blob: 1de0ebc41c33383c826cc9a89eeb923a9eb55a67 [file] [log] [blame]
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00001//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
Anton Korobeynikov82d0a412010-01-10 12:58:08 +000015#include "TargetInfo.h"
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000016#include "ABIInfo.h"
17#include "CodeGenFunction.h"
Anders Carlsson19cc4ab2009-07-18 19:43:29 +000018#include "clang/AST/RecordLayout.h"
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000019#include "llvm/Type.h"
Anton Korobeynikov82d0a412010-01-10 12:58:08 +000020#include "llvm/ADT/StringExtras.h"
Daniel Dunbar2c0843f2009-08-24 08:52:16 +000021#include "llvm/ADT/Triple.h"
Daniel Dunbar28df7a52009-12-03 09:13:49 +000022#include "llvm/Support/raw_ostream.h"
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000023using namespace clang;
24using namespace CodeGen;
25
John McCallaeeb7012010-05-27 06:19:26 +000026static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
27 llvm::Value *Array,
28 llvm::Value *Value,
29 unsigned FirstIndex,
30 unsigned LastIndex) {
31 // Alternatively, we could emit this as a loop in the source.
32 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
33 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
34 Builder.CreateStore(Value, Cell);
35 }
36}
37
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000038ABIInfo::~ABIInfo() {}
39
40void ABIArgInfo::dump() const {
Daniel Dunbar28df7a52009-12-03 09:13:49 +000041 llvm::raw_ostream &OS = llvm::errs();
42 OS << "(ABIArgInfo Kind=";
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000043 switch (TheKind) {
44 case Direct:
Daniel Dunbar28df7a52009-12-03 09:13:49 +000045 OS << "Direct";
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000046 break;
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +000047 case Extend:
Daniel Dunbar28df7a52009-12-03 09:13:49 +000048 OS << "Extend";
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +000049 break;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000050 case Ignore:
Daniel Dunbar28df7a52009-12-03 09:13:49 +000051 OS << "Ignore";
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000052 break;
53 case Coerce:
Daniel Dunbar28df7a52009-12-03 09:13:49 +000054 OS << "Coerce Type=";
55 getCoerceToType()->print(OS);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000056 break;
57 case Indirect:
Daniel Dunbardc6d5742010-04-21 19:10:51 +000058 OS << "Indirect Align=" << getIndirectAlign()
59 << " Byal=" << getIndirectByVal();
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000060 break;
61 case Expand:
Daniel Dunbar28df7a52009-12-03 09:13:49 +000062 OS << "Expand";
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000063 break;
64 }
Daniel Dunbar28df7a52009-12-03 09:13:49 +000065 OS << ")\n";
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000066}
67
Anton Korobeynikov82d0a412010-01-10 12:58:08 +000068TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
69
Daniel Dunbar98303b92009-09-13 08:03:58 +000070static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000071
72/// isEmptyField - Return true iff a the field is "empty", that is it
73/// is an unnamed bit-field or an (array of) empty record(s).
Daniel Dunbar98303b92009-09-13 08:03:58 +000074static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
75 bool AllowArrays) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000076 if (FD->isUnnamedBitfield())
77 return true;
78
79 QualType FT = FD->getType();
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000080
Daniel Dunbar98303b92009-09-13 08:03:58 +000081 // Constant arrays of empty records count as empty, strip them off.
82 if (AllowArrays)
83 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
84 FT = AT->getElementType();
85
Daniel Dunbar5ea68612010-05-17 16:46:00 +000086 const RecordType *RT = FT->getAs<RecordType>();
87 if (!RT)
88 return false;
89
90 // C++ record fields are never empty, at least in the Itanium ABI.
91 //
92 // FIXME: We should use a predicate for whether this behavior is true in the
93 // current ABI.
94 if (isa<CXXRecordDecl>(RT->getDecl()))
95 return false;
96
Daniel Dunbar98303b92009-09-13 08:03:58 +000097 return isEmptyRecord(Context, FT, AllowArrays);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +000098}
99
100/// isEmptyRecord - Return true iff a structure contains only empty
101/// fields. Note that a structure with a flexible array member is not
102/// considered empty.
Daniel Dunbar98303b92009-09-13 08:03:58 +0000103static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
Ted Kremenek6217b802009-07-29 21:53:49 +0000104 const RecordType *RT = T->getAs<RecordType>();
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000105 if (!RT)
106 return 0;
107 const RecordDecl *RD = RT->getDecl();
108 if (RD->hasFlexibleArrayMember())
109 return false;
Daniel Dunbar5ea68612010-05-17 16:46:00 +0000110
111 // If this is a C++ record, check the bases first.
112 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
113 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
114 e = CXXRD->bases_end(); i != e; ++i)
115 if (!isEmptyRecord(Context, i->getType(), true))
116 return false;
117
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +0000118 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
119 i != e; ++i)
Daniel Dunbar98303b92009-09-13 08:03:58 +0000120 if (!isEmptyField(Context, *i, AllowArrays))
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000121 return false;
122 return true;
123}
124
Anders Carlsson0a8f8472009-09-16 15:53:40 +0000125/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
126/// a non-trivial destructor or a non-trivial copy constructor.
127static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
128 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
129 if (!RD)
130 return false;
131
132 return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
133}
134
135/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
136/// a record type with either a non-trivial destructor or a non-trivial copy
137/// constructor.
138static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
139 const RecordType *RT = T->getAs<RecordType>();
140 if (!RT)
141 return false;
142
143 return hasNonTrivialDestructorOrCopyConstructor(RT);
144}
145
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000146/// isSingleElementStruct - Determine if a structure is a "single
147/// element struct", i.e. it has exactly one non-empty field or
148/// exactly one field which is itself a single element
149/// struct. Structures with flexible array members are never
150/// considered single element structs.
151///
152/// \return The field declaration for the single non-empty field, if
153/// it exists.
154static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
155 const RecordType *RT = T->getAsStructureType();
156 if (!RT)
157 return 0;
158
159 const RecordDecl *RD = RT->getDecl();
160 if (RD->hasFlexibleArrayMember())
161 return 0;
162
163 const Type *Found = 0;
Daniel Dunbar9430d5a2010-05-11 21:15:36 +0000164
165 // If this is a C++ record, check the bases first.
166 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
167 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
168 e = CXXRD->bases_end(); i != e; ++i) {
Daniel Dunbar9430d5a2010-05-11 21:15:36 +0000169 // Ignore empty records.
Daniel Dunbar5ea68612010-05-17 16:46:00 +0000170 if (isEmptyRecord(Context, i->getType(), true))
Daniel Dunbar9430d5a2010-05-11 21:15:36 +0000171 continue;
172
173 // If we already found an element then this isn't a single-element struct.
174 if (Found)
175 return 0;
176
177 // If this is non-empty and not a single element struct, the composite
178 // cannot be a single element struct.
179 Found = isSingleElementStruct(i->getType(), Context);
180 if (!Found)
181 return 0;
182 }
183 }
184
185 // Check for single element.
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +0000186 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
187 i != e; ++i) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000188 const FieldDecl *FD = *i;
189 QualType FT = FD->getType();
190
191 // Ignore empty fields.
Daniel Dunbar98303b92009-09-13 08:03:58 +0000192 if (isEmptyField(Context, FD, true))
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000193 continue;
194
195 // If we already found an element then this isn't a single-element
196 // struct.
197 if (Found)
198 return 0;
199
200 // Treat single element arrays as the element.
201 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
202 if (AT->getSize().getZExtValue() != 1)
203 break;
204 FT = AT->getElementType();
205 }
206
207 if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
208 Found = FT.getTypePtr();
209 } else {
210 Found = isSingleElementStruct(FT, Context);
211 if (!Found)
212 return 0;
213 }
214 }
215
216 return Found;
217}
218
219static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
Daniel Dunbara1842d32010-05-14 03:40:53 +0000220 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
Daniel Dunbar55e59e12009-09-24 05:12:36 +0000221 !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
222 !Ty->isBlockPointerType())
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000223 return false;
224
225 uint64_t Size = Context.getTypeSize(Ty);
226 return Size == 32 || Size == 64;
227}
228
Daniel Dunbar53012f42009-11-09 01:33:53 +0000229/// canExpandIndirectArgument - Test whether an argument type which is to be
230/// passed indirectly (on the stack) would have the equivalent layout if it was
231/// expanded into separate arguments. If so, we prefer to do the latter to avoid
232/// inhibiting optimizations.
233///
234// FIXME: This predicate is missing many cases, currently it just follows
235// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
236// should probably make this smarter, or better yet make the LLVM backend
237// capable of handling it.
238static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
239 // We can only expand structure types.
240 const RecordType *RT = Ty->getAs<RecordType>();
241 if (!RT)
242 return false;
243
244 // We can only expand (C) structures.
245 //
246 // FIXME: This needs to be generalized to handle classes as well.
247 const RecordDecl *RD = RT->getDecl();
248 if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
249 return false;
250
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +0000251 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
252 i != e; ++i) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000253 const FieldDecl *FD = *i;
254
255 if (!is32Or64BitBasicType(FD->getType(), Context))
256 return false;
257
258 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
259 // how to expand them yet, and the predicate for telling if a bitfield still
260 // counts as "basic" is more complicated than what we were doing previously.
261 if (FD->isBitField())
262 return false;
263 }
264
265 return true;
266}
267
268namespace {
269/// DefaultABIInfo - The default implementation for ABI specific
270/// details. This implementation provides information which results in
271/// self-consistent and sensible LLVM IR generation, but does not
272/// conform to any particular ABI.
273class DefaultABIInfo : public ABIInfo {
274 ABIArgInfo classifyReturnType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +0000275 ASTContext &Context,
276 llvm::LLVMContext &VMContext) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000277
278 ABIArgInfo classifyArgumentType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +0000279 ASTContext &Context,
280 llvm::LLVMContext &VMContext) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000281
Owen Andersona1cf15f2009-07-14 23:10:40 +0000282 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
283 llvm::LLVMContext &VMContext) const {
284 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
285 VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000286 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
287 it != ie; ++it)
Owen Andersona1cf15f2009-07-14 23:10:40 +0000288 it->info = classifyArgumentType(it->type, Context, VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000289 }
290
291 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
292 CodeGenFunction &CGF) const;
293};
294
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000295class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
296public:
Douglas Gregor568bb2d2010-01-22 15:41:14 +0000297 DefaultTargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000298};
299
300llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
301 CodeGenFunction &CGF) const {
302 return 0;
303}
304
305ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
306 ASTContext &Context,
307 llvm::LLVMContext &VMContext) const {
Chris Lattnera14db752010-03-11 18:19:55 +0000308 if (CodeGenFunction::hasAggregateLLVMType(Ty))
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000309 return ABIArgInfo::getIndirect(0);
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000310
Chris Lattnera14db752010-03-11 18:19:55 +0000311 // Treat an enum type as its underlying type.
312 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
313 Ty = EnumTy->getDecl()->getIntegerType();
Douglas Gregoraa74a1e2010-02-02 20:10:50 +0000314
Chris Lattnera14db752010-03-11 18:19:55 +0000315 return (Ty->isPromotableIntegerType() ?
316 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000317}
318
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000319/// X86_32ABIInfo - The X86-32 ABI information.
320class X86_32ABIInfo : public ABIInfo {
321 ASTContext &Context;
David Chisnall1e4249c2009-08-17 23:08:21 +0000322 bool IsDarwinVectorABI;
323 bool IsSmallStructInRegABI;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000324
325 static bool isRegisterSize(unsigned Size) {
326 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
327 }
328
329 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
330
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000331 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
332 /// such that the argument will be passed in memory.
333 ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context,
334 bool ByVal = true) const;
335
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000336public:
337 ABIArgInfo classifyReturnType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +0000338 ASTContext &Context,
339 llvm::LLVMContext &VMContext) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000340
341 ABIArgInfo classifyArgumentType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +0000342 ASTContext &Context,
343 llvm::LLVMContext &VMContext) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000344
Owen Andersona1cf15f2009-07-14 23:10:40 +0000345 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
346 llvm::LLVMContext &VMContext) const {
347 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
348 VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000349 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
350 it != ie; ++it)
Owen Andersona1cf15f2009-07-14 23:10:40 +0000351 it->info = classifyArgumentType(it->type, Context, VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000352 }
353
354 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355 CodeGenFunction &CGF) const;
356
David Chisnall1e4249c2009-08-17 23:08:21 +0000357 X86_32ABIInfo(ASTContext &Context, bool d, bool p)
Mike Stump1eb44332009-09-09 15:08:12 +0000358 : ABIInfo(), Context(Context), IsDarwinVectorABI(d),
David Chisnall1e4249c2009-08-17 23:08:21 +0000359 IsSmallStructInRegABI(p) {}
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000360};
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000361
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000362class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
363public:
364 X86_32TargetCodeGenInfo(ASTContext &Context, bool d, bool p)
Douglas Gregor568bb2d2010-01-22 15:41:14 +0000365 :TargetCodeGenInfo(new X86_32ABIInfo(Context, d, p)) {}
Charles Davis74f72932010-02-13 15:54:06 +0000366
367 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
368 CodeGen::CodeGenModule &CGM) const;
John McCall6374c332010-03-06 00:35:14 +0000369
370 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
371 // Darwin uses different dwarf register numbers for EH.
372 if (CGM.isTargetDarwin()) return 5;
373
374 return 4;
375 }
376
377 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
378 llvm::Value *Address) const;
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000379};
380
381}
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000382
383/// shouldReturnTypeInRegister - Determine if the given type should be
384/// passed in a register (for the Darwin ABI).
385bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
386 ASTContext &Context) {
387 uint64_t Size = Context.getTypeSize(Ty);
388
389 // Type must be register sized.
390 if (!isRegisterSize(Size))
391 return false;
392
393 if (Ty->isVectorType()) {
394 // 64- and 128- bit vectors inside structures are not returned in
395 // registers.
396 if (Size == 64 || Size == 128)
397 return false;
398
399 return true;
400 }
401
Daniel Dunbar77115232010-05-15 00:00:30 +0000402 // If this is a builtin, pointer, enum, complex type, member pointer, or
403 // member function pointer it is ok.
Daniel Dunbara1842d32010-05-14 03:40:53 +0000404 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
Daniel Dunbar55e59e12009-09-24 05:12:36 +0000405 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
Daniel Dunbar77115232010-05-15 00:00:30 +0000406 Ty->isBlockPointerType() || Ty->isMemberPointerType())
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000407 return true;
408
409 // Arrays are treated like records.
410 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
411 return shouldReturnTypeInRegister(AT->getElementType(), Context);
412
413 // Otherwise, it must be a record type.
Ted Kremenek6217b802009-07-29 21:53:49 +0000414 const RecordType *RT = Ty->getAs<RecordType>();
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000415 if (!RT) return false;
416
Anders Carlssona8874232010-01-27 03:25:19 +0000417 // FIXME: Traverse bases here too.
418
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000419 // Structure types are passed in register if all fields would be
420 // passed in a register.
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +0000421 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
422 e = RT->getDecl()->field_end(); i != e; ++i) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000423 const FieldDecl *FD = *i;
424
425 // Empty fields are ignored.
Daniel Dunbar98303b92009-09-13 08:03:58 +0000426 if (isEmptyField(Context, FD, true))
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000427 continue;
428
429 // Check fields recursively.
430 if (!shouldReturnTypeInRegister(FD->getType(), Context))
431 return false;
432 }
433
434 return true;
435}
436
437ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +0000438 ASTContext &Context,
439 llvm::LLVMContext &VMContext) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000440 if (RetTy->isVoidType()) {
441 return ABIArgInfo::getIgnore();
John McCall183700f2009-09-21 23:43:11 +0000442 } else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000443 // On Darwin, some vectors are returned in registers.
David Chisnall1e4249c2009-08-17 23:08:21 +0000444 if (IsDarwinVectorABI) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000445 uint64_t Size = Context.getTypeSize(RetTy);
446
447 // 128-bit vectors are a special case; they are returned in
448 // registers and we need to make sure to pick a type the LLVM
449 // backend will like.
450 if (Size == 128)
Owen Anderson0032b272009-08-13 21:57:51 +0000451 return ABIArgInfo::getCoerce(llvm::VectorType::get(
452 llvm::Type::getInt64Ty(VMContext), 2));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000453
454 // Always return in register if it fits in a general purpose
455 // register, or if it is 64 bits and has a single element.
456 if ((Size == 8 || Size == 16 || Size == 32) ||
457 (Size == 64 && VT->getNumElements() == 1))
Owen Anderson0032b272009-08-13 21:57:51 +0000458 return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000459
460 return ABIArgInfo::getIndirect(0);
461 }
462
463 return ABIArgInfo::getDirect();
464 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
Anders Carlssona8874232010-01-27 03:25:19 +0000465 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
Anders Carlsson40092972009-10-20 22:07:59 +0000466 // Structures with either a non-trivial destructor or a non-trivial
467 // copy constructor are always indirect.
468 if (hasNonTrivialDestructorOrCopyConstructor(RT))
469 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
470
471 // Structures with flexible arrays are always indirect.
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000472 if (RT->getDecl()->hasFlexibleArrayMember())
473 return ABIArgInfo::getIndirect(0);
Anders Carlsson40092972009-10-20 22:07:59 +0000474 }
475
David Chisnall1e4249c2009-08-17 23:08:21 +0000476 // If specified, structs and unions are always indirect.
477 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000478 return ABIArgInfo::getIndirect(0);
479
480 // Classify "single element" structs as their element type.
481 if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
John McCall183700f2009-09-21 23:43:11 +0000482 if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000483 if (BT->isIntegerType()) {
484 // We need to use the size of the structure, padding
485 // bit-fields can adjust that to be larger than the single
486 // element type.
487 uint64_t Size = Context.getTypeSize(RetTy);
Owen Andersona1cf15f2009-07-14 23:10:40 +0000488 return ABIArgInfo::getCoerce(
Owen Anderson0032b272009-08-13 21:57:51 +0000489 llvm::IntegerType::get(VMContext, (unsigned) Size));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000490 } else if (BT->getKind() == BuiltinType::Float) {
491 assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
492 "Unexpect single element structure size!");
Owen Anderson0032b272009-08-13 21:57:51 +0000493 return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000494 } else if (BT->getKind() == BuiltinType::Double) {
495 assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
496 "Unexpect single element structure size!");
Owen Anderson0032b272009-08-13 21:57:51 +0000497 return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000498 }
499 } else if (SeltTy->isPointerType()) {
500 // FIXME: It would be really nice if this could come out as the proper
501 // pointer type.
Benjamin Kramer3c0ef8c2009-10-13 10:07:13 +0000502 const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000503 return ABIArgInfo::getCoerce(PtrTy);
504 } else if (SeltTy->isVectorType()) {
505 // 64- and 128-bit vectors are never returned in a
506 // register when inside a structure.
507 uint64_t Size = Context.getTypeSize(RetTy);
508 if (Size == 64 || Size == 128)
509 return ABIArgInfo::getIndirect(0);
510
Owen Andersona1cf15f2009-07-14 23:10:40 +0000511 return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000512 }
513 }
514
515 // Small structures which are register sized are generally returned
516 // in a register.
517 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
518 uint64_t Size = Context.getTypeSize(RetTy);
Owen Anderson0032b272009-08-13 21:57:51 +0000519 return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000520 }
521
522 return ABIArgInfo::getIndirect(0);
523 } else {
Douglas Gregoraa74a1e2010-02-02 20:10:50 +0000524 // Treat an enum type as its underlying type.
525 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
526 RetTy = EnumTy->getDecl()->getIntegerType();
527
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +0000528 return (RetTy->isPromotableIntegerType() ?
529 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000530 }
531}
532
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000533ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty,
534 ASTContext &Context,
535 bool ByVal) const {
Daniel Dunbar46c54fb2010-04-21 19:49:55 +0000536 if (!ByVal)
537 return ABIArgInfo::getIndirect(0, false);
538
539 // Compute the byval alignment. We trust the back-end to honor the
540 // minimum ABI alignment for byval, to make cleaner IR.
541 const unsigned MinABIAlign = 4;
542 unsigned Align = Context.getTypeAlign(Ty) / 8;
543 if (Align > MinABIAlign)
544 return ABIArgInfo::getIndirect(Align);
545 return ABIArgInfo::getIndirect(0);
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000546}
547
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000548ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
Owen Andersona1cf15f2009-07-14 23:10:40 +0000549 ASTContext &Context,
550 llvm::LLVMContext &VMContext) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000551 // FIXME: Set alignment on indirect arguments.
552 if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
553 // Structures with flexible arrays are always indirect.
Anders Carlssona8874232010-01-27 03:25:19 +0000554 if (const RecordType *RT = Ty->getAs<RecordType>()) {
555 // Structures with either a non-trivial destructor or a non-trivial
556 // copy constructor are always indirect.
557 if (hasNonTrivialDestructorOrCopyConstructor(RT))
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000558 return getIndirectResult(Ty, Context, /*ByVal=*/false);
559
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000560 if (RT->getDecl()->hasFlexibleArrayMember())
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000561 return getIndirectResult(Ty, Context);
Anders Carlssona8874232010-01-27 03:25:19 +0000562 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000563
564 // Ignore empty structs.
Eli Friedmana1e6de92009-06-13 21:37:10 +0000565 if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000566 return ABIArgInfo::getIgnore();
567
Daniel Dunbar53012f42009-11-09 01:33:53 +0000568 // Expand small (<= 128-bit) record types when we know that the stack layout
569 // of those arguments will match the struct. This is important because the
570 // LLVM backend isn't smart enough to remove byval, which inhibits many
571 // optimizations.
572 if (Context.getTypeSize(Ty) <= 4*32 &&
573 canExpandIndirectArgument(Ty, Context))
574 return ABIArgInfo::getExpand();
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000575
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000576 return getIndirectResult(Ty, Context);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000577 } else {
Douglas Gregoraa74a1e2010-02-02 20:10:50 +0000578 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
579 Ty = EnumTy->getDecl()->getIntegerType();
580
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +0000581 return (Ty->isPromotableIntegerType() ?
582 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000583 }
584}
585
586llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
587 CodeGenFunction &CGF) const {
Benjamin Kramer3c0ef8c2009-10-13 10:07:13 +0000588 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
Owen Anderson96e0fc72009-07-29 22:16:19 +0000589 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000590
591 CGBuilderTy &Builder = CGF.Builder;
592 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
593 "ap");
594 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
595 llvm::Type *PTy =
Owen Anderson96e0fc72009-07-29 22:16:19 +0000596 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000597 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
598
599 uint64_t Offset =
600 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
601 llvm::Value *NextAddr =
Owen Anderson0032b272009-08-13 21:57:51 +0000602 Builder.CreateGEP(Addr, llvm::ConstantInt::get(
603 llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000604 "ap.next");
605 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
606
607 return AddrTyped;
608}
609
Charles Davis74f72932010-02-13 15:54:06 +0000610void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
611 llvm::GlobalValue *GV,
612 CodeGen::CodeGenModule &CGM) const {
613 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
614 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
615 // Get the LLVM function.
616 llvm::Function *Fn = cast<llvm::Function>(GV);
617
618 // Now add the 'alignstack' attribute with a value of 16.
619 Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
620 }
621 }
622}
623
John McCall6374c332010-03-06 00:35:14 +0000624bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
625 CodeGen::CodeGenFunction &CGF,
626 llvm::Value *Address) const {
627 CodeGen::CGBuilderTy &Builder = CGF.Builder;
628 llvm::LLVMContext &Context = CGF.getLLVMContext();
629
630 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
631 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
632
633 // 0-7 are the eight integer registers; the order is different
634 // on Darwin (for EH), but the range is the same.
635 // 8 is %eip.
John McCallaeeb7012010-05-27 06:19:26 +0000636 AssignToArrayRange(Builder, Address, Four8, 0, 8);
John McCall6374c332010-03-06 00:35:14 +0000637
638 if (CGF.CGM.isTargetDarwin()) {
639 // 12-16 are st(0..4). Not sure why we stop at 4.
640 // These have size 16, which is sizeof(long double) on
641 // platforms with 8-byte alignment for that type.
642 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
John McCallaeeb7012010-05-27 06:19:26 +0000643 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
John McCall6374c332010-03-06 00:35:14 +0000644
645 } else {
646 // 9 is %eflags, which doesn't get a size on Darwin for some
647 // reason.
648 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
649
650 // 11-16 are st(0..5). Not sure why we stop at 5.
651 // These have size 12, which is sizeof(long double) on
652 // platforms with 4-byte alignment for that type.
653 llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
John McCallaeeb7012010-05-27 06:19:26 +0000654 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
655 }
John McCall6374c332010-03-06 00:35:14 +0000656
657 return false;
658}
659
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000660namespace {
661/// X86_64ABIInfo - The X86_64 ABI information.
662class X86_64ABIInfo : public ABIInfo {
663 enum Class {
664 Integer = 0,
665 SSE,
666 SSEUp,
667 X87,
668 X87Up,
669 ComplexX87,
670 NoClass,
671 Memory
672 };
673
674 /// merge - Implement the X86_64 ABI merging algorithm.
675 ///
676 /// Merge an accumulating classification \arg Accum with a field
677 /// classification \arg Field.
678 ///
679 /// \param Accum - The accumulating classification. This should
680 /// always be either NoClass or the result of a previous merge
681 /// call. In addition, this should never be Memory (the caller
682 /// should just return Memory for the aggregate).
683 Class merge(Class Accum, Class Field) const;
684
685 /// classify - Determine the x86_64 register classes in which the
686 /// given type T should be passed.
687 ///
688 /// \param Lo - The classification for the parts of the type
689 /// residing in the low word of the containing object.
690 ///
691 /// \param Hi - The classification for the parts of the type
692 /// residing in the high word of the containing object.
693 ///
694 /// \param OffsetBase - The bit offset of this type in the
695 /// containing object. Some parameters are classified different
696 /// depending on whether they straddle an eightbyte boundary.
697 ///
698 /// If a word is unused its result will be NoClass; if a type should
699 /// be passed in Memory then at least the classification of \arg Lo
700 /// will be Memory.
701 ///
702 /// The \arg Lo class will be NoClass iff the argument is ignored.
703 ///
704 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
705 /// also be ComplexX87.
706 void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
707 Class &Lo, Class &Hi) const;
708
709 /// getCoerceResult - Given a source type \arg Ty and an LLVM type
710 /// to coerce to, chose the best way to pass Ty in the same place
711 /// that \arg CoerceTo would be passed, but while keeping the
712 /// emitted code as simple as possible.
713 ///
714 /// FIXME: Note, this should be cleaned up to just take an enumeration of all
715 /// the ways we might want to pass things, instead of constructing an LLVM
716 /// type. This makes this code more explicit, and it makes it clearer that we
717 /// are also doing this for correctness in the case of passing scalar types.
718 ABIArgInfo getCoerceResult(QualType Ty,
719 const llvm::Type *CoerceTo,
720 ASTContext &Context) const;
721
722 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
Daniel Dunbar46c54fb2010-04-21 19:49:55 +0000723 /// such that the argument will be returned in memory.
724 ABIArgInfo getIndirectReturnResult(QualType Ty, ASTContext &Context) const;
725
726 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000727 /// such that the argument will be passed in memory.
Daniel Dunbardc6d5742010-04-21 19:10:51 +0000728 ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000729
730 ABIArgInfo classifyReturnType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +0000731 ASTContext &Context,
732 llvm::LLVMContext &VMContext) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000733
734 ABIArgInfo classifyArgumentType(QualType Ty,
735 ASTContext &Context,
Owen Andersona1cf15f2009-07-14 23:10:40 +0000736 llvm::LLVMContext &VMContext,
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000737 unsigned &neededInt,
738 unsigned &neededSSE) const;
739
740public:
Owen Andersona1cf15f2009-07-14 23:10:40 +0000741 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
742 llvm::LLVMContext &VMContext) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000743
744 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
745 CodeGenFunction &CGF) const;
746};
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000747
748class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
749public:
Douglas Gregor568bb2d2010-01-22 15:41:14 +0000750 X86_64TargetCodeGenInfo():TargetCodeGenInfo(new X86_64ABIInfo()) {}
John McCall6374c332010-03-06 00:35:14 +0000751
752 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
753 return 7;
754 }
755
756 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
757 llvm::Value *Address) const {
758 CodeGen::CGBuilderTy &Builder = CGF.Builder;
759 llvm::LLVMContext &Context = CGF.getLLVMContext();
760
761 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
762 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
763
John McCallaeeb7012010-05-27 06:19:26 +0000764 // 0-15 are the 16 integer registers.
765 // 16 is %rip.
766 AssignToArrayRange(Builder, Address, Eight8, 0, 16);
John McCall6374c332010-03-06 00:35:14 +0000767
768 return false;
769 }
Anton Korobeynikov82d0a412010-01-10 12:58:08 +0000770};
771
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000772}
773
774X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
775 Class Field) const {
776 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
777 // classified recursively so that always two fields are
778 // considered. The resulting class is calculated according to
779 // the classes of the fields in the eightbyte:
780 //
781 // (a) If both classes are equal, this is the resulting class.
782 //
783 // (b) If one of the classes is NO_CLASS, the resulting class is
784 // the other class.
785 //
786 // (c) If one of the classes is MEMORY, the result is the MEMORY
787 // class.
788 //
789 // (d) If one of the classes is INTEGER, the result is the
790 // INTEGER.
791 //
792 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
793 // MEMORY is used as class.
794 //
795 // (f) Otherwise class SSE is used.
796
797 // Accum should never be memory (we should have returned) or
798 // ComplexX87 (because this cannot be passed in a structure).
799 assert((Accum != Memory && Accum != ComplexX87) &&
800 "Invalid accumulated classification during merge.");
801 if (Accum == Field || Field == NoClass)
802 return Accum;
803 else if (Field == Memory)
804 return Memory;
805 else if (Accum == NoClass)
806 return Field;
807 else if (Accum == Integer || Field == Integer)
808 return Integer;
809 else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
810 Accum == X87 || Accum == X87Up)
811 return Memory;
812 else
813 return SSE;
814}
815
816void X86_64ABIInfo::classify(QualType Ty,
817 ASTContext &Context,
818 uint64_t OffsetBase,
819 Class &Lo, Class &Hi) const {
820 // FIXME: This code can be simplified by introducing a simple value class for
821 // Class pairs with appropriate constructor methods for the various
822 // situations.
823
824 // FIXME: Some of the split computations are wrong; unaligned vectors
825 // shouldn't be passed in registers for example, so there is no chance they
826 // can straddle an eightbyte. Verify & simplify.
827
828 Lo = Hi = NoClass;
829
830 Class &Current = OffsetBase < 64 ? Lo : Hi;
831 Current = Memory;
832
John McCall183700f2009-09-21 23:43:11 +0000833 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000834 BuiltinType::Kind k = BT->getKind();
835
836 if (k == BuiltinType::Void) {
837 Current = NoClass;
838 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
839 Lo = Integer;
840 Hi = Integer;
841 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
842 Current = Integer;
843 } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
844 Current = SSE;
845 } else if (k == BuiltinType::LongDouble) {
846 Lo = X87;
847 Hi = X87Up;
848 }
849 // FIXME: _Decimal32 and _Decimal64 are SSE.
850 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
John McCall183700f2009-09-21 23:43:11 +0000851 } else if (const EnumType *ET = Ty->getAs<EnumType>()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000852 // Classify the underlying integer type.
853 classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
854 } else if (Ty->hasPointerRepresentation()) {
855 Current = Integer;
Daniel Dunbar67d438d2010-05-15 00:00:37 +0000856 } else if (Ty->isMemberPointerType()) {
857 if (Ty->isMemberFunctionPointerType())
858 Lo = Hi = Integer;
859 else
860 Current = Integer;
John McCall183700f2009-09-21 23:43:11 +0000861 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000862 uint64_t Size = Context.getTypeSize(VT);
863 if (Size == 32) {
864 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
865 // float> as integer.
866 Current = Integer;
867
868 // If this type crosses an eightbyte boundary, it should be
869 // split.
870 uint64_t EB_Real = (OffsetBase) / 64;
871 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
872 if (EB_Real != EB_Imag)
873 Hi = Lo;
874 } else if (Size == 64) {
875 // gcc passes <1 x double> in memory. :(
876 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
877 return;
878
879 // gcc passes <1 x long long> as INTEGER.
880 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
881 Current = Integer;
882 else
883 Current = SSE;
884
885 // If this type crosses an eightbyte boundary, it should be
886 // split.
887 if (OffsetBase && OffsetBase != 64)
888 Hi = Lo;
889 } else if (Size == 128) {
890 Lo = SSE;
891 Hi = SSEUp;
892 }
John McCall183700f2009-09-21 23:43:11 +0000893 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000894 QualType ET = Context.getCanonicalType(CT->getElementType());
895
896 uint64_t Size = Context.getTypeSize(Ty);
Douglas Gregor2ade35e2010-06-16 00:17:44 +0000897 if (ET->isIntegralOrEnumerationType()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000898 if (Size <= 64)
899 Current = Integer;
900 else if (Size <= 128)
901 Lo = Hi = Integer;
902 } else if (ET == Context.FloatTy)
903 Current = SSE;
904 else if (ET == Context.DoubleTy)
905 Lo = Hi = SSE;
906 else if (ET == Context.LongDoubleTy)
907 Current = ComplexX87;
908
909 // If this complex type crosses an eightbyte boundary then it
910 // should be split.
911 uint64_t EB_Real = (OffsetBase) / 64;
912 uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
913 if (Hi == NoClass && EB_Real != EB_Imag)
914 Hi = Lo;
915 } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
916 // Arrays are treated like structures.
917
918 uint64_t Size = Context.getTypeSize(Ty);
919
920 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
921 // than two eightbytes, ..., it has class MEMORY.
922 if (Size > 128)
923 return;
924
925 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
926 // fields, it has class MEMORY.
927 //
928 // Only need to check alignment of array base.
929 if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
930 return;
931
932 // Otherwise implement simplified merge. We could be smarter about
933 // this, but it isn't worth it and would be harder to verify.
934 Current = NoClass;
935 uint64_t EltSize = Context.getTypeSize(AT->getElementType());
936 uint64_t ArraySize = AT->getSize().getZExtValue();
937 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
938 Class FieldLo, FieldHi;
939 classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
940 Lo = merge(Lo, FieldLo);
941 Hi = merge(Hi, FieldHi);
942 if (Lo == Memory || Hi == Memory)
943 break;
944 }
945
946 // Do post merger cleanup (see below). Only case we worry about is Memory.
947 if (Hi == Memory)
948 Lo = Memory;
949 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
Ted Kremenek6217b802009-07-29 21:53:49 +0000950 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000951 uint64_t Size = Context.getTypeSize(Ty);
952
953 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
954 // than two eightbytes, ..., it has class MEMORY.
955 if (Size > 128)
956 return;
957
Anders Carlsson0a8f8472009-09-16 15:53:40 +0000958 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
959 // copy constructor or a non-trivial destructor, it is passed by invisible
960 // reference.
961 if (hasNonTrivialDestructorOrCopyConstructor(RT))
962 return;
Daniel Dunbarce9f4232009-11-22 23:01:23 +0000963
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +0000964 const RecordDecl *RD = RT->getDecl();
965
966 // Assume variable sized types are passed in memory.
967 if (RD->hasFlexibleArrayMember())
968 return;
969
970 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
971
972 // Reset Lo class, this will be recomputed.
973 Current = NoClass;
Daniel Dunbarce9f4232009-11-22 23:01:23 +0000974
975 // If this is a C++ record, classify the bases first.
976 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
977 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
978 e = CXXRD->bases_end(); i != e; ++i) {
979 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
980 "Unexpected base class!");
981 const CXXRecordDecl *Base =
982 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
983
984 // Classify this field.
985 //
986 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
987 // single eightbyte, each is classified separately. Each eightbyte gets
988 // initialized to class NO_CLASS.
989 Class FieldLo, FieldHi;
990 uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
991 classify(i->getType(), Context, Offset, FieldLo, FieldHi);
992 Lo = merge(Lo, FieldLo);
993 Hi = merge(Hi, FieldHi);
994 if (Lo == Memory || Hi == Memory)
995 break;
996 }
Daniel Dunbar4971ff82009-12-22 01:19:25 +0000997
998 // If this record has no fields but isn't empty, classify as INTEGER.
999 if (RD->field_empty() && Size)
1000 Current = Integer;
Daniel Dunbarce9f4232009-11-22 23:01:23 +00001001 }
1002
1003 // Classify the fields one at a time, merging the results.
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001004 unsigned idx = 0;
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +00001005 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1006 i != e; ++i, ++idx) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001007 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1008 bool BitField = i->isBitField();
1009
1010 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1011 // fields, it has class MEMORY.
1012 //
1013 // Note, skip this test for bit-fields, see below.
1014 if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
1015 Lo = Memory;
1016 return;
1017 }
1018
1019 // Classify this field.
1020 //
1021 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1022 // exceeds a single eightbyte, each is classified
1023 // separately. Each eightbyte gets initialized to class
1024 // NO_CLASS.
1025 Class FieldLo, FieldHi;
1026
1027 // Bit-fields require special handling, they do not force the
1028 // structure to be passed in memory even if unaligned, and
1029 // therefore they can straddle an eightbyte.
1030 if (BitField) {
1031 // Ignore padding bit-fields.
1032 if (i->isUnnamedBitfield())
1033 continue;
1034
1035 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1036 uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
1037
1038 uint64_t EB_Lo = Offset / 64;
1039 uint64_t EB_Hi = (Offset + Size - 1) / 64;
1040 FieldLo = FieldHi = NoClass;
1041 if (EB_Lo) {
1042 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1043 FieldLo = NoClass;
1044 FieldHi = Integer;
1045 } else {
1046 FieldLo = Integer;
1047 FieldHi = EB_Hi ? Integer : NoClass;
1048 }
1049 } else
1050 classify(i->getType(), Context, Offset, FieldLo, FieldHi);
1051 Lo = merge(Lo, FieldLo);
1052 Hi = merge(Hi, FieldHi);
1053 if (Lo == Memory || Hi == Memory)
1054 break;
1055 }
1056
1057 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1058 //
1059 // (a) If one of the classes is MEMORY, the whole argument is
1060 // passed in memory.
1061 //
1062 // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1063
1064 // The first of these conditions is guaranteed by how we implement
1065 // the merge (just bail).
1066 //
1067 // The second condition occurs in the case of unions; for example
1068 // union { _Complex double; unsigned; }.
1069 if (Hi == Memory)
1070 Lo = Memory;
1071 if (Hi == SSEUp && Lo != SSE)
1072 Hi = SSE;
1073 }
1074}
1075
1076ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
1077 const llvm::Type *CoerceTo,
1078 ASTContext &Context) const {
Owen Anderson0032b272009-08-13 21:57:51 +00001079 if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001080 // Integer and pointer types will end up in a general purpose
1081 // register.
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00001082
1083 // Treat an enum type as its underlying type.
1084 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1085 Ty = EnumTy->getDecl()->getIntegerType();
1086
Douglas Gregor9d3347a2010-06-16 00:35:25 +00001087 if (Ty->isIntegralOrEnumerationType() || Ty->hasPointerRepresentation())
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +00001088 return (Ty->isPromotableIntegerType() ?
1089 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Owen Anderson0032b272009-08-13 21:57:51 +00001090 } else if (CoerceTo == llvm::Type::getDoubleTy(CoerceTo->getContext())) {
John McCall0b0ef0a2010-02-24 07:14:12 +00001091 assert(Ty.isCanonical() && "should always have a canonical type here");
1092 assert(!Ty.hasQualifiers() && "should never have a qualified type here");
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001093
1094 // Float and double end up in a single SSE reg.
John McCall0b0ef0a2010-02-24 07:14:12 +00001095 if (Ty == Context.FloatTy || Ty == Context.DoubleTy)
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001096 return ABIArgInfo::getDirect();
1097
1098 }
1099
1100 return ABIArgInfo::getCoerce(CoerceTo);
1101}
1102
Daniel Dunbar46c54fb2010-04-21 19:49:55 +00001103ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty,
1104 ASTContext &Context) const {
1105 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1106 // place naturally.
1107 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1108 // Treat an enum type as its underlying type.
1109 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1110 Ty = EnumTy->getDecl()->getIntegerType();
1111
1112 return (Ty->isPromotableIntegerType() ?
1113 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1114 }
1115
1116 return ABIArgInfo::getIndirect(0);
1117}
1118
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001119ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1120 ASTContext &Context) const {
1121 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1122 // place naturally.
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00001123 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1124 // Treat an enum type as its underlying type.
1125 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1126 Ty = EnumTy->getDecl()->getIntegerType();
1127
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +00001128 return (Ty->isPromotableIntegerType() ?
1129 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00001130 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001131
Daniel Dunbar46c54fb2010-04-21 19:49:55 +00001132 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1133 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
Anders Carlsson0a8f8472009-09-16 15:53:40 +00001134
Daniel Dunbar46c54fb2010-04-21 19:49:55 +00001135 // Compute the byval alignment. We trust the back-end to honor the
1136 // minimum ABI alignment for byval, to make cleaner IR.
1137 const unsigned MinABIAlign = 8;
1138 unsigned Align = Context.getTypeAlign(Ty) / 8;
1139 if (Align > MinABIAlign)
1140 return ABIArgInfo::getIndirect(Align);
1141 return ABIArgInfo::getIndirect(0);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001142}
1143
1144ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001145 ASTContext &Context,
1146 llvm::LLVMContext &VMContext) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001147 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1148 // classification algorithm.
1149 X86_64ABIInfo::Class Lo, Hi;
1150 classify(RetTy, Context, 0, Lo, Hi);
1151
1152 // Check some invariants.
1153 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1154 assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1155 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1156
1157 const llvm::Type *ResType = 0;
1158 switch (Lo) {
1159 case NoClass:
1160 return ABIArgInfo::getIgnore();
1161
1162 case SSEUp:
1163 case X87Up:
1164 assert(0 && "Invalid classification for lo word.");
1165
1166 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1167 // hidden argument.
1168 case Memory:
Daniel Dunbar46c54fb2010-04-21 19:49:55 +00001169 return getIndirectReturnResult(RetTy, Context);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001170
1171 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1172 // available register of the sequence %rax, %rdx is used.
1173 case Integer:
Owen Anderson0032b272009-08-13 21:57:51 +00001174 ResType = llvm::Type::getInt64Ty(VMContext); break;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001175
1176 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1177 // available SSE register of the sequence %xmm0, %xmm1 is used.
1178 case SSE:
Owen Anderson0032b272009-08-13 21:57:51 +00001179 ResType = llvm::Type::getDoubleTy(VMContext); break;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001180
1181 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1182 // returned on the X87 stack in %st0 as 80-bit x87 number.
1183 case X87:
Owen Anderson0032b272009-08-13 21:57:51 +00001184 ResType = llvm::Type::getX86_FP80Ty(VMContext); break;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001185
1186 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1187 // part of the value is returned in %st0 and the imaginary part in
1188 // %st1.
1189 case ComplexX87:
1190 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
Chris Lattner52d9ae32010-04-06 17:29:22 +00001191 ResType = llvm::StructType::get(VMContext,
1192 llvm::Type::getX86_FP80Ty(VMContext),
Owen Anderson0032b272009-08-13 21:57:51 +00001193 llvm::Type::getX86_FP80Ty(VMContext),
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001194 NULL);
1195 break;
1196 }
1197
1198 switch (Hi) {
1199 // Memory was handled previously and X87 should
1200 // never occur as a hi class.
1201 case Memory:
1202 case X87:
1203 assert(0 && "Invalid classification for hi word.");
1204
1205 case ComplexX87: // Previously handled.
1206 case NoClass: break;
1207
1208 case Integer:
Owen Anderson47a434f2009-08-05 23:18:46 +00001209 ResType = llvm::StructType::get(VMContext, ResType,
Owen Anderson0032b272009-08-13 21:57:51 +00001210 llvm::Type::getInt64Ty(VMContext), NULL);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001211 break;
1212 case SSE:
Owen Anderson47a434f2009-08-05 23:18:46 +00001213 ResType = llvm::StructType::get(VMContext, ResType,
Owen Anderson0032b272009-08-13 21:57:51 +00001214 llvm::Type::getDoubleTy(VMContext), NULL);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001215 break;
1216
1217 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1218 // is passed in the upper half of the last used SSE register.
1219 //
1220 // SSEUP should always be preceeded by SSE, just widen.
1221 case SSEUp:
1222 assert(Lo == SSE && "Unexpected SSEUp classification.");
Owen Anderson0032b272009-08-13 21:57:51 +00001223 ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001224 break;
1225
1226 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1227 // returned together with the previous X87 value in %st0.
1228 case X87Up:
1229 // If X87Up is preceeded by X87, we don't need to do
1230 // anything. However, in some cases with unions it may not be
1231 // preceeded by X87. In such situations we follow gcc and pass the
1232 // extra bits in an SSE reg.
1233 if (Lo != X87)
Owen Anderson47a434f2009-08-05 23:18:46 +00001234 ResType = llvm::StructType::get(VMContext, ResType,
Owen Anderson0032b272009-08-13 21:57:51 +00001235 llvm::Type::getDoubleTy(VMContext), NULL);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001236 break;
1237 }
1238
1239 return getCoerceResult(RetTy, ResType, Context);
1240}
1241
1242ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001243 llvm::LLVMContext &VMContext,
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001244 unsigned &neededInt,
1245 unsigned &neededSSE) const {
1246 X86_64ABIInfo::Class Lo, Hi;
1247 classify(Ty, Context, 0, Lo, Hi);
1248
1249 // Check some invariants.
1250 // FIXME: Enforce these by construction.
1251 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1252 assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1253 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1254
1255 neededInt = 0;
1256 neededSSE = 0;
1257 const llvm::Type *ResType = 0;
1258 switch (Lo) {
1259 case NoClass:
1260 return ABIArgInfo::getIgnore();
1261
1262 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1263 // on the stack.
1264 case Memory:
1265
1266 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1267 // COMPLEX_X87, it is passed in memory.
1268 case X87:
1269 case ComplexX87:
1270 return getIndirectResult(Ty, Context);
1271
1272 case SSEUp:
1273 case X87Up:
1274 assert(0 && "Invalid classification for lo word.");
1275
1276 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1277 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1278 // and %r9 is used.
1279 case Integer:
1280 ++neededInt;
Owen Anderson0032b272009-08-13 21:57:51 +00001281 ResType = llvm::Type::getInt64Ty(VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001282 break;
1283
1284 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1285 // available SSE register is used, the registers are taken in the
1286 // order from %xmm0 to %xmm7.
1287 case SSE:
1288 ++neededSSE;
Owen Anderson0032b272009-08-13 21:57:51 +00001289 ResType = llvm::Type::getDoubleTy(VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001290 break;
1291 }
1292
1293 switch (Hi) {
1294 // Memory was handled previously, ComplexX87 and X87 should
1295 // never occur as hi classes, and X87Up must be preceed by X87,
1296 // which is passed in memory.
1297 case Memory:
1298 case X87:
1299 case ComplexX87:
1300 assert(0 && "Invalid classification for hi word.");
1301 break;
1302
1303 case NoClass: break;
1304 case Integer:
Owen Anderson47a434f2009-08-05 23:18:46 +00001305 ResType = llvm::StructType::get(VMContext, ResType,
Owen Anderson0032b272009-08-13 21:57:51 +00001306 llvm::Type::getInt64Ty(VMContext), NULL);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001307 ++neededInt;
1308 break;
1309
1310 // X87Up generally doesn't occur here (long double is passed in
1311 // memory), except in situations involving unions.
1312 case X87Up:
1313 case SSE:
Owen Anderson47a434f2009-08-05 23:18:46 +00001314 ResType = llvm::StructType::get(VMContext, ResType,
Owen Anderson0032b272009-08-13 21:57:51 +00001315 llvm::Type::getDoubleTy(VMContext), NULL);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001316 ++neededSSE;
1317 break;
1318
1319 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1320 // eightbyte is passed in the upper half of the last used SSE
1321 // register.
1322 case SSEUp:
1323 assert(Lo == SSE && "Unexpected SSEUp classification.");
Owen Anderson0032b272009-08-13 21:57:51 +00001324 ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001325 break;
1326 }
1327
1328 return getCoerceResult(Ty, ResType, Context);
1329}
1330
Owen Andersona1cf15f2009-07-14 23:10:40 +00001331void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1332 llvm::LLVMContext &VMContext) const {
1333 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
1334 Context, VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001335
1336 // Keep track of the number of assigned registers.
1337 unsigned freeIntRegs = 6, freeSSERegs = 8;
1338
1339 // If the return value is indirect, then the hidden argument is consuming one
1340 // integer register.
1341 if (FI.getReturnInfo().isIndirect())
1342 --freeIntRegs;
1343
1344 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1345 // get assigned (in left-to-right order) for passing as follows...
1346 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1347 it != ie; ++it) {
1348 unsigned neededInt, neededSSE;
Mike Stump1eb44332009-09-09 15:08:12 +00001349 it->info = classifyArgumentType(it->type, Context, VMContext,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001350 neededInt, neededSSE);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001351
1352 // AMD64-ABI 3.2.3p3: If there are no registers available for any
1353 // eightbyte of an argument, the whole argument is passed on the
1354 // stack. If registers have already been assigned for some
1355 // eightbytes of such an argument, the assignments get reverted.
1356 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1357 freeIntRegs -= neededInt;
1358 freeSSERegs -= neededSSE;
1359 } else {
1360 it->info = getIndirectResult(it->type, Context);
1361 }
1362 }
1363}
1364
1365static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1366 QualType Ty,
1367 CodeGenFunction &CGF) {
1368 llvm::Value *overflow_arg_area_p =
1369 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1370 llvm::Value *overflow_arg_area =
1371 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1372
1373 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1374 // byte boundary if alignment needed by type exceeds 8 byte boundary.
1375 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1376 if (Align > 8) {
1377 // Note that we follow the ABI & gcc here, even though the type
1378 // could in theory have an alignment greater than 16. This case
1379 // shouldn't ever matter in practice.
1380
1381 // overflow_arg_area = (overflow_arg_area + 15) & ~15;
Owen Anderson0032b272009-08-13 21:57:51 +00001382 llvm::Value *Offset =
1383 llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), 15);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001384 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1385 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
Owen Anderson0032b272009-08-13 21:57:51 +00001386 llvm::Type::getInt64Ty(CGF.getLLVMContext()));
1387 llvm::Value *Mask = llvm::ConstantInt::get(
1388 llvm::Type::getInt64Ty(CGF.getLLVMContext()), ~15LL);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001389 overflow_arg_area =
1390 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1391 overflow_arg_area->getType(),
1392 "overflow_arg_area.align");
1393 }
1394
1395 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1396 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1397 llvm::Value *Res =
1398 CGF.Builder.CreateBitCast(overflow_arg_area,
Owen Anderson96e0fc72009-07-29 22:16:19 +00001399 llvm::PointerType::getUnqual(LTy));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001400
1401 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1402 // l->overflow_arg_area + sizeof(type).
1403 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1404 // an 8 byte boundary.
1405
1406 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
Owen Anderson0032b272009-08-13 21:57:51 +00001407 llvm::Value *Offset =
1408 llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001409 (SizeInBytes + 7) & ~7);
1410 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1411 "overflow_arg_area.next");
1412 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1413
1414 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1415 return Res;
1416}
1417
1418llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1419 CodeGenFunction &CGF) const {
Owen Andersona1cf15f2009-07-14 23:10:40 +00001420 llvm::LLVMContext &VMContext = CGF.getLLVMContext();
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001421 const llvm::Type *i32Ty = llvm::Type::getInt32Ty(VMContext);
1422 const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
Mike Stump1eb44332009-09-09 15:08:12 +00001423
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001424 // Assume that va_list type is correct; should be pointer to LLVM type:
1425 // struct {
1426 // i32 gp_offset;
1427 // i32 fp_offset;
1428 // i8* overflow_arg_area;
1429 // i8* reg_save_area;
1430 // };
1431 unsigned neededInt, neededSSE;
Chris Lattnera14db752010-03-11 18:19:55 +00001432
1433 Ty = CGF.getContext().getCanonicalType(Ty);
Owen Andersona1cf15f2009-07-14 23:10:40 +00001434 ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext,
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001435 neededInt, neededSSE);
1436
1437 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1438 // in the registers. If not go to step 7.
1439 if (!neededInt && !neededSSE)
1440 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1441
1442 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1443 // general purpose registers needed to pass type and num_fp to hold
1444 // the number of floating point registers needed.
1445
1446 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1447 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1448 // l->fp_offset > 304 - num_fp * 16 go to step 7.
1449 //
1450 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1451 // register save space).
1452
1453 llvm::Value *InRegs = 0;
1454 llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1455 llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1456 if (neededInt) {
1457 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1458 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1459 InRegs =
1460 CGF.Builder.CreateICmpULE(gp_offset,
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001461 llvm::ConstantInt::get(i32Ty,
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001462 48 - neededInt * 8),
1463 "fits_in_gp");
1464 }
1465
1466 if (neededSSE) {
1467 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1468 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1469 llvm::Value *FitsInFP =
1470 CGF.Builder.CreateICmpULE(fp_offset,
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001471 llvm::ConstantInt::get(i32Ty,
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001472 176 - neededSSE * 16),
1473 "fits_in_fp");
1474 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1475 }
1476
1477 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1478 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1479 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1480 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1481
1482 // Emit code to load the value if it was passed in registers.
1483
1484 CGF.EmitBlock(InRegBlock);
1485
1486 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1487 // an offset of l->gp_offset and/or l->fp_offset. This may require
1488 // copying to a temporary location in case the parameter is passed
1489 // in different register classes or requires an alignment greater
1490 // than 8 for general purpose registers and 16 for XMM registers.
1491 //
1492 // FIXME: This really results in shameful code when we end up needing to
1493 // collect arguments from different places; often what should result in a
1494 // simple assembling of a structure from scattered addresses has many more
1495 // loads than necessary. Can we clean this up?
1496 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1497 llvm::Value *RegAddr =
1498 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1499 "reg_save_area");
1500 if (neededInt && neededSSE) {
1501 // FIXME: Cleanup.
1502 assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
1503 const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1504 llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1505 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1506 const llvm::Type *TyLo = ST->getElementType(0);
1507 const llvm::Type *TyHi = ST->getElementType(1);
Duncan Sandsf177d9d2010-02-15 16:14:01 +00001508 assert((TyLo->isFloatingPointTy() ^ TyHi->isFloatingPointTy()) &&
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001509 "Unexpected ABI info for mixed regs");
Owen Anderson96e0fc72009-07-29 22:16:19 +00001510 const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1511 const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001512 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1513 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
Duncan Sandsf177d9d2010-02-15 16:14:01 +00001514 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
1515 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001516 llvm::Value *V =
1517 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1518 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1519 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1520 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1521
Owen Andersona1cf15f2009-07-14 23:10:40 +00001522 RegAddr = CGF.Builder.CreateBitCast(Tmp,
Owen Anderson96e0fc72009-07-29 22:16:19 +00001523 llvm::PointerType::getUnqual(LTy));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001524 } else if (neededInt) {
1525 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1526 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
Owen Anderson96e0fc72009-07-29 22:16:19 +00001527 llvm::PointerType::getUnqual(LTy));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001528 } else {
1529 if (neededSSE == 1) {
1530 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1531 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
Owen Anderson96e0fc72009-07-29 22:16:19 +00001532 llvm::PointerType::getUnqual(LTy));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001533 } else {
1534 assert(neededSSE == 2 && "Invalid number of needed registers!");
1535 // SSE registers are spaced 16 bytes apart in the register save
1536 // area, we need to collect the two eightbytes together.
1537 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1538 llvm::Value *RegAddrHi =
1539 CGF.Builder.CreateGEP(RegAddrLo,
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001540 llvm::ConstantInt::get(i32Ty, 16));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001541 const llvm::Type *DblPtrTy =
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001542 llvm::PointerType::getUnqual(DoubleTy);
1543 const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
1544 DoubleTy, NULL);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001545 llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1546 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1547 DblPtrTy));
1548 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1549 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1550 DblPtrTy));
1551 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1552 RegAddr = CGF.Builder.CreateBitCast(Tmp,
Owen Anderson96e0fc72009-07-29 22:16:19 +00001553 llvm::PointerType::getUnqual(LTy));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001554 }
1555 }
1556
1557 // AMD64-ABI 3.5.7p5: Step 5. Set:
1558 // l->gp_offset = l->gp_offset + num_gp * 8
1559 // l->fp_offset = l->fp_offset + num_fp * 16.
1560 if (neededInt) {
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001561 llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededInt * 8);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001562 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1563 gp_offset_p);
1564 }
1565 if (neededSSE) {
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001566 llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededSSE * 16);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001567 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1568 fp_offset_p);
1569 }
1570 CGF.EmitBranch(ContBlock);
1571
1572 // Emit code to load the value if it was passed in memory.
1573
1574 CGF.EmitBlock(InMemBlock);
1575 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1576
1577 // Return the appropriate result.
1578
1579 CGF.EmitBlock(ContBlock);
1580 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1581 "vaarg.addr");
1582 ResAddr->reserveOperandSpace(2);
1583 ResAddr->addIncoming(RegAddr, InRegBlock);
1584 ResAddr->addIncoming(MemAddr, InMemBlock);
1585
1586 return ResAddr;
1587}
1588
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001589// PIC16 ABI Implementation
1590
1591namespace {
1592
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001593class PIC16ABIInfo : public ABIInfo {
1594 ABIArgInfo classifyReturnType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001595 ASTContext &Context,
1596 llvm::LLVMContext &VMContext) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001597
1598 ABIArgInfo classifyArgumentType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001599 ASTContext &Context,
1600 llvm::LLVMContext &VMContext) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001601
Owen Andersona1cf15f2009-07-14 23:10:40 +00001602 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1603 llvm::LLVMContext &VMContext) const {
1604 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1605 VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001606 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1607 it != ie; ++it)
Owen Andersona1cf15f2009-07-14 23:10:40 +00001608 it->info = classifyArgumentType(it->type, Context, VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001609 }
1610
1611 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1612 CodeGenFunction &CGF) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001613};
1614
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00001615class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
1616public:
Douglas Gregor568bb2d2010-01-22 15:41:14 +00001617 PIC16TargetCodeGenInfo():TargetCodeGenInfo(new PIC16ABIInfo()) {}
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00001618};
1619
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001620}
1621
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001622ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001623 ASTContext &Context,
1624 llvm::LLVMContext &VMContext) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001625 if (RetTy->isVoidType()) {
1626 return ABIArgInfo::getIgnore();
1627 } else {
1628 return ABIArgInfo::getDirect();
1629 }
1630}
1631
1632ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001633 ASTContext &Context,
1634 llvm::LLVMContext &VMContext) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001635 return ABIArgInfo::getDirect();
1636}
1637
1638llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1639 CodeGenFunction &CGF) const {
Chris Lattner52d9ae32010-04-06 17:29:22 +00001640 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
Sanjiv Guptaa446ecd2010-02-17 02:25:52 +00001641 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1642
1643 CGBuilderTy &Builder = CGF.Builder;
1644 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1645 "ap");
1646 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1647 llvm::Type *PTy =
1648 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1649 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1650
1651 uint64_t Offset = CGF.getContext().getTypeSize(Ty) / 8;
1652
1653 llvm::Value *NextAddr =
1654 Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1655 llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1656 "ap.next");
1657 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1658
1659 return AddrTyped;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001660}
1661
Sanjiv Guptaa446ecd2010-02-17 02:25:52 +00001662
John McCallec853ba2010-03-11 00:10:12 +00001663// PowerPC-32
1664
1665namespace {
1666class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
1667public:
1668 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1669 // This is recovered from gcc output.
1670 return 1; // r1 is the dedicated stack pointer
1671 }
1672
1673 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1674 llvm::Value *Address) const;
1675};
1676
1677}
1678
1679bool
1680PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1681 llvm::Value *Address) const {
1682 // This is calculated from the LLVM and GCC tables and verified
1683 // against gcc output. AFAIK all ABIs use the same encoding.
1684
1685 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1686 llvm::LLVMContext &Context = CGF.getLLVMContext();
1687
1688 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1689 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
1690 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1691 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
1692
1693 // 0-31: r0-31, the 4-byte general-purpose registers
John McCallaeeb7012010-05-27 06:19:26 +00001694 AssignToArrayRange(Builder, Address, Four8, 0, 31);
John McCallec853ba2010-03-11 00:10:12 +00001695
1696 // 32-63: fp0-31, the 8-byte floating-point registers
John McCallaeeb7012010-05-27 06:19:26 +00001697 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
John McCallec853ba2010-03-11 00:10:12 +00001698
1699 // 64-76 are various 4-byte special-purpose registers:
1700 // 64: mq
1701 // 65: lr
1702 // 66: ctr
1703 // 67: ap
1704 // 68-75 cr0-7
1705 // 76: xer
John McCallaeeb7012010-05-27 06:19:26 +00001706 AssignToArrayRange(Builder, Address, Four8, 64, 76);
John McCallec853ba2010-03-11 00:10:12 +00001707
1708 // 77-108: v0-31, the 16-byte vector registers
John McCallaeeb7012010-05-27 06:19:26 +00001709 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
John McCallec853ba2010-03-11 00:10:12 +00001710
1711 // 109: vrsave
1712 // 110: vscr
1713 // 111: spe_acc
1714 // 112: spefscr
1715 // 113: sfp
John McCallaeeb7012010-05-27 06:19:26 +00001716 AssignToArrayRange(Builder, Address, Four8, 109, 113);
John McCallec853ba2010-03-11 00:10:12 +00001717
1718 return false;
1719}
1720
1721
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001722// ARM ABI Implementation
1723
1724namespace {
1725
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001726class ARMABIInfo : public ABIInfo {
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00001727public:
1728 enum ABIKind {
1729 APCS = 0,
1730 AAPCS = 1,
1731 AAPCS_VFP
1732 };
1733
1734private:
1735 ABIKind Kind;
1736
1737public:
1738 ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {}
1739
1740private:
1741 ABIKind getABIKind() const { return Kind; }
1742
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001743 ABIArgInfo classifyReturnType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001744 ASTContext &Context,
1745 llvm::LLVMContext &VMCOntext) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001746
1747 ABIArgInfo classifyArgumentType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001748 ASTContext &Context,
1749 llvm::LLVMContext &VMContext) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001750
Owen Andersona1cf15f2009-07-14 23:10:40 +00001751 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1752 llvm::LLVMContext &VMContext) const;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001753
1754 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1755 CodeGenFunction &CGF) const;
1756};
1757
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00001758class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
1759public:
1760 ARMTargetCodeGenInfo(ARMABIInfo::ABIKind K)
Douglas Gregor568bb2d2010-01-22 15:41:14 +00001761 :TargetCodeGenInfo(new ARMABIInfo(K)) {}
John McCall6374c332010-03-06 00:35:14 +00001762
1763 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1764 return 13;
1765 }
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00001766};
1767
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00001768}
1769
Owen Andersona1cf15f2009-07-14 23:10:40 +00001770void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1771 llvm::LLVMContext &VMContext) const {
Mike Stump1eb44332009-09-09 15:08:12 +00001772 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001773 VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001774 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1775 it != ie; ++it) {
Owen Andersona1cf15f2009-07-14 23:10:40 +00001776 it->info = classifyArgumentType(it->type, Context, VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001777 }
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00001778
Rafael Espindola25117ab2010-06-16 16:13:39 +00001779 const llvm::Triple &Triple(Context.Target.getTriple());
1780 llvm::CallingConv::ID DefaultCC;
Rafael Espindola1ed1a592010-06-16 19:01:17 +00001781 if (Triple.getEnvironmentName() == "gnueabi" ||
1782 Triple.getEnvironmentName() == "eabi")
Rafael Espindola25117ab2010-06-16 16:13:39 +00001783 DefaultCC = llvm::CallingConv::ARM_AAPCS;
Rafael Espindola1ed1a592010-06-16 19:01:17 +00001784 else
1785 DefaultCC = llvm::CallingConv::ARM_APCS;
Rafael Espindola25117ab2010-06-16 16:13:39 +00001786
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00001787 switch (getABIKind()) {
1788 case APCS:
Rafael Espindola25117ab2010-06-16 16:13:39 +00001789 if (DefaultCC != llvm::CallingConv::ARM_APCS)
1790 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00001791 break;
1792
1793 case AAPCS:
Rafael Espindola25117ab2010-06-16 16:13:39 +00001794 if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
1795 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00001796 break;
1797
1798 case AAPCS_VFP:
1799 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
1800 break;
1801 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001802}
1803
1804ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001805 ASTContext &Context,
1806 llvm::LLVMContext &VMContext) const {
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00001807 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1808 // Treat an enum type as its underlying type.
1809 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1810 Ty = EnumTy->getDecl()->getIntegerType();
1811
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +00001812 return (Ty->isPromotableIntegerType() ?
1813 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00001814 }
Daniel Dunbar98303b92009-09-13 08:03:58 +00001815
Daniel Dunbar42025572009-09-14 21:54:03 +00001816 // Ignore empty records.
1817 if (isEmptyRecord(Context, Ty, true))
1818 return ABIArgInfo::getIgnore();
1819
Rafael Espindola0eb1d972010-06-08 02:42:08 +00001820 // Structures with either a non-trivial destructor or a non-trivial
1821 // copy constructor are always indirect.
1822 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1823 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1824
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001825 // FIXME: This is kind of nasty... but there isn't much choice because the ARM
1826 // backend doesn't support byval.
1827 // FIXME: This doesn't handle alignment > 64 bits.
1828 const llvm::Type* ElemTy;
1829 unsigned SizeRegs;
1830 if (Context.getTypeAlign(Ty) > 32) {
Owen Anderson0032b272009-08-13 21:57:51 +00001831 ElemTy = llvm::Type::getInt64Ty(VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001832 SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
1833 } else {
Owen Anderson0032b272009-08-13 21:57:51 +00001834 ElemTy = llvm::Type::getInt32Ty(VMContext);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001835 SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
1836 }
1837 std::vector<const llvm::Type*> LLVMFields;
Owen Anderson96e0fc72009-07-29 22:16:19 +00001838 LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
Owen Anderson47a434f2009-08-05 23:18:46 +00001839 const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001840 return ABIArgInfo::getCoerce(STy);
1841}
1842
Daniel Dunbar98303b92009-09-13 08:03:58 +00001843static bool isIntegerLikeType(QualType Ty,
1844 ASTContext &Context,
1845 llvm::LLVMContext &VMContext) {
1846 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
1847 // is called integer-like if its size is less than or equal to one word, and
1848 // the offset of each of its addressable sub-fields is zero.
1849
1850 uint64_t Size = Context.getTypeSize(Ty);
1851
1852 // Check that the type fits in a word.
1853 if (Size > 32)
1854 return false;
1855
1856 // FIXME: Handle vector types!
1857 if (Ty->isVectorType())
1858 return false;
1859
Daniel Dunbarb0d58192009-09-14 02:20:34 +00001860 // Float types are never treated as "integer like".
1861 if (Ty->isRealFloatingType())
1862 return false;
1863
Daniel Dunbar98303b92009-09-13 08:03:58 +00001864 // If this is a builtin or pointer type then it is ok.
John McCall183700f2009-09-21 23:43:11 +00001865 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
Daniel Dunbar98303b92009-09-13 08:03:58 +00001866 return true;
1867
Daniel Dunbar45815812010-02-01 23:31:26 +00001868 // Small complex integer types are "integer like".
1869 if (const ComplexType *CT = Ty->getAs<ComplexType>())
1870 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
Daniel Dunbar98303b92009-09-13 08:03:58 +00001871
1872 // Single element and zero sized arrays should be allowed, by the definition
1873 // above, but they are not.
1874
1875 // Otherwise, it must be a record type.
1876 const RecordType *RT = Ty->getAs<RecordType>();
1877 if (!RT) return false;
1878
1879 // Ignore records with flexible arrays.
1880 const RecordDecl *RD = RT->getDecl();
1881 if (RD->hasFlexibleArrayMember())
1882 return false;
1883
1884 // Check that all sub-fields are at offset 0, and are themselves "integer
1885 // like".
1886 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1887
1888 bool HadField = false;
1889 unsigned idx = 0;
1890 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1891 i != e; ++i, ++idx) {
1892 const FieldDecl *FD = *i;
1893
Daniel Dunbar679855a2010-01-29 03:22:29 +00001894 // Bit-fields are not addressable, we only need to verify they are "integer
1895 // like". We still have to disallow a subsequent non-bitfield, for example:
1896 // struct { int : 0; int x }
1897 // is non-integer like according to gcc.
1898 if (FD->isBitField()) {
1899 if (!RD->isUnion())
1900 HadField = true;
Daniel Dunbar98303b92009-09-13 08:03:58 +00001901
Daniel Dunbar679855a2010-01-29 03:22:29 +00001902 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1903 return false;
Daniel Dunbar98303b92009-09-13 08:03:58 +00001904
Daniel Dunbar679855a2010-01-29 03:22:29 +00001905 continue;
Daniel Dunbar98303b92009-09-13 08:03:58 +00001906 }
1907
Daniel Dunbar679855a2010-01-29 03:22:29 +00001908 // Check if this field is at offset 0.
1909 if (Layout.getFieldOffset(idx) != 0)
1910 return false;
1911
Daniel Dunbar98303b92009-09-13 08:03:58 +00001912 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1913 return false;
1914
Daniel Dunbar679855a2010-01-29 03:22:29 +00001915 // Only allow at most one field in a structure. This doesn't match the
1916 // wording above, but follows gcc in situations with a field following an
1917 // empty structure.
Daniel Dunbar98303b92009-09-13 08:03:58 +00001918 if (!RD->isUnion()) {
1919 if (HadField)
1920 return false;
1921
1922 HadField = true;
1923 }
1924 }
1925
1926 return true;
1927}
1928
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001929ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +00001930 ASTContext &Context,
1931 llvm::LLVMContext &VMContext) const {
Daniel Dunbar98303b92009-09-13 08:03:58 +00001932 if (RetTy->isVoidType())
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001933 return ABIArgInfo::getIgnore();
Daniel Dunbar98303b92009-09-13 08:03:58 +00001934
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00001935 if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1936 // Treat an enum type as its underlying type.
1937 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1938 RetTy = EnumTy->getDecl()->getIntegerType();
1939
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +00001940 return (RetTy->isPromotableIntegerType() ?
1941 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00001942 }
Daniel Dunbar98303b92009-09-13 08:03:58 +00001943
Rafael Espindola0eb1d972010-06-08 02:42:08 +00001944 // Structures with either a non-trivial destructor or a non-trivial
1945 // copy constructor are always indirect.
1946 if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
1947 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1948
Daniel Dunbar98303b92009-09-13 08:03:58 +00001949 // Are we following APCS?
1950 if (getABIKind() == APCS) {
1951 if (isEmptyRecord(Context, RetTy, false))
1952 return ABIArgInfo::getIgnore();
1953
Daniel Dunbar4cc753f2010-02-01 23:31:19 +00001954 // Complex types are all returned as packed integers.
1955 //
1956 // FIXME: Consider using 2 x vector types if the back end handles them
1957 // correctly.
1958 if (RetTy->isAnyComplexType())
1959 return ABIArgInfo::getCoerce(llvm::IntegerType::get(
1960 VMContext, Context.getTypeSize(RetTy)));
1961
Daniel Dunbar98303b92009-09-13 08:03:58 +00001962 // Integer like structures are returned in r0.
1963 if (isIntegerLikeType(RetTy, Context, VMContext)) {
1964 // Return in the smallest viable integer type.
1965 uint64_t Size = Context.getTypeSize(RetTy);
1966 if (Size <= 8)
1967 return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1968 if (Size <= 16)
1969 return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1970 return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1971 }
1972
1973 // Otherwise return in memory.
1974 return ABIArgInfo::getIndirect(0);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001975 }
Daniel Dunbar98303b92009-09-13 08:03:58 +00001976
1977 // Otherwise this is an AAPCS variant.
1978
Daniel Dunbar16a08082009-09-14 00:56:55 +00001979 if (isEmptyRecord(Context, RetTy, true))
1980 return ABIArgInfo::getIgnore();
1981
Daniel Dunbar98303b92009-09-13 08:03:58 +00001982 // Aggregates <= 4 bytes are returned in r0; other aggregates
1983 // are returned indirectly.
1984 uint64_t Size = Context.getTypeSize(RetTy);
Daniel Dunbar16a08082009-09-14 00:56:55 +00001985 if (Size <= 32) {
1986 // Return in the smallest viable integer type.
1987 if (Size <= 8)
1988 return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1989 if (Size <= 16)
1990 return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
Daniel Dunbar98303b92009-09-13 08:03:58 +00001991 return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
Daniel Dunbar16a08082009-09-14 00:56:55 +00001992 }
1993
Daniel Dunbar98303b92009-09-13 08:03:58 +00001994 return ABIArgInfo::getIndirect(0);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00001995}
1996
1997llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1998 CodeGenFunction &CGF) const {
1999 // FIXME: Need to handle alignment
Benjamin Kramer3c0ef8c2009-10-13 10:07:13 +00002000 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
Owen Anderson96e0fc72009-07-29 22:16:19 +00002001 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002002
2003 CGBuilderTy &Builder = CGF.Builder;
2004 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2005 "ap");
2006 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2007 llvm::Type *PTy =
Owen Anderson96e0fc72009-07-29 22:16:19 +00002008 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002009 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2010
2011 uint64_t Offset =
2012 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2013 llvm::Value *NextAddr =
Owen Anderson0032b272009-08-13 21:57:51 +00002014 Builder.CreateGEP(Addr, llvm::ConstantInt::get(
2015 llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002016 "ap.next");
2017 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2018
2019 return AddrTyped;
2020}
2021
2022ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
Owen Andersona1cf15f2009-07-14 23:10:40 +00002023 ASTContext &Context,
2024 llvm::LLVMContext &VMContext) const {
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002025 if (RetTy->isVoidType()) {
2026 return ABIArgInfo::getIgnore();
2027 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2028 return ABIArgInfo::getIndirect(0);
2029 } else {
Douglas Gregoraa74a1e2010-02-02 20:10:50 +00002030 // Treat an enum type as its underlying type.
2031 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2032 RetTy = EnumTy->getDecl()->getIntegerType();
2033
Anton Korobeynikovcc6fa882009-06-06 09:36:29 +00002034 return (RetTy->isPromotableIntegerType() ?
2035 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002036 }
2037}
2038
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002039// SystemZ ABI Implementation
2040
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002041namespace {
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002042
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002043class SystemZABIInfo : public ABIInfo {
2044 bool isPromotableIntegerType(QualType Ty) const;
2045
2046 ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context,
2047 llvm::LLVMContext &VMContext) const;
2048
2049 ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context,
2050 llvm::LLVMContext &VMContext) const;
2051
2052 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
2053 llvm::LLVMContext &VMContext) const {
2054 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
2055 Context, VMContext);
2056 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2057 it != ie; ++it)
2058 it->info = classifyArgumentType(it->type, Context, VMContext);
2059 }
2060
2061 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2062 CodeGenFunction &CGF) const;
2063};
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002064
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002065class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2066public:
Douglas Gregor568bb2d2010-01-22 15:41:14 +00002067 SystemZTargetCodeGenInfo():TargetCodeGenInfo(new SystemZABIInfo()) {}
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002068};
2069
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002070}
2071
2072bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2073 // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
John McCall183700f2009-09-21 23:43:11 +00002074 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002075 switch (BT->getKind()) {
2076 case BuiltinType::Bool:
2077 case BuiltinType::Char_S:
2078 case BuiltinType::Char_U:
2079 case BuiltinType::SChar:
2080 case BuiltinType::UChar:
2081 case BuiltinType::Short:
2082 case BuiltinType::UShort:
2083 case BuiltinType::Int:
2084 case BuiltinType::UInt:
2085 return true;
2086 default:
2087 return false;
2088 }
2089 return false;
2090}
2091
2092llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2093 CodeGenFunction &CGF) const {
2094 // FIXME: Implement
2095 return 0;
2096}
2097
2098
2099ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy,
2100 ASTContext &Context,
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002101 llvm::LLVMContext &VMContext) const {
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002102 if (RetTy->isVoidType()) {
2103 return ABIArgInfo::getIgnore();
2104 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2105 return ABIArgInfo::getIndirect(0);
2106 } else {
2107 return (isPromotableIntegerType(RetTy) ?
2108 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2109 }
2110}
2111
2112ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty,
2113 ASTContext &Context,
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002114 llvm::LLVMContext &VMContext) const {
Anton Korobeynikov89e887f2009-07-16 20:09:57 +00002115 if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
2116 return ABIArgInfo::getIndirect(0);
2117 } else {
2118 return (isPromotableIntegerType(Ty) ?
2119 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2120 }
2121}
2122
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002123// MSP430 ABI Implementation
2124
2125namespace {
2126
2127class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2128public:
Douglas Gregor568bb2d2010-01-22 15:41:14 +00002129 MSP430TargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002130 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2131 CodeGen::CodeGenModule &M) const;
2132};
2133
2134}
2135
2136void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2137 llvm::GlobalValue *GV,
2138 CodeGen::CodeGenModule &M) const {
2139 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2140 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2141 // Handle 'interrupt' attribute:
2142 llvm::Function *F = cast<llvm::Function>(GV);
2143
2144 // Step 1: Set ISR calling convention.
2145 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2146
2147 // Step 2: Add attributes goodness.
2148 F->addFnAttr(llvm::Attribute::NoInline);
2149
2150 // Step 3: Emit ISR vector alias.
2151 unsigned Num = attr->getNumber() + 0xffe0;
2152 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2153 "vector_" +
2154 llvm::LowercaseString(llvm::utohexstr(Num)),
2155 GV, &M.getModule());
2156 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002157 }
2158}
2159
John McCallaeeb7012010-05-27 06:19:26 +00002160// MIPS ABI Implementation. This works for both little-endian and
2161// big-endian variants.
2162namespace {
2163class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2164public:
2165 MIPSTargetCodeGenInfo(): TargetCodeGenInfo(new DefaultABIInfo()) {}
2166
2167 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2168 return 29;
2169 }
2170
2171 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2172 llvm::Value *Address) const;
2173};
2174}
2175
2176bool
2177MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2178 llvm::Value *Address) const {
2179 // This information comes from gcc's implementation, which seems to
2180 // as canonical as it gets.
2181
2182 CodeGen::CGBuilderTy &Builder = CGF.Builder;
2183 llvm::LLVMContext &Context = CGF.getLLVMContext();
2184
2185 // Everything on MIPS is 4 bytes. Double-precision FP registers
2186 // are aliased to pairs of single-precision FP registers.
2187 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2188 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2189
2190 // 0-31 are the general purpose registers, $0 - $31.
2191 // 32-63 are the floating-point registers, $f0 - $f31.
2192 // 64 and 65 are the multiply/divide registers, $hi and $lo.
2193 // 66 is the (notional, I think) register for signal-handler return.
2194 AssignToArrayRange(Builder, Address, Four8, 0, 65);
2195
2196 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2197 // They are one bit wide and ignored here.
2198
2199 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2200 // (coprocessor 1 is the FP unit)
2201 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2202 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2203 // 176-181 are the DSP accumulator registers.
2204 AssignToArrayRange(Builder, Address, Four8, 80, 181);
2205
2206 return false;
2207}
2208
2209
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002210const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() const {
2211 if (TheTargetCodeGenInfo)
2212 return *TheTargetCodeGenInfo;
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002213
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002214 // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2215 // free it.
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002216
Daniel Dunbar1752ee42009-08-24 09:10:05 +00002217 const llvm::Triple &Triple(getContext().Target.getTriple());
2218 switch (Triple.getArch()) {
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002219 default:
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002220 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo);
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002221
John McCallaeeb7012010-05-27 06:19:26 +00002222 case llvm::Triple::mips:
2223 case llvm::Triple::mipsel:
2224 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo());
2225
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002226 case llvm::Triple::arm:
2227 case llvm::Triple::thumb:
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00002228 // FIXME: We want to know the float calling convention as well.
Daniel Dunbar018ba5a2009-09-14 00:35:03 +00002229 if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002230 return *(TheTargetCodeGenInfo =
2231 new ARMTargetCodeGenInfo(ARMABIInfo::APCS));
Daniel Dunbar5e7bace2009-09-12 01:00:39 +00002232
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002233 return *(TheTargetCodeGenInfo =
2234 new ARMTargetCodeGenInfo(ARMABIInfo::AAPCS));
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002235
2236 case llvm::Triple::pic16:
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002237 return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo());
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002238
John McCallec853ba2010-03-11 00:10:12 +00002239 case llvm::Triple::ppc:
2240 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo());
2241
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002242 case llvm::Triple::systemz:
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002243 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo());
2244
2245 case llvm::Triple::msp430:
2246 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo());
Daniel Dunbar34d91fd2009-09-12 00:59:49 +00002247
Daniel Dunbar1752ee42009-08-24 09:10:05 +00002248 case llvm::Triple::x86:
Daniel Dunbar1752ee42009-08-24 09:10:05 +00002249 switch (Triple.getOS()) {
Edward O'Callaghan7ee68bd2009-10-20 17:22:50 +00002250 case llvm::Triple::Darwin:
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002251 return *(TheTargetCodeGenInfo =
2252 new X86_32TargetCodeGenInfo(Context, true, true));
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002253 case llvm::Triple::Cygwin:
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002254 case llvm::Triple::MinGW32:
2255 case llvm::Triple::MinGW64:
Edward O'Callaghan727e2682009-10-21 11:58:24 +00002256 case llvm::Triple::AuroraUX:
2257 case llvm::Triple::DragonFly:
David Chisnall75c135a2009-09-03 01:48:05 +00002258 case llvm::Triple::FreeBSD:
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002259 case llvm::Triple::OpenBSD:
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002260 return *(TheTargetCodeGenInfo =
2261 new X86_32TargetCodeGenInfo(Context, false, true));
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002262
2263 default:
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002264 return *(TheTargetCodeGenInfo =
2265 new X86_32TargetCodeGenInfo(Context, false, false));
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002266 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002267
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002268 case llvm::Triple::x86_64:
Anton Korobeynikov82d0a412010-01-10 12:58:08 +00002269 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo());
Daniel Dunbar2c0843f2009-08-24 08:52:16 +00002270 }
Anton Korobeynikovc4a59eb2009-06-05 22:08:42 +00002271}