Make integer promotions work correctly on PIC16 and other platforms 
where sizeof(short) == sizeof(int).  Move UsualArithmeticConversionsType 
out of Sema, since it was only there as a historical artifact.  Patch by 
Enea Zaffanella.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@79412 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/AST/ASTContext.cpp b/lib/AST/ASTContext.cpp
index 063bb2a..8a1f601 100644
--- a/lib/AST/ASTContext.cpp
+++ b/lib/AST/ASTContext.cpp
@@ -2487,6 +2487,20 @@
   }
 }
 
+/// getPromotedIntegerType - Returns the type that Promotable will
+/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
+/// integer type.
+QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
+  assert(!Promotable.isNull());
+  assert(Promotable->isPromotableIntegerType());
+  if (Promotable->isSignedIntegerType())
+    return IntTy;
+  uint64_t PromotableSize = getTypeSize(Promotable);
+  uint64_t IntSize = getTypeSize(IntTy);
+  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
+  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
+}
+
 /// getIntegerTypeOrder - Returns the highest ranked integer type: 
 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
 /// LHS < RHS, return -1. 
@@ -4157,3 +4171,143 @@
   return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
                          TypeStr[0] == '.', 0);
 }
+
+QualType
+ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
+  // Perform the usual unary conversions. We do this early so that
+  // integral promotions to "int" can allow us to exit early, in the
+  // lhs == rhs check. Also, for conversion purposes, we ignore any
+  // qualifiers.  For example, "const float" and "float" are
+  // equivalent.
+  if (lhs->isPromotableIntegerType())
+    lhs = getPromotedIntegerType(lhs);
+  else
+    lhs = lhs.getUnqualifiedType();
+  if (rhs->isPromotableIntegerType())
+    rhs = getPromotedIntegerType(rhs);
+  else
+    rhs = rhs.getUnqualifiedType();
+
+  // If both types are identical, no conversion is needed.
+  if (lhs == rhs)
+    return lhs;
+  
+  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+  // The caller can deal with this (e.g. pointer + int).
+  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
+    return lhs;
+    
+  // At this point, we have two different arithmetic types. 
+  
+  // Handle complex types first (C99 6.3.1.8p1).
+  if (lhs->isComplexType() || rhs->isComplexType()) {
+    // if we have an integer operand, the result is the complex type.
+    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) { 
+      // convert the rhs to the lhs complex type.
+      return lhs;
+    }
+    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) { 
+      // convert the lhs to the rhs complex type.
+      return rhs;
+    }
+    // This handles complex/complex, complex/float, or float/complex.
+    // When both operands are complex, the shorter operand is converted to the 
+    // type of the longer, and that is the type of the result. This corresponds 
+    // to what is done when combining two real floating-point operands. 
+    // The fun begins when size promotion occur across type domains. 
+    // From H&S 6.3.4: When one operand is complex and the other is a real
+    // floating-point type, the less precise type is converted, within it's 
+    // real or complex domain, to the precision of the other type. For example,
+    // when combining a "long double" with a "double _Complex", the 
+    // "double _Complex" is promoted to "long double _Complex".
+    int result = getFloatingTypeOrder(lhs, rhs);
+    
+    if (result > 0) { // The left side is bigger, convert rhs. 
+      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
+    } else if (result < 0) { // The right side is bigger, convert lhs. 
+      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
+    } 
+    // At this point, lhs and rhs have the same rank/size. Now, make sure the
+    // domains match. This is a requirement for our implementation, C99
+    // does not require this promotion.
+    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
+      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
+        return rhs;
+      } else { // handle "_Complex double, double".
+        return lhs;
+      }
+    }
+    return lhs; // The domain/size match exactly.
+  }
+  // Now handle "real" floating types (i.e. float, double, long double).
+  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
+    // if we have an integer operand, the result is the real floating type.
+    if (rhs->isIntegerType()) {
+      // convert rhs to the lhs floating point type.
+      return lhs;
+    }
+    if (rhs->isComplexIntegerType()) {
+      // convert rhs to the complex floating point type.
+      return getComplexType(lhs);
+    }
+    if (lhs->isIntegerType()) {
+      // convert lhs to the rhs floating point type.
+      return rhs;
+    }
+    if (lhs->isComplexIntegerType()) { 
+      // convert lhs to the complex floating point type.
+      return getComplexType(rhs);
+    }
+    // We have two real floating types, float/complex combos were handled above.
+    // Convert the smaller operand to the bigger result.
+    int result = getFloatingTypeOrder(lhs, rhs);
+    if (result > 0) // convert the rhs
+      return lhs;
+    assert(result < 0 && "illegal float comparison");
+    return rhs;   // convert the lhs
+  }
+  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
+    // Handle GCC complex int extension.
+    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
+    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
+
+    if (lhsComplexInt && rhsComplexInt) {
+      if (getIntegerTypeOrder(lhsComplexInt->getElementType(), 
+                              rhsComplexInt->getElementType()) >= 0)
+        return lhs; // convert the rhs
+      return rhs;
+    } else if (lhsComplexInt && rhs->isIntegerType()) {
+      // convert the rhs to the lhs complex type.
+      return lhs;
+    } else if (rhsComplexInt && lhs->isIntegerType()) {
+      // convert the lhs to the rhs complex type.
+      return rhs;
+    }
+  }
+  // Finally, we have two differing integer types.
+  // The rules for this case are in C99 6.3.1.8
+  int compare = getIntegerTypeOrder(lhs, rhs);
+  bool lhsSigned = lhs->isSignedIntegerType(),
+       rhsSigned = rhs->isSignedIntegerType();
+  QualType destType;
+  if (lhsSigned == rhsSigned) {
+    // Same signedness; use the higher-ranked type
+    destType = compare >= 0 ? lhs : rhs;
+  } else if (compare != (lhsSigned ? 1 : -1)) {
+    // The unsigned type has greater than or equal rank to the
+    // signed type, so use the unsigned type
+    destType = lhsSigned ? rhs : lhs;
+  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
+    // The two types are different widths; if we are here, that
+    // means the signed type is larger than the unsigned type, so
+    // use the signed type.
+    destType = lhsSigned ? lhs : rhs;
+  } else {
+    // The signed type is higher-ranked than the unsigned type,
+    // but isn't actually any bigger (like unsigned int and long
+    // on most 32-bit systems).  Use the unsigned type corresponding
+    // to the signed type.
+    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
+  }
+  return destType;
+}