bad modifiers used with 'd'!");
+    if (Long)
+      return Context.LongDoubleTy;
+    return Context.DoubleTy;
+  case 's':
+    assert(!LongLong && "Bad modifiers used with 's'!");
+    if (Unsigned)
+      return Context.UnsignedShortTy;
+    return Context.ShortTy;
+  //case 'i':
+  }
+}
+
+/// GetBuiltinType - Return the type for the specified builtin.
+QualType Builtin::Context::GetBuiltinType(unsigned id, ASTContext &Context)const{
+  const char *TypeStr = GetRecord(id).Type;
+  
+  llvm::SmallVector<QualType, 8> ArgTypes;
+  
+  QualType ResType = DecodeTypeFromStr(TypeStr, Context);
+  while (TypeStr[0] && TypeStr[0] != '.')
+    ArgTypes.push_back(DecodeTypeFromStr(TypeStr, Context));
+  
+  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
+         "'.' should only occur at end of builtin type list!");
+  
+  return Context.getFunctionType(ResType, &ArgTypes[0], ArgTypes.size(),
+                                 TypeStr[0] == '.');
+}
diff --git a/AST/Decl.cpp b/AST/Decl.cpp
new file mode 100644
index 0000000..22fbabb
--- /dev/null
+++ b/AST/Decl.cpp
@@ -0,0 +1,161 @@
+//===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Decl class and subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Decl.h"
+#include "clang/Lex/IdentifierTable.h"
+using namespace clang;
+
+// temporary statistics gathering
+static unsigned nFuncs = 0;
+static unsigned nBlockVars = 0;
+static unsigned nFileVars = 0;
+static unsigned nParmVars = 0;
+static unsigned nSUC = 0;
+static unsigned nEnumConst = 0;
+static unsigned nEnumDecls = 0;
+static unsigned nTypedef = 0;
+static unsigned nFieldDecls = 0;
+static bool StatSwitch = false;
+
+bool Decl::CollectingStats(bool enable) {
+  if (enable) StatSwitch = true;
+	return StatSwitch;
+}
+
+void Decl::PrintStats() {
+  fprintf(stderr, "*** Decl Stats:\n");
+  fprintf(stderr, "  %d decls total.\n", 
+	  int(nFuncs+nBlockVars+nFileVars+nParmVars+nFieldDecls+nSUC+
+	      nEnumDecls+nEnumConst+nTypedef));
+  fprintf(stderr, "    %d function decls, %d each (%d bytes)\n", 
+	  nFuncs, (int)sizeof(FunctionDecl), int(nFuncs*sizeof(FunctionDecl)));
+  fprintf(stderr, "    %d block variable decls, %d each (%d bytes)\n", 
+	  nBlockVars, (int)sizeof(BlockVarDecl), 
+	  int(nBlockVars*sizeof(BlockVarDecl)));
+  fprintf(stderr, "    %d file variable decls, %d each (%d bytes)\n", 
+	  nFileVars, (int)sizeof(FileVarDecl), 
+	  int(nFileVars*sizeof(FileVarDecl)));
+  fprintf(stderr, "    %d parameter variable decls, %d each (%d bytes)\n", 
+	  nParmVars, (int)sizeof(ParmVarDecl),
+	  int(nParmVars*sizeof(ParmVarDecl)));
+  fprintf(stderr, "    %d field decls, %d each (%d bytes)\n", 
+	  nFieldDecls, (int)sizeof(FieldDecl),
+	  int(nFieldDecls*sizeof(FieldDecl)));
+  fprintf(stderr, "    %d struct/union/class decls, %d each (%d bytes)\n", 
+	  nSUC, (int)sizeof(RecordDecl),
+	  int(nSUC*sizeof(RecordDecl)));
+  fprintf(stderr, "    %d enum decls, %d each (%d bytes)\n", 
+	  nEnumDecls, (int)sizeof(EnumDecl), 
+	  int(nEnumDecls*sizeof(EnumDecl)));
+  fprintf(stderr, "    %d enum constant decls, %d each (%d bytes)\n", 
+	  nEnumConst, (int)sizeof(EnumConstantDecl),
+	  int(nEnumConst*sizeof(EnumConstantDecl)));
+  fprintf(stderr, "    %d typedef decls, %d each (%d bytes)\n", 
+	  nTypedef, (int)sizeof(TypedefDecl),int(nTypedef*sizeof(TypedefDecl)));
+  fprintf(stderr, "Total bytes = %d\n", 
+	  int(nFuncs*sizeof(FunctionDecl)+nBlockVars*sizeof(BlockVarDecl)+
+	      nFileVars*sizeof(FileVarDecl)+nParmVars*sizeof(ParmVarDecl)+
+	      nFieldDecls*sizeof(FieldDecl)+nSUC*sizeof(RecordDecl)+
+	      nEnumDecls*sizeof(EnumDecl)+nEnumConst*sizeof(EnumConstantDecl)+
+	      nTypedef*sizeof(TypedefDecl)));
+}
+
+void Decl::addDeclKind(const Kind k) {
+  switch (k) {
+    case Typedef:
+      nTypedef++;
+      break;
+    case Function:
+      nFuncs++;
+      break;
+    case BlockVariable:
+      nBlockVars++;
+      break;
+    case FileVariable:
+      nFileVars++;
+      break;
+    case ParmVariable:
+      nParmVars++;
+      break;
+    case EnumConstant:
+      nEnumConst++;
+      break;
+    case Field:
+      nFieldDecls++;
+      break;
+    case Struct:
+    case Union:
+    case Class:
+      nSUC++;
+      break;
+    case Enum:
+      nEnumDecls++;
+      break;
+  }
+}
+
+// Out-of-line virtual method providing a home for Decl.
+Decl::~Decl() {
+}
+
+const char *Decl::getName() const {
+  if (const IdentifierInfo *II = getIdentifier())
+    return II->getName();
+  return "";
+}
+
+
+FunctionDecl::~FunctionDecl() {
+  delete[] ParamInfo;
+}
+
+unsigned FunctionDecl::getNumParams() const {
+  return cast<FunctionTypeProto>(getType().getTypePtr())->getNumArgs();
+}
+
+void FunctionDecl::setParams(ParmVarDecl **NewParamInfo, unsigned NumParams) {
+  assert(ParamInfo == 0 && "Already has param info!");
+  assert(NumParams == getNumParams() && "Parameter count mismatch!");
+  
+  // Zero params -> null pointer.
+  if (NumParams) {
+    ParamInfo = new ParmVarDecl*[NumParams];
+    memcpy(ParamInfo, NewParamInfo, sizeof(ParmVarDecl*)*NumParams);
+  }
+}
+
+
+/// defineBody - When created, RecordDecl's correspond to a forward declared
+/// record.  This method is used to mark the decl as being defined, with the
+/// specified contents.
+void RecordDecl::defineBody(FieldDecl **members, unsigned numMembers) {
+  assert(!isDefinition() && "Cannot redefine record!");
+  setDefinition(true);
+  NumMembers = numMembers;
+  if (numMembers) {
+    Members = new FieldDecl*[numMembers];
+    memcpy(Members, members, numMembers*sizeof(Decl*));
+  }
+}
+
+FieldDecl* RecordDecl::getMember(IdentifierInfo *name) {
+  if (Members == 0 || NumMembers < 0)
+    return 0;
+	
+  // linear search. When C++ classes come along, will likely need to revisit.
+  for (int i = 0; i < NumMembers; ++i) {
+    if (Members[i]->getIdentifier() == name)
+      return Members[i];
+  }
+  return 0;
+}
\ No newline at end of file
diff --git a/AST/Expr.cpp b/AST/Expr.cpp
new file mode 100644
index 0000000..b7dbcc7
--- /dev/null
+++ b/AST/Expr.cpp
@@ -0,0 +1,536 @@
+//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Expr class and subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Expr.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Lex/IdentifierTable.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Primary Expressions.
+//===----------------------------------------------------------------------===//
+
+StringLiteral::StringLiteral(const char *strData, unsigned byteLength, 
+                             bool Wide, QualType t, SourceLocation firstLoc,
+                             SourceLocation lastLoc) : 
+  Expr(StringLiteralClass, t) {
+  // OPTIMIZE: could allocate this appended to the StringLiteral.
+  char *AStrData = new char[byteLength];
+  memcpy(AStrData, strData, byteLength);
+  StrData = AStrData;
+  ByteLength = byteLength;
+  IsWide = Wide;
+  firstTokLoc = firstLoc;
+  lastTokLoc = lastLoc;
+}
+
+StringLiteral::~StringLiteral() {
+  delete[] StrData;
+}
+
+bool UnaryOperator::isPostfix(Opcode Op) {
+  switch (Op) {
+  case PostInc:
+  case PostDec:
+    return true;
+  default:
+    return false;
+  }
+}
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "sizeof" or "[pre]++".
+const char *UnaryOperator::getOpcodeStr(Opcode Op) {
+  switch (Op) {
+  default: assert(0 && "Unknown unary operator");
+  case PostInc: return "++";
+  case PostDec: return "--";
+  case PreInc:  return "++";
+  case PreDec:  return "--";
+  case AddrOf:  return "&";
+  case Deref:   return "*";
+  case Plus:    return "+";
+  case Minus:   return "-";
+  case Not:     return "~";
+  case LNot:    return "!";
+  case Real:    return "__real";
+  case Imag:    return "__imag";
+  case SizeOf:  return "sizeof";
+  case AlignOf: return "alignof";
+  case Extension: return "__extension__";
+  }
+}
+
+//===----------------------------------------------------------------------===//
+// Postfix Operators.
+//===----------------------------------------------------------------------===//
+
+CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
+                   SourceLocation rparenloc)
+  : Expr(CallExprClass, t), Fn(fn), NumArgs(numargs) {
+  Args = new Expr*[numargs];
+  for (unsigned i = 0; i != numargs; ++i)
+    Args[i] = args[i];
+  RParenLoc = rparenloc;
+}
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "<<=".
+const char *BinaryOperator::getOpcodeStr(Opcode Op) {
+  switch (Op) {
+  default: assert(0 && "Unknown binary operator");
+  case Mul:       return "*";
+  case Div:       return "/";
+  case Rem:       return "%";
+  case Add:       return "+";
+  case Sub:       return "-";
+  case Shl:       return "<<";
+  case Shr:       return ">>";
+  case LT:        return "<";
+  case GT:        return ">";
+  case LE:        return "<=";
+  case GE:        return ">=";
+  case EQ:        return "==";
+  case NE:        return "!=";
+  case And:       return "&";
+  case Xor:       return "^";
+  case Or:        return "|";
+  case LAnd:      return "&&";
+  case LOr:       return "||";
+  case Assign:    return "=";
+  case MulAssign: return "*=";
+  case DivAssign: return "/=";
+  case RemAssign: return "%=";
+  case AddAssign: return "+=";
+  case SubAssign: return "-=";
+  case ShlAssign: return "<<=";
+  case ShrAssign: return ">>=";
+  case AndAssign: return "&=";
+  case XorAssign: return "^=";
+  case OrAssign:  return "|=";
+  case Comma:     return ",";
+  }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Generic Expression Routines
+//===----------------------------------------------------------------------===//
+
+/// hasLocalSideEffect - Return true if this immediate expression has side
+/// effects, not counting any sub-expressions.
+bool Expr::hasLocalSideEffect() const {
+  switch (getStmtClass()) {
+  default:
+    return false;
+  case ParenExprClass:
+    return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
+  case UnaryOperatorClass: {
+    const UnaryOperator *UO = cast<UnaryOperator>(this);
+    
+    switch (UO->getOpcode()) {
+    default: return false;
+    case UnaryOperator::PostInc:
+    case UnaryOperator::PostDec:
+    case UnaryOperator::PreInc:
+    case UnaryOperator::PreDec:
+      return true;                     // ++/--
+
+    case UnaryOperator::Deref:
+      // Dereferencing a volatile pointer is a side-effect.
+      return getType().isVolatileQualified();
+    case UnaryOperator::Real:
+    case UnaryOperator::Imag:
+      // accessing a piece of a volatile complex is a side-effect.
+      return UO->getSubExpr()->getType().isVolatileQualified();
+
+    case UnaryOperator::Extension:
+      return UO->getSubExpr()->hasLocalSideEffect();
+    }
+  }
+  case BinaryOperatorClass:
+    return cast<BinaryOperator>(this)->isAssignmentOp();
+
+  case MemberExprClass:
+  case ArraySubscriptExprClass:
+    // If the base pointer or element is to a volatile pointer/field, accessing
+    // if is a side effect.
+    return getType().isVolatileQualified();
+    
+  case CallExprClass:
+    // TODO: check attributes for pure/const.   "void foo() { strlen("bar"); }"
+    // should warn.
+    return true;
+    
+  case CastExprClass:
+    // If this is a cast to void, check the operand.  Otherwise, the result of
+    // the cast is unused.
+    if (getType()->isVoidType())
+      return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
+    return false;
+  }     
+}
+
+/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
+/// incomplete type other than void. Nonarray expressions that can be lvalues:
+///  - name, where name must be a variable
+///  - e[i]
+///  - (e), where e must be an lvalue
+///  - e.name, where e must be an lvalue
+///  - e->name
+///  - *e, the type of e cannot be a function type
+///  - string-constant
+///
+Expr::isLvalueResult Expr::isLvalue() {
+  // first, check the type (C99 6.3.2.1)
+  if (isa<FunctionType>(TR.getCanonicalType())) // from isObjectType()
+    return LV_NotObjectType;
+
+  if (TR->isIncompleteType() && TR->isVoidType())
+    return LV_IncompleteVoidType;
+    
+  // the type looks fine, now check the expression
+  switch (getStmtClass()) {
+  case StringLiteralClass: // C99 6.5.1p4
+  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
+    // For vectors, make sure base is an lvalue (i.e. not a function call).
+    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
+      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue();
+    return LV_Valid;
+  case DeclRefExprClass: // C99 6.5.1p2
+    if (isa<VarDecl>(cast<DeclRefExpr>(this)->getDecl()))
+      return LV_Valid;
+    break;
+  case MemberExprClass: // C99 6.5.2.3p4
+    const MemberExpr *m = cast<MemberExpr>(this);
+    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue();
+  case UnaryOperatorClass: // C99 6.5.3p4
+    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
+      return LV_Valid;
+    break;
+  case ParenExprClass: // C99 6.5.1p5
+    return cast<ParenExpr>(this)->getSubExpr()->isLvalue();
+  default:
+    break;
+  }
+  return LV_InvalidExpression;
+}
+
+/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
+/// does not have an incomplete type, does not have a const-qualified type, and
+/// if it is a structure or union, does not have any member (including, 
+/// recursively, any member or element of all contained aggregates or unions)
+/// with a const-qualified type.
+Expr::isModifiableLvalueResult Expr::isModifiableLvalue() {
+  isLvalueResult lvalResult = isLvalue();
+    
+  switch (lvalResult) {
+  case LV_Valid: break;
+  case LV_NotObjectType: return MLV_NotObjectType;
+  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
+  case LV_InvalidExpression: return MLV_InvalidExpression;
+  }
+  if (TR.isConstQualified())
+    return MLV_ConstQualified;
+  if (TR->isArrayType())
+    return MLV_ArrayType;
+  if (TR->isIncompleteType())
+    return MLV_IncompleteType;
+    
+  if (const RecordType *r = dyn_cast<RecordType>(TR.getCanonicalType())) {
+    if (r->hasConstFields()) 
+      return MLV_ConstQualified;
+  }
+  return MLV_Valid;    
+}
+
+/// isIntegerConstantExpr - this recursive routine will test if an expression is
+/// an integer constant expression. Note: With the introduction of VLA's in
+/// C99 the result of the sizeof operator is no longer always a constant
+/// expression. The generalization of the wording to include any subexpression
+/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
+/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
+/// "0 || f()" can be treated as a constant expression. In C90 this expression,
+/// occurring in a context requiring a constant, would have been a constraint
+/// violation. FIXME: This routine currently implements C90 semantics.
+/// To properly implement C99 semantics this routine will need to evaluate
+/// expressions involving operators previously mentioned.
+
+/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
+/// comma, etc
+///
+/// FIXME: This should ext-warn on overflow during evaluation!  ISO C does not
+/// permit this.
+bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, SourceLocation *Loc,
+                                 bool isEvaluated) const {
+  switch (getStmtClass()) {
+  default:
+    if (Loc) *Loc = getLocStart();
+    return false;
+  case ParenExprClass:
+    return cast<ParenExpr>(this)->getSubExpr()->
+                     isIntegerConstantExpr(Result, Loc, isEvaluated);
+  case IntegerLiteralClass:
+    Result = cast<IntegerLiteral>(this)->getValue();
+    break;
+  case CharacterLiteralClass:
+    // FIXME: This doesn't set the right width etc.
+    Result.zextOrTrunc(32);  // FIXME: NOT RIGHT IN GENERAL.
+    Result = cast<CharacterLiteral>(this)->getValue();
+    break;
+  case DeclRefExprClass:
+    if (const EnumConstantDecl *D = 
+          dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
+      Result = D->getInitVal();
+      break;
+    }
+    if (Loc) *Loc = getLocStart();
+    return false;
+  case UnaryOperatorClass: {
+    const UnaryOperator *Exp = cast<UnaryOperator>(this);
+    
+    // Get the operand value.  If this is sizeof/alignof, do not evalute the
+    // operand.  This affects C99 6.6p3.
+    if (Exp->isSizeOfAlignOfOp()) isEvaluated = false;
+    if (!Exp->getSubExpr()->isIntegerConstantExpr(Result, Loc, isEvaluated))
+      return false;
+
+    switch (Exp->getOpcode()) {
+    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
+    // See C99 6.6p3.
+    default:
+      if (Loc) *Loc = Exp->getOperatorLoc();
+      return false;
+    case UnaryOperator::Extension:
+      return true;
+    case UnaryOperator::SizeOf:
+    case UnaryOperator::AlignOf:
+      // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
+      if (!Exp->getSubExpr()->getType()->isConstantSizeType(Loc))
+        return false;
+      
+      // FIXME: Evaluate sizeof/alignof.
+      Result.zextOrTrunc(32);  // FIXME: NOT RIGHT IN GENERAL.
+      Result = 1;  // FIXME: Obviously bogus
+      break;
+    case UnaryOperator::LNot: {
+      bool Val = Result != 0;
+      Result.zextOrTrunc(32);  // FIXME: NOT RIGHT IN GENERAL.
+      Result = Val;
+      break;
+    }
+    case UnaryOperator::Plus:
+      // FIXME: Do usual unary promotions here!
+      break;
+    case UnaryOperator::Minus:
+      // FIXME: Do usual unary promotions here!
+      Result = -Result;
+      break;
+    case UnaryOperator::Not:
+      // FIXME: Do usual unary promotions here!
+      Result = ~Result;
+      break;
+    }
+    break;
+  }
+  case SizeOfAlignOfTypeExprClass: {
+    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
+    // alignof always evaluates to a constant.
+    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType(Loc))
+      return false;
+
+    // FIXME: Evaluate sizeof/alignof.
+    Result.zextOrTrunc(32);  // FIXME: NOT RIGHT IN GENERAL.
+    Result = 1;  // FIXME: Obviously bogus
+    break;
+  }
+  case BinaryOperatorClass: {
+    const BinaryOperator *Exp = cast<BinaryOperator>(this);
+    
+    // The LHS of a constant expr is always evaluated and needed.
+    if (!Exp->getLHS()->isIntegerConstantExpr(Result, Loc, isEvaluated))
+      return false;
+    
+    llvm::APSInt RHS(Result);
+    
+    // The short-circuiting &&/|| operators don't necessarily evaluate their
+    // RHS.  Make sure to pass isEvaluated down correctly.
+    if (Exp->isLogicalOp()) {
+      bool RHSEval;
+      if (Exp->getOpcode() == BinaryOperator::LAnd)
+        RHSEval = Result != 0;
+      else {
+        assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
+        RHSEval = Result == 0;
+      }
+      
+      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Loc,
+                                                isEvaluated & RHSEval))
+        return false;
+    } else {
+      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Loc, isEvaluated))
+        return false;
+    }
+    
+    // FIXME: These should all do the standard promotions, etc.
+    switch (Exp->getOpcode()) {
+    default:
+      if (Loc) *Loc = getLocStart();
+      return false;
+    case BinaryOperator::Mul:
+      Result *= RHS;
+      break;
+    case BinaryOperator::Div:
+      if (RHS == 0) {
+        if (!isEvaluated) break;
+        if (Loc) *Loc = getLocStart();
+        return false;
+      }
+      Result /= RHS;
+      break;
+    case BinaryOperator::Rem:
+      if (RHS == 0) {
+        if (!isEvaluated) break;
+        if (Loc) *Loc = getLocStart();
+        return false;
+      }
+      Result %= RHS;
+      break;
+    case BinaryOperator::Add: Result += RHS; break;
+    case BinaryOperator::Sub: Result -= RHS; break;
+    case BinaryOperator::Shl:
+      Result <<= RHS.getLimitedValue(Result.getBitWidth()-1);
+      break;
+    case BinaryOperator::Shr:
+      Result >>= RHS.getLimitedValue(Result.getBitWidth()-1);
+      break;
+    case BinaryOperator::LT:  Result = Result < RHS; break;
+    case BinaryOperator::GT:  Result = Result > RHS; break;
+    case BinaryOperator::LE:  Result = Result <= RHS; break;
+    case BinaryOperator::GE:  Result = Result >= RHS; break;
+    case BinaryOperator::EQ:  Result = Result == RHS; break;
+    case BinaryOperator::NE:  Result = Result != RHS; break;
+    case BinaryOperator::And: Result &= RHS; break;
+    case BinaryOperator::Xor: Result ^= RHS; break;
+    case BinaryOperator::Or:  Result |= RHS; break;
+    case BinaryOperator::LAnd:
+      Result = Result != 0 && RHS != 0;
+      break;
+    case BinaryOperator::LOr:
+      Result = Result != 0 || RHS != 0;
+      break;
+      
+    case BinaryOperator::Comma:
+      // C99 6.6p3: "shall not contain assignment, ..., or comma operators,
+      // *except* when they are contained within a subexpression that is not
+      // evaluated".  Note that Assignment can never happen due to constraints
+      // on the LHS subexpr, so we don't need to check it here.
+      if (isEvaluated) {
+        if (Loc) *Loc = getLocStart();
+        return false;
+      }
+      
+      // The result of the constant expr is the RHS.
+      Result = RHS;
+      return true;
+    }
+    
+    assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
+    break;
+  }
+  case CastExprClass: {
+    const CastExpr *Exp = cast<CastExpr>(this);    
+    // C99 6.6p6: shall only convert arithmetic types to integer types.
+    if (!Exp->getSubExpr()->getType()->isArithmeticType() ||
+        !Exp->getDestType()->isIntegerType()) {
+      if (Loc) *Loc = Exp->getSubExpr()->getLocStart();
+      return false;
+    }
+      
+    // Handle simple integer->integer casts.
+    if (Exp->getSubExpr()->getType()->isIntegerType()) {
+      if (!Exp->getSubExpr()->isIntegerConstantExpr(Result, Loc, isEvaluated))
+        return false;
+      // FIXME: do the conversion on Result.
+      break;
+    }
+    
+    // Allow floating constants that are the immediate operands of casts or that
+    // are parenthesized.
+    const Expr *Operand = Exp->getSubExpr();
+    while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
+      Operand = PE->getSubExpr();
+    
+    if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand)) {
+      // FIXME: Evaluate this correctly!
+      Result = (int)FL->getValue();
+      break;
+    }
+    if (Loc) *Loc = Operand->getLocStart();
+    return false;
+  }
+  case ConditionalOperatorClass: {
+    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
+    
+    if (!Exp->getCond()->isIntegerConstantExpr(Result, Loc, isEvaluated))
+      return false;
+    
+    const Expr *TrueExp  = Exp->getLHS();
+    const Expr *FalseExp = Exp->getRHS();
+    if (Result == 0) std::swap(TrueExp, FalseExp);
+    
+    // Evaluate the false one first, discard the result.
+    if (!FalseExp->isIntegerConstantExpr(Result, Loc, false))
+      return false;
+    // Evalute the true one, capture the result.
+    if (!TrueExp->isIntegerConstantExpr(Result, Loc, isEvaluated))
+      return false;
+    // FIXME: promotions on result.
+    break;
+  }
+  }
+
+  // Cases that are valid constant exprs fall through to here.
+  Result.setIsUnsigned(getType()->isUnsignedIntegerType());
+  return true;
+}
+
+
+/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
+/// integer constant expression with the value zero, or if this is one that is
+/// cast to void*.
+bool Expr::isNullPointerConstant() const {
+  // Strip off a cast to void*, if it exists.
+  if (const CastExpr *CE = dyn_cast<CastExpr>(this)) {
+    // Check that it is a cast to void*.
+    if (const PointerType *PT = dyn_cast<PointerType>(CE->getType())) {
+      QualType Pointee = PT->getPointeeType();
+      if (Pointee.getQualifiers() == 0 && Pointee->isVoidType() && // to void*
+          CE->getSubExpr()->getType()->isIntegerType())            // from int.
+        return CE->getSubExpr()->isNullPointerConstant();
+    }
+  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
+    // Accept ((void*)0) as a null pointer constant, as many other
+    // implementations do.
+    return PE->getSubExpr()->isNullPointerConstant();
+  }
+  
+  // This expression must be an integer type.
+  if (!getType()->isIntegerType())
+    return false;
+  
+  // If we have an integer constant expression, we need to *evaluate* it and
+  // test for the value 0.
+  llvm::APSInt Val(32);
+  return isIntegerConstantExpr(Val, 0, true) && Val == 0;
+}
diff --git a/AST/Makefile b/AST/Makefile
new file mode 100644
index 0000000..17abef6
--- /dev/null
+++ b/AST/Makefile
@@ -0,0 +1,22 @@
+##===- clang/AST/Makefile ----------------------------------*- Makefile -*-===##
+# 
+#                     The LLVM Compiler Infrastructure
+#
+# This file was developed by Chris Lattner and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+# 
+##===----------------------------------------------------------------------===##
+#
+#  This implements the AST library for the C-Language front-end.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME := clangAST
+BUILD_ARCHIVE = 1
+CXXFLAGS = -fno-rtti
+
+CPPFLAGS += -I$(PROJ_SRC_DIR)/../include
+
+include $(LEVEL)/Makefile.common
+
diff --git a/AST/Stmt.cpp b/AST/Stmt.cpp
new file mode 100644
index 0000000..e43f03c
--- /dev/null
+++ b/AST/Stmt.cpp
@@ -0,0 +1,81 @@
+//===--- Stmt.cpp - Statement AST Node Implementation ---------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Stmt class and statement subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Stmt.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Lex/IdentifierTable.h"
+using namespace clang;
+
+// Implement all the AST node visit methods using the StmtNodes.def database.
+#define STMT(N, CLASS, PARENT) \
+void CLASS::visit(StmtVisitor &V) { return V.Visit##CLASS(this); }
+
+STMT(0, Stmt, )
+#include "clang/AST/StmtNodes.def"
+
+static struct StmtClassNameTable {
+  int enumValue;
+  const char *className;
+  unsigned counter;
+  unsigned size;
+} sNames[] = {
+#define STMT(N, CLASS, PARENT) { N, #CLASS, 0, sizeof(CLASS) },
+#include "clang/AST/StmtNodes.def"
+  { 0, 0, 0, 0 }
+};
+  
+const char *Stmt::getStmtClassName() const {
+  for (int i = 0; sNames[i].className; i++) {
+    if (sClass == sNames[i].enumValue)
+      return sNames[i].className;
+  }
+  return 0; // should never happen....
+}
+
+void Stmt::PrintStats() {
+  unsigned sum = 0;
+  fprintf(stderr, "*** Stmt/Expr Stats:\n");
+  for (int i = 0; sNames[i].className; i++) {
+    sum += sNames[i].counter;
+  }
+  fprintf(stderr, "  %d stmts/exprs total.\n", sum);
+  sum = 0;
+  for (int i = 0; sNames[i].className; i++) {
+    fprintf(stderr, "    %d %s, %d each (%d bytes)\n", 
+      sNames[i].counter, sNames[i].className, sNames[i].size, sNames[i].counter*sNames[i].size);
+    sum += sNames[i].counter*sNames[i].size;
+  }
+  fprintf(stderr, "Total bytes = %d\n", sum);
+}
+
+void Stmt::addStmtClass(StmtClass s) {
+  for (int i = 0; sNames[i].className; i++) {
+    if (s == sNames[i].enumValue)
+      sNames[i].counter++;
+  }
+}
+
+static bool StatSwitch = false;
+
+bool Stmt::CollectingStats(bool enable) {
+  if (enable) StatSwitch = true;
+	return StatSwitch;
+}
+
+
+
+const char *LabelStmt::getName() const {
+  return getID()->getName();
+}
+
diff --git a/AST/StmtPrinter.cpp b/AST/StmtPrinter.cpp
new file mode 100644
index 0000000..e90b9f2
--- /dev/null
+++ b/AST/StmtPrinter.cpp
@@ -0,0 +1,436 @@
+//===--- StmtPrinter.cpp - Printing implementation for Stmt ASTs ----------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Stmt::dump/Stmt::print methods.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Lex/IdentifierTable.h"
+#include "llvm/Support/Compiler.h"
+#include <iostream>
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// StmtPrinter Visitor
+//===----------------------------------------------------------------------===//
+
+namespace  {
+  class VISIBILITY_HIDDEN StmtPrinter : public StmtVisitor {
+    std::ostream &OS;
+    unsigned IndentLevel;
+  public:
+    StmtPrinter(std::ostream &os) : OS(os), IndentLevel(0) {}
+    
+    void PrintStmt(Stmt *S, int SubIndent = 1) {
+      IndentLevel += SubIndent;
+      if (S && isa<Expr>(S)) {
+        // If this is an expr used in a stmt context, indent and newline it.
+        Indent();
+        S->visit(*this);
+        OS << ";\n";
+      } else if (S) {
+        S->visit(*this);
+      } else {
+        Indent() << "<<<NULL STATEMENT>>>\n";
+      }
+      IndentLevel -= SubIndent;
+    }
+    
+    void PrintRawCompoundStmt(CompoundStmt *S);
+    void PrintRawDecl(Decl *D);
+    void PrintRawIfStmt(IfStmt *If);
+    
+    void PrintExpr(Expr *E) {
+      if (E)
+        E->visit(*this);
+      else
+        OS << "<null expr>";
+    }
+    
+    std::ostream &Indent(int Delta = 0) const {
+      for (int i = 0, e = IndentLevel+Delta; i < e; ++i)
+        OS << "  ";
+      return OS;
+    }
+    
+    virtual void VisitStmt(Stmt *Node);
+#define STMT(N, CLASS, PARENT) \
+    virtual void Visit##CLASS(CLASS *Node);
+#include "clang/AST/StmtNodes.def"
+  };
+}
+
+//===----------------------------------------------------------------------===//
+//  Stmt printing methods.
+//===----------------------------------------------------------------------===//
+
+void StmtPrinter::VisitStmt(Stmt *Node) {
+  Indent() << "<<unknown stmt type>>\n";
+}
+
+/// PrintRawCompoundStmt - Print a compound stmt without indenting the {, and
+/// with no newline after the }.
+void StmtPrinter::PrintRawCompoundStmt(CompoundStmt *Node) {
+  OS << "{\n";
+  for (CompoundStmt::body_iterator I = Node->body_begin(), E = Node->body_end();
+       I != E; ++I)
+    PrintStmt(*I);
+  
+  Indent() << "}";
+}
+
+void StmtPrinter::PrintRawDecl(Decl *D) {
+  // FIXME: Need to complete/beautify this... this code simply shows the
+  // nodes are where they need to be.
+  if (TypedefDecl *localType = dyn_cast<TypedefDecl>(D)) {
+    OS << "typedef " << localType->getUnderlyingType().getAsString();
+    OS << " " << localType->getName();
+  } else if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
+    // Emit storage class for vardecls.
+    if (VarDecl *V = dyn_cast<VarDecl>(VD)) {
+      switch (V->getStorageClass()) {
+        default: assert(0 && "Unknown storage class!");
+        case VarDecl::None:     break;
+        case VarDecl::Extern:   OS << "extern "; break;
+        case VarDecl::Static:   OS << "static "; break; 
+        case VarDecl::Auto:     OS << "auto "; break;
+        case VarDecl::Register: OS << "register "; break;
+      }
+    }
+    
+    std::string Name = VD->getName();
+    VD->getType().getAsStringInternal(Name);
+    OS << Name;
+    
+    // FIXME: Initializer for vardecl
+  } else {
+    // FIXME: "struct x;"
+    assert(0 && "Unexpected decl");
+  }
+}
+
+
+void StmtPrinter::VisitNullStmt(NullStmt *Node) {
+  Indent() << ";\n";
+}
+
+void StmtPrinter::VisitDeclStmt(DeclStmt *Node) {
+  for (Decl *D = Node->getDecl(); D; D = D->getNextDeclarator()) {
+    Indent();
+    PrintRawDecl(D);
+    OS << ";\n";
+  }
+}
+
+void StmtPrinter::VisitCompoundStmt(CompoundStmt *Node) {
+  Indent();
+  PrintRawCompoundStmt(Node);
+  OS << "\n";
+}
+
+void StmtPrinter::VisitCaseStmt(CaseStmt *Node) {
+  Indent(-1) << "case ";
+  PrintExpr(Node->getLHS());
+  if (Node->getRHS()) {
+    OS << " ... ";
+    PrintExpr(Node->getRHS());
+  }
+  OS << ":\n";
+  
+  PrintStmt(Node->getSubStmt(), 0);
+}
+
+void StmtPrinter::VisitDefaultStmt(DefaultStmt *Node) {
+  Indent(-1) << "default:\n";
+  PrintStmt(Node->getSubStmt(), 0);
+}
+
+void StmtPrinter::VisitLabelStmt(LabelStmt *Node) {
+  Indent(-1) << Node->getName() << ":\n";
+  PrintStmt(Node->getSubStmt(), 0);
+}
+
+void StmtPrinter::PrintRawIfStmt(IfStmt *If) {
+  OS << "if ";
+  PrintExpr(If->getCond());
+  
+  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(If->getThen())) {
+    OS << ' ';
+    PrintRawCompoundStmt(CS);
+    OS << (If->getElse() ? ' ' : '\n');
+  } else {
+    OS << '\n';
+    PrintStmt(If->getThen());
+    if (If->getElse()) Indent();
+  }
+  
+  if (Stmt *Else = If->getElse()) {
+    OS << "else";
+    
+    if (CompoundStmt *CS = dyn_cast<CompoundStmt>(Else)) {
+      OS << ' ';
+      PrintRawCompoundStmt(CS);
+      OS << '\n';
+    } else if (IfStmt *ElseIf = dyn_cast<IfStmt>(Else)) {
+      OS << ' ';
+      PrintRawIfStmt(ElseIf);
+    } else {
+      OS << '\n';
+      PrintStmt(If->getElse());
+    }
+  }
+}
+
+void StmtPrinter::VisitIfStmt(IfStmt *If) {
+  Indent();
+  PrintRawIfStmt(If);
+}
+
+void StmtPrinter::VisitSwitchStmt(SwitchStmt *Node) {
+  Indent() << "switch (";
+  PrintExpr(Node->getCond());
+  OS << ")";
+  
+  // Pretty print compoundstmt bodies (very common).
+  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(Node->getBody())) {
+    OS << " ";
+    PrintRawCompoundStmt(CS);
+    OS << "\n";
+  } else {
+    OS << "\n";
+    PrintStmt(Node->getBody());
+  }
+}
+
+void StmtPrinter::VisitWhileStmt(WhileStmt *Node) {
+  Indent() << "while (";
+  PrintExpr(Node->getCond());
+  OS << ")\n";
+  PrintStmt(Node->getBody());
+}
+
+void StmtPrinter::VisitDoStmt(DoStmt *Node) {
+  Indent() << "do\n";
+  PrintStmt(Node->getBody());
+  Indent() << "while ";
+  PrintExpr(Node->getCond());
+  OS << ";\n";
+}
+
+void StmtPrinter::VisitForStmt(ForStmt *Node) {
+  Indent() << "for (";
+  if (Node->getInit()) {
+    if (DeclStmt *DS = dyn_cast<DeclStmt>(Node->getInit()))
+      PrintRawDecl(DS->getDecl());
+    else
+      PrintExpr(cast<Expr>(Node->getInit()));
+  }
+  OS << "; ";
+  if (Node->getCond())
+    PrintExpr(Node->getCond());
+  OS << "; ";
+  if (Node->getInc())
+    PrintExpr(Node->getInc());
+  OS << ")\n";
+  PrintStmt(Node->getBody());
+}
+
+void StmtPrinter::VisitGotoStmt(GotoStmt *Node) {
+  Indent() << "goto " << Node->getLabel()->getName() << ";\n";
+}
+
+void StmtPrinter::VisitIndirectGotoStmt(IndirectGotoStmt *Node) {
+  Indent() << "goto *";
+  PrintExpr(Node->getTarget());
+  OS << ";\n";
+}
+
+void StmtPrinter::VisitContinueStmt(ContinueStmt *Node) {
+  Indent() << "continue;\n";
+}
+
+void StmtPrinter::VisitBreakStmt(BreakStmt *Node) {
+  Indent() << "break;\n";
+}
+
+
+void StmtPrinter::VisitReturnStmt(ReturnStmt *Node) {
+  Indent() << "return";
+  if (Node->getRetValue()) {
+    OS << " ";
+    PrintExpr(Node->getRetValue());
+  }
+  OS << ";\n";
+}
+
+//===----------------------------------------------------------------------===//
+//  Expr printing methods.
+//===----------------------------------------------------------------------===//
+
+void StmtPrinter::VisitExpr(Expr *Node) {
+  OS << "<<unknown expr type>>";
+}
+
+void StmtPrinter::VisitDeclRefExpr(DeclRefExpr *Node) {
+  OS << Node->getDecl()->getName();
+}
+
+void StmtPrinter::VisitCharacterLiteral(CharacterLiteral *Node) {
+  // FIXME: print value.
+  OS << "x";
+}
+
+void StmtPrinter::VisitIntegerLiteral(IntegerLiteral *Node) {
+  bool isSigned = Node->getType()->isSignedIntegerType();
+  OS << Node->getValue().toString(10, isSigned);
+  
+  // Emit suffixes.  Integer literals are always a builtin integer type.
+  switch (cast<BuiltinType>(Node->getType().getCanonicalType())->getKind()) {
+  default: assert(0 && "Unexpected type for integer literal!");
+  case BuiltinType::Int:       break; // no suffix.
+  case BuiltinType::UInt:      OS << 'U'; break;
+  case BuiltinType::Long:      OS << 'L'; break;
+  case BuiltinType::ULong:     OS << "UL"; break;
+  case BuiltinType::LongLong:  OS << "LL"; break;
+  case BuiltinType::ULongLong: OS << "ULL"; break;
+  }
+}
+void StmtPrinter::VisitFloatingLiteral(FloatingLiteral *Node) {
+  // FIXME: print value.
+  OS << "~1.0~";
+}
+void StmtPrinter::VisitStringLiteral(StringLiteral *Str) {
+  if (Str->isWide()) OS << 'L';
+  OS << '"';
+  
+  // FIXME: this doesn't print wstrings right.
+  for (unsigned i = 0, e = Str->getByteLength(); i != e; ++i) {
+    switch (Str->getStrData()[i]) {
+    default: OS << Str->getStrData()[i]; break;
+    // Handle some common ones to make dumps prettier.
+    case '\\': OS << "\\\\"; break;
+    case '"': OS << "\\\""; break;
+    case '\n': OS << "\\n"; break;
+    case '\t': OS << "\\t"; break;
+    case '\a': OS << "\\a"; break;
+    case '\b': OS << "\\b"; break;
+    }
+  }
+  OS << '"';
+}
+void StmtPrinter::VisitParenExpr(ParenExpr *Node) {
+  OS << "(";
+  PrintExpr(Node->getSubExpr());
+  OS << ")";
+}
+void StmtPrinter::VisitUnaryOperator(UnaryOperator *Node) {
+  if (!Node->isPostfix())
+    OS << UnaryOperator::getOpcodeStr(Node->getOpcode());
+  PrintExpr(Node->getSubExpr());
+  
+  if (Node->isPostfix())
+    OS << UnaryOperator::getOpcodeStr(Node->getOpcode());
+
+}
+void StmtPrinter::VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr *Node) {
+  OS << (Node->isSizeOf() ? "sizeof(" : "__alignof(");
+  OS << Node->getArgumentType().getAsString() << ")";
+}
+void StmtPrinter::VisitArraySubscriptExpr(ArraySubscriptExpr *Node) {
+  PrintExpr(Node->getBase());
+  OS << "[";
+  PrintExpr(Node->getIdx());
+  OS << "]";
+}
+
+void StmtPrinter::VisitCallExpr(CallExpr *Call) {
+  PrintExpr(Call->getCallee());
+  OS << "(";
+  for (unsigned i = 0, e = Call->getNumArgs(); i != e; ++i) {
+    if (i) OS << ", ";
+    PrintExpr(Call->getArg(i));
+  }
+  OS << ")";
+}
+void StmtPrinter::VisitMemberExpr(MemberExpr *Node) {
+  PrintExpr(Node->getBase());
+  OS << (Node->isArrow() ? "->" : ".");
+  
+  FieldDecl *Field = Node->getMemberDecl();
+  assert(Field && "MemberExpr should alway reference a field!");
+  OS << Field->getName();
+}
+void StmtPrinter::VisitCastExpr(CastExpr *Node) {
+  OS << "(" << Node->getDestType().getAsString() << ")";
+  PrintExpr(Node->getSubExpr());
+}
+void StmtPrinter::VisitBinaryOperator(BinaryOperator *Node) {
+  PrintExpr(Node->getLHS());
+  OS << " " << BinaryOperator::getOpcodeStr(Node->getOpcode()) << " ";
+  PrintExpr(Node->getRHS());
+}
+void StmtPrinter::VisitConditionalOperator(ConditionalOperator *Node) {
+  PrintExpr(Node->getCond());
+  OS << " ? ";
+  PrintExpr(Node->getLHS());
+  OS << " : ";
+  PrintExpr(Node->getRHS());
+}
+
+// GNU extensions.
+
+void StmtPrinter::VisitAddrLabel(AddrLabel *Node) {
+  OS << "&&" << Node->getLabel()->getName();
+  
+}
+
+// C++
+
+void StmtPrinter::VisitCXXCastExpr(CXXCastExpr *Node) {
+  switch (Node->getOpcode()) {
+    default:
+      assert(0 && "Not a C++ cast expression");
+      abort();
+    case CXXCastExpr::ConstCast:       OS << "const_cast<";       break;
+    case CXXCastExpr::DynamicCast:     OS << "dynamic_cast<";     break;
+    case CXXCastExpr::ReinterpretCast: OS << "reinterpret_cast<"; break;
+    case CXXCastExpr::StaticCast:      OS << "static_cast<";      break;
+  }
+  
+  OS << Node->getDestType().getAsString() << ">(";
+  PrintExpr(Node->getSubExpr());
+  OS << ")";
+}
+
+void StmtPrinter::VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *Node) {
+  OS << (Node->getValue() ? "true" : "false");
+}
+
+
+//===----------------------------------------------------------------------===//
+// Stmt method implementations
+//===----------------------------------------------------------------------===//
+
+void Stmt::dump() const {
+  // FIXME: eliminate use of <iostream>
+  print(std::cerr);
+}
+
+void Stmt::print(std::ostream &OS) const {
+  if (this == 0) {
+    OS << "<NULL>";
+    return;
+  }
+
+  StmtPrinter P(OS);
+  const_cast<Stmt*>(this)->visit(P);
+}
diff --git a/AST/StmtVisitor.cpp b/AST/StmtVisitor.cpp
new file mode 100644
index 0000000..9171ef7
--- /dev/null
+++ b/AST/StmtVisitor.cpp
@@ -0,0 +1,26 @@
+//===--- StmtVisitor.cpp - Visitor for Stmt subclasses --------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the StmtVisitor class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/ExprCXX.h"
+using namespace clang;
+
+StmtVisitor::~StmtVisitor() {
+  // Out-of-line virtual dtor.
+}
+
+// Implement all of the delegation visitor methods.
+#define STMT(N, FROM, TO) \
+  void StmtVisitor::Visit##FROM(FROM *Node) { Visit##TO(Node); }
+#include "clang/AST/StmtNodes.def"
+
diff --git a/AST/Type.cpp b/AST/Type.cpp
new file mode 100644
index 0000000..cd06c7e
--- /dev/null
+++ b/AST/Type.cpp
@@ -0,0 +1,593 @@
+//===--- Type.cpp - Type representation and manipulation ------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file implements type-related functionality.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/IdentifierTable.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/Expr.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/ADT/StringExtras.h"
+using namespace clang;
+
+Type::~Type() {}
+
+/// isVoidType - Helper method to determine if this is the 'void' type.
+bool Type::isVoidType() const {
+  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+    return BT->getKind() == BuiltinType::Void;
+  return false;
+}
+
+bool Type::isObjectType() const {
+  if (isa<FunctionType>(CanonicalType))
+    return false;
+  else if (CanonicalType->isIncompleteType())
+    return false;
+  else
+    return true;
+}
+
+bool Type::isDerivedType() const {
+  switch (CanonicalType->getTypeClass()) {
+  case Pointer:
+  case Array:
+  case FunctionProto:
+  case FunctionNoProto:
+  case Reference:
+    return true;
+  case Tagged: {
+    const TagType *TT = cast<TagType>(CanonicalType);
+    const Decl::Kind Kind = TT->getDecl()->getKind();
+    return Kind == Decl::Struct || Kind == Decl::Union;
+  }
+  default:
+    return false;
+  }
+}
+
+bool Type::isFunctionType() const {
+  return isa<FunctionType>(CanonicalType);
+}
+
+bool Type::isPointerType() const {
+  return isa<PointerType>(CanonicalType);
+}
+
+bool Type::isReferenceType() const {
+  return isa<ReferenceType>(CanonicalType);
+}
+
+bool Type::isArrayType() const {
+  return isa<ArrayType>(CanonicalType);
+}
+
+bool Type::isStructureType() const {
+  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
+    if (TT->getDecl()->getKind() == Decl::Struct)
+      return true;
+  }
+  return false;
+}
+
+bool Type::isUnionType() const { 
+  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
+    if (TT->getDecl()->getKind() == Decl::Union)
+      return true;
+  }
+  return false;
+}
+
+// C99 6.2.7p1: If both are complete types, then the following additional
+// requirements apply...FIXME (handle compatibility across source files).
+bool Type::tagTypesAreCompatible(QualType lhs, QualType rhs) {
+  TagDecl *ldecl = cast<TagType>(lhs.getCanonicalType())->getDecl();
+  TagDecl *rdecl = cast<TagType>(rhs.getCanonicalType())->getDecl();
+  
+  if (ldecl->getKind() == Decl::Struct && rdecl->getKind() == Decl::Struct) {
+    if (ldecl->getIdentifier() == rdecl->getIdentifier())
+      return true;
+  }
+  if (ldecl->getKind() == Decl::Union && rdecl->getKind() == Decl::Union) {
+    if (ldecl->getIdentifier() == rdecl->getIdentifier())
+      return true;
+  }
+  return false;
+}
+
+bool Type::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
+  // C99 6.7.5.1p2: For two pointer types to be compatible, both shall be 
+  // identically qualified and both shall be pointers to compatible types.
+  if (lhs.getQualifiers() != rhs.getQualifiers())
+    return false;
+    
+  QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
+  QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
+  
+  return typesAreCompatible(ltype, rtype);
+}
+
+// C++ 5.17p6: When the left opperand of an assignment operator denotes a
+// reference to T, the operation assigns to the object of type T denoted by the
+// reference.
+bool Type::referenceTypesAreCompatible(QualType lhs, QualType rhs) {
+  QualType ltype = lhs;
+
+  if (lhs->isReferenceType())
+    ltype = cast<ReferenceType>(lhs.getCanonicalType())->getReferenceeType();
+
+  QualType rtype = rhs;
+
+  if (rhs->isReferenceType())
+    rtype = cast<ReferenceType>(rhs.getCanonicalType())->getReferenceeType();
+
+  return typesAreCompatible(ltype, rtype);
+}
+
+bool Type::functionTypesAreCompatible(QualType lhs, QualType rhs) {
+  const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
+  const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
+  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
+  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
+
+  // first check the return types (common between C99 and K&R).
+  if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
+    return false;
+
+  if (lproto && rproto) { // two C99 style function prototypes
+    unsigned lproto_nargs = lproto->getNumArgs();
+    unsigned rproto_nargs = rproto->getNumArgs();
+    
+    if (lproto_nargs != rproto_nargs)
+      return false;
+      
+    // both prototypes have the same number of arguments.
+    if ((lproto->isVariadic() && !rproto->isVariadic()) ||
+        (rproto->isVariadic() && !lproto->isVariadic()))
+      return false;
+      
+    // The use of ellipsis agree...now check the argument types.
+    for (unsigned i = 0; i < lproto_nargs; i++)
+      if (!typesAreCompatible(lproto->getArgType(i), rproto->getArgType(i)))
+        return false;
+    return true;
+  }
+  if (!lproto && !rproto) // two K&R style function decls, nothing to do.
+    return true;
+
+  // we have a mixture of K&R style with C99 prototypes
+  const FunctionTypeProto *proto = lproto ? lproto : rproto;
+  
+  if (proto->isVariadic())
+    return false;
+    
+  // FIXME: Each parameter type T in the prototype must be compatible with the
+  // type resulting from applying the usual argument conversions to T.
+  return true;
+}
+
+bool Type::arrayTypesAreCompatible(QualType lhs, QualType rhs) {
+  QualType ltype = cast<ArrayType>(lhs.getCanonicalType())->getElementType();
+  QualType rtype = cast<ArrayType>(rhs.getCanonicalType())->getElementType();
+  
+  if (!typesAreCompatible(ltype, rtype))
+    return false;
+    
+  // FIXME: If both types specify constant sizes, then the sizes must also be 
+  // the same. Even if the sizes are the same, GCC produces an error.
+  return true;
+}
+
+/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 
+/// both shall have the identically qualified version of a compatible type.
+/// C99 6.2.7p1: Two types have compatible types if their types are the 
+/// same. See 6.7.[2,3,5] for additional rules.
+bool Type::typesAreCompatible(QualType lhs, QualType rhs) {
+  QualType lcanon = lhs.getCanonicalType();
+  QualType rcanon = rhs.getCanonicalType();
+
+  // If two types are identical, they are are compatible
+  if (lcanon == rcanon)
+    return true;
+  
+  // If the canonical type classes don't match, they can't be compatible
+  if (lcanon->getTypeClass() != rcanon->getTypeClass())
+    return false;
+
+  switch (lcanon->getTypeClass()) {
+    case Type::Pointer:
+      return pointerTypesAreCompatible(lcanon, rcanon);
+    case Type::Reference:
+      return referenceTypesAreCompatible(lcanon, rcanon);
+    case Type::Array:
+      return arrayTypesAreCompatible(lcanon, rcanon);
+    case Type::FunctionNoProto:
+    case Type::FunctionProto:
+      return functionTypesAreCompatible(lcanon, rcanon);
+    case Type::Tagged: // handle structures, unions
+      return tagTypesAreCompatible(lcanon, rcanon);
+    case Type::Builtin:
+      return false; 
+    default:
+      assert(0 && "unexpected type");
+  }
+  return true; // should never get here...
+}
+
+bool Type::isIntegerType() const {
+  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+    return BT->getKind() >= BuiltinType::Bool &&
+           BT->getKind() <= BuiltinType::LongLong;
+  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
+    if (TT->getDecl()->getKind() == Decl::Enum)
+      return true;
+  return false;
+}
+
+bool Type::isSignedIntegerType() const {
+  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
+    return BT->getKind() >= BuiltinType::Char_S &&
+           BT->getKind() <= BuiltinType::LongLong;
+  }
+  return false;
+}
+
+bool Type::isUnsignedIntegerType() const {
+  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
+    return BT->getKind() >= BuiltinType::Bool &&
+           BT->getKind() <= BuiltinType::ULongLong;
+  }
+  return false;
+}
+
+bool Type::isFloatingType() const {
+  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+    return BT->getKind() >= BuiltinType::Float &&
+           BT->getKind() <= BuiltinType::LongDouble;
+  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
+    return CT->isFloatingType();
+  return false;
+}
+
+bool Type::isRealFloatingType() const {
+  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+    return BT->getKind() >= BuiltinType::Float &&
+           BT->getKind() <= BuiltinType::LongDouble;
+  return false;
+}
+
+bool Type::isRealType() const {
+  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+    return BT->getKind() >= BuiltinType::Bool &&
+           BT->getKind() <= BuiltinType::LongDouble;
+  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
+    return TT->getDecl()->getKind() == Decl::Enum;
+  return false;
+}
+
+bool Type::isComplexType() const {
+  return isa<ComplexType>(CanonicalType);
+}
+
+bool Type::isVectorType() const {
+  return isa<VectorType>(CanonicalType);
+}
+
+bool Type::isArithmeticType() const {
+  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+    return BT->getKind() != BuiltinType::Void;
+  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
+    if (TT->getDecl()->getKind() == Decl::Enum)
+      return true;
+  return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
+}
+
+bool Type::isScalarType() const {
+  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
+    return BT->getKind() != BuiltinType::Void;
+  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
+    if (TT->getDecl()->getKind() == Decl::Enum)
+      return true;
+    return false;
+  }
+  return isa<PointerType>(CanonicalType) || isa<ComplexType>(CanonicalType);
+}
+
+bool Type::isAggregateType() const {
+  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
+    if (TT->getDecl()->getKind() == Decl::Struct)
+      return true;
+    return false;
+  }
+  return CanonicalType->getTypeClass() == Array;
+}
+
+// The only variable size types are auto arrays within a function. Structures 
+// cannot contain a VLA member. They can have a flexible array member, however
+// the structure is still constant size (C99 6.7.2.1p16).
+bool Type::isConstantSizeType(SourceLocation *loc) const {
+  if (const ArrayType *Ary = dyn_cast<ArrayType>(CanonicalType)) {
+    assert(Ary->getSize() && "Incomplete types don't have a size at all!");
+    return Ary->getSize()->isIntegerConstantExpr(loc); // Variable Length Array?
+  }
+  return true;
+}
+
+/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
+/// - a type that can describe objects, but which lacks information needed to
+/// determine its size.
+bool Type::isIncompleteType() const { 
+  switch (CanonicalType->getTypeClass()) { 
+  default: return false;
+  case Builtin:
+    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
+    // be completed.
+    return isVoidType();
+  case Tagged:
+    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
+    // forward declaration, but not a full definition (C99 6.2.5p22).
+    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
+  case Array:
+    // An array of unknown size is an incomplete type (C99 6.2.5p22).
+    return cast<ArrayType>(CanonicalType)->getSize() == 0;
+  }
+}
+
+bool Type::isPromotableIntegerType() const {
+  const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
+  if (!BT) return false;
+  switch (BT->getKind()) {
+  case BuiltinType::Bool:
+  case BuiltinType::Char_S:
+  case BuiltinType::Char_U:
+  case BuiltinType::SChar:
+  case BuiltinType::UChar:
+  case BuiltinType::Short:
+  case BuiltinType::UShort:
+    return true;
+  default: 
+    return false;
+  }
+}
+
+const char *BuiltinType::getName() const {
+  switch (getKind()) {
+  default: assert(0 && "Unknown builtin type!");
+  case Void:              return "void";
+  case Bool:              return "_Bool";
+  case Char_S:            return "char";
+  case Char_U:            return "char";
+  case SChar:             return "signed char";
+  case Short:             return "short";
+  case Int:               return "int";
+  case Long:              return "long";
+  case LongLong:          return "long long";
+  case UChar:             return "unsigned char";
+  case UShort:            return "unsigned short";
+  case UInt:              return "unsigned int";
+  case ULong:             return "unsigned long";
+  case ULongLong:         return "unsigned long long";
+  case Float:             return "float";
+  case Double:            return "double";
+  case LongDouble:        return "long double";
+  }
+}
+
+// FIXME: need to use TargetInfo to derive the target specific sizes. This
+// implementation will suffice for play with vector support.
+unsigned BuiltinType::getSize() const {
+  switch (getKind()) {
+  default: assert(0 && "Unknown builtin type!");
+  case Void:              return 0;
+  case Bool:
+  case Char_S:
+  case Char_U:            return sizeof(char) * 8;
+  case SChar:             return sizeof(signed char) * 8;
+  case Short:             return sizeof(short) * 8;
+  case Int:               return sizeof(int) * 8;
+  case Long:              return sizeof(long) * 8;
+  case LongLong:          return sizeof(long long) * 8;
+  case UChar:             return sizeof(unsigned char) * 8;
+  case UShort:            return sizeof(unsigned short) * 8;
+  case UInt:              return sizeof(unsigned int) * 8;
+  case ULong:             return sizeof(unsigned long) * 8;
+  case ULongLong:         return sizeof(unsigned long long) * 8;
+  case Float:             return sizeof(float) * 8;
+  case Double:            return sizeof(double) * 8;
+  case LongDouble:        return sizeof(long double) * 8;
+  }
+}
+
+void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
+                                QualType* ArgTys,
+                                unsigned NumArgs, bool isVariadic) {
+  ID.AddPointer(Result.getAsOpaquePtr());
+  for (unsigned i = 0; i != NumArgs; ++i)
+    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
+  ID.AddInteger(isVariadic);
+}
+
+void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID) {
+  Profile(ID, getResultType(), ArgInfo, NumArgs, isVariadic());
+}
+
+
+bool RecordType::classof(const Type *T) {
+  if (const TagType *TT = dyn_cast<TagType>(T))
+    return isa<RecordDecl>(TT->getDecl());
+  return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Type Printing
+//===----------------------------------------------------------------------===//
+
+void QualType::dump(const char *msg) const {
+  std::string R = "foo";
+  getAsStringInternal(R);
+  if (msg)
+    fprintf(stderr, "%s: %s\n", msg, R.c_str());
+  else
+    fprintf(stderr, "%s\n", R.c_str());
+}
+
+static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
+  // Note: funkiness to ensure we get a space only between quals.
+  bool NonePrinted = true;
+  if (TypeQuals & QualType::Const)
+    S += "const", NonePrinted = false;
+  if (TypeQuals & QualType::Volatile)
+    S += (NonePrinted+" volatile"), NonePrinted = false;
+  if (TypeQuals & QualType::Restrict)
+    S += (NonePrinted+" restrict"), NonePrinted = false;
+}
+
+void QualType::getAsStringInternal(std::string &S) const {
+  if (isNull()) {
+    S += "NULL TYPE\n";
+    return;
+  }
+  
+  // Print qualifiers as appropriate.
+  if (unsigned TQ = getQualifiers()) {
+    std::string TQS;
+    AppendTypeQualList(TQS, TQ);
+    if (!S.empty())
+      S = TQS + ' ' + S;
+    else
+      S = TQS;
+  }
+
+  getTypePtr()->getAsStringInternal(S);
+}
+
+void BuiltinType::getAsStringInternal(std::string &S) const {
+  if (S.empty()) {
+    S = getName();
+  } else {
+    // Prefix the basic type, e.g. 'int X'.
+    S = ' ' + S;
+    S = getName() + S;
+  }
+}
+
+void ComplexType::getAsStringInternal(std::string &S) const {
+  ElementType->getAsStringInternal(S);
+  S = "_Complex " + S;
+}
+
+void PointerType::getAsStringInternal(std::string &S) const {
+  S = '*' + S;
+  
+  // Handle things like 'int (*A)[4];' correctly.
+  // FIXME: this should include vectors, but vectors use attributes I guess.
+  if (isa<ArrayType>(PointeeType.getTypePtr()))
+    S = '(' + S + ')';
+  
+  PointeeType.getAsStringInternal(S);
+}
+
+void ReferenceType::getAsStringInternal(std::string &S) const {
+  S = '&' + S;
+  
+  // Handle things like 'int (&A)[4];' correctly.
+  // FIXME: this should include vectors, but vectors use attributes I guess.
+  if (isa<ArrayType>(ReferenceeType.getTypePtr()))
+    S = '(' + S + ')';
+  
+  ReferenceeType.getAsStringInternal(S);
+}
+
+void ArrayType::getAsStringInternal(std::string &S) const {
+  S += '[';
+  
+  if (IndexTypeQuals) {
+    AppendTypeQualList(S, IndexTypeQuals);
+    S += ' ';
+  }
+  
+  if (SizeModifier == Static)
+    S += "static";
+  else if (SizeModifier == Star)
+    S += '*';
+  
+  S += ']';
+  
+  ElementType.getAsStringInternal(S);
+}
+
+void VectorType::getAsStringInternal(std::string &S) const {
+  S += " __attribute__(( vector_size(";
+  // FIXME: handle types that are != 32 bits.
+  S += llvm::utostr_32(NumElements*4); // convert back to bytes.
+  S += ") ))";
+  ElementType.getAsStringInternal(S);
+}
+
+void FunctionTypeNoProto::getAsStringInternal(std::string &S) const {
+  // If needed for precedence reasons, wrap the inner part in grouping parens.
+  if (!S.empty())
+    S = "(" + S + ")";
+  
+  S += "()";
+  getResultType().getAsStringInternal(S);
+}
+
+void FunctionTypeProto::getAsStringInternal(std::string &S) const {
+  // If needed for precedence reasons, wrap the inner part in grouping parens.
+  if (!S.empty())
+    S = "(" + S + ")";
+  
+  S += "(";
+  std::string Tmp;
+  for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
+    if (i) S += ", ";
+    getArgType(i).getAsStringInternal(Tmp);
+    S += Tmp;
+    Tmp.clear();
+  }
+  
+  if (isVariadic()) {
+    if (getNumArgs())
+      S += ", ";
+    S += "...";
+  } else if (getNumArgs() == 0) {
+    // Do not emit int() if we have a proto, emit 'int(void)'.
+    S += "void";
+  }
+  
+  S += ")";
+  getResultType().getAsStringInternal(S);
+}
+
+
+void TypedefType::getAsStringInternal(std::string &InnerString) const {
+  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typedefname X'.
+    InnerString = ' ' + InnerString;
+  InnerString = getDecl()->getIdentifier()->getName() + InnerString;
+}
+
+void TagType::getAsStringInternal(std::string &InnerString) const {
+  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typedefname X'.
+    InnerString = ' ' + InnerString;
+  
+  const char *Kind = getDecl()->getKindName();
+  const char *ID;
+  if (const IdentifierInfo *II = getDecl()->getIdentifier())
+    ID = II->getName();
+  else
+    ID = "<anonymous>";
+
+  InnerString = std::string(Kind) + " " + ID + InnerString;
+}