blob: e0baf800fbf6a879666baed7ad3d98250829c450 [file] [log] [blame]
//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTypes.h"
#include "CGCall.h"
#include "CGCXXABI.h"
#include "CGRecordLayout.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;
CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
const llvm::TargetData &TD, const ABIInfo &Info,
CGCXXABI &CXXABI, const CodeGenOptions &CGO)
: Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
TheABIInfo(Info), TheCXXABI(CXXABI), CodeGenOpts(CGO) {
}
CodeGenTypes::~CodeGenTypes() {
for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
I != E; ++I)
delete I->second;
for (llvm::FoldingSet<CGFunctionInfo>::iterator
I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
delete &*I++;
}
void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
llvm::StructType *Ty,
llvm::StringRef suffix) {
llvm::SmallString<256> TypeName;
llvm::raw_svector_ostream OS(TypeName);
OS << RD->getKindName() << '.';
// Name the codegen type after the typedef name
// if there is no tag type name available
if (RD->getIdentifier()) {
// FIXME: We should not have to check for a null decl context here.
// Right now we do it because the implicit Obj-C decls don't have one.
if (RD->getDeclContext())
OS << RD->getQualifiedNameAsString();
else
RD->printName(OS);
} else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
// FIXME: We should not have to check for a null decl context here.
// Right now we do it because the implicit Obj-C decls don't have one.
if (TDD->getDeclContext())
OS << TDD->getQualifiedNameAsString();
else
TDD->printName(OS);
} else
OS << "anon";
if (!suffix.empty())
OS << suffix;
Ty->setName(OS.str());
}
/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
/// ConvertType in that it is used to convert to the memory representation for
/// a type. For example, the scalar representation for _Bool is i1, but the
/// memory representation is usually i8 or i32, depending on the target.
llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
llvm::Type *R = ConvertType(T);
// If this is a non-bool type, don't map it.
if (!R->isIntegerTy(1))
return R;
// Otherwise, return an integer of the target-specified size.
return llvm::IntegerType::get(getLLVMContext(),
(unsigned)Context.getTypeSize(T));
}
// Code to verify a given function type is complete, i.e. the return type
// and all of the argument types are complete.
const TagType *CodeGenTypes::VerifyFuncTypeComplete(const Type* T) {
const FunctionType *FT = cast<FunctionType>(T);
if (const TagType* TT = FT->getResultType()->getAs<TagType>())
if (!TT->getDecl()->isDefinition())
return TT;
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(T))
for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
if (const TagType *TT = FPT->getArgType(i)->getAs<TagType>())
if (!TT->getDecl()->isDefinition())
return TT;
return 0;
}
/// UpdateCompletedType - When we find the full definition for a TagDecl,
/// replace the 'opaque' type we previously made for it if applicable.
void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
// If this is an enum being completed, then we flush all non-struct types from
// the cache. This allows function types and other things that may be derived
// from the enum to be recomputed.
if (isa<EnumDecl>(TD)) {
TypeCache.clear();
return;
}
const RecordDecl *RD = cast<RecordDecl>(TD);
if (!RD->isDependentType())
ConvertRecordDeclType(RD);
}
static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
const llvm::fltSemantics &format) {
if (&format == &llvm::APFloat::IEEEsingle)
return llvm::Type::getFloatTy(VMContext);
if (&format == &llvm::APFloat::IEEEdouble)
return llvm::Type::getDoubleTy(VMContext);
if (&format == &llvm::APFloat::IEEEquad)
return llvm::Type::getFP128Ty(VMContext);
if (&format == &llvm::APFloat::PPCDoubleDouble)
return llvm::Type::getPPC_FP128Ty(VMContext);
if (&format == &llvm::APFloat::x87DoubleExtended)
return llvm::Type::getX86_FP80Ty(VMContext);
assert(0 && "Unknown float format!");
return 0;
}
/// ConvertType - Convert the specified type to its LLVM form.
llvm::Type *CodeGenTypes::ConvertType(QualType T) {
T = Context.getCanonicalType(T);
const Type *Ty = T.getTypePtr();
// RecordTypes are cached and processed specially.
if (const RecordType *RT = dyn_cast<RecordType>(Ty))
return ConvertRecordDeclType(RT->getDecl());
// See if type is already cached.
llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
// If type is found in map then use it. Otherwise, convert type T.
if (TCI != TypeCache.end())
return TCI->second;
// If we don't have it in the cache, convert it now.
llvm::Type *ResultType = 0;
switch (Ty->getTypeClass()) {
case Type::Record: // Handled above.
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
llvm_unreachable("Non-canonical or dependent types aren't possible.");
break;
case Type::Builtin: {
switch (cast<BuiltinType>(Ty)->getKind()) {
case BuiltinType::Void:
case BuiltinType::ObjCId:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCSel:
// LLVM void type can only be used as the result of a function call. Just
// map to the same as char.
ResultType = llvm::Type::getInt8Ty(getLLVMContext());
break;
case BuiltinType::Bool:
// Note that we always return bool as i1 for use as a scalar type.
ResultType = llvm::Type::getInt1Ty(getLLVMContext());
break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::Int:
case BuiltinType::UInt:
case BuiltinType::Long:
case BuiltinType::ULong:
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
case BuiltinType::Char16:
case BuiltinType::Char32:
ResultType = llvm::IntegerType::get(getLLVMContext(),
static_cast<unsigned>(Context.getTypeSize(T)));
break;
case BuiltinType::Float:
case BuiltinType::Double:
case BuiltinType::LongDouble:
ResultType = getTypeForFormat(getLLVMContext(),
Context.getFloatTypeSemantics(T));
break;
case BuiltinType::NullPtr:
// Model std::nullptr_t as i8*
ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
break;
case BuiltinType::UInt128:
case BuiltinType::Int128:
ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
break;
case BuiltinType::Overload:
case BuiltinType::Dependent:
case BuiltinType::BoundMember:
case BuiltinType::UnknownAny:
llvm_unreachable("Unexpected placeholder builtin type!");
break;
}
break;
}
case Type::Complex: {
const llvm::Type *EltTy =
ConvertType(cast<ComplexType>(Ty)->getElementType());
ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
break;
}
case Type::LValueReference:
case Type::RValueReference: {
RecursionStatePointerRAII X(RecursionState);
const ReferenceType *RTy = cast<ReferenceType>(Ty);
QualType ETy = RTy->getPointeeType();
llvm::Type *PointeeType = ConvertTypeForMem(ETy);
unsigned AS = Context.getTargetAddressSpace(ETy);
ResultType = llvm::PointerType::get(PointeeType, AS);
break;
}
case Type::Pointer: {
RecursionStatePointerRAII X(RecursionState);
const PointerType *PTy = cast<PointerType>(Ty);
QualType ETy = PTy->getPointeeType();
llvm::Type *PointeeType = ConvertTypeForMem(ETy);
if (PointeeType->isVoidTy())
PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
unsigned AS = Context.getTargetAddressSpace(ETy);
ResultType = llvm::PointerType::get(PointeeType, AS);
break;
}
case Type::VariableArray: {
const VariableArrayType *A = cast<VariableArrayType>(Ty);
assert(A->getIndexTypeCVRQualifiers() == 0 &&
"FIXME: We only handle trivial array types so far!");
// VLAs resolve to the innermost element type; this matches
// the return of alloca, and there isn't any obviously better choice.
ResultType = ConvertTypeForMem(A->getElementType());
break;
}
case Type::IncompleteArray: {
const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
assert(A->getIndexTypeCVRQualifiers() == 0 &&
"FIXME: We only handle trivial array types so far!");
// int X[] -> [0 x int]
ResultType = llvm::ArrayType::get(ConvertTypeForMem(A->getElementType()),0);
break;
}
case Type::ConstantArray: {
const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
const llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
break;
}
case Type::ExtVector:
case Type::Vector: {
const VectorType *VT = cast<VectorType>(Ty);
ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
VT->getNumElements());
break;
}
case Type::FunctionNoProto:
case Type::FunctionProto: {
// First, check whether we can build the full function type. If the
// function type depends on an incomplete type (e.g. a struct or enum), we
// cannot lower the function type.
if (VerifyFuncTypeComplete(Ty)) {
// This function's type depends on an incomplete tag type.
// Return a placeholder type.
ResultType = llvm::StructType::get(getLLVMContext());
break;
}
// The function type can be built; call the appropriate routines to
// build it.
const CGFunctionInfo *FI;
bool isVariadic;
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Ty)) {
FI = &getFunctionInfo(
CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
isVariadic = FPT->isVariadic();
} else {
const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(Ty);
FI = &getFunctionInfo(
CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
isVariadic = true;
}
ResultType = GetFunctionType(*FI, isVariadic);
break;
}
case Type::ObjCObject:
ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
break;
case Type::ObjCInterface: {
// Objective-C interfaces are always opaque (outside of the
// runtime, which can do whatever it likes); we never refine
// these.
llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
if (!T)
T = llvm::StructType::createNamed(getLLVMContext(), "");
ResultType = T;
break;
}
case Type::ObjCObjectPointer: {
RecursionStatePointerRAII X(RecursionState);
// Protocol qualifications do not influence the LLVM type, we just return a
// pointer to the underlying interface type. We don't need to worry about
// recursive conversion.
const llvm::Type *T =
ConvertType(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
ResultType = T->getPointerTo();
break;
}
case Type::Enum: {
const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
if (ED->isDefinition() || ED->isFixed())
return ConvertType(ED->getIntegerType());
// Return a placeholder '{}' type.
ResultType = llvm::StructType::get(getLLVMContext());
break;
}
case Type::BlockPointer: {
RecursionStatePointerRAII X(RecursionState);
const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
llvm::Type *PointeeType = ConvertTypeForMem(FTy);
unsigned AS = Context.getTargetAddressSpace(FTy);
ResultType = llvm::PointerType::get(PointeeType, AS);
break;
}
case Type::MemberPointer: {
ResultType =
getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
break;
}
}
assert(ResultType && "Didn't convert a type?");
TypeCache[Ty] = ResultType;
return ResultType;
}
/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
// TagDecl's are not necessarily unique, instead use the (clang)
// type connected to the decl.
const Type *Key = Context.getTagDeclType(RD).getTypePtr();
llvm::StructType *&Entry = RecordDeclTypes[Key];
// If we don't have a StructType at all yet, create the forward declaration.
if (Entry == 0)
Entry = llvm::StructType::createNamed(getLLVMContext(),
std::string(RD->getKindName()) + "." +
RD->getQualifiedNameAsString());
llvm::StructType *Ty = Entry;
// If this is still a forward declaration, or the LLVM type is already
// complete, there's nothing more to do.
if (!RD->isDefinition() || !Ty->isOpaque())
return Ty;
// If we're recursively nested inside the conversion of a pointer inside the
// struct, defer conversion.
if (RecursionState == RS_StructPointer) {
DeferredRecords.push_back(RD);
return Ty;
}
// Okay, this is a definition of a type. Compile the implementation now.
RecursionStateTy SavedRecursionState = RecursionState;
RecursionState = RS_Struct;
// Force conversion of non-virtual base classes recursively.
if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
e = CRD->bases_end(); i != e; ++i) {
if (!i->isVirtual()) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
ConvertRecordDeclType(Base);
}
}
}
// Layout fields.
CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
CGRecordLayouts[Key] = Layout;
// Restore our recursion state. If we're done converting the outer-most
// record, then convert any deferred structs as well.
RecursionState = SavedRecursionState;
if (RecursionState == RS_Normal)
while (!DeferredRecords.empty())
ConvertRecordDeclType(DeferredRecords.pop_back_val());
return Ty;
}
/// getCGRecordLayout - Return record layout info for the given record decl.
const CGRecordLayout &
CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
const Type *Key = Context.getTagDeclType(RD).getTypePtr();
const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
if (!Layout) {
// Compute the type information.
ConvertRecordDeclType(RD);
// Now try again.
Layout = CGRecordLayouts.lookup(Key);
}
assert(Layout && "Unable to find record layout information for type");
return *Layout;
}
bool CodeGenTypes::isZeroInitializable(QualType T) {
// No need to check for member pointers when not compiling C++.
if (!Context.getLangOptions().CPlusPlus)
return true;
T = Context.getBaseElementType(T);
// Records are non-zero-initializable if they contain any
// non-zero-initializable subobjects.
if (const RecordType *RT = T->getAs<RecordType>()) {
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
return isZeroInitializable(RD);
}
// We have to ask the ABI about member pointers.
if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
return getCXXABI().isZeroInitializable(MPT);
// Everything else is okay.
return true;
}
bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
return getCGRecordLayout(RD).isZeroInitializable();
}