| //== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines SimpleConstraintManager, a class that holds code shared |
| // between BasicConstraintManager and RangeConstraintManager. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SimpleConstraintManager.h" |
| #include "clang/Analysis/PathSensitive/GRExprEngine.h" |
| #include "clang/Analysis/PathSensitive/GRState.h" |
| |
| namespace clang { |
| |
| SimpleConstraintManager::~SimpleConstraintManager() {} |
| |
| bool SimpleConstraintManager::canReasonAbout(SVal X) const { |
| if (nonloc::SymExprVal *SymVal = dyn_cast<nonloc::SymExprVal>(&X)) { |
| const SymExpr *SE = SymVal->getSymbolicExpression(); |
| |
| if (isa<SymbolData>(SE)) |
| return true; |
| |
| if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) { |
| switch (SIE->getOpcode()) { |
| // We don't reason yet about bitwise-constraints on symbolic values. |
| case BinaryOperator::And: |
| case BinaryOperator::Or: |
| case BinaryOperator::Xor: |
| return false; |
| // We don't reason yet about arithmetic constraints on symbolic values. |
| case BinaryOperator::Mul: |
| case BinaryOperator::Div: |
| case BinaryOperator::Rem: |
| case BinaryOperator::Add: |
| case BinaryOperator::Sub: |
| case BinaryOperator::Shl: |
| case BinaryOperator::Shr: |
| return false; |
| // All other cases. |
| default: |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| const GRState *SimpleConstraintManager::Assume(const GRState *state, |
| DefinedSVal Cond, |
| bool Assumption) { |
| if (isa<NonLoc>(Cond)) |
| return Assume(state, cast<NonLoc>(Cond), Assumption); |
| else |
| return Assume(state, cast<Loc>(Cond), Assumption); |
| } |
| |
| const GRState *SimpleConstraintManager::Assume(const GRState *state, Loc Cond, |
| bool Assumption) { |
| |
| state = AssumeAux(state, Cond, Assumption); |
| |
| // EvalAssume is used to call into the GRTransferFunction object to perform |
| // any checker-specific update of the state based on this assumption being |
| // true or false. |
| return state ? state->getTransferFuncs().EvalAssume(state, Cond, Assumption) |
| : NULL; |
| } |
| |
| const GRState *SimpleConstraintManager::AssumeAux(const GRState *state, |
| Loc Cond, bool Assumption) { |
| |
| BasicValueFactory &BasicVals = state->getBasicVals(); |
| |
| switch (Cond.getSubKind()) { |
| default: |
| assert (false && "'Assume' not implemented for this Loc."); |
| return state; |
| |
| case loc::MemRegionKind: { |
| // FIXME: Should this go into the storemanager? |
| |
| const MemRegion *R = cast<loc::MemRegionVal>(Cond).getRegion(); |
| const SubRegion *SubR = dyn_cast<SubRegion>(R); |
| |
| while (SubR) { |
| // FIXME: now we only find the first symbolic region. |
| if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) { |
| if (Assumption) |
| return AssumeSymNE(state, SymR->getSymbol(), |
| BasicVals.getZeroWithPtrWidth()); |
| else |
| return AssumeSymEQ(state, SymR->getSymbol(), |
| BasicVals.getZeroWithPtrWidth()); |
| } |
| SubR = dyn_cast<SubRegion>(SubR->getSuperRegion()); |
| } |
| |
| // FALL-THROUGH. |
| } |
| |
| case loc::GotoLabelKind: |
| return Assumption ? state : NULL; |
| |
| case loc::ConcreteIntKind: { |
| bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0; |
| bool isFeasible = b ? Assumption : !Assumption; |
| return isFeasible ? state : NULL; |
| } |
| } // end switch |
| } |
| |
| const GRState *SimpleConstraintManager::Assume(const GRState *state, |
| NonLoc Cond, |
| bool Assumption) { |
| |
| state = AssumeAux(state, Cond, Assumption); |
| |
| // EvalAssume is used to call into the GRTransferFunction object to perform |
| // any checker-specific update of the state based on this assumption being |
| // true or false. |
| return state ? state->getTransferFuncs().EvalAssume(state, Cond, Assumption) |
| : NULL; |
| } |
| |
| const GRState *SimpleConstraintManager::AssumeAux(const GRState *state, |
| NonLoc Cond, |
| bool Assumption) { |
| |
| // We cannot reason about SymIntExpr and SymSymExpr. |
| if (!canReasonAbout(Cond)) { |
| // Just return the current state indicating that the path is feasible. |
| // This may be an over-approximation of what is possible. |
| return state; |
| } |
| |
| BasicValueFactory &BasicVals = state->getBasicVals(); |
| SymbolManager &SymMgr = state->getSymbolManager(); |
| |
| switch (Cond.getSubKind()) { |
| default: |
| assert(false && "'Assume' not implemented for this NonLoc"); |
| |
| case nonloc::SymbolValKind: { |
| nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond); |
| SymbolRef sym = SV.getSymbol(); |
| QualType T = SymMgr.getType(sym); |
| const llvm::APSInt &zero = BasicVals.getValue(0, T); |
| |
| return Assumption ? AssumeSymNE(state, sym, zero) |
| : AssumeSymEQ(state, sym, zero); |
| } |
| |
| case nonloc::SymExprValKind: { |
| nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond); |
| if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression())){ |
| // FIXME: This is a hack. It silently converts the RHS integer to be |
| // of the same type as on the left side. This should be removed once |
| // we support truncation/extension of symbolic values. |
| GRStateManager &StateMgr = state->getStateManager(); |
| ASTContext &Ctx = StateMgr.getContext(); |
| QualType LHSType = SE->getLHS()->getType(Ctx); |
| BasicValueFactory &BasicVals = StateMgr.getBasicVals(); |
| const llvm::APSInt &RHS = BasicVals.Convert(LHSType, SE->getRHS()); |
| SymIntExpr SENew(SE->getLHS(), SE->getOpcode(), RHS, SE->getType(Ctx)); |
| |
| return AssumeSymInt(state, Assumption, &SENew); |
| } |
| |
| // For all other symbolic expressions, over-approximate and consider |
| // the constraint feasible. |
| return state; |
| } |
| |
| case nonloc::ConcreteIntKind: { |
| bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0; |
| bool isFeasible = b ? Assumption : !Assumption; |
| return isFeasible ? state : NULL; |
| } |
| |
| case nonloc::LocAsIntegerKind: |
| return AssumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(), |
| Assumption); |
| } // end switch |
| } |
| |
| const GRState *SimpleConstraintManager::AssumeSymInt(const GRState *state, |
| bool Assumption, |
| const SymIntExpr *SE) { |
| |
| |
| // Here we assume that LHS is a symbol. This is consistent with the |
| // rest of the constraint manager logic. |
| SymbolRef Sym = cast<SymbolData>(SE->getLHS()); |
| const llvm::APSInt &Int = SE->getRHS(); |
| |
| switch (SE->getOpcode()) { |
| default: |
| // No logic yet for other operators. Assume the constraint is feasible. |
| return state; |
| |
| case BinaryOperator::EQ: |
| return Assumption ? AssumeSymEQ(state, Sym, Int) |
| : AssumeSymNE(state, Sym, Int); |
| |
| case BinaryOperator::NE: |
| return Assumption ? AssumeSymNE(state, Sym, Int) |
| : AssumeSymEQ(state, Sym, Int); |
| case BinaryOperator::GT: |
| return Assumption ? AssumeSymGT(state, Sym, Int) |
| : AssumeSymLE(state, Sym, Int); |
| |
| case BinaryOperator::GE: |
| return Assumption ? AssumeSymGE(state, Sym, Int) |
| : AssumeSymLT(state, Sym, Int); |
| |
| case BinaryOperator::LT: |
| return Assumption ? AssumeSymLT(state, Sym, Int) |
| : AssumeSymGE(state, Sym, Int); |
| |
| case BinaryOperator::LE: |
| return Assumption ? AssumeSymLE(state, Sym, Int) |
| : AssumeSymGT(state, Sym, Int); |
| } // end switch |
| } |
| |
| const GRState *SimpleConstraintManager::AssumeInBound(const GRState *state, |
| DefinedSVal Idx, |
| DefinedSVal UpperBound, |
| bool Assumption) { |
| |
| // Only support ConcreteInt for now. |
| if (!(isa<nonloc::ConcreteInt>(Idx) && isa<nonloc::ConcreteInt>(UpperBound))) |
| return state; |
| |
| const llvm::APSInt& Zero = state->getBasicVals().getZeroWithPtrWidth(false); |
| llvm::APSInt IdxV = cast<nonloc::ConcreteInt>(Idx).getValue(); |
| // IdxV might be too narrow. |
| if (IdxV.getBitWidth() < Zero.getBitWidth()) |
| IdxV.extend(Zero.getBitWidth()); |
| // UBV might be too narrow, too. |
| llvm::APSInt UBV = cast<nonloc::ConcreteInt>(UpperBound).getValue(); |
| if (UBV.getBitWidth() < Zero.getBitWidth()) |
| UBV.extend(Zero.getBitWidth()); |
| |
| bool InBound = (Zero <= IdxV) && (IdxV < UBV); |
| bool isFeasible = Assumption ? InBound : !InBound; |
| return isFeasible ? state : NULL; |
| } |
| |
| } // end of namespace clang |