blob: e0a871831e7b815f58daf560a94ef963a0789c1b [file] [log] [blame]
Chris Lattner7f02f722007-08-24 05:35:26 +00001//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/AST.h"
17#include "llvm/Constants.h"
18#include "llvm/Function.h"
19#include "llvm/Support/Compiler.h"
20using namespace clang;
21using namespace CodeGen;
22using llvm::Value;
23
24//===----------------------------------------------------------------------===//
25// Scalar Expression Emitter
26//===----------------------------------------------------------------------===//
27
28struct BinOpInfo {
29 Value *LHS;
30 Value *RHS;
Chris Lattner1f1ded92007-08-24 21:00:35 +000031 QualType Ty; // Computation Type.
Chris Lattner7f02f722007-08-24 05:35:26 +000032 const BinaryOperator *E;
33};
34
35namespace {
36class VISIBILITY_HIDDEN ScalarExprEmitter
37 : public StmtVisitor<ScalarExprEmitter, Value*> {
38 CodeGenFunction &CGF;
39 llvm::LLVMBuilder &Builder;
40public:
41
42 ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf), Builder(CGF.Builder) {
43 }
44
45
46 //===--------------------------------------------------------------------===//
47 // Utilities
48 //===--------------------------------------------------------------------===//
49
50 const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
51 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
52
53 Value *EmitLoadOfLValue(LValue LV, QualType T) {
Chris Lattner9b655512007-08-31 22:49:20 +000054 return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
Chris Lattner7f02f722007-08-24 05:35:26 +000055 }
56
57 /// EmitLoadOfLValue - Given an expression with complex type that represents a
58 /// value l-value, this method emits the address of the l-value, then loads
59 /// and returns the result.
60 Value *EmitLoadOfLValue(const Expr *E) {
61 // FIXME: Volatile
62 return EmitLoadOfLValue(EmitLValue(E), E->getType());
63 }
64
Chris Lattner9abc84e2007-08-26 16:42:57 +000065 /// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner3420d0d2007-08-26 17:25:57 +000066 /// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattner9abc84e2007-08-26 16:42:57 +000067 Value *EmitConversionToBool(Value *Src, QualType DstTy);
68
Chris Lattner3707b252007-08-26 06:48:56 +000069 /// EmitScalarConversion - Emit a conversion from the specified type to the
70 /// specified destination type, both of which are LLVM scalar types.
Chris Lattner4f1a7b32007-08-26 16:34:22 +000071 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
72
73 /// EmitComplexToScalarConversion - Emit a conversion from the specified
74 /// complex type to the specified destination type, where the destination
75 /// type is an LLVM scalar type.
76 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
77 QualType SrcTy, QualType DstTy);
Chris Lattner3707b252007-08-26 06:48:56 +000078
Chris Lattner7f02f722007-08-24 05:35:26 +000079 //===--------------------------------------------------------------------===//
80 // Visitor Methods
81 //===--------------------------------------------------------------------===//
82
83 Value *VisitStmt(Stmt *S) {
84 S->dump();
85 assert(0 && "Stmt can't have complex result type!");
86 return 0;
87 }
88 Value *VisitExpr(Expr *S);
89 Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
90
91 // Leaves.
92 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
93 return llvm::ConstantInt::get(E->getValue());
94 }
95 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
96 return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue());
97 }
98 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
99 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
100 }
101 Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
102 return llvm::ConstantInt::get(ConvertType(E->getType()),
103 E->typesAreCompatible());
104 }
105 Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
106 return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
107 }
108
109 // l-values.
110 Value *VisitDeclRefExpr(DeclRefExpr *E) {
111 if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
112 return llvm::ConstantInt::get(EC->getInitVal());
113 return EmitLoadOfLValue(E);
114 }
115 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
116 Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); }
117 Value *VisitOCUVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
118 Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); }
119 Value *VisitPreDefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
120
121 // FIXME: CompoundLiteralExpr
122 Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
123 Value *VisitCastExpr(const CastExpr *E) {
124 return EmitCastExpr(E->getSubExpr(), E->getType());
125 }
126 Value *EmitCastExpr(const Expr *E, QualType T);
127
128 Value *VisitCallExpr(const CallExpr *E) {
Chris Lattner9b655512007-08-31 22:49:20 +0000129 return CGF.EmitCallExpr(E).getScalarVal();
Chris Lattner7f02f722007-08-24 05:35:26 +0000130 }
131
Chris Lattner33793202007-08-31 22:09:40 +0000132 Value *VisitStmtExpr(const StmtExpr *E);
133
Chris Lattner7f02f722007-08-24 05:35:26 +0000134 // Unary Operators.
135 Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
136 Value *VisitUnaryPostDec(const UnaryOperator *E) {
137 return VisitPrePostIncDec(E, false, false);
138 }
139 Value *VisitUnaryPostInc(const UnaryOperator *E) {
140 return VisitPrePostIncDec(E, true, false);
141 }
142 Value *VisitUnaryPreDec(const UnaryOperator *E) {
143 return VisitPrePostIncDec(E, false, true);
144 }
145 Value *VisitUnaryPreInc(const UnaryOperator *E) {
146 return VisitPrePostIncDec(E, true, true);
147 }
148 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
149 return EmitLValue(E->getSubExpr()).getAddress();
150 }
151 Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
152 Value *VisitUnaryPlus(const UnaryOperator *E) {
153 return Visit(E->getSubExpr());
154 }
155 Value *VisitUnaryMinus (const UnaryOperator *E);
156 Value *VisitUnaryNot (const UnaryOperator *E);
157 Value *VisitUnaryLNot (const UnaryOperator *E);
158 Value *VisitUnarySizeOf (const UnaryOperator *E) {
159 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
160 }
161 Value *VisitUnaryAlignOf (const UnaryOperator *E) {
162 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
163 }
164 Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType,
165 bool isSizeOf);
Chris Lattner46f93d02007-08-24 21:20:17 +0000166 Value *VisitUnaryReal (const UnaryOperator *E);
167 Value *VisitUnaryImag (const UnaryOperator *E);
Chris Lattner7f02f722007-08-24 05:35:26 +0000168 Value *VisitUnaryExtension(const UnaryOperator *E) {
169 return Visit(E->getSubExpr());
170 }
171
172 // Binary Operators.
Chris Lattner7f02f722007-08-24 05:35:26 +0000173 Value *EmitMul(const BinOpInfo &Ops) {
174 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
175 }
176 Value *EmitDiv(const BinOpInfo &Ops);
177 Value *EmitRem(const BinOpInfo &Ops);
178 Value *EmitAdd(const BinOpInfo &Ops);
179 Value *EmitSub(const BinOpInfo &Ops);
180 Value *EmitShl(const BinOpInfo &Ops);
181 Value *EmitShr(const BinOpInfo &Ops);
182 Value *EmitAnd(const BinOpInfo &Ops) {
183 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
184 }
185 Value *EmitXor(const BinOpInfo &Ops) {
186 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
187 }
188 Value *EmitOr (const BinOpInfo &Ops) {
189 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
190 }
191
Chris Lattner1f1ded92007-08-24 21:00:35 +0000192 BinOpInfo EmitBinOps(const BinaryOperator *E);
Chris Lattner3ccf7742007-08-26 21:41:21 +0000193 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner1f1ded92007-08-24 21:00:35 +0000194 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
195
196 // Binary operators and binary compound assignment operators.
197#define HANDLEBINOP(OP) \
Chris Lattner3ccf7742007-08-26 21:41:21 +0000198 Value *VisitBin ## OP(const BinaryOperator *E) { \
199 return Emit ## OP(EmitBinOps(E)); \
200 } \
201 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
202 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
Chris Lattner1f1ded92007-08-24 21:00:35 +0000203 }
204 HANDLEBINOP(Mul);
205 HANDLEBINOP(Div);
206 HANDLEBINOP(Rem);
207 HANDLEBINOP(Add);
208 // (Sub) - Sub is handled specially below for ptr-ptr subtract.
209 HANDLEBINOP(Shl);
210 HANDLEBINOP(Shr);
211 HANDLEBINOP(And);
212 HANDLEBINOP(Xor);
213 HANDLEBINOP(Or);
214#undef HANDLEBINOP
215 Value *VisitBinSub(const BinaryOperator *E);
Chris Lattner3ccf7742007-08-26 21:41:21 +0000216 Value *VisitBinSubAssign(const CompoundAssignOperator *E) {
Chris Lattner1f1ded92007-08-24 21:00:35 +0000217 return EmitCompoundAssign(E, &ScalarExprEmitter::EmitSub);
218 }
219
Chris Lattner7f02f722007-08-24 05:35:26 +0000220 // Comparisons.
221 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
222 unsigned SICmpOpc, unsigned FCmpOpc);
223#define VISITCOMP(CODE, UI, SI, FP) \
224 Value *VisitBin##CODE(const BinaryOperator *E) { \
225 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
226 llvm::FCmpInst::FP); }
227 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
228 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
229 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
230 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
231 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
232 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
233#undef VISITCOMP
234
235 Value *VisitBinAssign (const BinaryOperator *E);
236
237 Value *VisitBinLAnd (const BinaryOperator *E);
238 Value *VisitBinLOr (const BinaryOperator *E);
Chris Lattner7f02f722007-08-24 05:35:26 +0000239 Value *VisitBinComma (const BinaryOperator *E);
240
241 // Other Operators.
242 Value *VisitConditionalOperator(const ConditionalOperator *CO);
243 Value *VisitChooseExpr(ChooseExpr *CE);
244 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
245 return CGF.EmitObjCStringLiteral(E);
246 }
247};
248} // end anonymous namespace.
249
250//===----------------------------------------------------------------------===//
251// Utilities
252//===----------------------------------------------------------------------===//
253
Chris Lattner9abc84e2007-08-26 16:42:57 +0000254/// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner3420d0d2007-08-26 17:25:57 +0000255/// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattner9abc84e2007-08-26 16:42:57 +0000256Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
257 assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
258
259 if (SrcType->isRealFloatingType()) {
260 // Compare against 0.0 for fp scalars.
261 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
Chris Lattner9abc84e2007-08-26 16:42:57 +0000262 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
263 }
264
265 assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
266 "Unknown scalar type to convert");
267
268 // Because of the type rules of C, we often end up computing a logical value,
269 // then zero extending it to int, then wanting it as a logical value again.
270 // Optimize this common case.
271 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
272 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
273 Value *Result = ZI->getOperand(0);
274 ZI->eraseFromParent();
275 return Result;
276 }
277 }
278
279 // Compare against an integer or pointer null.
280 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
281 return Builder.CreateICmpNE(Src, Zero, "tobool");
282}
283
Chris Lattner3707b252007-08-26 06:48:56 +0000284/// EmitScalarConversion - Emit a conversion from the specified type to the
285/// specified destination type, both of which are LLVM scalar types.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000286Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
287 QualType DstType) {
Chris Lattner3707b252007-08-26 06:48:56 +0000288 SrcType = SrcType.getCanonicalType();
289 DstType = DstType.getCanonicalType();
290 if (SrcType == DstType) return Src;
Chris Lattnercf289082007-08-26 07:21:11 +0000291
292 if (DstType->isVoidType()) return 0;
Chris Lattner3707b252007-08-26 06:48:56 +0000293
294 // Handle conversions to bool first, they are special: comparisons against 0.
Chris Lattnered70f0a2007-08-26 16:52:28 +0000295 if (DstType->isBooleanType())
296 return EmitConversionToBool(Src, SrcType);
Chris Lattner3707b252007-08-26 06:48:56 +0000297
298 const llvm::Type *DstTy = ConvertType(DstType);
299
300 // Ignore conversions like int -> uint.
301 if (Src->getType() == DstTy)
302 return Src;
303
304 // Handle pointer conversions next: pointers can only be converted to/from
305 // other pointers and integers.
306 if (isa<PointerType>(DstType)) {
307 // The source value may be an integer, or a pointer.
308 if (isa<llvm::PointerType>(Src->getType()))
309 return Builder.CreateBitCast(Src, DstTy, "conv");
310 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
311 return Builder.CreateIntToPtr(Src, DstTy, "conv");
312 }
313
314 if (isa<PointerType>(SrcType)) {
315 // Must be an ptr to int cast.
316 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
317 return Builder.CreateIntToPtr(Src, DstTy, "conv");
318 }
319
320 // Finally, we have the arithmetic types: real int/float.
321 if (isa<llvm::IntegerType>(Src->getType())) {
322 bool InputSigned = SrcType->isSignedIntegerType();
323 if (isa<llvm::IntegerType>(DstTy))
324 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
325 else if (InputSigned)
326 return Builder.CreateSIToFP(Src, DstTy, "conv");
327 else
328 return Builder.CreateUIToFP(Src, DstTy, "conv");
329 }
330
331 assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
332 if (isa<llvm::IntegerType>(DstTy)) {
333 if (DstType->isSignedIntegerType())
334 return Builder.CreateFPToSI(Src, DstTy, "conv");
335 else
336 return Builder.CreateFPToUI(Src, DstTy, "conv");
337 }
338
339 assert(DstTy->isFloatingPoint() && "Unknown real conversion");
340 if (DstTy->getTypeID() < Src->getType()->getTypeID())
341 return Builder.CreateFPTrunc(Src, DstTy, "conv");
342 else
343 return Builder.CreateFPExt(Src, DstTy, "conv");
344}
345
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000346/// EmitComplexToScalarConversion - Emit a conversion from the specified
347/// complex type to the specified destination type, where the destination
348/// type is an LLVM scalar type.
349Value *ScalarExprEmitter::
350EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
351 QualType SrcTy, QualType DstTy) {
Chris Lattnered70f0a2007-08-26 16:52:28 +0000352 // Get the source element type.
353 SrcTy = cast<ComplexType>(SrcTy.getCanonicalType())->getElementType();
354
355 // Handle conversions to bool first, they are special: comparisons against 0.
356 if (DstTy->isBooleanType()) {
357 // Complex != 0 -> (Real != 0) | (Imag != 0)
358 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
359 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
360 return Builder.CreateOr(Src.first, Src.second, "tobool");
361 }
362
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000363 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
364 // the imaginary part of the complex value is discarded and the value of the
365 // real part is converted according to the conversion rules for the
366 // corresponding real type.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000367 return EmitScalarConversion(Src.first, SrcTy, DstTy);
368}
369
370
Chris Lattner7f02f722007-08-24 05:35:26 +0000371//===----------------------------------------------------------------------===//
372// Visitor Methods
373//===----------------------------------------------------------------------===//
374
375Value *ScalarExprEmitter::VisitExpr(Expr *E) {
376 fprintf(stderr, "Unimplemented scalar expr!\n");
377 E->dump();
378 if (E->getType()->isVoidType())
379 return 0;
380 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
381}
382
383Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
384 // Emit subscript expressions in rvalue context's. For most cases, this just
385 // loads the lvalue formed by the subscript expr. However, we have to be
386 // careful, because the base of a vector subscript is occasionally an rvalue,
387 // so we can't get it as an lvalue.
388 if (!E->getBase()->getType()->isVectorType())
389 return EmitLoadOfLValue(E);
390
391 // Handle the vector case. The base must be a vector, the index must be an
392 // integer value.
393 Value *Base = Visit(E->getBase());
394 Value *Idx = Visit(E->getIdx());
395
396 // FIXME: Convert Idx to i32 type.
397 return Builder.CreateExtractElement(Base, Idx, "vecext");
398}
399
400/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
401/// also handle things like function to pointer-to-function decay, and array to
402/// pointer decay.
403Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
404 const Expr *Op = E->getSubExpr();
405
406 // If this is due to array->pointer conversion, emit the array expression as
407 // an l-value.
408 if (Op->getType()->isArrayType()) {
409 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
410 // will not true when we add support for VLAs.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000411 Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
Chris Lattner7f02f722007-08-24 05:35:26 +0000412
413 assert(isa<llvm::PointerType>(V->getType()) &&
414 isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
415 ->getElementType()) &&
416 "Doesn't support VLAs yet!");
417 llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
418 return Builder.CreateGEP(V, Idx0, Idx0, "arraydecay");
419 }
420
421 return EmitCastExpr(Op, E->getType());
422}
423
424
425// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
426// have to handle a more broad range of conversions than explicit casts, as they
427// handle things like function to ptr-to-function decay etc.
428Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
Chris Lattner58a2e942007-08-26 07:26:12 +0000429 // Handle cases where the source is an non-complex type.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000430 if (!E->getType()->isComplexType()) {
Chris Lattner3707b252007-08-26 06:48:56 +0000431 Value *Src = Visit(const_cast<Expr*>(E));
432
Chris Lattner3707b252007-08-26 06:48:56 +0000433 // Use EmitScalarConversion to perform the conversion.
434 return EmitScalarConversion(Src, E->getType(), DestTy);
435 }
Chris Lattner10b00cf2007-08-26 07:16:41 +0000436
Chris Lattner58a2e942007-08-26 07:26:12 +0000437 // Handle cases where the source is a complex type.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000438 return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
439 DestTy);
Chris Lattner7f02f722007-08-24 05:35:26 +0000440}
441
Chris Lattner33793202007-08-31 22:09:40 +0000442Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
Chris Lattner9b655512007-08-31 22:49:20 +0000443 return CGF.EmitCompoundStmt(*E->getSubStmt(), true).getScalarVal();
Chris Lattner33793202007-08-31 22:09:40 +0000444}
445
446
Chris Lattner7f02f722007-08-24 05:35:26 +0000447//===----------------------------------------------------------------------===//
448// Unary Operators
449//===----------------------------------------------------------------------===//
450
451Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
Chris Lattnerdfce2a52007-08-24 16:24:49 +0000452 bool isInc, bool isPre) {
Chris Lattner7f02f722007-08-24 05:35:26 +0000453 LValue LV = EmitLValue(E->getSubExpr());
454 // FIXME: Handle volatile!
Chris Lattnere936cc82007-08-26 05:10:16 +0000455 Value *InVal = CGF.EmitLoadOfLValue(LV, // false
Chris Lattner9b655512007-08-31 22:49:20 +0000456 E->getSubExpr()->getType()).getScalarVal();
Chris Lattner7f02f722007-08-24 05:35:26 +0000457
458 int AmountVal = isInc ? 1 : -1;
459
460 Value *NextVal;
Chris Lattnere936cc82007-08-26 05:10:16 +0000461 if (isa<llvm::PointerType>(InVal->getType())) {
462 // FIXME: This isn't right for VLAs.
463 NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
464 NextVal = Builder.CreateGEP(InVal, NextVal);
465 } else {
466 // Add the inc/dec to the real part.
467 if (isa<llvm::IntegerType>(InVal->getType()))
468 NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
469 else
470 NextVal = llvm::ConstantFP::get(InVal->getType(), AmountVal);
471 NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
472 }
Chris Lattner7f02f722007-08-24 05:35:26 +0000473
474 // Store the updated result through the lvalue.
475 CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
476 E->getSubExpr()->getType());
477
478 // If this is a postinc, return the value read from memory, otherwise use the
479 // updated value.
480 return isPre ? NextVal : InVal;
481}
482
483
484Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
485 Value *Op = Visit(E->getSubExpr());
486 return Builder.CreateNeg(Op, "neg");
487}
488
489Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
490 Value *Op = Visit(E->getSubExpr());
491 return Builder.CreateNot(Op, "neg");
492}
493
494Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
495 // Compare operand to zero.
496 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
497
498 // Invert value.
499 // TODO: Could dynamically modify easy computations here. For example, if
500 // the operand is an icmp ne, turn into icmp eq.
501 BoolVal = Builder.CreateNot(BoolVal, "lnot");
502
503 // ZExt result to int.
504 return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
505}
506
507/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
508/// an integer (RetType).
509Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize,
Chris Lattner46f93d02007-08-24 21:20:17 +0000510 QualType RetType,bool isSizeOf){
Chris Lattner7f02f722007-08-24 05:35:26 +0000511 /// FIXME: This doesn't handle VLAs yet!
512 std::pair<uint64_t, unsigned> Info =
513 CGF.getContext().getTypeInfo(TypeToSize, SourceLocation());
514
515 uint64_t Val = isSizeOf ? Info.first : Info.second;
516 Val /= 8; // Return size in bytes, not bits.
517
518 assert(RetType->isIntegerType() && "Result type must be an integer!");
519
Chris Lattner47f7dbf2007-09-04 02:34:27 +0000520 unsigned ResultWidth = static_cast<unsigned>(CGF.getContext().getTypeSize(RetType,SourceLocation()));
Chris Lattner7f02f722007-08-24 05:35:26 +0000521 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
522}
523
Chris Lattner46f93d02007-08-24 21:20:17 +0000524Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
525 Expr *Op = E->getSubExpr();
526 if (Op->getType()->isComplexType())
527 return CGF.EmitComplexExpr(Op).first;
528 return Visit(Op);
529}
530Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
531 Expr *Op = E->getSubExpr();
532 if (Op->getType()->isComplexType())
533 return CGF.EmitComplexExpr(Op).second;
Chris Lattner36f84062007-08-26 05:29:21 +0000534
535 // __imag on a scalar returns zero. Emit it the subexpr to ensure side
536 // effects are evaluated.
537 CGF.EmitScalarExpr(Op);
538 return llvm::Constant::getNullValue(ConvertType(E->getType()));
Chris Lattner46f93d02007-08-24 21:20:17 +0000539}
540
541
Chris Lattner7f02f722007-08-24 05:35:26 +0000542//===----------------------------------------------------------------------===//
543// Binary Operators
544//===----------------------------------------------------------------------===//
545
546BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
547 BinOpInfo Result;
548 Result.LHS = Visit(E->getLHS());
549 Result.RHS = Visit(E->getRHS());
Chris Lattner1f1ded92007-08-24 21:00:35 +0000550 Result.Ty = E->getType();
Chris Lattner7f02f722007-08-24 05:35:26 +0000551 Result.E = E;
552 return Result;
553}
554
Chris Lattner3ccf7742007-08-26 21:41:21 +0000555Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner1f1ded92007-08-24 21:00:35 +0000556 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
557 QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
558
559 BinOpInfo OpInfo;
560
561 // Load the LHS and RHS operands.
562 LValue LHSLV = EmitLValue(E->getLHS());
563 OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
Chris Lattner04dc7642007-08-26 22:37:40 +0000564
565 // Determine the computation type. If the RHS is complex, then this is one of
566 // the add/sub/mul/div operators. All of these operators can be computed in
567 // with just their real component even though the computation domain really is
568 // complex.
Chris Lattner3ccf7742007-08-26 21:41:21 +0000569 QualType ComputeType = E->getComputationType();
Chris Lattner1f1ded92007-08-24 21:00:35 +0000570
Chris Lattner04dc7642007-08-26 22:37:40 +0000571 // If the computation type is complex, then the RHS is complex. Emit the RHS.
572 if (const ComplexType *CT = ComputeType->getAsComplexType()) {
573 ComputeType = CT->getElementType();
574
575 // Emit the RHS, only keeping the real component.
576 OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
577 RHSTy = RHSTy->getAsComplexType()->getElementType();
578 } else {
579 // Otherwise the RHS is a simple scalar value.
580 OpInfo.RHS = Visit(E->getRHS());
581 }
582
583 // Convert the LHS/RHS values to the computation type.
Chris Lattnere9377122007-08-26 07:08:39 +0000584 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, ComputeType);
Chris Lattner1f1ded92007-08-24 21:00:35 +0000585
586 // Do not merge types for -= where the LHS is a pointer.
Chris Lattner3b44b572007-08-25 21:56:20 +0000587 if (E->getOpcode() != BinaryOperator::SubAssign ||
588 !E->getLHS()->getType()->isPointerType()) {
Chris Lattnere9377122007-08-26 07:08:39 +0000589 OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, ComputeType);
Chris Lattner1f1ded92007-08-24 21:00:35 +0000590 }
591 OpInfo.Ty = ComputeType;
592 OpInfo.E = E;
593
594 // Expand the binary operator.
595 Value *Result = (this->*Func)(OpInfo);
596
597 // Truncate the result back to the LHS type.
Chris Lattnere9377122007-08-26 07:08:39 +0000598 Result = EmitScalarConversion(Result, ComputeType, LHSTy);
Chris Lattner1f1ded92007-08-24 21:00:35 +0000599
600 // Store the result value into the LHS lvalue.
601 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, E->getType());
602
603 return Result;
604}
605
606
Chris Lattner7f02f722007-08-24 05:35:26 +0000607Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
608 if (Ops.LHS->getType()->isFloatingPoint())
609 return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
Chris Lattner1f1ded92007-08-24 21:00:35 +0000610 else if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000611 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
612 else
613 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
614}
615
616Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
617 // Rem in C can't be a floating point type: C99 6.5.5p2.
Chris Lattner1f1ded92007-08-24 21:00:35 +0000618 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000619 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
620 else
621 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
622}
623
624
625Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
Chris Lattner1f1ded92007-08-24 21:00:35 +0000626 if (!Ops.Ty->isPointerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000627 return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
Chris Lattner1f1ded92007-08-24 21:00:35 +0000628
629 // FIXME: What about a pointer to a VLA?
Chris Lattner7f02f722007-08-24 05:35:26 +0000630 if (isa<llvm::PointerType>(Ops.LHS->getType())) // pointer + int
631 return Builder.CreateGEP(Ops.LHS, Ops.RHS, "add.ptr");
632 // int + pointer
633 return Builder.CreateGEP(Ops.RHS, Ops.LHS, "add.ptr");
634}
635
636Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
637 if (!isa<llvm::PointerType>(Ops.LHS->getType()))
638 return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
639
Chris Lattner1f1ded92007-08-24 21:00:35 +0000640 // pointer - int
641 assert(!isa<llvm::PointerType>(Ops.RHS->getType()) &&
642 "ptr-ptr shouldn't get here");
643 // FIXME: The pointer could point to a VLA.
644 Value *NegatedRHS = Builder.CreateNeg(Ops.RHS, "sub.ptr.neg");
645 return Builder.CreateGEP(Ops.LHS, NegatedRHS, "sub.ptr");
646}
647
648Value *ScalarExprEmitter::VisitBinSub(const BinaryOperator *E) {
649 // "X - Y" is different from "X -= Y" in one case: when Y is a pointer. In
650 // the compound assignment case it is invalid, so just handle it here.
651 if (!E->getRHS()->getType()->isPointerType())
652 return EmitSub(EmitBinOps(E));
Chris Lattner7f02f722007-08-24 05:35:26 +0000653
654 // pointer - pointer
Chris Lattner1f1ded92007-08-24 21:00:35 +0000655 Value *LHS = Visit(E->getLHS());
656 Value *RHS = Visit(E->getRHS());
657
658 const PointerType *LHSPtrType = E->getLHS()->getType()->getAsPointerType();
659 assert(LHSPtrType == E->getRHS()->getType()->getAsPointerType() &&
660 "Can't subtract different pointer types");
661
Chris Lattner7f02f722007-08-24 05:35:26 +0000662 QualType LHSElementType = LHSPtrType->getPointeeType();
Chris Lattner7f02f722007-08-24 05:35:26 +0000663 uint64_t ElementSize = CGF.getContext().getTypeSize(LHSElementType,
664 SourceLocation()) / 8;
Chris Lattner1f1ded92007-08-24 21:00:35 +0000665
666 const llvm::Type *ResultType = ConvertType(E->getType());
667 LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
668 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
669 Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
Chris Lattner7f02f722007-08-24 05:35:26 +0000670
671 // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
672 // remainder. As such, we handle common power-of-two cases here to generate
673 // better code.
674 if (llvm::isPowerOf2_64(ElementSize)) {
675 Value *ShAmt =
676 llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
677 return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
678 }
Chris Lattner1f1ded92007-08-24 21:00:35 +0000679
Chris Lattner7f02f722007-08-24 05:35:26 +0000680 // Otherwise, do a full sdiv.
681 Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
682 return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
683}
684
Chris Lattner1f1ded92007-08-24 21:00:35 +0000685
Chris Lattner7f02f722007-08-24 05:35:26 +0000686Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
687 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
688 // RHS to the same size as the LHS.
689 Value *RHS = Ops.RHS;
690 if (Ops.LHS->getType() != RHS->getType())
691 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
692
693 return Builder.CreateShl(Ops.LHS, RHS, "shl");
694}
695
696Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
697 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
698 // RHS to the same size as the LHS.
699 Value *RHS = Ops.RHS;
700 if (Ops.LHS->getType() != RHS->getType())
701 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
702
Chris Lattner1f1ded92007-08-24 21:00:35 +0000703 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000704 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
705 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
706}
707
708Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
709 unsigned SICmpOpc, unsigned FCmpOpc) {
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000710 Value *Result;
Chris Lattner7f02f722007-08-24 05:35:26 +0000711 QualType LHSTy = E->getLHS()->getType();
712 if (!LHSTy->isComplexType()) {
713 Value *LHS = Visit(E->getLHS());
714 Value *RHS = Visit(E->getRHS());
715
716 if (LHS->getType()->isFloatingPoint()) {
717 Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
718 LHS, RHS, "cmp");
719 } else if (LHSTy->isUnsignedIntegerType()) {
720 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
721 LHS, RHS, "cmp");
722 } else {
723 // Signed integers and pointers.
724 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
725 LHS, RHS, "cmp");
726 }
727 } else {
728 // Complex Comparison: can only be an equality comparison.
729 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
730 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
731
732 QualType CETy =
733 cast<ComplexType>(LHSTy.getCanonicalType())->getElementType();
734
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000735 Value *ResultR, *ResultI;
Chris Lattner7f02f722007-08-24 05:35:26 +0000736 if (CETy->isRealFloatingType()) {
737 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
738 LHS.first, RHS.first, "cmp.r");
739 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
740 LHS.second, RHS.second, "cmp.i");
741 } else {
742 // Complex comparisons can only be equality comparisons. As such, signed
743 // and unsigned opcodes are the same.
744 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
745 LHS.first, RHS.first, "cmp.r");
746 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
747 LHS.second, RHS.second, "cmp.i");
748 }
749
750 if (E->getOpcode() == BinaryOperator::EQ) {
751 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
752 } else {
753 assert(E->getOpcode() == BinaryOperator::NE &&
754 "Complex comparison other than == or != ?");
755 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
756 }
757 }
758
759 // ZExt result to int.
760 return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
761}
762
763Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
764 LValue LHS = EmitLValue(E->getLHS());
765 Value *RHS = Visit(E->getRHS());
766
767 // Store the value into the LHS.
768 // FIXME: Volatility!
769 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
770
771 // Return the RHS.
772 return RHS;
773}
774
775Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
776 Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
777
778 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
779 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
780
781 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
782 Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
783
784 CGF.EmitBlock(RHSBlock);
785 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
786
787 // Reaquire the RHS block, as there may be subblocks inserted.
788 RHSBlock = Builder.GetInsertBlock();
789 CGF.EmitBlock(ContBlock);
790
791 // Create a PHI node. If we just evaluted the LHS condition, the result is
792 // false. If we evaluated both, the result is the RHS condition.
793 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
794 PN->reserveOperandSpace(2);
795 PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
796 PN->addIncoming(RHSCond, RHSBlock);
797
798 // ZExt result to int.
799 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
800}
801
802Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
803 Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
804
805 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
806 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
807
808 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
809 Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
810
811 CGF.EmitBlock(RHSBlock);
812 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
813
814 // Reaquire the RHS block, as there may be subblocks inserted.
815 RHSBlock = Builder.GetInsertBlock();
816 CGF.EmitBlock(ContBlock);
817
818 // Create a PHI node. If we just evaluted the LHS condition, the result is
819 // true. If we evaluated both, the result is the RHS condition.
820 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
821 PN->reserveOperandSpace(2);
822 PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
823 PN->addIncoming(RHSCond, RHSBlock);
824
825 // ZExt result to int.
826 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
827}
828
829Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
830 CGF.EmitStmt(E->getLHS());
831 return Visit(E->getRHS());
832}
833
834//===----------------------------------------------------------------------===//
835// Other Operators
836//===----------------------------------------------------------------------===//
837
838Value *ScalarExprEmitter::
839VisitConditionalOperator(const ConditionalOperator *E) {
840 llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?");
841 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:");
842 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont");
843
844 Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
845 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
846
847 CGF.EmitBlock(LHSBlock);
848
849 // Handle the GNU extension for missing LHS.
850 Value *LHS = E->getLHS() ? Visit(E->getLHS()) : Cond;
851 Builder.CreateBr(ContBlock);
852 LHSBlock = Builder.GetInsertBlock();
853
854 CGF.EmitBlock(RHSBlock);
855
856 Value *RHS = Visit(E->getRHS());
857 Builder.CreateBr(ContBlock);
858 RHSBlock = Builder.GetInsertBlock();
859
860 CGF.EmitBlock(ContBlock);
861
862 // Create a PHI node for the real part.
863 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
864 PN->reserveOperandSpace(2);
865 PN->addIncoming(LHS, LHSBlock);
866 PN->addIncoming(RHS, RHSBlock);
867 return PN;
868}
869
870Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
871 llvm::APSInt CondVal(32);
872 bool IsConst = E->getCond()->isIntegerConstantExpr(CondVal, CGF.getContext());
873 assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst;
874
875 // Emit the LHS or RHS as appropriate.
876 return Visit(CondVal != 0 ? E->getLHS() : E->getRHS());
877}
878
879//===----------------------------------------------------------------------===//
880// Entry Point into this File
881//===----------------------------------------------------------------------===//
882
883/// EmitComplexExpr - Emit the computation of the specified expression of
884/// complex type, ignoring the result.
885Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
886 assert(E && !hasAggregateLLVMType(E->getType()) &&
887 "Invalid scalar expression to emit");
888
889 return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
890}
Chris Lattner3707b252007-08-26 06:48:56 +0000891
892/// EmitScalarConversion - Emit a conversion from the specified type to the
893/// specified destination type, both of which are LLVM scalar types.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000894Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
895 QualType DstTy) {
Chris Lattner3707b252007-08-26 06:48:56 +0000896 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
897 "Invalid scalar expression to emit");
898 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
899}
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000900
901/// EmitComplexToScalarConversion - Emit a conversion from the specified
902/// complex type to the specified destination type, where the destination
903/// type is an LLVM scalar type.
904Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
905 QualType SrcTy,
906 QualType DstTy) {
907 assert(SrcTy->isComplexType() && !hasAggregateLLVMType(DstTy) &&
908 "Invalid complex -> scalar conversion");
909 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
910 DstTy);
911}