Test exception spec compatibility on return type and parameters.

Along the way, use RequireCompleteType when testing exception spec types.
Separate all the ugly spec stuff into its own file.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@83764 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Sema/SemaExceptionSpec.cpp b/lib/Sema/SemaExceptionSpec.cpp
new file mode 100644
index 0000000..8720d81
--- /dev/null
+++ b/lib/Sema/SemaExceptionSpec.cpp
@@ -0,0 +1,309 @@
+//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Sema routines for C++ exception specification testing.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "llvm/ADT/SmallPtrSet.h"
+
+namespace clang {
+
+static const FunctionProtoType *GetUnderlyingFunction(QualType T)
+{
+  if (const PointerType *PtrTy = T->getAs<PointerType>())
+    T = PtrTy->getPointeeType();
+  else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
+    T = RefTy->getPointeeType();
+  return T->getAs<FunctionProtoType>();
+}
+
+/// CheckSpecifiedExceptionType - Check if the given type is valid in an
+/// exception specification. Incomplete types, or pointers to incomplete types
+/// other than void are not allowed.
+bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
+  // FIXME: This may not correctly work with the fix for core issue 437,
+  // where a class's own type is considered complete within its body. But
+  // perhaps RequireCompleteType itself should contain this logic?
+
+  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
+  //   an incomplete type.
+  // FIXME: This isn't right. This will supress diagnostics from template
+  // instantiation and then simply emit the invalid type diagnostic.
+  if (RequireCompleteType(Range.getBegin(), T, 0))
+    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
+      << Range << T << /*direct*/0;
+
+  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
+  //   an incomplete type a pointer or reference to an incomplete type, other
+  //   than (cv) void*.
+  int kind;
+  if (const PointerType* IT = T->getAs<PointerType>()) {
+    T = IT->getPointeeType();
+    kind = 1;
+  } else if (const ReferenceType* IT = T->getAs<ReferenceType>()) {
+    T = IT->getPointeeType();
+    kind = 2;
+  } else
+    return false;
+
+  if (!T->isVoidType() && RequireCompleteType(Range.getBegin(), T, 0))
+    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
+      << Range << T << /*indirect*/kind;
+
+  return false;
+}
+
+/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
+/// to member to a function with an exception specification. This means that
+/// it is invalid to add another level of indirection.
+bool Sema::CheckDistantExceptionSpec(QualType T) {
+  if (const PointerType *PT = T->getAs<PointerType>())
+    T = PT->getPointeeType();
+  else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
+    T = PT->getPointeeType();
+  else
+    return false;
+
+  const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
+  if (!FnT)
+    return false;
+
+  return FnT->hasExceptionSpec();
+}
+
+/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
+/// exception specifications. Exception specifications are equivalent if
+/// they allow exactly the same set of exception types. It does not matter how
+/// that is achieved. See C++ [except.spec]p2.
+bool Sema::CheckEquivalentExceptionSpec(
+    const FunctionProtoType *Old, SourceLocation OldLoc,
+    const FunctionProtoType *New, SourceLocation NewLoc) {
+  return CheckEquivalentExceptionSpec(diag::err_mismatched_exception_spec,
+                                      diag::note_previous_declaration,
+                                      Old, OldLoc, New, NewLoc);
+}
+
+/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
+/// exception specifications. Exception specifications are equivalent if
+/// they allow exactly the same set of exception types. It does not matter how
+/// that is achieved. See C++ [except.spec]p2.
+bool Sema::CheckEquivalentExceptionSpec(
+    unsigned DiagID, unsigned NoteID,
+    const FunctionProtoType *Old, SourceLocation OldLoc,
+    const FunctionProtoType *New, SourceLocation NewLoc) {
+  bool OldAny = !Old->hasExceptionSpec() || Old->hasAnyExceptionSpec();
+  bool NewAny = !New->hasExceptionSpec() || New->hasAnyExceptionSpec();
+  if (OldAny && NewAny)
+    return false;
+  if (OldAny || NewAny) {
+    Diag(NewLoc, DiagID);
+    if (NoteID != 0)
+      Diag(OldLoc, NoteID);
+    return true;
+  }
+
+  bool Success = true;
+  // Both have a definite exception spec. Collect the first set, then compare
+  // to the second.
+  llvm::SmallPtrSet<const Type*, 8> Types;
+  for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
+       E = Old->exception_end(); I != E; ++I)
+    Types.insert(Context.getCanonicalType(*I).getTypePtr());
+
+  for (FunctionProtoType::exception_iterator I = New->exception_begin(),
+       E = New->exception_end(); I != E && Success; ++I)
+    Success = Types.erase(Context.getCanonicalType(*I).getTypePtr());
+
+  Success = Success && Types.empty();
+
+  if (Success) {
+    return false;
+  }
+  Diag(NewLoc, DiagID);
+  if (NoteID != 0)
+    Diag(OldLoc, NoteID);
+  return true;
+}
+
+/// CheckExceptionSpecSubset - Check whether the second function type's
+/// exception specification is a subset (or equivalent) of the first function
+/// type. This is used by override and pointer assignment checks.
+bool Sema::CheckExceptionSpecSubset(unsigned DiagID, unsigned NoteID,
+    const FunctionProtoType *Superset, SourceLocation SuperLoc,
+    const FunctionProtoType *Subset, SourceLocation SubLoc) {
+  // FIXME: As usual, we could be more specific in our error messages, but
+  // that better waits until we've got types with source locations.
+
+  if (!SubLoc.isValid())
+    SubLoc = SuperLoc;
+
+  // If superset contains everything, we're done.
+  if (!Superset->hasExceptionSpec() || Superset->hasAnyExceptionSpec())
+    return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
+
+  // It does not. If the subset contains everything, we've failed.
+  if (!Subset->hasExceptionSpec() || Subset->hasAnyExceptionSpec()) {
+    Diag(SubLoc, DiagID);
+    if (NoteID != 0)
+      Diag(SuperLoc, NoteID);
+    return true;
+  }
+
+  // Neither contains everything. Do a proper comparison.
+  for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
+       SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
+    // Take one type from the subset.
+    QualType CanonicalSubT = Context.getCanonicalType(*SubI);
+    bool SubIsPointer = false;
+    if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
+      CanonicalSubT = RefTy->getPointeeType();
+    if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
+      CanonicalSubT = PtrTy->getPointeeType();
+      SubIsPointer = true;
+    }
+    bool SubIsClass = CanonicalSubT->isRecordType();
+    CanonicalSubT = CanonicalSubT.getUnqualifiedType();
+
+    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+                       /*DetectVirtual=*/false);
+
+    bool Contained = false;
+    // Make sure it's in the superset.
+    for (FunctionProtoType::exception_iterator SuperI =
+           Superset->exception_begin(), SuperE = Superset->exception_end();
+         SuperI != SuperE; ++SuperI) {
+      QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
+      // SubT must be SuperT or derived from it, or pointer or reference to
+      // such types.
+      if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
+        CanonicalSuperT = RefTy->getPointeeType();
+      if (SubIsPointer) {
+        if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
+          CanonicalSuperT = PtrTy->getPointeeType();
+        else {
+          continue;
+        }
+      }
+      CanonicalSuperT = CanonicalSuperT.getUnqualifiedType();
+      // If the types are the same, move on to the next type in the subset.
+      if (CanonicalSubT == CanonicalSuperT) {
+        Contained = true;
+        break;
+      }
+
+      // Otherwise we need to check the inheritance.
+      if (!SubIsClass || !CanonicalSuperT->isRecordType())
+        continue;
+
+      Paths.clear();
+      if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
+        continue;
+
+      if (Paths.isAmbiguous(CanonicalSuperT))
+        continue;
+
+      if (FindInaccessibleBase(CanonicalSubT, CanonicalSuperT, Paths, true))
+        continue;
+
+      Contained = true;
+      break;
+    }
+    if (!Contained) {
+      Diag(SubLoc, DiagID);
+      if (NoteID != 0)
+        Diag(SuperLoc, NoteID);
+      return true;
+    }
+  }
+  // We've run half the gauntlet.
+  return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
+}
+
+static bool CheckSpecForTypesEquivalent(Sema &S,
+    unsigned DiagID, unsigned NoteID,
+    QualType Target, SourceLocation TargetLoc,
+    QualType Source, SourceLocation SourceLoc)
+{
+  const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
+  if (!TFunc)
+    return false;
+  const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
+  if (!SFunc)
+    return false;
+
+  return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
+                                        SFunc, SourceLoc);
+}
+
+/// CheckParamExceptionSpec - Check if the parameter and return types of the
+/// two functions have equivalent exception specs. This is part of the
+/// assignment and override compatibility check. We do not check the parameters
+/// of parameter function pointers recursively, as no sane programmer would
+/// even be able to write such a function type.
+bool Sema::CheckParamExceptionSpec(unsigned NoteID,
+    const FunctionProtoType *Target, SourceLocation TargetLoc,
+    const FunctionProtoType *Source, SourceLocation SourceLoc)
+{
+  if (CheckSpecForTypesEquivalent(*this, diag::err_return_type_specs_differ, 0,
+                                  Target->getResultType(), TargetLoc,
+                                  Source->getResultType(), SourceLoc))
+    return true;
+
+  // We shouldn't even testing this unless the arguments are otherwise
+  // compatible.
+  assert(Target->getNumArgs() == Source->getNumArgs() &&
+         "Functions have different argument counts.");
+  for (unsigned i = 0, E = Target->getNumArgs(); i != E; ++i) {
+    if (CheckSpecForTypesEquivalent(*this, diag::err_arg_type_specs_differ, 0,
+                                    Target->getArgType(i), TargetLoc,
+                                    Source->getArgType(i), SourceLoc))
+      return true;
+  }
+  return false;
+}
+
+bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType)
+{
+  // First we check for applicability.
+  // Target type must be a function, function pointer or function reference.
+  const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
+  if (!ToFunc)
+    return false;
+
+  // SourceType must be a function or function pointer.
+  const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
+  if (!FromFunc)
+    return false;
+
+  // Now we've got the correct types on both sides, check their compatibility.
+  // This means that the source of the conversion can only throw a subset of
+  // the exceptions of the target, and any exception specs on arguments or
+  // return types must be equivalent.
+  return CheckExceptionSpecSubset(diag::err_incompatible_exception_specs,
+                                  0, ToFunc, From->getSourceRange().getBegin(),
+                                  FromFunc, SourceLocation());
+}
+
+bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
+                                                const CXXMethodDecl *Old) {
+  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
+                                  diag::note_overridden_virtual_function,
+                                  Old->getType()->getAs<FunctionProtoType>(),
+                                  Old->getLocation(),
+                                  New->getType()->getAs<FunctionProtoType>(),
+                                  New->getLocation());
+}
+
+} // end namespace clang