| //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Aggregate Expr nodes as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CGObjCRuntime.h" |
| #include "CodeGenModule.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Intrinsics.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| //===----------------------------------------------------------------------===// |
| // Aggregate Expression Emitter |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class AggExprEmitter : public StmtVisitor<AggExprEmitter> { |
| CodeGenFunction &CGF; |
| CGBuilderTy &Builder; |
| AggValueSlot Dest; |
| |
| /// We want to use 'dest' as the return slot except under two |
| /// conditions: |
| /// - The destination slot requires garbage collection, so we |
| /// need to use the GC API. |
| /// - The destination slot is potentially aliased. |
| bool shouldUseDestForReturnSlot() const { |
| return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); |
| } |
| |
| ReturnValueSlot getReturnValueSlot() const { |
| if (!shouldUseDestForReturnSlot()) |
| return ReturnValueSlot(); |
| |
| return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); |
| } |
| |
| AggValueSlot EnsureSlot(QualType T) { |
| if (!Dest.isIgnored()) return Dest; |
| return CGF.CreateAggTemp(T, "agg.tmp.ensured"); |
| } |
| void EnsureDest(QualType T) { |
| if (!Dest.isIgnored()) return; |
| Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); |
| } |
| |
| public: |
| AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest) |
| : CGF(cgf), Builder(CGF.Builder), Dest(Dest) { |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Utilities |
| //===--------------------------------------------------------------------===// |
| |
| /// EmitAggLoadOfLValue - Given an expression with aggregate type that |
| /// represents a value lvalue, this method emits the address of the lvalue, |
| /// then loads the result into DestPtr. |
| void EmitAggLoadOfLValue(const Expr *E); |
| |
| /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. |
| void EmitFinalDestCopy(QualType type, const LValue &src); |
| void EmitFinalDestCopy(QualType type, RValue src, |
| CharUnits srcAlignment = CharUnits::Zero()); |
| void EmitCopy(QualType type, const AggValueSlot &dest, |
| const AggValueSlot &src); |
| |
| void EmitMoveFromReturnSlot(const Expr *E, RValue Src); |
| |
| void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList); |
| void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, |
| QualType elementType, InitListExpr *E); |
| |
| AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { |
| if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) |
| return AggValueSlot::NeedsGCBarriers; |
| return AggValueSlot::DoesNotNeedGCBarriers; |
| } |
| |
| bool TypeRequiresGCollection(QualType T); |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| void VisitStmt(Stmt *S) { |
| CGF.ErrorUnsupported(S, "aggregate expression"); |
| } |
| void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } |
| void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { |
| Visit(GE->getResultExpr()); |
| } |
| void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } |
| void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { |
| return Visit(E->getReplacement()); |
| } |
| |
| // l-values. |
| void VisitDeclRefExpr(DeclRefExpr *E) { |
| // For aggregates, we should always be able to emit the variable |
| // as an l-value unless it's a reference. This is due to the fact |
| // that we can't actually ever see a normal l2r conversion on an |
| // aggregate in C++, and in C there's no language standard |
| // actively preventing us from listing variables in the captures |
| // list of a block. |
| if (E->getDecl()->getType()->isReferenceType()) { |
| if (CodeGenFunction::ConstantEmission result |
| = CGF.tryEmitAsConstant(E)) { |
| EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); |
| return; |
| } |
| } |
| |
| EmitAggLoadOfLValue(E); |
| } |
| |
| void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } |
| void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } |
| void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } |
| void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); |
| void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { |
| EmitAggLoadOfLValue(E); |
| } |
| void VisitPredefinedExpr(const PredefinedExpr *E) { |
| EmitAggLoadOfLValue(E); |
| } |
| |
| // Operators. |
| void VisitCastExpr(CastExpr *E); |
| void VisitCallExpr(const CallExpr *E); |
| void VisitStmtExpr(const StmtExpr *E); |
| void VisitBinaryOperator(const BinaryOperator *BO); |
| void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); |
| void VisitBinAssign(const BinaryOperator *E); |
| void VisitBinComma(const BinaryOperator *E); |
| |
| void VisitObjCMessageExpr(ObjCMessageExpr *E); |
| void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
| EmitAggLoadOfLValue(E); |
| } |
| |
| void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); |
| void VisitChooseExpr(const ChooseExpr *CE); |
| void VisitInitListExpr(InitListExpr *E); |
| void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); |
| void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { |
| Visit(DAE->getExpr()); |
| } |
| void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); |
| void VisitCXXConstructExpr(const CXXConstructExpr *E); |
| void VisitLambdaExpr(LambdaExpr *E); |
| void VisitExprWithCleanups(ExprWithCleanups *E); |
| void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); |
| void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } |
| void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); |
| void VisitOpaqueValueExpr(OpaqueValueExpr *E); |
| |
| void VisitPseudoObjectExpr(PseudoObjectExpr *E) { |
| if (E->isGLValue()) { |
| LValue LV = CGF.EmitPseudoObjectLValue(E); |
| return EmitFinalDestCopy(E->getType(), LV); |
| } |
| |
| CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); |
| } |
| |
| void VisitVAArgExpr(VAArgExpr *E); |
| |
| void EmitInitializationToLValue(Expr *E, LValue Address); |
| void EmitNullInitializationToLValue(LValue Address); |
| // case Expr::ChooseExprClass: |
| void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } |
| void VisitAtomicExpr(AtomicExpr *E) { |
| CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); |
| } |
| }; |
| } // end anonymous namespace. |
| |
| //===----------------------------------------------------------------------===// |
| // Utilities |
| //===----------------------------------------------------------------------===// |
| |
| /// EmitAggLoadOfLValue - Given an expression with aggregate type that |
| /// represents a value lvalue, this method emits the address of the lvalue, |
| /// then loads the result into DestPtr. |
| void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { |
| LValue LV = CGF.EmitLValue(E); |
| EmitFinalDestCopy(E->getType(), LV); |
| } |
| |
| /// \brief True if the given aggregate type requires special GC API calls. |
| bool AggExprEmitter::TypeRequiresGCollection(QualType T) { |
| // Only record types have members that might require garbage collection. |
| const RecordType *RecordTy = T->getAs<RecordType>(); |
| if (!RecordTy) return false; |
| |
| // Don't mess with non-trivial C++ types. |
| RecordDecl *Record = RecordTy->getDecl(); |
| if (isa<CXXRecordDecl>(Record) && |
| (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || |
| !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) |
| return false; |
| |
| // Check whether the type has an object member. |
| return Record->hasObjectMember(); |
| } |
| |
| /// \brief Perform the final move to DestPtr if for some reason |
| /// getReturnValueSlot() didn't use it directly. |
| /// |
| /// The idea is that you do something like this: |
| /// RValue Result = EmitSomething(..., getReturnValueSlot()); |
| /// EmitMoveFromReturnSlot(E, Result); |
| /// |
| /// If nothing interferes, this will cause the result to be emitted |
| /// directly into the return value slot. Otherwise, a final move |
| /// will be performed. |
| void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { |
| if (shouldUseDestForReturnSlot()) { |
| // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). |
| // The possibility of undef rvalues complicates that a lot, |
| // though, so we can't really assert. |
| return; |
| } |
| |
| // Otherwise, copy from there to the destination. |
| assert(Dest.getAddr() != src.getAggregateAddr()); |
| std::pair<CharUnits, CharUnits> typeInfo = |
| CGF.getContext().getTypeInfoInChars(E->getType()); |
| EmitFinalDestCopy(E->getType(), src, typeInfo.second); |
| } |
| |
| /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. |
| void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src, |
| CharUnits srcAlign) { |
| assert(src.isAggregate() && "value must be aggregate value!"); |
| LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign); |
| EmitFinalDestCopy(type, srcLV); |
| } |
| |
| /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. |
| void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { |
| // If Dest is ignored, then we're evaluating an aggregate expression |
| // in a context that doesn't care about the result. Note that loads |
| // from volatile l-values force the existence of a non-ignored |
| // destination. |
| if (Dest.isIgnored()) |
| return; |
| |
| AggValueSlot srcAgg = |
| AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, |
| needsGC(type), AggValueSlot::IsAliased); |
| EmitCopy(type, Dest, srcAgg); |
| } |
| |
| /// Perform a copy from the source into the destination. |
| /// |
| /// \param type - the type of the aggregate being copied; qualifiers are |
| /// ignored |
| void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, |
| const AggValueSlot &src) { |
| if (dest.requiresGCollection()) { |
| CharUnits sz = CGF.getContext().getTypeSizeInChars(type); |
| llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); |
| CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, |
| dest.getAddr(), |
| src.getAddr(), |
| size); |
| return; |
| } |
| |
| // If the result of the assignment is used, copy the LHS there also. |
| // It's volatile if either side is. Use the minimum alignment of |
| // the two sides. |
| CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type, |
| dest.isVolatile() || src.isVolatile(), |
| std::min(dest.getAlignment(), src.getAlignment())); |
| } |
| |
| static QualType GetStdInitializerListElementType(QualType T) { |
| // Just assume that this is really std::initializer_list. |
| ClassTemplateSpecializationDecl *specialization = |
| cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl()); |
| return specialization->getTemplateArgs()[0].getAsType(); |
| } |
| |
| /// \brief Prepare cleanup for the temporary array. |
| static void EmitStdInitializerListCleanup(CodeGenFunction &CGF, |
| QualType arrayType, |
| llvm::Value *addr, |
| const InitListExpr *initList) { |
| QualType::DestructionKind dtorKind = arrayType.isDestructedType(); |
| if (!dtorKind) |
| return; // Type doesn't need destroying. |
| if (dtorKind != QualType::DK_cxx_destructor) { |
| CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list"); |
| return; |
| } |
| |
| CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind); |
| CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer, |
| /*EHCleanup=*/true); |
| } |
| |
| /// \brief Emit the initializer for a std::initializer_list initialized with a |
| /// real initializer list. |
| void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr, |
| InitListExpr *initList) { |
| // We emit an array containing the elements, then have the init list point |
| // at the array. |
| ASTContext &ctx = CGF.getContext(); |
| unsigned numInits = initList->getNumInits(); |
| QualType element = GetStdInitializerListElementType(initList->getType()); |
| llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); |
| QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0); |
| llvm::Type *LTy = CGF.ConvertTypeForMem(array); |
| llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy); |
| alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity()); |
| alloc->setName(".initlist."); |
| |
| EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList); |
| |
| // FIXME: The diagnostics are somewhat out of place here. |
| RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl(); |
| RecordDecl::field_iterator field = record->field_begin(); |
| if (field == record->field_end()) { |
| CGF.ErrorUnsupported(initList, "weird std::initializer_list"); |
| return; |
| } |
| |
| QualType elementPtr = ctx.getPointerType(element.withConst()); |
| |
| // Start pointer. |
| if (!ctx.hasSameType(field->getType(), elementPtr)) { |
| CGF.ErrorUnsupported(initList, "weird std::initializer_list"); |
| return; |
| } |
| LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType()); |
| LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field); |
| llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart"); |
| CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start); |
| ++field; |
| |
| if (field == record->field_end()) { |
| CGF.ErrorUnsupported(initList, "weird std::initializer_list"); |
| return; |
| } |
| LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field); |
| if (ctx.hasSameType(field->getType(), elementPtr)) { |
| // End pointer. |
| llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend"); |
| CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength); |
| } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) { |
| // Length. |
| CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength); |
| } else { |
| CGF.ErrorUnsupported(initList, "weird std::initializer_list"); |
| return; |
| } |
| |
| if (!Dest.isExternallyDestructed()) |
| EmitStdInitializerListCleanup(CGF, array, alloc, initList); |
| } |
| |
| /// \brief Emit initialization of an array from an initializer list. |
| void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, |
| QualType elementType, InitListExpr *E) { |
| uint64_t NumInitElements = E->getNumInits(); |
| |
| uint64_t NumArrayElements = AType->getNumElements(); |
| assert(NumInitElements <= NumArrayElements); |
| |
| // DestPtr is an array*. Construct an elementType* by drilling |
| // down a level. |
| llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); |
| llvm::Value *indices[] = { zero, zero }; |
| llvm::Value *begin = |
| Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); |
| |
| // Exception safety requires us to destroy all the |
| // already-constructed members if an initializer throws. |
| // For that, we'll need an EH cleanup. |
| QualType::DestructionKind dtorKind = elementType.isDestructedType(); |
| llvm::AllocaInst *endOfInit = 0; |
| EHScopeStack::stable_iterator cleanup; |
| llvm::Instruction *cleanupDominator = 0; |
| if (CGF.needsEHCleanup(dtorKind)) { |
| // In principle we could tell the cleanup where we are more |
| // directly, but the control flow can get so varied here that it |
| // would actually be quite complex. Therefore we go through an |
| // alloca. |
| endOfInit = CGF.CreateTempAlloca(begin->getType(), |
| "arrayinit.endOfInit"); |
| cleanupDominator = Builder.CreateStore(begin, endOfInit); |
| CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, |
| CGF.getDestroyer(dtorKind)); |
| cleanup = CGF.EHStack.stable_begin(); |
| |
| // Otherwise, remember that we didn't need a cleanup. |
| } else { |
| dtorKind = QualType::DK_none; |
| } |
| |
| llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); |
| |
| // The 'current element to initialize'. The invariants on this |
| // variable are complicated. Essentially, after each iteration of |
| // the loop, it points to the last initialized element, except |
| // that it points to the beginning of the array before any |
| // elements have been initialized. |
| llvm::Value *element = begin; |
| |
| // Emit the explicit initializers. |
| for (uint64_t i = 0; i != NumInitElements; ++i) { |
| // Advance to the next element. |
| if (i > 0) { |
| element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); |
| |
| // Tell the cleanup that it needs to destroy up to this |
| // element. TODO: some of these stores can be trivially |
| // observed to be unnecessary. |
| if (endOfInit) Builder.CreateStore(element, endOfInit); |
| } |
| |
| // If these are nested std::initializer_list inits, do them directly, |
| // because they are conceptually the same "location". |
| InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i)); |
| if (initList && initList->initializesStdInitializerList()) { |
| EmitStdInitializerList(element, initList); |
| } else { |
| LValue elementLV = CGF.MakeAddrLValue(element, elementType); |
| EmitInitializationToLValue(E->getInit(i), elementLV); |
| } |
| } |
| |
| // Check whether there's a non-trivial array-fill expression. |
| // Note that this will be a CXXConstructExpr even if the element |
| // type is an array (or array of array, etc.) of class type. |
| Expr *filler = E->getArrayFiller(); |
| bool hasTrivialFiller = true; |
| if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { |
| assert(cons->getConstructor()->isDefaultConstructor()); |
| hasTrivialFiller = cons->getConstructor()->isTrivial(); |
| } |
| |
| // Any remaining elements need to be zero-initialized, possibly |
| // using the filler expression. We can skip this if the we're |
| // emitting to zeroed memory. |
| if (NumInitElements != NumArrayElements && |
| !(Dest.isZeroed() && hasTrivialFiller && |
| CGF.getTypes().isZeroInitializable(elementType))) { |
| |
| // Use an actual loop. This is basically |
| // do { *array++ = filler; } while (array != end); |
| |
| // Advance to the start of the rest of the array. |
| if (NumInitElements) { |
| element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); |
| if (endOfInit) Builder.CreateStore(element, endOfInit); |
| } |
| |
| // Compute the end of the array. |
| llvm::Value *end = Builder.CreateInBoundsGEP(begin, |
| llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), |
| "arrayinit.end"); |
| |
| llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); |
| llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); |
| |
| // Jump into the body. |
| CGF.EmitBlock(bodyBB); |
| llvm::PHINode *currentElement = |
| Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); |
| currentElement->addIncoming(element, entryBB); |
| |
| // Emit the actual filler expression. |
| LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); |
| if (filler) |
| EmitInitializationToLValue(filler, elementLV); |
| else |
| EmitNullInitializationToLValue(elementLV); |
| |
| // Move on to the next element. |
| llvm::Value *nextElement = |
| Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); |
| |
| // Tell the EH cleanup that we finished with the last element. |
| if (endOfInit) Builder.CreateStore(nextElement, endOfInit); |
| |
| // Leave the loop if we're done. |
| llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, |
| "arrayinit.done"); |
| llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); |
| Builder.CreateCondBr(done, endBB, bodyBB); |
| currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); |
| |
| CGF.EmitBlock(endBB); |
| } |
| |
| // Leave the partial-array cleanup if we entered one. |
| if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Visitor Methods |
| //===----------------------------------------------------------------------===// |
| |
| void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ |
| Visit(E->GetTemporaryExpr()); |
| } |
| |
| void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { |
| EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); |
| } |
| |
| void |
| AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| if (E->getType().isPODType(CGF.getContext())) { |
| // For a POD type, just emit a load of the lvalue + a copy, because our |
| // compound literal might alias the destination. |
| // FIXME: This is a band-aid; the real problem appears to be in our handling |
| // of assignments, where we store directly into the LHS without checking |
| // whether anything in the RHS aliases. |
| EmitAggLoadOfLValue(E); |
| return; |
| } |
| |
| AggValueSlot Slot = EnsureSlot(E->getType()); |
| CGF.EmitAggExpr(E->getInitializer(), Slot); |
| } |
| |
| |
| void AggExprEmitter::VisitCastExpr(CastExpr *E) { |
| switch (E->getCastKind()) { |
| case CK_Dynamic: { |
| // FIXME: Can this actually happen? We have no test coverage for it. |
| assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); |
| LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), |
| CodeGenFunction::TCK_Load); |
| // FIXME: Do we also need to handle property references here? |
| if (LV.isSimple()) |
| CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); |
| else |
| CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); |
| |
| if (!Dest.isIgnored()) |
| CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); |
| break; |
| } |
| |
| case CK_ToUnion: { |
| if (Dest.isIgnored()) break; |
| |
| // GCC union extension |
| QualType Ty = E->getSubExpr()->getType(); |
| QualType PtrTy = CGF.getContext().getPointerType(Ty); |
| llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), |
| CGF.ConvertType(PtrTy)); |
| EmitInitializationToLValue(E->getSubExpr(), |
| CGF.MakeAddrLValue(CastPtr, Ty)); |
| break; |
| } |
| |
| case CK_DerivedToBase: |
| case CK_BaseToDerived: |
| case CK_UncheckedDerivedToBase: { |
| llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " |
| "should have been unpacked before we got here"); |
| } |
| |
| case CK_LValueToRValue: |
| // If we're loading from a volatile type, force the destination |
| // into existence. |
| if (E->getSubExpr()->getType().isVolatileQualified()) { |
| EnsureDest(E->getType()); |
| return Visit(E->getSubExpr()); |
| } |
| // fallthrough |
| |
| case CK_NoOp: |
| case CK_AtomicToNonAtomic: |
| case CK_NonAtomicToAtomic: |
| case CK_UserDefinedConversion: |
| case CK_ConstructorConversion: |
| assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), |
| E->getType()) && |
| "Implicit cast types must be compatible"); |
| Visit(E->getSubExpr()); |
| break; |
| |
| case CK_LValueBitCast: |
| llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); |
| |
| case CK_Dependent: |
| case CK_BitCast: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_NullToPointer: |
| case CK_NullToMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_MemberPointerToBoolean: |
| case CK_ReinterpretMemberPointer: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_PointerToBoolean: |
| case CK_ToVoid: |
| case CK_VectorSplat: |
| case CK_IntegralCast: |
| case CK_IntegralToBoolean: |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingToBoolean: |
| case CK_FloatingCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_ObjCObjectLValueCast: |
| case CK_FloatingRealToComplex: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexToBoolean: |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralRealToComplex: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralComplexToBoolean: |
| case CK_IntegralComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| case CK_ARCProduceObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCExtendBlockObject: |
| case CK_CopyAndAutoreleaseBlockObject: |
| case CK_BuiltinFnToFnPtr: |
| case CK_ZeroToOCLEvent: |
| llvm_unreachable("cast kind invalid for aggregate types"); |
| } |
| } |
| |
| void AggExprEmitter::VisitCallExpr(const CallExpr *E) { |
| if (E->getCallReturnType()->isReferenceType()) { |
| EmitAggLoadOfLValue(E); |
| return; |
| } |
| |
| RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); |
| EmitMoveFromReturnSlot(E, RV); |
| } |
| |
| void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { |
| RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); |
| EmitMoveFromReturnSlot(E, RV); |
| } |
| |
| void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { |
| CGF.EmitIgnoredExpr(E->getLHS()); |
| Visit(E->getRHS()); |
| } |
| |
| void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { |
| CodeGenFunction::StmtExprEvaluation eval(CGF); |
| CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); |
| } |
| |
| void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) |
| VisitPointerToDataMemberBinaryOperator(E); |
| else |
| CGF.ErrorUnsupported(E, "aggregate binary expression"); |
| } |
| |
| void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( |
| const BinaryOperator *E) { |
| LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); |
| EmitFinalDestCopy(E->getType(), LV); |
| } |
| |
| /// Is the value of the given expression possibly a reference to or |
| /// into a __block variable? |
| static bool isBlockVarRef(const Expr *E) { |
| // Make sure we look through parens. |
| E = E->IgnoreParens(); |
| |
| // Check for a direct reference to a __block variable. |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { |
| const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); |
| return (var && var->hasAttr<BlocksAttr>()); |
| } |
| |
| // More complicated stuff. |
| |
| // Binary operators. |
| if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { |
| // For an assignment or pointer-to-member operation, just care |
| // about the LHS. |
| if (op->isAssignmentOp() || op->isPtrMemOp()) |
| return isBlockVarRef(op->getLHS()); |
| |
| // For a comma, just care about the RHS. |
| if (op->getOpcode() == BO_Comma) |
| return isBlockVarRef(op->getRHS()); |
| |
| // FIXME: pointer arithmetic? |
| return false; |
| |
| // Check both sides of a conditional operator. |
| } else if (const AbstractConditionalOperator *op |
| = dyn_cast<AbstractConditionalOperator>(E)) { |
| return isBlockVarRef(op->getTrueExpr()) |
| || isBlockVarRef(op->getFalseExpr()); |
| |
| // OVEs are required to support BinaryConditionalOperators. |
| } else if (const OpaqueValueExpr *op |
| = dyn_cast<OpaqueValueExpr>(E)) { |
| if (const Expr *src = op->getSourceExpr()) |
| return isBlockVarRef(src); |
| |
| // Casts are necessary to get things like (*(int*)&var) = foo(). |
| // We don't really care about the kind of cast here, except |
| // we don't want to look through l2r casts, because it's okay |
| // to get the *value* in a __block variable. |
| } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { |
| if (cast->getCastKind() == CK_LValueToRValue) |
| return false; |
| return isBlockVarRef(cast->getSubExpr()); |
| |
| // Handle unary operators. Again, just aggressively look through |
| // it, ignoring the operation. |
| } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { |
| return isBlockVarRef(uop->getSubExpr()); |
| |
| // Look into the base of a field access. |
| } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { |
| return isBlockVarRef(mem->getBase()); |
| |
| // Look into the base of a subscript. |
| } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { |
| return isBlockVarRef(sub->getBase()); |
| } |
| |
| return false; |
| } |
| |
| void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { |
| // For an assignment to work, the value on the right has |
| // to be compatible with the value on the left. |
| assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), |
| E->getRHS()->getType()) |
| && "Invalid assignment"); |
| |
| // If the LHS might be a __block variable, and the RHS can |
| // potentially cause a block copy, we need to evaluate the RHS first |
| // so that the assignment goes the right place. |
| // This is pretty semantically fragile. |
| if (isBlockVarRef(E->getLHS()) && |
| E->getRHS()->HasSideEffects(CGF.getContext())) { |
| // Ensure that we have a destination, and evaluate the RHS into that. |
| EnsureDest(E->getRHS()->getType()); |
| Visit(E->getRHS()); |
| |
| // Now emit the LHS and copy into it. |
| LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); |
| |
| EmitCopy(E->getLHS()->getType(), |
| AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, |
| needsGC(E->getLHS()->getType()), |
| AggValueSlot::IsAliased), |
| Dest); |
| return; |
| } |
| |
| LValue LHS = CGF.EmitLValue(E->getLHS()); |
| |
| // Codegen the RHS so that it stores directly into the LHS. |
| AggValueSlot LHSSlot = |
| AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, |
| needsGC(E->getLHS()->getType()), |
| AggValueSlot::IsAliased); |
| // A non-volatile aggregate destination might have volatile member. |
| if (!LHSSlot.isVolatile() && |
| CGF.hasVolatileMember(E->getLHS()->getType())) |
| LHSSlot.setVolatile(true); |
| |
| CGF.EmitAggExpr(E->getRHS(), LHSSlot); |
| |
| // Copy into the destination if the assignment isn't ignored. |
| EmitFinalDestCopy(E->getType(), LHS); |
| } |
| |
| void AggExprEmitter:: |
| VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { |
| llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); |
| llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); |
| |
| // Bind the common expression if necessary. |
| CodeGenFunction::OpaqueValueMapping binding(CGF, E); |
| |
| CodeGenFunction::ConditionalEvaluation eval(CGF); |
| CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); |
| |
| // Save whether the destination's lifetime is externally managed. |
| bool isExternallyDestructed = Dest.isExternallyDestructed(); |
| |
| eval.begin(CGF); |
| CGF.EmitBlock(LHSBlock); |
| Visit(E->getTrueExpr()); |
| eval.end(CGF); |
| |
| assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); |
| CGF.Builder.CreateBr(ContBlock); |
| |
| // If the result of an agg expression is unused, then the emission |
| // of the LHS might need to create a destination slot. That's fine |
| // with us, and we can safely emit the RHS into the same slot, but |
| // we shouldn't claim that it's already being destructed. |
| Dest.setExternallyDestructed(isExternallyDestructed); |
| |
| eval.begin(CGF); |
| CGF.EmitBlock(RHSBlock); |
| Visit(E->getFalseExpr()); |
| eval.end(CGF); |
| |
| CGF.EmitBlock(ContBlock); |
| } |
| |
| void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { |
| Visit(CE->getChosenSubExpr(CGF.getContext())); |
| } |
| |
| void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { |
| llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); |
| llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); |
| |
| if (!ArgPtr) { |
| CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); |
| return; |
| } |
| |
| EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); |
| } |
| |
| void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { |
| // Ensure that we have a slot, but if we already do, remember |
| // whether it was externally destructed. |
| bool wasExternallyDestructed = Dest.isExternallyDestructed(); |
| EnsureDest(E->getType()); |
| |
| // We're going to push a destructor if there isn't already one. |
| Dest.setExternallyDestructed(); |
| |
| Visit(E->getSubExpr()); |
| |
| // Push that destructor we promised. |
| if (!wasExternallyDestructed) |
| CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); |
| } |
| |
| void |
| AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| AggValueSlot Slot = EnsureSlot(E->getType()); |
| CGF.EmitCXXConstructExpr(E, Slot); |
| } |
| |
| void |
| AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { |
| AggValueSlot Slot = EnsureSlot(E->getType()); |
| CGF.EmitLambdaExpr(E, Slot); |
| } |
| |
| void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { |
| CGF.enterFullExpression(E); |
| CodeGenFunction::RunCleanupsScope cleanups(CGF); |
| Visit(E->getSubExpr()); |
| } |
| |
| void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { |
| QualType T = E->getType(); |
| AggValueSlot Slot = EnsureSlot(T); |
| EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); |
| } |
| |
| void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { |
| QualType T = E->getType(); |
| AggValueSlot Slot = EnsureSlot(T); |
| EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); |
| } |
| |
| /// isSimpleZero - If emitting this value will obviously just cause a store of |
| /// zero to memory, return true. This can return false if uncertain, so it just |
| /// handles simple cases. |
| static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { |
| E = E->IgnoreParens(); |
| |
| // 0 |
| if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) |
| return IL->getValue() == 0; |
| // +0.0 |
| if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) |
| return FL->getValue().isPosZero(); |
| // int() |
| if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && |
| CGF.getTypes().isZeroInitializable(E->getType())) |
| return true; |
| // (int*)0 - Null pointer expressions. |
| if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) |
| return ICE->getCastKind() == CK_NullToPointer; |
| // '\0' |
| if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) |
| return CL->getValue() == 0; |
| |
| // Otherwise, hard case: conservatively return false. |
| return false; |
| } |
| |
| |
| void |
| AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { |
| QualType type = LV.getType(); |
| // FIXME: Ignore result? |
| // FIXME: Are initializers affected by volatile? |
| if (Dest.isZeroed() && isSimpleZero(E, CGF)) { |
| // Storing "i32 0" to a zero'd memory location is a noop. |
| } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { |
| EmitNullInitializationToLValue(LV); |
| } else if (type->isReferenceType()) { |
| RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); |
| CGF.EmitStoreThroughLValue(RV, LV); |
| } else if (type->isAnyComplexType()) { |
| CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); |
| } else if (CGF.hasAggregateLLVMType(type)) { |
| CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, |
| AggValueSlot::IsDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased, |
| Dest.isZeroed())); |
| } else if (LV.isSimple()) { |
| CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); |
| } else { |
| CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); |
| } |
| } |
| |
| void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { |
| QualType type = lv.getType(); |
| |
| // If the destination slot is already zeroed out before the aggregate is |
| // copied into it, we don't have to emit any zeros here. |
| if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) |
| return; |
| |
| if (!CGF.hasAggregateLLVMType(type)) { |
| // For non-aggregates, we can store the appropriate null constant. |
| llvm::Value *null = CGF.CGM.EmitNullConstant(type); |
| // Note that the following is not equivalent to |
| // EmitStoreThroughBitfieldLValue for ARC types. |
| if (lv.isBitField()) { |
| CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); |
| } else { |
| assert(lv.isSimple()); |
| CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); |
| } |
| } else { |
| // There's a potential optimization opportunity in combining |
| // memsets; that would be easy for arrays, but relatively |
| // difficult for structures with the current code. |
| CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); |
| } |
| } |
| |
| void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { |
| #if 0 |
| // FIXME: Assess perf here? Figure out what cases are worth optimizing here |
| // (Length of globals? Chunks of zeroed-out space?). |
| // |
| // If we can, prefer a copy from a global; this is a lot less code for long |
| // globals, and it's easier for the current optimizers to analyze. |
| if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { |
| llvm::GlobalVariable* GV = |
| new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, |
| llvm::GlobalValue::InternalLinkage, C, ""); |
| EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); |
| return; |
| } |
| #endif |
| if (E->hadArrayRangeDesignator()) |
| CGF.ErrorUnsupported(E, "GNU array range designator extension"); |
| |
| if (E->initializesStdInitializerList()) { |
| EmitStdInitializerList(Dest.getAddr(), E); |
| return; |
| } |
| |
| AggValueSlot Dest = EnsureSlot(E->getType()); |
| LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), |
| Dest.getAlignment()); |
| |
| // Handle initialization of an array. |
| if (E->getType()->isArrayType()) { |
| if (E->isStringLiteralInit()) |
| return Visit(E->getInit(0)); |
| |
| QualType elementType = |
| CGF.getContext().getAsArrayType(E->getType())->getElementType(); |
| |
| llvm::PointerType *APType = |
| cast<llvm::PointerType>(Dest.getAddr()->getType()); |
| llvm::ArrayType *AType = |
| cast<llvm::ArrayType>(APType->getElementType()); |
| |
| EmitArrayInit(Dest.getAddr(), AType, elementType, E); |
| return; |
| } |
| |
| assert(E->getType()->isRecordType() && "Only support structs/unions here!"); |
| |
| // Do struct initialization; this code just sets each individual member |
| // to the approprate value. This makes bitfield support automatic; |
| // the disadvantage is that the generated code is more difficult for |
| // the optimizer, especially with bitfields. |
| unsigned NumInitElements = E->getNumInits(); |
| RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); |
| |
| if (record->isUnion()) { |
| // Only initialize one field of a union. The field itself is |
| // specified by the initializer list. |
| if (!E->getInitializedFieldInUnion()) { |
| // Empty union; we have nothing to do. |
| |
| #ifndef NDEBUG |
| // Make sure that it's really an empty and not a failure of |
| // semantic analysis. |
| for (RecordDecl::field_iterator Field = record->field_begin(), |
| FieldEnd = record->field_end(); |
| Field != FieldEnd; ++Field) |
| assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); |
| #endif |
| return; |
| } |
| |
| // FIXME: volatility |
| FieldDecl *Field = E->getInitializedFieldInUnion(); |
| |
| LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); |
| if (NumInitElements) { |
| // Store the initializer into the field |
| EmitInitializationToLValue(E->getInit(0), FieldLoc); |
| } else { |
| // Default-initialize to null. |
| EmitNullInitializationToLValue(FieldLoc); |
| } |
| |
| return; |
| } |
| |
| // We'll need to enter cleanup scopes in case any of the member |
| // initializers throw an exception. |
| SmallVector<EHScopeStack::stable_iterator, 16> cleanups; |
| llvm::Instruction *cleanupDominator = 0; |
| |
| // Here we iterate over the fields; this makes it simpler to both |
| // default-initialize fields and skip over unnamed fields. |
| unsigned curInitIndex = 0; |
| for (RecordDecl::field_iterator field = record->field_begin(), |
| fieldEnd = record->field_end(); |
| field != fieldEnd; ++field) { |
| // We're done once we hit the flexible array member. |
| if (field->getType()->isIncompleteArrayType()) |
| break; |
| |
| // Always skip anonymous bitfields. |
| if (field->isUnnamedBitfield()) |
| continue; |
| |
| // We're done if we reach the end of the explicit initializers, we |
| // have a zeroed object, and the rest of the fields are |
| // zero-initializable. |
| if (curInitIndex == NumInitElements && Dest.isZeroed() && |
| CGF.getTypes().isZeroInitializable(E->getType())) |
| break; |
| |
| |
| LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field); |
| // We never generate write-barries for initialized fields. |
| LV.setNonGC(true); |
| |
| if (curInitIndex < NumInitElements) { |
| // Store the initializer into the field. |
| EmitInitializationToLValue(E->getInit(curInitIndex++), LV); |
| } else { |
| // We're out of initalizers; default-initialize to null |
| EmitNullInitializationToLValue(LV); |
| } |
| |
| // Push a destructor if necessary. |
| // FIXME: if we have an array of structures, all explicitly |
| // initialized, we can end up pushing a linear number of cleanups. |
| bool pushedCleanup = false; |
| if (QualType::DestructionKind dtorKind |
| = field->getType().isDestructedType()) { |
| assert(LV.isSimple()); |
| if (CGF.needsEHCleanup(dtorKind)) { |
| if (!cleanupDominator) |
| cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder |
| |
| CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), |
| CGF.getDestroyer(dtorKind), false); |
| cleanups.push_back(CGF.EHStack.stable_begin()); |
| pushedCleanup = true; |
| } |
| } |
| |
| // If the GEP didn't get used because of a dead zero init or something |
| // else, clean it up for -O0 builds and general tidiness. |
| if (!pushedCleanup && LV.isSimple()) |
| if (llvm::GetElementPtrInst *GEP = |
| dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) |
| if (GEP->use_empty()) |
| GEP->eraseFromParent(); |
| } |
| |
| // Deactivate all the partial cleanups in reverse order, which |
| // generally means popping them. |
| for (unsigned i = cleanups.size(); i != 0; --i) |
| CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); |
| |
| // Destroy the placeholder if we made one. |
| if (cleanupDominator) |
| cleanupDominator->eraseFromParent(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Entry Points into this File |
| //===----------------------------------------------------------------------===// |
| |
| /// GetNumNonZeroBytesInInit - Get an approximate count of the number of |
| /// non-zero bytes that will be stored when outputting the initializer for the |
| /// specified initializer expression. |
| static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { |
| E = E->IgnoreParens(); |
| |
| // 0 and 0.0 won't require any non-zero stores! |
| if (isSimpleZero(E, CGF)) return CharUnits::Zero(); |
| |
| // If this is an initlist expr, sum up the size of sizes of the (present) |
| // elements. If this is something weird, assume the whole thing is non-zero. |
| const InitListExpr *ILE = dyn_cast<InitListExpr>(E); |
| if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) |
| return CGF.getContext().getTypeSizeInChars(E->getType()); |
| |
| // InitListExprs for structs have to be handled carefully. If there are |
| // reference members, we need to consider the size of the reference, not the |
| // referencee. InitListExprs for unions and arrays can't have references. |
| if (const RecordType *RT = E->getType()->getAs<RecordType>()) { |
| if (!RT->isUnionType()) { |
| RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); |
| CharUnits NumNonZeroBytes = CharUnits::Zero(); |
| |
| unsigned ILEElement = 0; |
| for (RecordDecl::field_iterator Field = SD->field_begin(), |
| FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { |
| // We're done once we hit the flexible array member or run out of |
| // InitListExpr elements. |
| if (Field->getType()->isIncompleteArrayType() || |
| ILEElement == ILE->getNumInits()) |
| break; |
| if (Field->isUnnamedBitfield()) |
| continue; |
| |
| const Expr *E = ILE->getInit(ILEElement++); |
| |
| // Reference values are always non-null and have the width of a pointer. |
| if (Field->getType()->isReferenceType()) |
| NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( |
| CGF.getContext().getTargetInfo().getPointerWidth(0)); |
| else |
| NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); |
| } |
| |
| return NumNonZeroBytes; |
| } |
| } |
| |
| |
| CharUnits NumNonZeroBytes = CharUnits::Zero(); |
| for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) |
| NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); |
| return NumNonZeroBytes; |
| } |
| |
| /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of |
| /// zeros in it, emit a memset and avoid storing the individual zeros. |
| /// |
| static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, |
| CodeGenFunction &CGF) { |
| // If the slot is already known to be zeroed, nothing to do. Don't mess with |
| // volatile stores. |
| if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; |
| |
| // C++ objects with a user-declared constructor don't need zero'ing. |
| if (CGF.getLangOpts().CPlusPlus) |
| if (const RecordType *RT = CGF.getContext() |
| .getBaseElementType(E->getType())->getAs<RecordType>()) { |
| const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RD->hasUserDeclaredConstructor()) |
| return; |
| } |
| |
| // If the type is 16-bytes or smaller, prefer individual stores over memset. |
| std::pair<CharUnits, CharUnits> TypeInfo = |
| CGF.getContext().getTypeInfoInChars(E->getType()); |
| if (TypeInfo.first <= CharUnits::fromQuantity(16)) |
| return; |
| |
| // Check to see if over 3/4 of the initializer are known to be zero. If so, |
| // we prefer to emit memset + individual stores for the rest. |
| CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); |
| if (NumNonZeroBytes*4 > TypeInfo.first) |
| return; |
| |
| // Okay, it seems like a good idea to use an initial memset, emit the call. |
| llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); |
| CharUnits Align = TypeInfo.second; |
| |
| llvm::Value *Loc = Slot.getAddr(); |
| |
| Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); |
| CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, |
| Align.getQuantity(), false); |
| |
| // Tell the AggExprEmitter that the slot is known zero. |
| Slot.setZeroed(); |
| } |
| |
| |
| |
| |
| /// EmitAggExpr - Emit the computation of the specified expression of aggregate |
| /// type. The result is computed into DestPtr. Note that if DestPtr is null, |
| /// the value of the aggregate expression is not needed. If VolatileDest is |
| /// true, DestPtr cannot be 0. |
| void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { |
| assert(E && hasAggregateLLVMType(E->getType()) && |
| "Invalid aggregate expression to emit"); |
| assert((Slot.getAddr() != 0 || Slot.isIgnored()) && |
| "slot has bits but no address"); |
| |
| // Optimize the slot if possible. |
| CheckAggExprForMemSetUse(Slot, E, *this); |
| |
| AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E)); |
| } |
| |
| LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { |
| assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); |
| llvm::Value *Temp = CreateMemTemp(E->getType()); |
| LValue LV = MakeAddrLValue(Temp, E->getType()); |
| EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased)); |
| return LV; |
| } |
| |
| void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, |
| llvm::Value *SrcPtr, QualType Ty, |
| bool isVolatile, |
| CharUnits alignment, |
| bool isAssignment) { |
| assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); |
| |
| if (getLangOpts().CPlusPlus) { |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); |
| assert((Record->hasTrivialCopyConstructor() || |
| Record->hasTrivialCopyAssignment() || |
| Record->hasTrivialMoveConstructor() || |
| Record->hasTrivialMoveAssignment()) && |
| "Trying to aggregate-copy a type without a trivial copy/move " |
| "constructor or assignment operator"); |
| // Ignore empty classes in C++. |
| if (Record->isEmpty()) |
| return; |
| } |
| } |
| |
| // Aggregate assignment turns into llvm.memcpy. This is almost valid per |
| // C99 6.5.16.1p3, which states "If the value being stored in an object is |
| // read from another object that overlaps in anyway the storage of the first |
| // object, then the overlap shall be exact and the two objects shall have |
| // qualified or unqualified versions of a compatible type." |
| // |
| // memcpy is not defined if the source and destination pointers are exactly |
| // equal, but other compilers do this optimization, and almost every memcpy |
| // implementation handles this case safely. If there is a libc that does not |
| // safely handle this, we can add a target hook. |
| |
| // Get data size and alignment info for this aggregate. If this is an |
| // assignment don't copy the tail padding. Otherwise copying it is fine. |
| std::pair<CharUnits, CharUnits> TypeInfo; |
| if (isAssignment) |
| TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); |
| else |
| TypeInfo = getContext().getTypeInfoInChars(Ty); |
| |
| if (alignment.isZero()) |
| alignment = TypeInfo.second; |
| |
| // FIXME: Handle variable sized types. |
| |
| // FIXME: If we have a volatile struct, the optimizer can remove what might |
| // appear to be `extra' memory ops: |
| // |
| // volatile struct { int i; } a, b; |
| // |
| // int main() { |
| // a = b; |
| // a = b; |
| // } |
| // |
| // we need to use a different call here. We use isVolatile to indicate when |
| // either the source or the destination is volatile. |
| |
| llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); |
| llvm::Type *DBP = |
| llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); |
| DestPtr = Builder.CreateBitCast(DestPtr, DBP); |
| |
| llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); |
| llvm::Type *SBP = |
| llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); |
| SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); |
| |
| // Don't do any of the memmove_collectable tests if GC isn't set. |
| if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { |
| // fall through |
| } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { |
| RecordDecl *Record = RecordTy->getDecl(); |
| if (Record->hasObjectMember()) { |
| CharUnits size = TypeInfo.first; |
| llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); |
| llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); |
| CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, |
| SizeVal); |
| return; |
| } |
| } else if (Ty->isArrayType()) { |
| QualType BaseType = getContext().getBaseElementType(Ty); |
| if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { |
| if (RecordTy->getDecl()->hasObjectMember()) { |
| CharUnits size = TypeInfo.first; |
| llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); |
| llvm::Value *SizeVal = |
| llvm::ConstantInt::get(SizeTy, size.getQuantity()); |
| CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, |
| SizeVal); |
| return; |
| } |
| } |
| } |
| |
| // Determine the metadata to describe the position of any padding in this |
| // memcpy, as well as the TBAA tags for the members of the struct, in case |
| // the optimizer wishes to expand it in to scalar memory operations. |
| llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty); |
| |
| Builder.CreateMemCpy(DestPtr, SrcPtr, |
| llvm::ConstantInt::get(IntPtrTy, |
| TypeInfo.first.getQuantity()), |
| alignment.getQuantity(), isVolatile, |
| /*TBAATag=*/0, TBAAStructTag); |
| } |
| |
| void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc, |
| const Expr *init) { |
| const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init); |
| if (cleanups) |
| init = cleanups->getSubExpr(); |
| |
| if (isa<InitListExpr>(init) && |
| cast<InitListExpr>(init)->initializesStdInitializerList()) { |
| // We initialized this std::initializer_list with an initializer list. |
| // A backing array was created. Push a cleanup for it. |
| EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init)); |
| } |
| } |
| |
| static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF, |
| llvm::Value *arrayStart, |
| const InitListExpr *init) { |
| // Check if there are any recursive cleanups to do, i.e. if we have |
| // std::initializer_list<std::initializer_list<obj>> list = {{obj()}}; |
| // then we need to destroy the inner array as well. |
| for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) { |
| const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i)); |
| if (!subInit || !subInit->initializesStdInitializerList()) |
| continue; |
| |
| // This one needs to be destroyed. Get the address of the std::init_list. |
| llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i); |
| llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset, |
| "std.initlist"); |
| CGF.EmitStdInitializerListCleanup(loc, subInit); |
| } |
| } |
| |
| void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc, |
| const InitListExpr *init) { |
| ASTContext &ctx = getContext(); |
| QualType element = GetStdInitializerListElementType(init->getType()); |
| unsigned numInits = init->getNumInits(); |
| llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); |
| QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0); |
| QualType arrayPtr = ctx.getPointerType(array); |
| llvm::Type *arrayPtrType = ConvertType(arrayPtr); |
| |
| // lvalue is the location of a std::initializer_list, which as its first |
| // element has a pointer to the array we want to destroy. |
| llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer"); |
| llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress"); |
| |
| ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init); |
| |
| llvm::Value *arrayAddress = |
| Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress"); |
| ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init); |
| } |