| //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Constant Expr nodes as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "clang/AST/AST.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Support/Compiler.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| class VISIBILITY_HIDDEN ConstExprEmitter : |
| public StmtVisitor<ConstExprEmitter, llvm::Constant*> { |
| CodeGenModule &CGM; |
| public: |
| ConstExprEmitter(CodeGenModule &cgm) |
| : CGM(cgm) { |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| llvm::Constant *VisitStmt(Stmt *S) { |
| CGM.WarnUnsupported(S, "constant expression"); |
| return llvm::UndefValue::get(CGM.getTypes().ConvertType(cast<Expr>(S)->getType())); |
| } |
| |
| llvm::Constant *VisitParenExpr(ParenExpr *PE) { |
| return Visit(PE->getSubExpr()); |
| } |
| |
| // Leaves |
| llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *E) { |
| return llvm::ConstantInt::get(E->getValue()); |
| } |
| llvm::Constant *VisitFloatingLiteral(const FloatingLiteral *E) { |
| return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue()); |
| } |
| llvm::Constant *VisitCharacterLiteral(const CharacterLiteral *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
| } |
| llvm::Constant *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
| } |
| |
| llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| return Visit(E->getInitializer()); |
| } |
| |
| llvm::Constant *VisitCastExpr(const CastExpr* E) { |
| llvm::Constant *C = Visit(E->getSubExpr()); |
| |
| return EmitConversion(C, E->getSubExpr()->getType(), E->getType()); |
| } |
| |
| llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, |
| const llvm::ArrayType *AType) { |
| |
| std::vector<llvm::Constant*> Elts; |
| unsigned NumInitElements = ILE->getNumInits(); |
| const llvm::Type *ElemTy = AType->getElementType(); |
| unsigned NumElements = AType->getNumElements(); |
| |
| // Initialising an array requires us to automatically |
| // initialise any elements that have not been initialised explicitly |
| unsigned NumInitableElts = std::min(NumInitElements, NumElements); |
| |
| // Copy initializer elements. |
| unsigned i = 0; |
| for (; i < NumInitableElts; ++i) { |
| |
| llvm::Constant *C = Visit(ILE->getInit(i)); |
| // FIXME: Remove this when sema of initializers is finished (and the code |
| // above). |
| if (C == 0 && ILE->getInit(i)->getType()->isVoidType()) { |
| if (ILE->getType()->isVoidType()) return 0; |
| return llvm::UndefValue::get(AType); |
| } |
| assert (C && "Failed to create initializer expression"); |
| Elts.push_back(C); |
| } |
| |
| // Initialize remaining array elements. |
| for (; i < NumElements; ++i) |
| Elts.push_back(llvm::Constant::getNullValue(ElemTy)); |
| |
| return llvm::ConstantArray::get(AType, Elts); |
| } |
| |
| llvm::Constant *EmitStructInitialization(InitListExpr *ILE, |
| const llvm::StructType *SType) { |
| |
| TagDecl *TD = ILE->getType()->getAsRecordType()->getDecl(); |
| std::vector<llvm::Constant*> Elts; |
| const CGRecordLayout *CGR = CGM.getTypes().getCGRecordLayout(TD); |
| unsigned NumInitElements = ILE->getNumInits(); |
| unsigned NumElements = SType->getNumElements(); |
| |
| // Initialising an structure requires us to automatically |
| // initialise any elements that have not been initialised explicitly |
| unsigned NumInitableElts = std::min(NumInitElements, NumElements); |
| |
| // Copy initializer elements. Skip padding fields. |
| unsigned EltNo = 0; // Element no in ILE |
| unsigned FieldNo = 0; // Field no in SType |
| while (EltNo < NumInitableElts) { |
| |
| // Zero initialize padding field. |
| if (CGR->isPaddingField(FieldNo)) { |
| const llvm::Type *FieldTy = SType->getElementType(FieldNo); |
| Elts.push_back(llvm::Constant::getNullValue(FieldTy)); |
| FieldNo++; |
| continue; |
| } |
| |
| llvm::Constant *C = Visit(ILE->getInit(EltNo)); |
| // FIXME: Remove this when sema of initializers is finished (and the code |
| // above). |
| if (C == 0 && ILE->getInit(EltNo)->getType()->isVoidType()) { |
| if (ILE->getType()->isVoidType()) return 0; |
| return llvm::UndefValue::get(SType); |
| } |
| assert (C && "Failed to create initializer expression"); |
| Elts.push_back(C); |
| EltNo++; |
| FieldNo++; |
| } |
| |
| // Initialize remaining structure elements. |
| for (unsigned i = Elts.size(); i < NumElements; ++i) { |
| const llvm::Type *FieldTy = SType->getElementType(i); |
| Elts.push_back(llvm::Constant::getNullValue(FieldTy)); |
| } |
| |
| return llvm::ConstantStruct::get(SType, Elts); |
| } |
| |
| llvm::Constant *EmitVectorInitialization(InitListExpr *ILE, |
| const llvm::VectorType *VType) { |
| |
| std::vector<llvm::Constant*> Elts; |
| unsigned NumInitElements = ILE->getNumInits(); |
| unsigned NumElements = VType->getNumElements(); |
| |
| assert (NumInitElements == NumElements |
| && "Unsufficient vector init elelments"); |
| // Copy initializer elements. |
| unsigned i = 0; |
| for (; i < NumElements; ++i) { |
| |
| llvm::Constant *C = Visit(ILE->getInit(i)); |
| // FIXME: Remove this when sema of initializers is finished (and the code |
| // above). |
| if (C == 0 && ILE->getInit(i)->getType()->isVoidType()) { |
| if (ILE->getType()->isVoidType()) return 0; |
| return llvm::UndefValue::get(VType); |
| } |
| assert (C && "Failed to create initializer expression"); |
| Elts.push_back(C); |
| } |
| |
| return llvm::ConstantVector::get(VType, Elts); |
| } |
| |
| llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { |
| const llvm::CompositeType *CType = |
| dyn_cast<llvm::CompositeType>(ConvertType(ILE->getType())); |
| |
| if (!CType) { |
| // We have a scalar in braces. Just use the first element. |
| return Visit(ILE->getInit(0)); |
| } |
| |
| if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(CType)) |
| return EmitArrayInitialization(ILE, AType); |
| |
| if (const llvm::StructType *SType = dyn_cast<llvm::StructType>(CType)) |
| return EmitStructInitialization(ILE, SType); |
| |
| if (const llvm::VectorType *VType = dyn_cast<llvm::VectorType>(CType)) |
| return EmitVectorInitialization(ILE, VType); |
| |
| // Make sure we have an array at this point |
| assert(0 && "Unable to handle InitListExpr"); |
| } |
| |
| llvm::Constant *VisitImplicitCastExpr(ImplicitCastExpr *ICExpr) { |
| // If this is due to array->pointer conversion, emit the array expression as |
| // an l-value. |
| if (ICExpr->getSubExpr()->getType()->isArrayType()) { |
| // Note that VLAs can't exist for global variables. |
| llvm::Constant *C = EmitLValue(ICExpr->getSubExpr()); |
| assert(isa<llvm::PointerType>(C->getType()) && |
| isa<llvm::ArrayType>(cast<llvm::PointerType>(C->getType()) |
| ->getElementType())); |
| llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); |
| |
| llvm::Constant *Ops[] = {Idx0, Idx0}; |
| C = llvm::ConstantExpr::getGetElementPtr(C, Ops, 2); |
| |
| // The resultant pointer type can be implicitly cast to other pointer |
| // types as well, for example void*. |
| const llvm::Type *DestPTy = ConvertType(ICExpr->getType()); |
| assert(isa<llvm::PointerType>(DestPTy) && |
| "Only expect implicit cast to pointer"); |
| return llvm::ConstantExpr::getBitCast(C, DestPTy); |
| } |
| |
| llvm::Constant *C = Visit(ICExpr->getSubExpr()); |
| |
| return EmitConversion(C, ICExpr->getSubExpr()->getType(),ICExpr->getType()); |
| } |
| |
| llvm::Constant *VisitStringLiteral(StringLiteral *E) { |
| const char *StrData = E->getStrData(); |
| unsigned Len = E->getByteLength(); |
| assert(!E->getType()->isPointerType() && "Strings are always arrays"); |
| |
| // Otherwise this must be a string initializing an array in a static |
| // initializer. Don't emit it as the address of the string, emit the string |
| // data itself as an inline array. |
| const ConstantArrayType *CAT = E->getType()->getAsConstantArrayType(); |
| assert(CAT && "String isn't pointer or array!"); |
| |
| std::string Str(StrData, StrData + Len); |
| // Null terminate the string before potentially truncating it. |
| // FIXME: What about wchar_t strings? |
| Str.push_back(0); |
| |
| uint64_t RealLen = CAT->getSize().getZExtValue(); |
| // String or grow the initializer to the required size. |
| if (RealLen != Str.size()) |
| Str.resize(RealLen); |
| |
| return llvm::ConstantArray::get(Str, false); |
| } |
| |
| llvm::Constant *VisitDeclRefExpr(DeclRefExpr *E) { |
| const ValueDecl *Decl = E->getDecl(); |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl)) |
| return CGM.GetAddrOfFunctionDecl(FD, false); |
| if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(Decl)) |
| return llvm::ConstantInt::get(EC->getInitVal()); |
| assert(0 && "Unsupported decl ref type!"); |
| return 0; |
| } |
| |
| llvm::Constant *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) { |
| return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf()); |
| } |
| |
| // Unary operators |
| llvm::Constant *VisitUnaryPlus(const UnaryOperator *E) { |
| return Visit(E->getSubExpr()); |
| } |
| llvm::Constant *VisitUnaryMinus(const UnaryOperator *E) { |
| return llvm::ConstantExpr::getNeg(Visit(E->getSubExpr())); |
| } |
| llvm::Constant *VisitUnaryNot(const UnaryOperator *E) { |
| return llvm::ConstantExpr::getNot(Visit(E->getSubExpr())); |
| } |
| llvm::Constant *VisitUnaryLNot(const UnaryOperator *E) { |
| llvm::Constant *SubExpr = Visit(E->getSubExpr()); |
| |
| if (E->getSubExpr()->getType()->isRealFloatingType()) { |
| // Compare against 0.0 for fp scalars. |
| llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType()); |
| SubExpr = llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UEQ, SubExpr, |
| Zero); |
| } else { |
| assert((E->getSubExpr()->getType()->isIntegerType() || |
| E->getSubExpr()->getType()->isPointerType()) && |
| "Unknown scalar type to convert"); |
| // Compare against an integer or pointer null. |
| llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType()); |
| SubExpr = llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, SubExpr, |
| Zero); |
| } |
| |
| return llvm::ConstantExpr::getZExt(SubExpr, ConvertType(E->getType())); |
| } |
| llvm::Constant *VisitUnarySizeOf(const UnaryOperator *E) { |
| return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true); |
| } |
| llvm::Constant *VisitUnaryAlignOf(const UnaryOperator *E) { |
| return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false); |
| } |
| llvm::Constant *VisitUnaryAddrOf(const UnaryOperator *E) { |
| return EmitLValue(E->getSubExpr()); |
| } |
| llvm::Constant *VisitUnaryOffsetOf(const UnaryOperator *E) { |
| int64_t Val = E->evaluateOffsetOf(CGM.getContext()); |
| |
| assert(E->getType()->isIntegerType() && "Result type must be an integer!"); |
| |
| uint32_t ResultWidth = static_cast<uint32_t>( |
| CGM.getContext().getTypeSize(E->getType(), SourceLocation())); |
| return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val)); |
| } |
| |
| // Binary operators |
| llvm::Constant *VisitBinOr(const BinaryOperator *E) { |
| llvm::Constant *LHS = Visit(E->getLHS()); |
| llvm::Constant *RHS = Visit(E->getRHS()); |
| |
| return llvm::ConstantExpr::getOr(LHS, RHS); |
| } |
| llvm::Constant *VisitBinSub(const BinaryOperator *E) { |
| llvm::Constant *LHS = Visit(E->getLHS()); |
| llvm::Constant *RHS = Visit(E->getRHS()); |
| |
| if (!isa<llvm::PointerType>(RHS->getType())) { |
| // pointer - int |
| if (isa<llvm::PointerType>(LHS->getType())) { |
| llvm::Constant *Idx = llvm::ConstantExpr::getNeg(RHS); |
| |
| return llvm::ConstantExpr::getGetElementPtr(LHS, &Idx, 1); |
| } |
| |
| // int - int |
| return llvm::ConstantExpr::getSub(LHS, RHS); |
| } |
| |
| assert(0 && "Unhandled bin sub case!"); |
| return 0; |
| } |
| |
| llvm::Constant *VisitBinShl(const BinaryOperator *E) { |
| llvm::Constant *LHS = Visit(E->getLHS()); |
| llvm::Constant *RHS = Visit(E->getRHS()); |
| |
| // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
| // RHS to the same size as the LHS. |
| if (LHS->getType() != RHS->getType()) |
| RHS = llvm::ConstantExpr::getIntegerCast(RHS, LHS->getType(), false); |
| |
| return llvm::ConstantExpr::getShl(LHS, RHS); |
| } |
| |
| llvm::Constant *VisitBinMul(const BinaryOperator *E) { |
| llvm::Constant *LHS = Visit(E->getLHS()); |
| llvm::Constant *RHS = Visit(E->getRHS()); |
| |
| return llvm::ConstantExpr::getMul(LHS, RHS); |
| } |
| |
| llvm::Constant *VisitBinDiv(const BinaryOperator *E) { |
| llvm::Constant *LHS = Visit(E->getLHS()); |
| llvm::Constant *RHS = Visit(E->getRHS()); |
| |
| if (LHS->getType()->isFPOrFPVector()) |
| return llvm::ConstantExpr::getFDiv(LHS, RHS); |
| else if (E->getType()->isUnsignedIntegerType()) |
| return llvm::ConstantExpr::getUDiv(LHS, RHS); |
| else |
| return llvm::ConstantExpr::getSDiv(LHS, RHS); |
| } |
| |
| llvm::Constant *VisitBinAdd(const BinaryOperator *E) { |
| llvm::Constant *LHS = Visit(E->getLHS()); |
| llvm::Constant *RHS = Visit(E->getRHS()); |
| |
| if (!E->getType()->isPointerType()) |
| return llvm::ConstantExpr::getAdd(LHS, RHS); |
| |
| llvm::Constant *Ptr, *Idx; |
| if (isa<llvm::PointerType>(LHS->getType())) { // pointer + int |
| Ptr = LHS; |
| Idx = RHS; |
| } else { // int + pointer |
| Ptr = RHS; |
| Idx = LHS; |
| } |
| |
| return llvm::ConstantExpr::getGetElementPtr(Ptr, &Idx, 1); |
| } |
| |
| llvm::Constant *VisitBinAnd(const BinaryOperator *E) { |
| llvm::Constant *LHS = Visit(E->getLHS()); |
| llvm::Constant *RHS = Visit(E->getRHS()); |
| |
| return llvm::ConstantExpr::getAnd(LHS, RHS); |
| } |
| |
| // Utility methods |
| const llvm::Type *ConvertType(QualType T) { |
| return CGM.getTypes().ConvertType(T); |
| } |
| |
| llvm::Constant *EmitConversionToBool(llvm::Constant *Src, QualType SrcType) { |
| assert(SrcType->isCanonical() && "EmitConversion strips typedefs"); |
| |
| if (SrcType->isRealFloatingType()) { |
| // Compare against 0.0 for fp scalars. |
| llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType()); |
| return llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UNE, Src, Zero); |
| } |
| |
| assert((SrcType->isIntegerType() || SrcType->isPointerType()) && |
| "Unknown scalar type to convert"); |
| |
| // Compare against an integer or pointer null. |
| llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType()); |
| return llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_NE, Src, Zero); |
| } |
| |
| llvm::Constant *EmitConversion(llvm::Constant *Src, QualType SrcType, |
| QualType DstType) { |
| SrcType = SrcType.getCanonicalType(); |
| DstType = DstType.getCanonicalType(); |
| if (SrcType == DstType) return Src; |
| |
| // Handle conversions to bool first, they are special: comparisons against 0. |
| if (DstType->isBooleanType()) |
| return EmitConversionToBool(Src, SrcType); |
| |
| const llvm::Type *DstTy = ConvertType(DstType); |
| |
| // Ignore conversions like int -> uint. |
| if (Src->getType() == DstTy) |
| return Src; |
| |
| // Handle pointer conversions next: pointers can only be converted to/from |
| // other pointers and integers. |
| if (isa<PointerType>(DstType)) { |
| // The source value may be an integer, or a pointer. |
| if (isa<llvm::PointerType>(Src->getType())) |
| return llvm::ConstantExpr::getBitCast(Src, DstTy); |
| assert(SrcType->isIntegerType() &&"Not ptr->ptr or int->ptr conversion?"); |
| return llvm::ConstantExpr::getIntToPtr(Src, DstTy); |
| } |
| |
| if (isa<PointerType>(SrcType)) { |
| // Must be an ptr to int cast. |
| assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); |
| return llvm::ConstantExpr::getPtrToInt(Src, DstTy); |
| } |
| |
| // A scalar source can be splatted to a vector of the same element type |
| if (isa<llvm::VectorType>(DstTy) && !isa<VectorType>(SrcType)) { |
| const llvm::VectorType *VT = cast<llvm::VectorType>(DstTy); |
| assert((VT->getElementType() == Src->getType()) && |
| "Vector element type must match scalar type to splat."); |
| unsigned NumElements = DstType->getAsVectorType()->getNumElements(); |
| llvm::SmallVector<llvm::Constant*, 16> Elements; |
| for (unsigned i = 0; i < NumElements; i++) |
| Elements.push_back(Src); |
| |
| return llvm::ConstantVector::get(&Elements[0], NumElements); |
| } |
| |
| if (isa<llvm::VectorType>(Src->getType()) || |
| isa<llvm::VectorType>(DstTy)) { |
| return llvm::ConstantExpr::getBitCast(Src, DstTy); |
| } |
| |
| // Finally, we have the arithmetic types: real int/float. |
| if (isa<llvm::IntegerType>(Src->getType())) { |
| bool InputSigned = SrcType->isSignedIntegerType(); |
| if (isa<llvm::IntegerType>(DstTy)) |
| return llvm::ConstantExpr::getIntegerCast(Src, DstTy, InputSigned); |
| else if (InputSigned) |
| return llvm::ConstantExpr::getSIToFP(Src, DstTy); |
| else |
| return llvm::ConstantExpr::getUIToFP(Src, DstTy); |
| } |
| |
| assert(Src->getType()->isFloatingPoint() && "Unknown real conversion"); |
| if (isa<llvm::IntegerType>(DstTy)) { |
| if (DstType->isSignedIntegerType()) |
| return llvm::ConstantExpr::getFPToSI(Src, DstTy); |
| else |
| return llvm::ConstantExpr::getFPToUI(Src, DstTy); |
| } |
| |
| assert(DstTy->isFloatingPoint() && "Unknown real conversion"); |
| if (DstTy->getTypeID() < Src->getType()->getTypeID()) |
| return llvm::ConstantExpr::getFPTrunc(Src, DstTy); |
| else |
| return llvm::ConstantExpr::getFPExtend(Src, DstTy); |
| } |
| |
| llvm::Constant *EmitSizeAlignOf(QualType TypeToSize, |
| QualType RetType, bool isSizeOf) { |
| std::pair<uint64_t, unsigned> Info = |
| CGM.getContext().getTypeInfo(TypeToSize, SourceLocation()); |
| |
| uint64_t Val = isSizeOf ? Info.first : Info.second; |
| Val /= 8; // Return size in bytes, not bits. |
| |
| assert(RetType->isIntegerType() && "Result type must be an integer!"); |
| |
| uint32_t ResultWidth = static_cast<uint32_t>( |
| CGM.getContext().getTypeSize(RetType, SourceLocation())); |
| return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val)); |
| } |
| |
| llvm::Constant *EmitLValue(Expr *E) { |
| switch (E->getStmtClass()) { |
| default: break; |
| case Expr::ParenExprClass: |
| // Elide parenthesis |
| return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); |
| case Expr::CompoundLiteralExprClass: { |
| // Note that due to the nature of compound literals, this is guaranteed |
| // to be the only use of the variable, so we just generate it here. |
| CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); |
| llvm::Constant* C = Visit(CLE->getInitializer()); |
| C = new llvm::GlobalVariable(C->getType(),E->getType().isConstQualified(), |
| llvm::GlobalValue::InternalLinkage, |
| C, ".compoundliteral", &CGM.getModule()); |
| return C; |
| } |
| case Expr::DeclRefExprClass: { |
| ValueDecl *Decl = cast<DeclRefExpr>(E)->getDecl(); |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl)) |
| return CGM.GetAddrOfFunctionDecl(FD, false); |
| if (const FileVarDecl* VD = dyn_cast<FileVarDecl>(Decl)) |
| return CGM.GetAddrOfGlobalVar(VD, false); |
| // We can end up here with static block-scope variables (and others?) |
| // FIXME: How do we implement block-scope variables?! |
| break; |
| } |
| case Expr::MemberExprClass: { |
| MemberExpr* ME = cast<MemberExpr>(E); |
| llvm::Constant *Base; |
| if (ME->isArrow()) |
| Base = Visit(ME->getBase()); |
| else |
| Base = EmitLValue(ME->getBase()); |
| |
| unsigned FieldNumber = CGM.getTypes().getLLVMFieldNo(ME->getMemberDecl()); |
| llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); |
| llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| FieldNumber); |
| llvm::Value *Ops[] = {Zero, Idx}; |
| return llvm::ConstantExpr::getGetElementPtr(Base, Ops, 2); |
| } |
| case Expr::ArraySubscriptExprClass: { |
| ArraySubscriptExpr* ASExpr = cast<ArraySubscriptExpr>(E); |
| llvm::Constant *Base = Visit(ASExpr->getBase()); |
| llvm::Constant *Index = Visit(ASExpr->getIdx()); |
| assert(!ASExpr->getBase()->getType()->isVectorType() && |
| "Taking the address of a vector component is illegal!"); |
| return llvm::ConstantExpr::getGetElementPtr(Base, &Index, 1); |
| } |
| case Expr::StringLiteralClass: { |
| StringLiteral *String = cast<StringLiteral>(E); |
| assert(!String->isWide() && "Cannot codegen wide strings yet"); |
| const char *StrData = String->getStrData(); |
| unsigned Len = String->getByteLength(); |
| |
| return CGM.GetAddrOfConstantString(std::string(StrData, StrData + Len)); |
| } |
| case Expr::UnaryOperatorClass: { |
| UnaryOperator *Exp = cast<UnaryOperator>(E); |
| switch (Exp->getOpcode()) { |
| default: break; |
| case UnaryOperator::Extension: |
| // Extension is just a wrapper for expressions |
| return EmitLValue(Exp->getSubExpr()); |
| case UnaryOperator::Real: |
| case UnaryOperator::Imag: { |
| // The address of __real or __imag is just a GEP off the address |
| // of the internal expression |
| llvm::Constant* C = EmitLValue(Exp->getSubExpr()); |
| llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); |
| llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| Exp->getOpcode() == UnaryOperator::Imag); |
| llvm::Value *Ops[] = {Zero, Idx}; |
| return llvm::ConstantExpr::getGetElementPtr(C, Ops, 2); |
| } |
| case UnaryOperator::Deref: |
| // The address of a deref is just the value of the expression |
| return Visit(Exp->getSubExpr()); |
| } |
| break; |
| } |
| } |
| CGM.WarnUnsupported(E, "constant l-value expression"); |
| llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); |
| return llvm::UndefValue::get(Ty); |
| } |
| |
| }; |
| |
| } // end anonymous namespace. |
| |
| |
| llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E) |
| { |
| QualType type = E->getType().getCanonicalType(); |
| |
| if (type->isIntegerType()) { |
| llvm::APSInt |
| Value(static_cast<uint32_t>(Context.getTypeSize(type, SourceLocation()))); |
| if (E->isIntegerConstantExpr(Value, Context)) { |
| return llvm::ConstantInt::get(Value); |
| } |
| } |
| |
| return ConstExprEmitter(*this).Visit(const_cast<Expr*>(E)); |
| } |